
this print for content only—size & color not accurate 7" x 9-1/4" / CASEBOUND / MALLOY
(2.125 INCH BULK -- 1,400 pages -- 40# Thor)

The EXPERT’s VOIce® in .NET

Andrew Troelsen

Pro
C# 2008
.NET 3.5 Platform

Exploring the .NET universe using curly brackets

Books for professionals by professionals®

Pro C# 2008 and the .NET 3.5 Platform, Fourth Edition

Dear Reader,

The first edition of this book was released at the 2001 Tech·Ed conference in
Atlanta, Georgia. (I honestly can’t believe it was that long ago!) Since that time,
this text has been revised, tweaked, and enhanced to account for the changes
found within each release of the .NET platform (1.1, 2.0, 3.0, and now 3.5).
.NET 3.0 was more of an augmentative release, essentially providing three new
APIs: Windows Presentation Foundation (WPF), Windows Communication
Foundation (WCF), and Windows Workflow Foundation (WF). As you would
expect, coverage of the “W’s” has been expanded upon a great deal from the
previous Special Edition of this text.

Unlike .NET 3.0, .NET 3.5 provides dozens of new C# language features and .NET
APIs. This edition of the book will walk you through all of this new material using
the same readable approach (at least that is what I have been told!) as found
in the prior editions. Rest assured, you’ll find detailed coverage of Language
Integrated Query (LINQ), the C# 2008 language changes (automatic properties,
extension methods, anonymous types, etc.), and the numerous bells and whistles
of Visual Studio 2008.

If you’re checking out this book for the first time, understand that it targets
experienced software professionals and/or students of computer science (so
please don’t expect three chapters devoted to “for loops”). The mission of this
text is to provide you with a rock-solid foundation in the C# 2008 programming
language and the core aspects of the .NET platform (OOP, assemblies, file IO,
Windows Forms/WPF, ASP.NET, ADO.NET, WCF, WF, etc.). Once you digest the
information presented in these 33 chapters, you’ll be in a perfect position to
apply this knowledge to your specific programming assignments, and you’ll be
well equipped to explore the .NET universe on your own terms.

Take care and enjoy,

Andrew Troelsen
Microsoft MVP, Visual Developer—Visual C#

THE APRESS ROADMAP

Pro ASP.NET 3.5
in C# 2008

Pro VB 2008 and the
.NET 3.5 Platform

Accelerated C# 2008

Beginning C# 2008

Beginning C# 2008
Databases

Pro C# 2008 and the
.NET 3.5 Platform

Pro LINQ

Pro WPF in C# 2008

C#
Troelsen

 CYAN
  MAGENTA

 YELL OW
  BLACK
  PANTONE 123 C

Author of

Pro VB 2008 and the
.NET 3.5 Platform

COM and .NET
Interoperability

Expert ASP.NET 2.0
Advanced Application
Design

Developer’s Workshop
to COM and ATL 3.0

ISBN-13: 978-1-59059-884-9
ISBN-10: 1-59059-884-9

9 781590 598849

55999US $59.99

Shelve in
Programming/
Microsoft/.NET

User level:
Intermediate–Advanced

www.apress.com
SOURCE CODE ONLINE

Free Companion eBook

For a limited time only.

See last page for details.

Fourth Edition

Fourth Edition

Free Companion eBook Available

Pro

2008
and the.NET 3.5

Platform

and
the

For a limited time,
get the free, fully searchable

eBook—a $30 value!
See last page for details.
Offer ends June 30, 2008.

For a limited time,
get the free, fully searchable

eBook—a $30 value!
See last page for details.
Offer ends June 30, 2008.

Andrew Troelsen

Pro C# 2008 and the
.NET 3.5 Platform
Fourth Edition

8849FM.qxd 10/19/07 9:45 AM Page i

Pro C# 2008 and the .NET 3.5 Platform, Fourth Edition

Copyright © 2007 by Andrew Troelsen

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-884-9

ISBN-10: 1-59059-884-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewer: Gavin Smyth
Editorial Board: Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan Gennick,

Jason Gilmore, Kevin Goff, Jonathan Hassell, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Production Director | Project Manager: Grace Wong
Senior Copy Editors: Ami Knox, Nicole Flores
Associate Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Dina Quan
Proofreaders: April Eddy and Liz Welch
Indexer: Broccoli Information Management
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,
or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section. You will need to answer questions pertaining to this book in order to successfully
download the code.

8849FM.qxd 10/19/07 9:45 AM Page ii

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com

This edition of the text is dedicated to Mikko the wonder cat, life at 412, and my wonderful
wife, Amanda, who patiently waited for me to finish yet another book.

8849FM.qxd 10/19/07 9:45 AM Page iii

Contents

About the Author. xvi

About the Technical Reviewer . xvii

Acknowledgments . xviii

Introduction . xix

Part 1 ■ ■ ■ Introducing C# and the .NET Platform
■CHAPTER 1 The Philosophy of .NET . 3

Understanding the Previous State of Affairs . 3
The .NET Solution. 6
Introducing the Building Blocks of the .NET Platform (the CLR, CTS,

and CLS) . 6
Additional .NET-Aware Programming Languages. 9
An Overview of .NET Assemblies . 11
Understanding the Common Type System . 17
Understanding the Common Language Specification . 20
Understanding the Common Language Runtime . 22
The Assembly/Namespace/Type Distinction . 23
Exploring an Assembly Using ildasm.exe . 28
Exploring an Assembly Using Lutz Roeder’s Reflector. 31
Deploying the .NET Runtime . 31
The Platform-Independent Nature of .NET . 32
Summary . 33

■CHAPTER 2 Building C# Applications . 35

The Role of the .NET Framework 3.5 SDK. 35
Building C# Applications Using csc.exe. 36
Building .NET Applications Using TextPad. 42
Building .NET Applications Using Notepad++. 46
Building .NET Applications Using SharpDevelop. 48
Building .NET Applications Using Visual C# 2008 Express 50
Building .NET Applications Using Visual Studio 2008 . 52
A Partial Catalog of Additional .NET Development Tools . 64
Summary . 65

iv

8849FM.qxd 10/19/07 9:45 AM Page iv

Part 2 ■ ■ ■ Core C# Programming Constructs
■CHAPTER 3 Core C# Programming Constructs, Part I . 69

The Anatomy of a Simple C# Program. 69
An Interesting Aside: Some Additional Members of the

System.Environment Class . 75
The System.Console Class . 76
System Data Types and C# Shorthand Notation. 80
Understanding the System.String Type . 86
Narrowing and Widening Data Type Conversions. 95
C# Iteration Constructs . 100
Decision Constructs and the Relational/Equality Operators. 102
Summary . 104

■CHAPTER 4 Core C# Programming Constructs, Part II . 107

Methods and Parameter Modifiers . 107
Understanding Member Overloading . 113
Array Manipulation in C#. 114
Understanding the Enum Type . 121
Understanding the Structure Type . 126
Understanding Value Types and Reference Types . 129
Value and Reference Types: Final Details . 135
Understanding C# Nullable Types . 136
Summary . 139

■CHAPTER 5 Defining Encapsulated Class Types . 141

Introducing the C# Class Type . 141
Understanding Class Constructors . 144
The Role of the this Keyword . 147
Understanding the static Keyword . 152
Defining the Pillars of OOP . 159
C# Access Modifiers . 163
The First Pillar: C#’s Encapsulation Services . 164
Understanding Constant Data . 173
Understanding Read-Only Fields . 174
Understanding Partial Types . 175
Documenting C# Source Code via XML . 176
Visualizing the Fruits of Our Labor . 182
Summary . 182

■CHAPTER 6 Understanding Inheritance and Polymorphism 185

The Basic Mechanics of Inheritance . 185
Revising Visual Studio Class Diagrams . 189
The Second Pillar: The Details of Inheritance . 190
Programming for Containment/Delegation . 196

■CONTENTS v

8849FM.qxd 10/19/07 9:45 AM Page v

■CONTENTSvi

The Third Pillar: C#’s Polymorphic Support. 199
Understanding Base Class/Derived Class Casting Rules 210
The Master Parent Class: System.Object . 212
Summary . 218

■CHAPTER 7 Understanding Structured Exception Handling. 219

Ode to Errors, Bugs, and Exceptions . 219
The Role of .NET Exception Handling. 220
The Simplest Possible Example . 222
Configuring the State of an Exception . 226
System-Level Exceptions (System.SystemException) . 230
Application-Level Exceptions (System.ApplicationException) 231
Processing Multiple Exceptions . 236
The Finally Block . 239
Who Is Throwing What? . 240
The Result of Unhandled Exceptions . 241
Debugging Unhandled Exceptions Using Visual Studio . 242
Summary . 243

■CHAPTER 8 Understanding Object Lifetime . 245

Classes, Objects, and References . 245
The Basics of Object Lifetime . 246
The Role of Application Roots . 249
Understanding Object Generations. 251
The System.GC Type . 252
Building Finalizable Objects . 256
Building Disposable Objects . 259
Building Finalizable and Disposable Types . 262
Summary . 265

Part 3 ■ ■ ■ Advanced C# Programming Constructs
■CHAPTER 9 Working with Interfaces . 269

Understanding Interface Types. 269
Defining Custom Interfaces. 272
Implementing an Interface . 274
Invoking Interface Members at the Object Level . 276
Interfaces As Parameters . 278
Interfaces As Return Values . 280
Arrays of Interface Types . 281
Implementing Interfaces Using Visual Studio 2008 . 282
Resolving Name Clashes via Explicit Interface Implementation 283
Designing Interface Hierarchies . 286
Building Enumerable Types (IEnumerable and IEnumerator) 289
Building Cloneable Objects (ICloneable) . 295

8849FM.qxd 10/19/07 9:45 AM Page vi

Building Comparable Objects (IComparable). 299
Understanding Callback Interfaces. 304
Summary . 308

■CHAPTER 10 Collections and Generics . 309

The Interfaces of the System.Collections Namespace . 309
The Class Types of System.Collections . 312
System.Collections.Specialized Namespace. 316
The Boxing, Unboxing, and System.Object Relationship 316
The Issue of Type Safety and Strongly Typed Collections 319
The System.Collections.Generic Namespace . 324
Creating Custom Generic Methods. 327
Creating Generic Structures and Classes . 330
Creating a Custom Generic Collection . 332
Creating Generic Base Classes. 337
Creating Generic Interfaces. 338
Summary . 339

■CHAPTER 11 Delegates, Events, and Lambdas . 341

Understanding the .NET Delegate Type . 341
Defining a Delegate in C# . 342
The System.MulticastDelegate and System.Delegate Base Classes 344
The Simplest Possible Delegate Example . 345
Retrofitting the Car Type with Delegates. 348
A More Elaborate Delegate Example . 353
Understanding Delegate Covariance . 358
Creating Generic Delegates . 360
Understanding C# Events . 362
The Generic EventHandler<T> Delegate. 369
Understanding C# Anonymous Methods . 370
Understanding Method Group Conversions . 372
The C# 2008 Lambda Operator . 374
Summary . 381

■CHAPTER 12 Indexers, Operators, and Pointers . 383

Understanding Indexer Methods. 383
Understanding Operator Overloading. 388
Understanding Custom Type Conversions. 397
Working with Pointer Types . 404
C# Preprocessor Directives. 411
Summary . 414

■CHAPTER 13 C# 2008 Language Features . 415

Understanding Implicitly Typed Local Variables . 415
Understanding Automatic Properties . 420
Understanding Extension Methods. 424

■CONTENTS vii

8849FM.qxd 10/19/07 9:45 AM Page vii

Understanding Partial Methods . 433
Understanding Object Initializer Syntax . 436
Understanding Anonymous Types . 440
Summary . 445

■CHAPTER 14 An Introduction to LINQ. 447

Understanding the Role of LINQ . 447
A First Look at LINQ Query Expressions . 450
LINQ and Generic Collections . 456
LINQ and Nongeneric Collections . 457
The Internal Representation of LINQ Query Operators . 459
Investigating the C# LINQ Query Operators. 463
LINQ Queries: An Island unto Themselves?. 469
Summary . 472

PART 4 ■ ■ ■ Programming with .NET Assemblies
■CHAPTER 15 Introducing .NET Assemblies . 475

Defining Custom Namespaces . 475
The Role of .NET Assemblies . 480
Understanding the Format of a .NET Assembly . 482
Building and Consuming a Single-File Assembly . 486
Building and Consuming a Multifile Assembly . 496
Understanding Private Assemblies. 499
Understanding Shared Assemblies . 504
Consuming a Shared Assembly . 510
Configuring Shared Assemblies . 512
Investigating the Internal Composition of the GAC . 516
Understanding Publisher Policy Assemblies . 518
Understanding the <codeBase> Element . 519
The System.Configuration Namespace . 521
The Machine Configuration File . 522
Summary . 522

■CHAPTER 16 Type Reflection, Late Binding, and Attribute-Based
Programming . 523

The Necessity of Type Metadata . 523
Understanding Reflection . 527
Building a Custom Metadata Viewer . 530
Dynamically Loading Assemblies . 536
Reflecting on Shared Assemblies. 538
Understanding Late Binding . 539

■CONTENTSviii

8849FM.qxd 10/19/07 9:45 AM Page viii

Understanding Attributed Programming . 542
Building Custom Attributes . 546
Assembly-Level (and Module-Level) Attributes . 549
Reflecting on Attributes Using Early Binding. 550
Reflecting on Attributes Using Late Binding . 551
Putting Reflection, Late Binding, and Custom Attributes in Perspective 553
Building an Extendable Application . 553
Summary . 559

■CHAPTER 17 Processes, AppDomains, and Object Contexts 561

Reviewing Traditional Win32 Processes . 561
Interacting with Processes Under the .NET Platform . 563
Understanding .NET Application Domains . 571
Understanding Object Context Boundaries . 577
Summarizing Processes, AppDomains, and Context . 581
Summary . 582

■CHAPTER 18 Building Multithreaded Applications. 583

The Process/AppDomain/Context/Thread Relationship . 583
A Brief Review of the .NET Delegate . 585
The Asynchronous Nature of Delegates. 587
Invoking a Method Asynchronously . 588
The System.Threading Namespace . 593
The System.Threading.Thread Class . 594
Programmatically Creating Secondary Threads . 597
The Issue of Concurrency . 602
Programming with Timer Callbacks. 609
Understanding the CLR ThreadPool . 610
The Role of the BackgroundWorker Component. 612
Summary . 616

■CHAPTER 19 Understanding CIL and the Role of Dynamic Assemblies 617

Reflecting on the Nature of CIL Programming . 617
Examining CIL Directives, Attributes, and Opcodes . 618
Pushing and Popping: The Stack-Based Nature of CIL . 620
Understanding Round-Trip Engineering. 621
Understanding CIL Directives and Attributes. 629
.NET Base Class Library, C#, and CIL Data Type Mappings 635
Defining Type Members in CIL . 636
Examining CIL Opcodes. 638
Building a .NET Assembly with CIL . 643
Understanding Dynamic Assemblies . 648
Summary . 657

■CONTENTS ix

8849FM.qxd 10/19/07 9:45 AM Page ix

Part 5 ■ ■ ■ Introducing the .NET Base Class Libraries
■CHAPTER 20 File I/O and Isolated Storage . 661

Exploring the System.IO Namespace . 661
The Directory(Info) and File(Info) Types . 662
Working with the DirectoryInfo Type . 663
Working with the Directory Type . 667
Working with the DriveInfo Class Type . 668
Working with the FileInfo Class . 669
Working with the File Type . 673
The Abstract Stream Class . 675
Working with StreamWriters and StreamReaders . 677
Working with StringWriters and StringReaders . 680
Working with BinaryWriters and BinaryReaders . 682
Programmatically “Watching” Files . 683
Performing Asynchronous File I/O . 685
Understanding the Role of Isolated Storage . 687
A Primer on Code Access Security . 688
An Overview of Isolated Storage. 698
Obtaining a Store Using IsolatedStorageFile . 702
Isolated Storage in Action: ClickOnce Deployment. 707
Summary . 710

■CHAPTER 21 Introducing Object Serialization . 711

Understanding Object Serialization . 711
Configuring Objects for Serialization . 713
Choosing a Serialization Formatter . 715
Serializing Objects Using the BinaryFormatter . 717
Serializing Objects Using the SoapFormatter . 719
Serializing Objects Using the XmlSerializer. 720
Serializing Collections of Objects . 723
Customizing the Serialization Process. 724
Summary . 729

■CHAPTER 22 ADO.NET Part I: The Connected Layer. 731

A High-Level Definition of ADO.NET. 731
Understanding ADO.NET Data Providers . 733
Additional ADO.NET Namespaces . 736
The Types of the System.Data Namespace . 737
Abstracting Data Providers Using Interfaces. 741
Creating the AutoLot Database. 744
The ADO.NET Data Provider Factory Model. 749
Understanding the Connected Layer of ADO.NET. 755
Working with Data Readers . 760
Building a Reusable Data Access Library . 763

■CONTENTSx

8849FM.qxd 10/19/07 9:45 AM Page x

Creating a Console UI–Based Front End . 770
Asynchronous Data Access Using SqlCommand . 775
Understanding Database Transactions . 777
Summary . 781

■CHAPTER 23 ADO.NET Part II: The Disconnected Layer . 783

Understanding the Disconnected Layer of ADO.NET . 783
Understanding the Role of the DataSet . 784
Working with DataColumns. 787
Working with DataRows . 789
Working with DataTables . 793
Binding DataTable Objects to User Interfaces. 798
Filling DataSet/DataTable Objects Using Data Adapters 808
Revisiting AutoLotDAL.dll . 811
Navigating Multitabled DataSet Objects . 814
The Data Access Tools of Visual Studio 2008. 820
Decoupling Autogenerated Code from the UI Layer . 831
Summary . 835

■CHAPTER 24 Programming with the LINQ APIs . 837

The Role of LINQ to ADO.NET . 837
Programming with LINQ to DataSet . 838
Programming with LINQ to SQL . 843
Generating Entity Classes Using SqlMetal.exe . 848
Building Entity Classes Using Visual Studio 2008. 854
Manipulating XML Documents Using LINQ to XML. 857
Navigating an In-Memory Document . 862
Summary . 865

■CHAPTER 25 Introducing Windows Communication Foundation 867

A Potpourri of Distributed Computing APIs . 867
The Role of WCF. 873
Investigating the Core WCF Assemblies . 876
The Visual Studio WCF Project Templates. 877
The Basic Composition of a WCF Application . 879
The ABCs of WCF . 880
Building a WCF Service . 885
Hosting the WCF Service . 888
Building the WCF Client Application. 896
Using the WCF Service Library Project Template . 900
Hosting the WCF Service As a Windows Service . 903
Invoking a Service Asynchronously . 908
Designing WCF Data Contracts. 910
Summary . 915

■CONTENTS xi

8849FM.qxd 10/19/07 9:45 AM Page xi

■CHAPTER 26 Introducing Windows Workflow Foundation . 917

Defining a Business Process. 917
The Building Blocks of WF . 918
WF Assemblies, Namespaces, and Projects . 924
Building a Simple Workflow-Enabled Application. 926
Examining the WF Engine Hosting Code . 930
Invoking Web Services Within Workflows . 934
Building a Reusable WF Code Library . 945
A Brief Word Regarding Custom Activities . 951
Summary . 952

Part 6 ■ ■ ■ Desktop User Interfaces
■CHAPTER 27 Programming with Windows Forms . 955

The Windows Forms Namespaces . 955
Building a Simple Windows Forms Application (IDE-Free). 956
The Visual Studio Windows Forms Project Template . 961
The Anatomy of a Form . 968
Responding to Mouse Activity. 975
Responding to Keyboard Activity . 977
Designing Dialog Boxes. 978
Rendering Graphical Data Using GDI+. 985
Building a Complete Windows Forms Application . 990
Summary . 997

■CHAPTER 28 Introducing Windows Presentation Foundation and XAML 999

The Motivation Behind WPF . 999
The Various Flavors of WPF Applications. 1002
Investigating the WPF Assemblies . 1004
Building a (XAML-Free) WPF Application. 1011
Additional Details of the Application Type . 1015
Additional Details of the Window Type . 1017
Building a (XAML-Centric) WPF Application . 1021
Transforming Markup into a .NET Assembly. 1025
Separation of Concerns Using Code-Behind Files . 1029
The Syntax of XAML. 1031
Building WPF Applications Using Visual Studio 2008. 1044
Processing XAML at Runtime: SimpleXamlPad.exe . 1048
The Role of Microsoft Expression Blend . 1052
Summary . 1053

■CONTENTSxii

8849FM.qxd 10/19/07 9:45 AM Page xii

■CHAPTER 29 Programming with WPF Controls . 1055

A Survey of the WPF Control Library . 1055
Declaring Controls in XAML . 1058
Understanding the Role of Dependency Properties . 1060
Understanding Routed Events. 1064
Working with Button Types . 1068
Working with CheckBoxes and RadioButtons . 1072
Working with the ListBox and ComboBox Types . 1075
Working with Text Areas . 1081
Controlling Content Layout Using Panels. 1083
Building a Window’s Frame Using Nested Panels . 1093
Understanding WPF Control Commands . 1099
Understanding the WPF Data-Binding Model . 1102
Data Conversion Using IValueConverter . 1106
Binding to Custom Objects . 1108
Binding UI Elements to XML Documents . 1112
Summary . 1116

■CHAPTER 30 WPF 2D Graphical Rendering, Resources, and Themes 1117

The Philosophy of WPF Graphical Rendering Services. 1117
Exploring the Shape-Derived Types . 1124
Working with WPF Brushes. 1127
Working with WPF Pens . 1130
Exploring the Drawing-Derived Types . 1130
The Role of UI Transformations . 1135
Understanding WPF’s Animation Services. 1136
Understanding the WPF Resource System . 1145
Defining and Applying Styles for WPF Controls . 1147
Altering a Control’s UI Using Templates . 1156
Summary . 1160

Part 7 ■ ■ ■ Building Web Applications with ASP.NET
■CHAPTER 31 Building ASP.NET Web Pages . 1163

The Role of HTTP . 1163
Understanding Web Applications and Web Servers . 1164
The Role of HTML. 1167
The Role of Client-Side Scripting . 1172
Submitting the Form Data (GET and POST) . 1174
Building a Classic ASP Page . 1175
Problems with Classic ASP . 1177
The ASP.NET Namespaces . 1178
The ASP.NET Web Page Code Model . 1179
Details of an ASP.NET Website Directory Structure . 1190
The ASP.NET Page Compilation Cycle . 1192

■CONTENTS xiii

8849FM.qxd 10/19/07 9:45 AM Page xiii

The Inheritance Chain of the Page Type . 1194
Interacting with the Incoming HTTP Request . 1195
Interacting with the Outgoing HTTP Response . 1198
The Life Cycle of an ASP.NET Web Page . 1200
The Role of the Web.config File . 1203
Summary . 1206

■CHAPTER 32 ASP.NET Web Controls, Themes, and Master Pages 1207

Understanding the Nature of Web Controls . 1207
The System.Web.UI.Control Type . 1209
The System.Web.UI.WebControls.WebControl Type. 1213
Major Categories of ASP.NET Web Controls . 1213
Building a Feature-Rich ASP.NET Website . 1215
The Role of the Validation Controls . 1231
Working with Themes . 1237
Positioning Controls Using HTML Tables . 1243
Summary . 1244

■CHAPTER 33 ASP.NET State Management Techniques . 1245

The Issue of State . 1245
ASP.NET State Management Techniques . 1247
Understanding the Role of ASP.NET View State . 1248
The Role of the Global.asax File . 1251
Understanding the Application/Session Distinction . 1254
Working with the Application Cache . 1259
Maintaining Session Data . 1263
Understanding Cookies . 1267
The Role of the <sessionState> Element . 1269
Understanding the ASP.NET Profile API . 1272
Summary . 1279

Part 8 ■ ■ ■ Appendixes
■APPENDIX A COM and .NET Interoperability . 1283

The Scope of .NET Interoperability . 1283
A Simple Example of .NET to COM Interop . 1284
Investigating a .NET Interop Assembly . 1287
Understanding the Runtime Callable Wrapper . 1289
The Role of COM IDL . 1292
Using a Type Library to Build an Interop Assembly . 1296
Building a More Elaborate COM Server . 1299
Examining the Interop Assembly . 1301
Understanding COM to .NET Interoperability. 1305
The Role of the CCW . 1306
The Role of the .NET Class Interface . 1307

■CONTENTSxiv

8849FM.qxd 10/19/07 9:45 AM Page xiv

Building Your .NET Types . 1308
Generating the Type Library and Registering the .NET Types. 1310
Examining the Exported Type Information. 1311
Building a Visual Basic 6.0 Test Client. 1312
Summary . 1313

■APPENDIX B Platform-Independent .NET Development with Mono 1315

The Platform-Independent Nature of .NET . 1315
Obtaining and Installing Mono . 1318
The Mono Development Tools . 1321
Building .NET Applications with Mono . 1323
Suggestions for Further Study . 1330
Summary . 1331

■INDEX . 1333

■CONTENTS xv

8849FM.qxd 10/19/07 9:45 AM Page xv

About the Author

■ANDREW TROELSEN is a Microsoft MVP (Visual C#) and a partner, trainer, and
consultant with Intertech Training (http://www.Intertech.com), a .NET and
J2EE developer education center. He is the author of numerous books, includ-
ing Developer’s Workshop to COM and ATL 3.0 (Wordware Publishing, 2000),
COM and .NET Interoperability (Apress, 2002), Visual Basic .NET and the .NET
Platform: An Advanced Guide (Apress, 2001), and the award-winning C# and
the .NET Platform (Apress, 2003). Andrew has also authored numerous articles
on .NET for MSDN online, DevX, and MacTech, and is frequently a speaker at

various .NET conferences and user groups.
Andrew lives in Minneapolis, Minnesota, with his wife, Amanda. He spends his free time wait-

ing for the Wild to win the Stanley Cup, but has given up all hope of the Vikings winning a Super
Bowl and feels quite strongly that the Timberwolves will never get back to the playoffs until current
management is replaced.

xvi

8849FM.qxd 10/19/07 9:45 AM Page xvi

http://www.Intertech.com
http://www.Intertech.com

About the Technical Reviewer

■GAVIN SMYTH is a professional software engineer with more years of experience in development
than he cares to admit on projects ranging from device drivers to distributed web applications;
under platforms as diverse as 8-bit “bare metal,” embedded real-time operating systems, Unix, and
Windows; and in languages including assembler, C++, Ada, and C#, among a good many others. He
has worked for clients such as BT and Nortel, and is currently employed by Microsoft. Gavin has
published a few pieces of technical prose in the past (EXE, where are you now?) but finds criticizing
other people’s work much more fulfilling. Beyond that, when he’s not battling weeds and ants in the
garden, he tries to persuade LEGO robots to do what he wants them to do (it’s for the kids’ benefit—
honest).

xvii

8849FM.qxd 10/19/07 9:45 AM Page xvii

Acknowledgments

While I might be the only name seen on the front of this book, this text would never be printed
without the aid of numerous talented people. Allow me to offer some heartfelt words of thanks to
the many, many people who made this book possible.

First and foremost, thanks to all of the people at Apress, whom I have had the pleasure of
working with for many years now. You are all extremely talented people who do a wonderful job of
transforming my original Word documents into polished prose. Thank you so much. Looking for-
ward to working with you all on the next book (well, after I take a sanity break from this book).

Special thanks to my technical editor, Gavin, who has offered me many words of wisdom that
I feel make this edition of the book better than ever. As always, any remaining typos or technical
errors are my responsibility alone.

Last but not least, thanks to my family, friends, and coworkers who put up with my occasional
grumpy demeanor, which sadly presented itself once or twice during the final phases of this
manuscript.

xviii

8849FM.qxd 10/19/07 9:45 AM Page xviii

Introduction

This book has existed (in one form or another) since the first edition of C# and the .NET Platform
was published in conjunction with the release of .NET 1.0 Beta 2, circa the summer of 2001. Since
that point, I have been extremely happy and grateful to see that this text was very well received by
the press and, most important, by readers. Over the years it was nominated as a Jolt Award finalist
(I lost . . . crap!) and for the 2003 Referenceware Excellence Award in the programming book cate-
gory (I won? Cool!).

Since that point, I have worked to keep the book current with each release of the .NET platform,
including a limited printing of a Special Edition, which introduced the technologies of .NET 3.0
(Windows Presentation Foundation, Windows Communication Foundation, and Windows Workflow
Foundation) as well as offered previews of several forthcoming technologies, which we now know as
LINQ.

The fourth edition of this text, which you hold in your hands, is a massive retelling of the previ-
ous manuscript to account for all of the major changes that are found within .NET 3.5. Not only will
you find numerous brand-new chapters, you will find many of the previous chapters have been
expanded in great detail.

As with the earlier editions, this edition presents the C# programming language and .NET base
class libraries using a friendly and approachable tone. I have never understood the need some
technical authors have to spit out prose that reads more like a GRE vocabulary study guide than a
readable book. As well, this new edition remains focused on providing you with the information you
need to build software solutions today, rather than spending too much time examining esoteric
details that few individuals will ever actually care about.

We’re a Team, You and I
Technology authors write for a demanding group of people (I should know—I’m one of them).
You know that building software solutions using any platform (.NET, J2EE, COM, etc.) is extremely
detailed and is very specific to your department, company, client base, and subject matter. Perhaps
you work in the electronic publishing industry, develop systems for the state or local government,
or work at NASA or a branch of the military. Speaking for myself, I have developed children’s educa-
tional software, various n-tier systems, and projects within the medical and financial industries. The
chances are almost 100 percent that the code you write at your place of employment has little to do
with the code I write at mine (unless we happened to work together previously!).

Therefore, in this book, I have deliberately chosen to avoid creating examples that tie the
example code to a specific industry or vein of programming. Given this, I explain C#, OOP, the CLR,
and the .NET 3.5 base class libraries using industry-agnostic examples. Rather than having every
blessed example fill a grid with data, calculate payroll, or whatnot, I’ll stick to subject matter we can
all relate to: automobiles (with some geometric structures and employees thrown in for good meas-
ure). And that’s where you come in.

My job is to explain the C# programming language and the core aspects of the .NET platform
the best I possibly can. As well, I will do everything I can to equip you with the tools and strategies
you need to continue your studies at this book’s conclusion.

Your job is to take this information and apply it to your specific programming assignments.
I obviously understand that your projects most likely don’t revolve around automobiles with pet

xix

8849FM.qxd 10/19/07 9:45 AM Page xix

names, but that’s what applied knowledge is all about! Rest assured, once you understand the con-
cepts presented within this text, you will be in a perfect position to build .NET solutions that map to
your own unique programming environment.

An Overview of This Book
Pro C# 2008 and the .NET 3.5 Platform, Fourth Edition is logically divided into eight distinct parts,
each of which contains a number of related chapters. If you have read the earlier editions of this
text, you will quickly notice a number of changes. For example, several topics (such as core C# con-
structs, object-oriented programming, and platform-independent .NET development) have been
expanded into several dedicated chapters. Furthermore, this edition of the text contains numerous
new chapters to account for .NET 3.0–3.5 programming features (LINQ, WCF, WPF, WF, etc.). Here is
a part-by-part and chapter-by-chapter breakdown of the text.

Part 1: Introducing C# and the .NET Platform
The purpose of Part 1 is to acclimate you to the nature of the .NET platform and various develop-
ment tools (many of which are open source) used during the construction of .NET applications.
Along the way, you will also check out some basic details of the C# programming language and the
.NET type system.

Chapter 1: The Philosophy of .NET
This first chapter functions as the backbone for the remainder of the text. We begin by examining
the world of traditional Windows development and uncover the shortcomings with the previous
state of affairs. The primary goal of this chapter, however, is to acquaint you with a number of .NET-
centric building blocks, such as the common language runtime (CLR), Common Type System (CTS),
Common Language Specification (CLS), and base class libraries. Here, you will take an initial look at
the C# programming language and the .NET assembly format, and get an overview the platform-
independent nature of the .NET platform (Appendix B will examine this topic in greater detail).

Chapter 2: Building C# Applications
The goal of this chapter is to introduce you to the process of compiling C# source code files using
various tools and techniques. First, you will learn how to make use of the command-line compiler
(csc.exe) and C# response files. Over the remainder of the chapter, you will examine numerous
code editors and integrated development environments (IDEs), including TextPad, Notepad++,
SharpDevelop, Visual C# 2008 Express, and Visual Studio 2008. As well, you will be exposed to a
number of additional programming tools that any .NET developer should have in their back pocket.

Part 2: Core C# Programming Constructs
The topics presented in this part of the book are quite important, as they will be used regardless of
which type of .NET software you intend to develop (web applications, desktop GUI applications,
code libraries, Windows services, etc.). Here, you will come to understand the core constructs of the
C# language, including the details of object-oriented programming (OOP). As well, this part will
examine how to process runtime exceptions and dive into the details of .NET’s garbage collection
services.

■INTRODUCTIONxx

8849FM.qxd 10/19/07 9:45 AM Page xx

Chapter 3: Core C# Programming Constructs, Part I
This chapter begins your formal investigation of the C# programming language. Here you will learn
about the role of the Main() method and numerous details regarding the intrinsic data types of the
.NET platform, including the manipulation of textual data using System.String and System.Text.
StringBuilder. You will also examine iteration and decision constructs, narrowing and widening
operations, and use of the unchecked keyword.

Chapter 4: Core C# Programming Constructs, Part II
This chapter completes your examination of the core aspects of C#, beginning with the construc-
tion of overloaded type methods and defining parameters via the out, ref, and params keywords.
You will also learn how to create and manipulate arrays of data, define nullable data types (with the
? and ?? operators), and understand the distinction between value types (including enumerations
and custom structures) and reference types.

Chapter 5: Defining Encapsulated Class Types
This chapter begins your examination of object-oriented programming (OOP) using the C# pro-
gramming language. Once we qualify the pillars of OOP (encapsulation, inheritance, and
polymorphism), the remainder of this chapter will examine how to build robust class types using
constructors, properties, static members, constants, and read-only fields. We wrap up with an
examination of partial type definitions and C#’s XML code documentation syntax.

Chapter 6: Understanding Inheritance and Polymorphism
Here, you will examine the remaining pillars of OOP (inheritance and polymorphism), which allow
you to build families of related class types. During this time, you will examine the role of virtual
methods, abstract methods (and abstract base classes), and the nature of the polymorphic interface.
Last but not least, this chapter will explain the role of the supreme base class of the .NET platform,
System.Object.

Chapter 7: Understanding Structured Exception Handling
The point of this chapter is to discuss how to handle runtime anomalies in your code base through
the use of structured exception handling. Not only will you learn about the C# keywords that allow
you to handle such problems (try, catch, throw, and finally), but you will also come to understand
the distinction between application-level and system-level exceptions. In addition, this chapter
examines various tools within Visual Studio 2008 that allow you to debug the exceptions that have
escaped your view.

Chapter 8: Understanding Object Lifetime
The final chapter of this part examines how the CLR manages memory using the .NET garbage col-
lector. Here you will come to understand the role of application roots, object generations, and the
System.GC type. Once you understand the basics, the remainder of this chapter covers the topics of
disposable objects (via the IDisposable interface) and the finalization process (via the System.
Object.Finalize() method).

■INTRODUCTION xxi

8849FM.qxd 10/19/07 9:45 AM Page xxi

Part 3: Advanced C# Programming Constructs
This section of the book will deepen your understanding of the C# language, by examining a num-
ber of more advanced (but very important) concepts. Here, you will complete your examination of
the .NET type system by examining interfaces and delegates. As well, you will learn about the role of
generics and the numerous new language features of C# 2008, and take an initial look at Language
Integrated Query (LINQ).

Chapter 9: Working with Interfaces
The material in this chapter builds upon your understanding of object-based development by
covering the topic of interface-based programming. Here, you will learn how to define types that
support multiple behaviors, how to discover these behaviors at runtime, and how to selectively hide
particular behaviors using explicit interface implementation. In addition to examining a number of
predefined .NET interface types, you will also learn how to make use of custom interfaces to build
an ad hoc event architecture.

Chapter 10: Collections and Generics
This chapter begins by examining the collection types of the System.Collections namespace, which
has been part of the .NET platform since its initial release. However, since the release of .NET 2.0,
the C# programming language offers support for generics. As you will see, generic programming
greatly enhances application performance and type safety. Not only will you explore various generic
types within the System.Collections.Generic namespace, but you will also learn how to build your
own generic methods and types (with and without constraints).

Chapter 11: Delegates, Events, and Lambdas
The purpose of Chapter 11 is to demystify the delegate type. Simply put, a .NET delegate is an object
that “points” to other methods in your application. Using this pattern, you are able to build systems
that allow multiple objects to engage in a two-way conversation. After you have examined the use of
.NET delegates, you will then be introduced to the C# event keyword, which is used to simplify the
manipulation of raw delegate programming. You wrap up by investigating the role of the C# 2008
lambda operator (=>) and exploring the connection between delegates, anonymous methods, and
lambda expressions.

Chapter 12: Indexers, Operators, and Pointers
This chapter deepens your understanding of the C# programming language by introducing a num-
ber of advanced programming techniques. Here, you will learn how to overload operators and
create custom conversion routines (both implicit and explicit) for your types. As well, you will learn
how to build and interact with type indexers, and manipulate C-style pointers using an “unsafe”
code context.

Chapter 13: C# 2008 Language Features
With the release of .NET 3.5, the C# language has been enhanced to support a great number of new
programming constructs, many of which are used to enable the LINQ API (which you will begin to
examine in Chapter 14). Here, you will learn the role of implicit typing of local variables, partial
methods, automatic properties, extension methods, anonymous types, and object initialization
syntax.

■INTRODUCTIONxxii

8849FM.qxd 10/19/07 9:45 AM Page xxii

Chapter 14: An Introduction to LINQ
This chapter will begin your examination of Language Integrated Query (LINQ), which could easily
be considered the most intriguing aspect of .NET 3.5. As you will see in this chapter, LINQ allows
you to build strongly typed query expressions, which can be applied to a number of LINQ targets to
manipulate “data” in the broadest sense of the word. Here, you will learn about LINQ to Objects,
which allows you to apply LINQ expressions to containers of data (arrays, collections, custom
types). This information will serve you well when we examine how to apply LINQ expressions to
relational databases (via LINQ to ADO) and XML documents (à la LINQ to XML) later in Chapter 24.

Part 4: Programming with .NET Assemblies
Part 4 dives into the details of the .NET assembly format. Not only will you learn how to deploy and
configure .NET code libraries, but you will also come to understand the internal composition of a
.NET binary image. This part also explains the role of .NET attributes and the construction of multi-
threaded applications. Later chapters examine some fairly advanced topics such as object context,
CIL code, and dynamic assemblies.

Chapter 15: Introducing .NET Assemblies
From a very high level, assembly is the term used to describe a managed *.dll or *.exe binary file.
However, the true story of .NET assemblies is far richer than that. Here you will learn the distinction
between single-file and multifile assemblies, and how to build and deploy each entity. You’ll exam-
ine how private and shared assemblies may be configured using XML-based *.config files and
publisher policy assemblies. Along the way, you will investigate the internal structure of the global
assembly cache (GAC) and the role of the .NET Framework configuration utility.

Chapter 16: Type Reflection, Late Binding, and Attribute-Based Programming
Chapter 16 continues our examination of .NET assemblies by checking out the process of runtime
type discovery via the System.Reflection namespace. Using these types, you are able to build appli-
cations that can read an assembly’s metadata on the fly. You will learn how to dynamically load and
create types at runtime using late binding. The final topic of this chapter explores the role of .NET
attributes (both standard and custom). To illustrate the usefulness of each of these topics, the chap-
ter concludes with the construction of an extendable Windows Forms application.

Chapter 17: Processes, AppDomains, and Object Contexts
Now that you have a solid understanding of assemblies, this chapter dives deeper into the composi-
tion of a loaded .NET executable. The goal of this chapter is to illustrate the relationship between
processes, application domains, and contextual boundaries. These topics provide the proper foun-
dation for the topic of the following chapter, where we examine the construction of multithreaded
applications.

Chapter 18: Building Multithreaded Applications
This chapter examines how to build multithreaded applications and illustrates a number of tech-
niques you can use to author thread-safe code. The chapter opens by revisiting the .NET delegate
type in order to understand a delegate’s intrinsic support for asynchronous method invocations.
Next, you will investigate the types within the System.Threading namespace. You will look at numer-
ous types (Thread, ThreadStart, etc.) that allow you to easily create additional threads of execution.
We wrap up by examining the BackgroundWorker type, which greatly simplifies the creation of
threads from within a desktop user interface.

■INTRODUCTION xxiii

8849FM.qxd 10/19/07 9:45 AM Page xxiii

Chapter 19: Understanding CIL and the Role of Dynamic Assemblies
The goal of the final chapter of this part is twofold. In the first half (more or less), you will examine
the syntax and semantics of CIL in much greater detail than in previous chapters. The remainder of
this chapter covers the role of the System.Reflection.Emit namespace. Using these types, you are
able to build software that is capable of generating .NET assemblies in memory at runtime. For-
mally speaking, assemblies defined and executed in memory are termed dynamic assemblies.

Part 5: Introducing the .NET Base Class Libraries
By this point in the text, you have a solid handle on the C# language and the details of the .NET
assembly format. Part 5 leverages your newfound knowledge by exploring a number of commonly
used services found within the base class libraries, including file I/O and database access using
ADO.NET. This part also covers the construction of distributed applications using Windows Com-
munication Foundation (WCF) and workflow-enabled applications that make use of the Windows
Workflow Foundation (WF) API.

Chapter 20: File I/O and Isolated Storage
The System.IO namespace allows you to interact with a machine’s file and directory structure. Over
the course of this chapter, you will learn how to programmatically create (and destroy) a directory
system as well as move data into and out of various streams (file based, string based, memory
based, etc.). The latter part of this chapter examines the role of isolated storage, which allows you to
persist per-user data into a safe sandbox, regardless of the security settings of a target machine. To
understand certain aspects of the System.IO.IsolatedStorage API, you will also receive an overview
of Code Access Security (CAS).

Chapter 21: Introducing Object Serialization
This chapter examines the object serialization services of the .NET platform. Simply put, serializa-
tion allows you to persist the state of an object (or a set of related objects) into a stream for later use.
Deserialization (as you might expect) is the process of plucking an object from the stream into
memory for consumption by your application. Once you understand the basics, you will then learn
how to customize the serialization process via the ISerializable interface and a set of .NET
attributes.

Chapter 22: ADO.NET Part I: The Connected Layer
In this first of two database-centric chapters, you will learn about the ADO.NET programming API.
Specifically, this chapter will introduce the role of .NET data providers and how to communicate
with a relational database using the connected layer of ADO.NET, represented by connection
objects, command objects, transaction objects, and data reader objects. Be aware that this chapter
will also walk you through the creation of a custom database and a data access library that will be
used throughout the remainder of this text.

Chapter 23: ADO.NET Part II: The Disconnected Layer
This chapter continues your study of database manipulation by examining the disconnected layer
of ADO.NET. Here, you will learn the role of the DataSet type, data adapter objects, and numerous
tools of Visual Studio 2008 that can greatly simplify the creation of data-driven applications. Along
the way, you will learn how to bind DataTable objects to user interface elements, such as the
GridView type of the Windows Forms API.

■INTRODUCTIONxxiv

8849FM.qxd 10/19/07 9:45 AM Page xxiv

Chapter 24: Programming with the LINQ APIs
Chapter 14 introduced you to the LINQ programming model, specifically LINQ to Objects. Here,
you will deepen your understanding of Language Integrated Query by examining how to apply
LINQ queries to relational databases, DataSet objects, and XML documents. Along the way, you will
learn the role of data context objects, the sqlmetal.exe utility, and various LINQ-specific aspects of
Visual Studio 2008.

Chapter 25: Introducing Windows Communication Foundation
.NET 3.0 introduced a brand-new API, WCF, that allows you to build distributed applications,
regardless of their underlying plumbing, in a symmetrical manner. This chapter will expose you to
the construction of WCF services, hosts, and clients. As you will see, WCF services are extremely
flexible, in that clients and hosts can leverage XML-based configuration files to declaratively specify
addresses, bindings, and contracts.

Chapter 26: Introducing Windows Workflow Foundation
In addition to WCF, .NET 3.0 also introduced an API, WF, that allows you to define, execute, and
monitor workflows to model complex business processes. Here, you will learn the overall purpose
of Windows Workflow Foundation, as well as the role of activities, workflow designers, the workflow
runtime engine, and the creation of workflow-enabled code libraries.

Part 6: Desktop User Interfaces
It is a common misconception for newcomers to the .NET platform to assume this framework is
only concerned with the construction of web-based user interfaces (which I suspect is due to the
term “.NET,” as this tends to conjure up the notion of the “Internet” and therefore “web programs”).
While it is true that .NET provides outstanding support for the construction of web applications,
this part of the book focuses on traditional desktop user interfaces using two GUI frameworks,
Windows Forms and Windows Presentation Foundation (WPF).

Chapter 27: Programming with Windows Forms
The original desktop GUI toolkit that shipped with the .NET platform is termed Windows Forms.
This chapter will walk you through the role of this UI framework, and illustrate how to build main
windows, dialog boxes, and menu systems. As well, you will understand the role of form inheritance
and see how to render 2D graphical data using the System.Drawing namespace. To illustrate these
topics using a cohesive example, we wrap up by building a (semicapable) painting application.

Chapter 28: Introducing Windows Presentation Foundation and XAML
.NET 3.0 introduced a brand-new GUI toolkit termed WPF. Essentially, WPF allows you to build
extremely interactive and media-rich front ends for desktop applications (and indirectly, web appli-
cations). Unlike Windows Forms, this supercharged UI framework integrates a number of key
services (2D and 3D graphics, animations, rich documents, etc.) into a single unified object model.
In this chapter, you will begin your examination of WPF and the Extendable Application Markup
Language (XAML). Here, you will learn how to build WPF programs XAML-free, using nothing but
XAML, and a combination of each. We wrap up by building a custom XAML viewer, which will be
used during the remainder of the WPF-centric chapters.

■INTRODUCTION xxv

8849FM.qxd 10/19/07 9:45 AM Page xxv

Chapter 29: Programming with WPF Controls
In this chapter, you will learn how to work with the WPF control content model as well as a number
of related control-centric topics such as dependency properties and routed events. As you would
hope, this chapter provides coverage of working with a number of WPF controls; however, more
interestingly, this chapter will explain the use of layout managers, control commands, and the WPF
data-binding model.

Chapter 30: WPF 2D Graphical Rendering, Resources, and Themes
The final chapter of this part will wrap up your examination of WPF by examining three seemingly
independent topics. However, as you will see, WPF’s graphical rendering services typically require
you to define custom resources. Using these resources, you are able to generate custom WPF anima-
tions, and using graphics, resources, and animations, you are able to build custom themes for a
WPF application. To pull all of these topics together, this chapter wraps up by illustrating how to
apply custom graphical themes at runtime.

Part 7: Building Web Applications with ASP.NET
Part 7 is devoted to the examination of constructing web applications using the ASP.NET program-
ming API. As you will see, ASP.NET was intentionally designed to model the creation of desktop user
interfaces by layering on top of standard HTTP request/response an event-driven, object-oriented
framework.

Chapter 31: Building ASP.NET Web Pages
This chapter begins your study of web application development using ASP.NET. As you will see,
server-side scripting code has now been replaced with real object-oriented languages (such as C#,
VB .NET, and the like). This chapter will examine the construction of an ASP.NET web page, the
underlying programming model, and other key aspects of ASP.NET, such as your choice of web
server and the use of Web.config files.

Chapter 32: ASP.NET Web Controls, Themes, and Master Pages
Whereas the previous chapter examined the construction of ASP.NET Page objects, this chapter is
concerned with the controls that populate the internal control tree. Here, you will examine the core
ASP.NET web controls, including validation controls, the intrinsic site navigation controls, and vari-
ous data-binding operations. As well, this chapter will illustrate the role of master pages and the
ASP.NET theme engine, which is a server-side alternative to traditional style sheets.

Chapter 33: ASP.NET State Management Techniques
This chapter extends your current understanding of ASP.NET by examining various ways to handle
state management under .NET. Like classic ASP, ASP.NET allows you to easily create cookies, as well
as application-level and session-level variables. However, ASP.NET also introduces a new state man-
agement technique: the application cache. Once you have looked at the numerous ways to handle
state with ASP.NET, you will then come to learn the role of the System.HttpApplication base class
(lurking within the Global.asax file) and how to dynamically alter the runtime behavior of your web
application using the Web.config file.

■INTRODUCTIONxxvi

8849FM.qxd 10/19/07 9:45 AM Page xxvi

Part 8: Appendixes
This final part of this book examines two important topics, which quite frankly did not seem to fit
naturally within the bulk of the text, and have therefore been “appendix-ized.” Here you will com-
plete your examination of C# and the .NET platform by learning how to integrate legacy code into
your .NET applications as well as how to take .NET development beyond the Windows family of
operating systems.

Appendix A: COM and .NET Interoperability
If you have programmed the Windows operating system prior to using .NET, you are most likely
aware of the Component Object Model (COM). While COM and .NET have nothing to do with each
other (beyond the fact that they each originated from Microsoft), the .NET platform has an entire
namespace (System.Runtime.InteropServices) that makes it possible for .NET software to make use
of legacy COM components and vice versa. This appendix will examine the interoperability layer in
quite a bit of detail, as this topic is quite important when looking for ways to leverage your existing
code base as you build new .NET applications.

Appendix B: Platform-Independent .NET Development with Mono
Last but not least, Appendix B covers the use of an open source implementation of the .NET plat-
form named Mono. Using Mono, it is possible to build feature-rich .NET applications that can be
created, deployed, and executed upon a variety of operating systems, including Mac OS X, Solaris,
AIX, and numerous Linux distributions. Given that Mono is largely comparable with Microsoft’s
.NET platform, you already know most of what Mono has to offer. Therefore, this appendix will
focus on the Mono installation process, Mono development tools, and Mono runtime engine.

Diving Even Deeper with Five Free Chapters
As if a grand total of thirty-three chapters and two appendixes were not enough, those of you who
purchase this book are eligible to download an additional five chapters for free. As you may be
aware, previous editions of this text included three chapters devoted to Windows Forms develop-
ment (including an examination of custom controls), another chapter that addressed the .NET
remoting layer (System.Runtime.Remoting and friends), and a final chapter covering the construc-
tion of traditional XML web services using the ASP.NET Web Service project template.

This edition of the text does not provide printed versions of these five chapters. The major rea-
son for doing so is due to the fact that the .NET 3.0 WCF and WPF APIs are poised to become the
heirs apparent to .NET remoting/XML web services and Windows Forms APIs, respectively. If you
wish to dig deeper into Windows Forms (beyond what is provided in Chapter 27) or to see how to
make use of the (legacy?) .NET remoting and XML web service APIs, simply look up this book from
the Apress website:

http://apress.com/book/view/1590598849

There you will find a link to download this book’s supplemental chapters in a digital format,
once you answer randomly generated questions regarding the text within this book.

■INTRODUCTION xxvii

8849FM.qxd 10/19/07 9:45 AM Page xxvii

5aeb99039c1287a89f3cad1dcbf79351

http://apress.com/book/view/1590598849

Obtaining This Book’s Source Code
All of the code examples contained within this book (including the five additional chapters that may
be downloaded for free, as mentioned in the previous section) are available for free and immediate
download from the Source Code/Download area of the Apress website. Simply navigate to
http://www.apress.com, select the Source Code/Download link, and look up this title by name.
Once you are on the home page for Pro C# 2008 and the .NET 3.5 Platform, Fourth Edition, you may
download a self-extracting *.zip file. After you unzip the contents, you will find that the code has
been logically divided by chapter.

Do be aware that Source Code notes like the following in the chapters are your cue that the
example under discussion may be loaded into Visual Studio 2008 for further examination and
modification:

■Source Code This is a source code note referring you to a specific directory!

To do so, simply open the *.sln file found in the correct subdirectory. If you are not making
use of Visual Studio 2008 (see Chapter 2 for additional IDEs), you can manually load the provided
source code files into your development tool of choice.

Obtaining Updates for This Book
As you read through this text, you may find an occasional grammatical or code error (although I
sure hope not). If this is the case, my apologies. Being human, I am sure that a glitch or two may be
present, despite my best efforts. If this is the case, you can obtain the current errata list from the
Apress website (located once again on the home page for this book) as well as information on how
to notify me of any errors you might find.

Contacting Me
If you have any questions regarding this book’s source code, are in need of clarification for a given
example, or simply wish to offer your thoughts regarding the .NET platform, feel free to drop me a
line at the following e-mail address (to ensure your messages don’t end up in my junk mail folder,
please include “C# FE” in the Subject line somewhere): atroelsen@Intertech.com.

Please understand that I will do my best to get back to you in a timely fashion; however, like
yourself, I get busy from time to time. If I don’t respond within a week or two, do know I am not try-
ing to be a jerk or don’t care to talk to you. I’m just busy (or, if I’m lucky, on vacation somewhere).

So, then! Thanks for buying this text (or at least looking at it in the bookstore while you try to
decide if you will buy it). I hope you enjoy reading this book and putting your newfound knowledge
to good use.

Take care,
Andrew Troelsen

■INTRODUCTIONxxviii

8849FM.qxd 10/19/07 9:45 AM Page xxviii

http://www.apress.com
mailto:atroelsen@Intertech.com

Introducing C# and the
.NET Platform

P A R T 1

8849CH01.qxd 10/1/07 10:30 AM Page 1

8849CH01.qxd 10/1/07 10:30 AM Page 2

The Philosophy of .NET

Every few years or so, the modern-day programmer must be willing to perform a self-inflicted
knowledge transplant to stay current with the new technologies of the day. The languages (C++,
Visual Basic 6.0, Java), frameworks (OWL, MFC, ATL, STL), architectures (COM, CORBA, EJB), and
APIs (such as .NET’s Windows Forms and GDI+ libraries) that were touted as the silver bullets of
software development eventually become overshadowed by something better or at the very least
something new. Regardless of the frustration you can feel when upgrading your internal knowledge
base, it is frankly unavoidable. To this end, the goal of this book is to examine the details of Microsoft’s
current offering within the landscape of software engineering: the .NET platform and the C# pro-
gramming language.

The point of this chapter is to lay the conceptual groundwork for the remainder of the book.
Here you will find a high-level discussion of a number of .NET-related topics such as assemblies, the
common intermediate language (CIL), and just-in-time (JIT) compilation. In addition to preview-
ing some key features of the C# programming language, you will also come to understand the
relationship between various aspects of the .NET Framework, such as the common language run-
time (CLR), the Common Type System (CTS), and the Common Language Specification (CLS).

This chapter also provides you with a survey of the functionality supplied by the .NET
base class libraries, sometimes abbreviated as the BCL or alternatively as the FCL (being the
Framework class libraries). Finally, this chapter overviews the language-agnostic and platform-
independent nature of the .NET platform (yes it’s true, .NET is not confined to the Windows
operating system). As you would hope, all of these topics are explored in further detail throughout
the remainder of this text.

Understanding the Previous State of Affairs
Before examining the specifics of the .NET universe, it’s helpful to consider some of the issues that
motivated the genesis of Microsoft’s current platform. To get in the proper mind-set, let’s begin this
chapter with a brief and painless history lesson to remember our roots and understand the limita-
tions of the previous state of affairs (after all, admitting you have a problem is the first step toward
finding a solution). After completing this quick tour of life as we knew it, we turn our attention to
the numerous benefits provided by C# and the .NET platform.

Life As a C/Win32 API Programmer
Traditionally speaking, developing software for the Windows family of operating systems involved
using the C programming language in conjunction with the Windows application programming
interface (API). While it is true that numerous applications have been successfully created using this
time-honored approach, few of us would disagree that building applications using the raw API is a
complex undertaking.

3

C H A P T E R 1

8849CH01.qxd 10/1/07 10:30 AM Page 3

The first obvious problem is that C is a very terse language. C developers are forced to contend
with manual memory management, ugly pointer arithmetic, and ugly syntactical constructs. Fur-
thermore, given that C is a structured language, it lacks the benefits provided by the object-oriented
approach (can anyone say spaghetti code?). When you combine the thousands of global functions
and data types defined by the Win32 API to an already formidable language, it is little wonder that
there are so many buggy applications floating around today.

Life As a C++/MFC Programmer
One vast improvement over raw C/API development is the use of the C++ programming language.
In many ways, C++ can be thought of as an object-oriented layer on top of C. Thus, even though
C++ programmers benefit from the famed “pillars of OOP” (encapsulation, inheritance, and poly-
morphism), they are still at the mercy of the painful aspects of the C language (e.g., manual memory
management, ugly pointer arithmetic, and ugly syntactical constructs).

Despite its complexity, many C++ frameworks exist today. For example, the Microsoft Founda-
tion Classes (MFC) provide the developer with a set of C++ classes that facilitate the construction of
Win32 applications. The main role of MFC is to wrap a “sane subset” of the raw Win32 API behind a
number of classes, magic macros, and numerous code-generation tools (a.k.a. wizards). Regardless
of the helpful assistance offered by the MFC framework (as well as many other C++-based window-
ing toolkits), the fact of the matter is that C++ programming remains a difficult and error-prone
experience, given its historical roots in C.

Life As a Visual Basic 6.0 Programmer
Due to a heartfelt desire to enjoy a simpler lifestyle, many programmers have shifted away from the
world of C(++)-based frameworks to kinder, gentler languages such as Visual Basic 6.0 (VB6). VB6 is
popular due to its ability to build complex user interfaces, code libraries (e.g., COM servers), and
data access logic with minimal fuss and bother. Even more than MFC, VB6 hides the complexities
of the raw Win32 API from view using a number of integrated code wizards, intrinsic data types,
classes, and VB-specific functions.

The major downfall of VB6 (which has been rectified given the advent of the .NET platform) is
that it is not a fully object-oriented language; rather, it is “object aware.” For example, VB6 does not
allow the programmer to establish “is-a” relationships between types (i.e., no classical inheritance)
and has no intrinsic support for parameterized class construction. Moreover, VB6 doesn’t provide
the ability to build multithreaded applications unless you are willing to drop down to low-level
Win32 API calls (which is complex at best and dangerous at worst).

Life As a Java/J2EE Programmer
Enter Java. Java is an object-oriented programming language that has its syntactic roots in C++. As
many of you are aware, Java’s strengths are far greater than its support for platform independence.
Java (as a language) cleans up many unsavory syntactical aspects of C++. Java (as a platform)
provides programmers with a large number of predefined “packages” that contain various type
definitions. Using these types, Java programmers are able to build “100% Pure Java” applications
complete with database connectivity, messaging support, web-enabled front ends, and a rich
desktop user interface.

Although Java is a very elegant language, one potential problem is that using Java typically
means that you must use Java front-to-back during the development cycle. In effect, Java offers little
hope of language integration, as this goes against the grain of Java’s primary goal (a single program-
ming language for every need). In reality, however, there are millions of lines of existing code out

CHAPTER 1 ■ THE PHILOSOPHY OF .NET4

8849CH01.qxd 10/1/07 10:30 AM Page 4

there in the world that would ideally like to commingle with newer Java code. Sadly, Java makes this
task problematic. While Java does provide a limited ability to access non-Java APIs, there is little
support for true cross-language integration.

Life As a COM Developer
The Component Object Model (COM) was Microsoft’s previous application development frame-
work. COM is an architecture that says in effect, “If you build your classes in accordance with the
rules of COM, you end up with a block of reusable binary code.”

The beauty of a binary COM server is that it can be accessed in a language-independent man-
ner. Thus, C++ programmers can build COM classes that can be used by VB6. Delphi programmers
can use COM classes built using C, and so forth. However, as you may be aware, COM’s language
independence is somewhat limited. For example, there is no way to derive a new COM class using
an existing COM class (as COM has no support for classical inheritance). Rather, you must make use
of the more cumbersome “has-a” relationship to reuse COM class types.

Another benefit of COM is its location-transparent nature. Using constructs such as applica-
tion identifiers (AppIDs), stubs, proxies, and the COM runtime environment, programmers can
avoid the need to work with raw sockets, RPC calls, and other low-level details. For example, con-
sider the following VB6 COM client code:

' The MyCOMClass type could be written in
' any COM-aware language, and may be located anywhere
' on the network (including your local machine).
Dim obj as MyCOMClass
Set obj = New MyCOMClass ' Location resolved using AppID.
obj.DoSomeWork

Although COM can be considered a very successful object model, it is extremely complex
under the hood (at least until you have spent many months exploring its plumbing—especially if
you happen to be a C++ programmer). To help simplify the development of COM binaries, numer-
ous COM-aware frameworks have come into existence. For example, the Active Template Library
(ATL) provides another set of C++ classes, templates, and macros to ease the creation of COM types.

Many other languages also hide a good part of the COM infrastructure from view. However,
language support alone is not enough to hide the complexity of COM. Even when you choose a
relatively simply COM-aware language such as VB6, you are still forced to contend with fragile regis-
tration entries and numerous deployment-related issues (collectively, and somewhat comically,
termed DLL hell).

Life As a Windows DNA Programmer
To further complicate matters, there is a little thing called the Internet. Over the last several years,
Microsoft has been adding more Internet-aware features into its family of operating systems and
products. Sadly, building a web application using COM-based Windows Distributed interNet Appli-
cations Architecture (DNA) is also quite complex.

Some of this complexity is due to the simple fact that Windows DNA requires the use of numer-
ous technologies and languages (ASP, HTML, XML, JScript, VBScript, and COM[+], as well as a data
access API such as ADO). One problem is that many of these technologies are completely unrelated
from a syntactic point of view. For example, JScript has a syntax much like C, while VBScript is a
subset of VB6. The COM servers that are created to run under the COM+ runtime have an entirely
different look and feel from the ASP pages that invoke them. The result is a highly confused mish-
mash of technologies.

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 5

8849CH01.qxd 10/1/07 10:30 AM Page 5

Furthermore, and perhaps more important, each language and/or technology has its own type
system (that may look nothing like another’s type system). Beyond the fact that each API ships with
its own collection of prefabricated code, even basic data types cannot always be treated identically.
A CComBSTR in ATL is not quite the same as a String in VB6, both of which have nothing to do with a
char* in C.

The .NET Solution
So much for the brief history lesson. The bottom line is that life as a Windows programmer has been
tough. The .NET Framework is a rather radical and brute-force approach to making our lives easier.
The solution proposed by .NET is “Change everything” (sorry, you can’t blame the messenger for the
message). As you will see during the remainder of this book, the .NET Framework is a completely
new model for building systems on the Windows family of operating systems, as well as on numer-
ous non-Microsoft operating systems such as Mac OS X and various Unix/Linux distributions. To
set the stage, here is a quick rundown of some core features provided courtesy of .NET:

• Comprehensive interoperability with existing code: This is (of course) a good thing. Existing
COM binaries can commingle (i.e., interop) with newer .NET binaries and vice versa. Also,
Platform Invocation Services (PInvoke) allows you to call C-based libraries (including the
underlying API of the operating system) from .NET code.

• Complete and total language integration: .NET supports cross-language inheritance, cross-
language exception handling, and cross-language debugging of code.

• A common runtime engine shared by all .NET-aware languages: One aspect of this engine is a
well-defined set of types that each .NET-aware language “understands.”

• A comprehensive base class library: This library provides shelter from the complexities of raw
API calls and offers a consistent object model used by all .NET-aware languages.

• No more COM plumbing: IClassFactory, IUnknown, IDispatch, IDL code, and the evil variant-
compliant data types (BSTR, SAFEARRAY, and so forth) have no place in a .NET binary.

• A truly simplified deployment model: Under .NET, there is no need to register a binary unit
into the system registry. Furthermore, .NET allows multiple versions of the same *.dll to
exist in harmony on a single machine.

As you can most likely gather from the previous bullet points, the .NET platform has nothing to
do with COM (beyond the fact that both frameworks originated from Microsoft). In fact, the only
way .NET and COM types can interact with each other is using the interoperability layer.

■Note Coverage of the .NET interoperability layer can be found in Appendix A.

Introducing the Building Blocks of the .NET
Platform (the CLR, CTS, and CLS)
Now that you know some of the benefits provided by .NET, let’s preview three key (and interrelated)
entities that make it all possible: the CLR, CTS, and CLS. From a programmer’s point of view, .NET
can be understood as a runtime environment and a comprehensive base class library. The runtime
layer is properly referred to as the common language runtime, or CLR. The primary role of the CLR
is to locate, load, and manage .NET types on your behalf. The CLR also takes care of a number of

CHAPTER 1 ■ THE PHILOSOPHY OF .NET6

8849CH01.qxd 10/1/07 10:30 AM Page 6

low-level details such as memory management; creating application domains, threads, and object
context boundaries; and performing various security checks.

Another building block of the .NET platform is the Common Type System, or CTS. The CTS
specification fully describes all possible data types and programming constructs supported by the
runtime, specifies how these entities can interact with each other, and details how they are repre-
sented in the .NET metadata format (more information on metadata later in this chapter; see
Chapter 16 for complete details).

Understand that a given .NET-aware language might not support each and every feature
defined by the CTS. The Common Language Specification (CLS) is a related specification that
defines a subset of common types and programming constructs that all .NET programming lan-
guages can agree on. Thus, if you build .NET types that only expose CLS-compliant features, you
can rest assured that all .NET-aware languages can consume them. Conversely, if you make use of a
data type or programming construct that is outside of the bounds of the CLS, you cannot guarantee
that every .NET programming language can interact with your .NET code library.

The Role of the Base Class Libraries
In addition to the CLR and CTS/CLS specifications, the .NET platform provides a base class library
that is available to all .NET programming languages. Not only does this base class library encapsu-
late various primitives such as threads, file input/output (I/O), graphical rendering, and interaction
with various external hardware devices, but it also provides support for a number of services
required by most real-world applications.

For example, the base class libraries define types that facilitate database access, manipulation
of XML documents, programmatic security, and the construction of web-enabled (as well as tradi-
tional desktop and console-based) front ends. From a high level, you can visualize the relationship
between the CLR, CTS, CLS, and the base class library, as shown in Figure 1-1.

Figure 1-1. The CLR, CTS, CLS, and base class library relationship

What C# Brings to the Table
Given that .NET is such a radical departure from previous technologies, Microsoft crafted a new
programming language, C# (pronounced “see sharp”), specifically for this new platform. C# is a pro-
gramming language whose core syntax looks very similar to the syntax of Java. However, to call C# a

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 7

8849CH01.qxd 10/1/07 10:30 AM Page 7

Java rip-off is inaccurate. Both C# and Java are members of the C family of programming languages
(C, Objective C, C++, etc.) and therefore share a similar syntax. Just as Java is in many ways a
cleaned-up version of C++, C# can be viewed as a cleaned-up version of Java.

The truth of the matter is that many of C#’s syntactic constructs are modeled after various
aspects of Visual Basic 6.0 and C++. For example, like VB6, C# supports the notion of formal type
properties (as opposed to traditional getter and setter methods) and the ability to declare methods
taking a varying number of arguments (via parameter arrays). Like C++, C# allows you to overload
operators, as well as to create structures, enumerations, and callback functions (via delegates).

■Note As you will see in Chapter 13, C# 2008 has adopted a number of constructs traditionally found in various
functional languages (e.g., LISP or Haskell). Furthermore, with the advent of LINQ (see Chapters 14 and 24), C#
supports a number of programming constructs that make it quite unique in the programming landscape. Neverthe-
less, the crux of C# is indeed influenced by C-based languages.

Due to the fact that C# is a hybrid of numerous languages, the result is a product that is as syn-
tactically clean—if not cleaner—than Java, is about as simple as VB6, and provides just about as
much power and flexibility as C++ (without the associated ugly bits). Here is a partial list of core C#
features that are found in all versions of the language:

• No pointers required! C# programs typically have no need for direct pointer manipulation
(although you are free to drop down to that level if absolutely necessary).

• Automatic memory management through garbage collection. Given this, C# does not sup-
port a delete keyword.

• Formal syntactic constructs for classes, interfaces, structures, enumerations, and delegates.

• The C++-like ability to overload operators for a custom type, without the complexity (e.g.,
making sure to “return *this to allow chaining” is not your problem).

• Support for attribute-based programming. This brand of development allows you to anno-
tate types and their members to further qualify their behavior.

With the release of .NET 2.0 (circa 2005), the C# programming language was updated to sup-
port numerous new bells and whistles, most notably the following:

• The ability to build generic types and generic members. Using generics, you are able to build
very efficient and type-safe code that defines numerous “placeholders” specified at the time
you interact with the generic item.

• Support for anonymous methods, which allow you to supply an inline function anywhere a
delegate type is required.

• Numerous simplifications to the delegate/event model, including covariance, contravari-
ance, and method group conversion.

• The ability to define a single type across multiple code files (or if necessary, as an in-memory
representation) using the partial keyword.

CHAPTER 1 ■ THE PHILOSOPHY OF .NET8

8849CH01.qxd 10/1/07 10:30 AM Page 8

As you might guess, .NET 3.5 adds even more functionality to the C# programming language
(C# 2008, to be exact), including the following features:

• Support for strongly typed queries (a la LINQ, or Language Integrated Query) used to inter-
act with various forms of data

• Support for anonymous types, which allow you to model the “shape” of a type rather than its
behavior

• The ability to extend the functionality of an existing type using extension methods

• Inclusion of a lambda operator (=>), which even further simplifies working with .NET dele-
gate types

• A new object initialization syntax, which allows you to set property values at the time of
object creation

Perhaps the most important point to understand about the C# language is that it can only pro-
duce code that can execute within the .NET runtime (you could never use C# to build a native COM
server or an unmanaged Win32 API application). Officially speaking, the term used to describe the
code targeting the .NET runtime is managed code. The binary unit that contains the managed code
is termed an assembly (more details on assemblies in just a bit in the section “An Overview of .NET
Assemblies”). Conversely, code that cannot be directly hosted by the .NET runtime is termed
unmanaged code.

Additional .NET-Aware Programming Languages
Understand that C# is not the only language that can be used to build .NET applications. When the
.NET platform was first revealed to the general public during the 2000 Microsoft Professional Devel-
opers Conference (PDC), several vendors announced they were busy building .NET-aware versions
of their respective compilers.

Since that point, dozens of different languages have undergone .NET enlightenment. In addi-
tion to the five languages that ship with the Microsoft .NET Framework 3.5 SDK (C#, Visual Basic
.NET, J#, C++/CLI [previously termed “Managed Extensions for C++”], and JScript .NET), there
are .NET compilers for Smalltalk, COBOL, and Pascal (to name a few). Although this book focuses
(almost) exclusively on C#, be aware of the following website (please note that this URL is subject
to change):

http://www.dotnetlanguages.net

If you click the Resources link at the top of the homepage, you will find a list of numerous .NET
programming languages and related links where you are able to download various compilers (see
Figure 1-2).

While I assume you are primarily interested in building .NET programs using the syntax of C#, I
encourage you to visit this site, as you are sure to find many .NET languages worth investigating at
your leisure (LISP .NET, anyone?).

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 9

8849CH01.qxd 10/1/07 10:30 AM Page 9

http://www.dotnetlanguages.net

Figure 1-2. www.DotNetLanguages.net is one of many sites documenting known .NET programming
languages.

Life in a Multilanguage World
As developers first come to understand the language-agnostic nature of .NET, numerous questions
arise. The most prevalent of these questions would have to be, “If all .NET languages compile down
to ‘managed code,’ why do we need more than one compiler?” There are a number of ways to
answer this question. First, we programmers are a very particular lot when it comes to our choice
of programming language (myself included). Some of us prefer languages full of semicolons and
curly brackets, with as few language keywords as possible. Others enjoy a language that offers more
“human-readable” syntactic tokens (such as Visual Basic). Still others may want to leverage their
mainframe skills while moving to the .NET platform (via COBOL .NET).

Now, be honest. If Microsoft were to build a single “official” .NET language that was derived
from the BASIC family of languages, can you really say all programmers would be happy with this
choice? Or, if the only “official” .NET language was based on Fortran syntax, imagine all the folks
out there who would ignore .NET altogether. Because the .NET runtime couldn’t care less which
language was used to build a block of managed code, .NET programmers can stay true to their
syntactic preferences, and share the compiled assemblies among teammates, departments, and
external organizations (regardless of which .NET language others choose to use).

Another excellent byproduct of integrating various .NET languages into a single unified soft-
ware solution is the simple fact that all programming languages have their own sets of strengths

CHAPTER 1 ■ THE PHILOSOPHY OF .NET10

8849CH01.qxd 10/1/07 10:30 AM Page 10

http://www.DotNetLanguages.net

and weaknesses. For example, some programming languages offer excellent intrinsic support for
advanced mathematical processing. Others offer superior support for financial calculations, logical
calculations, interaction with mainframe computers, and so forth. When you take the strengths of a
particular programming language and then incorporate the benefits provided by the .NET platform,
everybody wins.

Of course, in reality the chances are quite good that you will spend much of your time building
software using your .NET language of choice. However, once you master the syntax of one .NET
language, it is very easy to learn another. This is also quite beneficial, especially to the software con-
sultants of the world. If your language of choice happens to be C#, but you are placed at a client site
that has committed to Visual Basic .NET, you are still able to leverage the functionality of the .NET
Framework, and you should be able to understand the overall structure of the code base with mini-
mal fuss and bother. Enough said.

An Overview of .NET Assemblies
Regardless of which .NET language you choose to program with, understand that despite the fact
that .NET binaries take the same file extension as COM servers and unmanaged Win32 binaries
(*.dll or *.exe), they have absolutely no internal similarities. For example, *.dll .NET binaries do
not export methods to facilitate communications with the COM runtime (given that .NET is not
COM). Furthermore, .NET binaries are not described using COM type libraries and are not regis-
tered into the system registry. Perhaps most important, .NET binaries do not contain platform-
specific instructions, but rather platform-agnostic intermediate language (IL) and type metadata.
Figure 1-3 shows the big picture of the story thus far.

Figure 1-3. All .NET-aware compilers emit IL instructions and metadata.

■Note There is one point to be made regarding the abbreviation “IL.” During the development of .NET, the offi-
cial term for IL was Microsoft intermediate language (MSIL). However with the final release of .NET, the term was
changed to common intermediate language (CIL). Thus, as you read the .NET literature, understand that IL, MSIL,
and CIL are all describing the same exact entity. In keeping with the current terminology, I will use the abbreviation
“CIL” throughout this text.

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 11

8849CH01.qxd 10/1/07 10:30 AM Page 11

When a *.dll or an *.exe has been created using a .NET-aware compiler, the resulting module
is bundled into an assembly. You will examine numerous details of .NET assemblies in Chapter 15.
However, to facilitate the discussion of the .NET runtime environment, you do need to understand
some basic properties of this new file format.

As mentioned, an assembly contains CIL code, which is conceptually similar to Java bytecode
in that it is not compiled to platform-specific instructions until absolutely necessary. Typically,
“absolutely necessary” is the point at which a block of CIL instructions (such as a method imple-
mentation) is referenced for use by the .NET runtime.

In addition to CIL instructions, assemblies also contain metadata that describes in vivid detail
the characteristics of every “type” living within the binary. For example, if you have a class named
SportsCar, the type metadata describes details such as SportsCar’s base class, which interfaces are
implemented by SportsCar (if any), as well as a full description of each member supported by the
SportsCar type.

.NET metadata is a dramatic improvement to COM type metadata. As you may already know,
COM binaries are typically described using an associated type library (which is little more than a
binary version of Interface Definition Language [IDL] code). The problems with COM type informa-
tion are that it is not guaranteed to be present and the fact that IDL code has no way to document
the externally referenced servers that are required for the correct operation of the current COM
server. In contrast, .NET metadata is always present and is automatically generated by a given .NET-
aware compiler.

Finally, in addition to CIL and type metadata, assemblies themselves are also described using
metadata, which is officially termed a manifest. The manifest contains information about the cur-
rent version of the assembly, culture information (used for localizing string and image resources),
and a list of all externally referenced assemblies that are required for proper execution. You’ll
examine various tools that can be used to examine an assembly’s types, metadata, and manifest
information over the course of the next few chapters.

Single-File and Multifile Assemblies
In a great number of cases, there is a simple one-to-one correspondence between a .NET assembly
and the binary file (*.dll or *.exe). Thus, if you are building a .NET *.dll, it is safe to consider that
the binary and the assembly are one and the same. Likewise, if you are building an executable desk-
top application, the *.exe can simply be referred to as the assembly itself. As you’ll see in Chapter 15,
however, this is not completely accurate. Technically speaking, if an assembly is composed of a
single *.dll or *.exe module, you have a single-file assembly. Single-file assemblies contain all the
necessary CIL, metadata, and associated manifest in an autonomous, single, well-defined package.

Multifile assemblies, on the other hand, are composed of numerous .NET binaries, each of
which is termed a module. When building a multifile assembly, one of these modules (termed the
primary module) must contain the assembly manifest (and possibly CIL instructions and metadata
for various types). The other related modules contain a module-level manifest, CIL, and type meta-
data. As you might suspect, the primary module documents the set of required secondary modules
within the assembly manifest.

So, why would you choose to create a multifile assembly? When you partition an assembly into
discrete modules, you end up with a more flexible deployment option. For example, if a user is ref-
erencing a remote assembly that needs to be downloaded onto his or her machine, the runtime will
only download the required modules. Therefore, you are free to construct your assembly in such a
way that less frequently required types (such as a class named HardDriveReformatter) are kept in a
separate stand-alone module.

In contrast, if all your types were placed in a single-file assembly, the end user may end up
downloading a large chunk of data that is not really needed (which is obviously a waste of time).
Thus, as you can see, an assembly is really a logical grouping of one or more related modules that
are intended to be initially deployed and versioned as a single unit.

CHAPTER 1 ■ THE PHILOSOPHY OF .NET12

8849CH01.qxd 10/1/07 10:30 AM Page 12

The Role of the Common Intermediate Language
Let’s examine CIL code, type metadata, and the assembly manifest in a bit more detail. CIL is a lan-
guage that sits above any particular platform-specific instruction set. For example, the following C#
code models a trivial calculator. Don’t concern yourself with the exact syntax for now, but do notice
the format of the Add() method in the Calc class:

// Calc.cs
using System;

namespace CalculatorExample
{
// This class contains the app's entry point.
class Program
{
static void Main()
{
Calc c = new Calc();
int ans = c.Add(10, 84);
Console.WriteLine("10 + 84 is {0}.", ans);

// Wait for user to press the Enter key before shutting down.
Console.ReadLine();

}
}

// The C# calculator.
class Calc
{
public int Add(int x, int y)
{ return x + y; }

}
}

Once you compile this code file using the C# compiler (csc.exe), you end up with a single-file
*.exe assembly that contains a manifest, CIL instructions, and metadata describing each aspect of
the Calc and Program classes.

■Note Chapter 2 examines the details of compiling code using the C# compiler, as well as the use of graphical
IDEs such as Visual Studio, Visual C# Express, and SharpDevelop.

For example, if you were to open this assembly using ildasm.exe (examined a little later in this
chapter), you would find that the Add() method is represented using CIL such as the following:

.method public hidebysig instance int32 Add(int32 x,
int32 y) cil managed

{
// Code size 9 (0x9)
.maxstack 2
.locals init (int32 V_0)
IL_0000: nop
IL_0001: ldarg.1
IL_0002: ldarg.2
IL_0003: add
IL_0004: stloc.0

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 13

8849CH01.qxd 10/1/07 10:30 AM Page 13

IL_0005: br.s IL_0007
IL_0007: ldloc.0
IL_0008: ret

} // end of method Calc::Add

Don’t worry if you are unable to make heads or tails of the resulting CIL for this method—
Chapter 19 will describe the basics of the CIL programming language. The point to concentrate on
is that the C# compiler emits CIL, not platform-specific instructions.

Now, recall that this is true of all .NET-aware compilers. To illustrate, assume you created this
same application using Visual Basic .NET, rather than C#:

' Calc.vb
Imports System

Namespace CalculatorExample
' A VB "Module" is a class that contains only
' static members.
Module Program
Sub Main()
Dim c As New Calc
Dim ans As Integer = c.Add(10, 84)
Console.WriteLine("10 + 84 is {0}.", ans)
Console.ReadLine()

End Sub
End Module

Class Calc
Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer
Return x + y

End Function
End Class

End Namespace

If you examine the CIL for the Add() method, you find similar instructions (slightly tweaked by
the VB .NET compiler, vbc.exe):

.method public instance int32 Add(int32 x,
int32 y) cil managed

{
// Code size 8 (0x8)
.maxstack 2
.locals init (int32 V_0)
IL_0000: ldarg.1
IL_0001: ldarg.2
IL_0002: add.ovf
IL_0003: stloc.0
IL_0004: br.s IL_0006
IL_0006: ldloc.0
IL_0007: ret

} // end of method Calc::Add

■Source Code The Calc.cs and Calc.vb code files are included under the Chapter 1 subdirectory.

CHAPTER 1 ■ THE PHILOSOPHY OF .NET14

8849CH01.qxd 10/1/07 10:30 AM Page 14

Benefits of CIL
At this point, you might be wondering exactly what is gained by compiling source code into CIL
rather than directly to a specific instruction set. One benefit is language integration. As you have
already seen, each .NET-aware compiler produces nearly identical CIL instructions. Therefore, all
languages are able to interact within a well-defined binary arena.

Furthermore, given that CIL is platform-agnostic, the .NET Framework itself is platform-
agnostic, providing the same benefits Java developers have grown accustomed to (i.e., a single code
base running on numerous operating systems). In fact, there is an international standard for the
C# language, and a large subset of the .NET platform and implementations already exist for many
non-Windows operating systems (more details in the section “The Platform-Independent Nature
of .NET” toward the end of this chapter). In contrast to Java, however, .NET allows you to build
applications using your language of choice.

Compiling CIL to Platform-Specific Instructions
Due to the fact that assemblies contain CIL instructions, rather than platform-specific instructions,
CIL code must be compiled on the fly before use. The entity that compiles CIL code into meaningful
CPU instructions is termed a just-in-time (JIT) compiler, which sometimes goes by the friendly
name of Jitter. The .NET runtime environment leverages a JIT compiler for each CPU targeting the
runtime, each optimized for the underlying platform.

For example, if you are building a .NET application that is to be deployed to a handheld device
(such as a Pocket PC), the corresponding Jitter is well equipped to run within a low-memory envi-
ronment. On the other hand, if you are deploying your assembly to a back-end server (where
memory is seldom an issue), the Jitter will be optimized to function in a high-memory environ-
ment. In this way, developers can write a single body of code that can be efficiently JIT-compiled
and executed on machines with different architectures.

Furthermore, as a given Jitter compiles CIL instructions into corresponding machine code, it
will cache the results in memory in a manner suited to the target operating system. In this way, if a
call is made to a method named PrintDocument(), the CIL instructions are compiled into platform-
specific instructions on the first invocation and retained in memory for later use. Therefore, the
next time PrintDocument() is called, there is no need to recompile the CIL.

■Note It is also possible to perform a “pre-JIT” of an assembly when installing your application using the
ngen.exe command-line tool that ships with the .NET Framework 3.5 SDK. Doing so may improve startup time
for graphically intensive applications.

The Role of .NET Type Metadata
In addition to CIL instructions, a .NET assembly contains full, complete, and accurate metadata,
which describes each and every type (class, structure, enumeration, and so forth) defined in the
binary, as well as the members of each type (properties, methods, events, and so on). Thankfully, it
is always the job of the compiler (not the programmer) to emit the latest and greatest type meta-
data. Because .NET metadata is so wickedly meticulous, assemblies are completely self-describing
entities.

To illustrate the format of .NET type metadata, let’s take a look at the metadata that has been
generated for the Add() method of the C# Calc class you examined previously (the metadata gener-
ated for the VB .NET version of the Add() method is similar):

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 15

8849CH01.qxd 10/1/07 10:30 AM Page 15

TypeDef #2 (02000003)

TypDefName: CalculatorExample.Calc (02000003)
Flags : [NotPublic] [AutoLayout] [Class]
[AnsiClass] [BeforeFieldInit] (00100001)
Extends : 01000001 [TypeRef] System.Object
Method #1 (06000003)

MethodName: Add (06000003)
Flags : [Public] [HideBySig] [ReuseSlot] (00000086)
RVA : 0x00002090
ImplFlags : [IL] [Managed] (00000000)
CallCnvntn: [DEFAULT]
hasThis
ReturnType: I4
2 Arguments
Argument #1: I4
Argument #2: I4
2 Parameters
(1) ParamToken : (08000001) Name : x flags: [none] (00000000)
(2) ParamToken : (08000002) Name : y flags: [none] (00000000)

Metadata is used by numerous aspects of the .NET runtime environment, as well as by various
development tools. For example, the IntelliSense feature provided by tools such as Visual Studio
2008 is made possible by reading an assembly’s metadata at design time. Metadata is also used by
various object browsing utilities, debugging tools, and the C# compiler itself. To be sure, metadata is
the backbone of numerous .NET technologies including Windows Communication Foundation
(WCF), XML web services/the .NET remoting layer, reflection, late binding, and object serialization.
Chapter 16 will formalize the role of .NET metadata.

The Role of the Assembly Manifest
Last but not least, remember that a .NET assembly also contains metadata that describes the
assembly itself (technically termed a manifest). Among other details, the manifest documents all
external assemblies required by the current assembly to function correctly, the assembly’s version
number, copyright information, and so forth. Like type metadata, it is always the job of the com-
piler to generate the assembly’s manifest. Here are some relevant details of the manifest generated
when compiling the Calc.cs code file shown earlier in this chapter (assume we instructed the com-
piler to name our assembly Calc.exe):

.assembly extern mscorlib
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}
.assembly Calc
{
.hash algorithm 0x00008004
.ver 0:0:0:0

}
.module Calc.exe
.imagebase 0x00400000
.subsystem 0x00000003
.file alignment 512
.corflags 0x00000001

CHAPTER 1 ■ THE PHILOSOPHY OF .NET16

8849CH01.qxd 10/1/07 10:30 AM Page 16

In a nutshell, this manifest documents the list of external assemblies required by Calc.exe (via
the .assembly extern directive) as well as various characteristics of the assembly itself (version
number, module name, and so on). Chapter 15 will examine the usefulness of manifest data in
much more detail.

Understanding the Common Type System
A given assembly may contain any number of distinct types. In the world of .NET, type is simply a
general term used to refer to a member from the set {class, interface, structure, enumeration, dele-
gate}. When you build solutions using a .NET-aware language, you will most likely interact with
many of these types. For example, your assembly may define a single class that implements some
number of interfaces. Perhaps one of the interface methods takes an enumeration type as an input
parameter and returns a structure to the caller.

Recall that the CTS is a formal specification that documents how types must be defined in
order to be hosted by the CLR. Typically, the only individuals who are deeply concerned with the
inner workings of the CTS are those building tools and/or compilers that target the .NET platform.
It is important, however, for all .NET programmers to learn about how to work with the five types
defined by the CTS in their language of choice. Here is a brief overview.

CTS Class Types
Every .NET-aware language supports, at the very least, the notion of a class type, which is the cor-
nerstone of object-oriented programming (OOP). A class may be composed of any number of
members (such as properties, methods, and events) and data points (fields). In C#, classes are
declared using the class keyword:

// A C# class type.
class Calc
{
public int Add(int x, int y)
{ return x + y; }

}

Chapter 5 will begin your examination of building CTS class types with C#; however, Table 1-1
documents a number of characteristics pertaining to class types.

Table 1-1. CTS Class Characteristics

Class Characteristic Meaning in Life

Is the class “sealed” or not? Sealed classes cannot function as a base class to other
classes.

Does the class implement any interfaces? An interface is a collection of abstract members that
provide a contract between the object and object user.
The CTS allows a class or structure to implement any
number of interfaces.

Is the class abstract or concrete? Abstract classes cannot be directly created, but are
intended to define common behaviors for derived
types. Concrete classes can be created directly.

What is the “visibility” of this class? Each class must be configured with a visibility
attribute. Basically, this trait defines whether the class
may be used by external assemblies or only from
within the defining assembly.

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 17

8849CH01.qxd 10/1/07 10:30 AM Page 17

CTS Interface Types
Interfaces are nothing more than a named collection of abstract member definitions, which may be
supported (i.e., implemented) by a given class or structure. Unlike COM, .NET interfaces do not
derive a common base interface such as IUnknown. In C#, interface types are defined using the
interface keyword, for example:

// A C# interface type is usually
// declared as public, to allow types in other
// assemblies to implement their behavior.
public interface IDraw
{
void Draw();

}

On their own, interfaces are of little use. However, when a class or structure implements a given
interface in its unique way, you are able to request access to the supplied functionality using an
interface reference in a polymorphic manner. Interface-based programming will be fully explored
in Chapter 9.

CTS Structure Types
The concept of a structure is also formalized under the CTS. If you have a C background, you should
be pleased to know that these user-defined types (UDTs) have survived in the world of .NET (although
they behave a bit differently under the hood). Simply put, a structure can be thought of as a light-
weight class type having value-based semantics. For more details on the subtleties of structures, see
Chapter 4. Typically, structures are best suited for modeling geometric and mathematical data, and
are created in C# using the struct keyword:

// A C# structure type.
struct Point
{
// Structures can contain fields.
public int xPos, yPos;

// Structures can contain parameterized constructors.
public Point(int x, int y)
{ xPos = x; yPos = y;}

// Structures may define methods.
public void Display()
{
Console.WriteLine("({0}, {1}", xPos, yPos);

}
}

CTS Enumeration Types
Enumerations are handy programming constructs that allow you to group name/value pairs. For
example, assume you are creating a video-game application that allows the player to select one of
three character categories (Wizard, Fighter, or Thief). Rather than keeping track of raw numerical
values to represent each possibility, you could build a custom enumeration using the enum keyword:

// A C# enumeration type.
enum CharacterType
{

CHAPTER 1 ■ THE PHILOSOPHY OF .NET18

8849CH01.qxd 10/1/07 10:30 AM Page 18

Wizard = 100,
Fighter = 200,
Thief = 300

}

By default, the storage used to hold each item is a 32-bit integer; however, it is possible to alter
this storage slot if need be (e.g., when programming for a low-memory device such as a Pocket PC).
Also, the CTS demands that enumerated types derive from a common base class, System.Enum. As
you will see in Chapter 4, this base class defines a number of interesting members that allow you to
extract, manipulate, and transform the underlying name/value pairs programmatically.

CTS Delegate Types
Delegates are the .NET equivalent of a type-safe C-style function pointer. The key difference is that a
.NET delegate is a class that derives from System.MulticastDelegate, rather than a simple pointer to
a raw memory address. In C#, delegates are declared using the delegate keyword:

// This C# delegate type can "point to" any method
// returning an integer and taking two integers as input.
delegate int BinaryOp(int x, int y);

Delegates are useful when you wish to provide a way for one entity to forward a call to another
entity, and provide the foundation for the .NET event architecture. As you will see in Chapters 11
and 18, delegates have intrinsic support for multicasting (i.e., forwarding a request to multiple
recipients) and asynchronous method invocations.

CTS Type Members
Now that you have previewed each of the types formalized by the CTS, realize that most types take
any number of members. Formally speaking, a type member is constrained by the set {constructor,
finalizer, static constructor, nested type, operator, method, property, indexer, field, read-only field,
constant, event}.

The CTS defines various “adornments” that may be associated with a given member. For exam-
ple, each member has a given visibility trait (e.g., public, private, protected, and so forth). Some
members may be declared as abstract to enforce a polymorphic behavior on derived types as well as
virtual to define a canned (but overridable) implementation. Also, most members may be config-
ured as static (bound at the class level) or instance (bound at the object level). The construction of
type members is examined over the course of the next several chapters.

■Note As described in Chapter 10, the C# language also supports the construction of generic types and generic
members.

Intrinsic CTS Data Types
The final aspect of the CTS to be aware of for the time being is that it establishes a well-defined set
of fundamental data types. Although a given language typically has a unique keyword used to
declare an intrinsic CTS data type, all language keywords ultimately resolve to the same type
defined in an assembly named mscorlib.dll. Consider Table 1-2, which documents how key CTS
data types are expressed in various .NET languages.

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 19

8849CH01.qxd 10/1/07 10:30 AM Page 19

Table 1-2. The Intrinsic CTS Data Types

CTS Data Type VB .NET Keyword C# Keyword C++/CLI Keyword

System.Byte Byte byte unsigned char

System.SByte SByte sbyte signed char

System.Int16 Short short short

System.Int32 Integer int int or long

System.Int64 Long long __int64

System.UInt16 UShort ushort unsigned short

System.UInt32 UInteger uint unsigned int or unsigned long

System.UInt64 ULong ulong unsigned __int64

System.Single Single float Float

System.Double Double double Double

System.Object Object object Object^

System.Char Char char wchar_t

System.String String string String^

System.Decimal Decimal decimal Decimal

System.Boolean Boolean bool Bool

Given the fact that the unique keywords of a managed language are simply shorthand nota-
tions for a real type in the System namespace, we no longer have to worry about overflow/underflow
conditions for numerical data, or how strings and Booleans are internally represented across differ-
ent languages. Consider the following code snippets, which define 32-bit numerical variables in C#
and VB .NET, using language keywords as well as the formal CTS type:

// Define some "ints" in C#.
int i = 0;
System.Int32 j = 0;

' Define some "ints" in VB .NET.
Dim i As Integer = 0
Dim j As System.Int32 = 0

Understanding the Common Language
Specification
As you are aware, different languages express the same programming constructs in unique, lan-
guage-specific terms. For example, in C# you denote string concatenation using the plus operator
(+), while in VB .NET you typically make use of the ampersand (&). Even when two distinct lan-
guages express the same programmatic idiom (e.g., a function with no return value), the chances
are very good that the syntax will appear quite different on the surface:

// C# method returning nothing.
public void MyMethod()
{
// Some interesting code...

}

CHAPTER 1 ■ THE PHILOSOPHY OF .NET20

8849CH01.qxd 10/1/07 10:30 AM Page 20

' VB method returning nothing.
Public Sub MyMethod()
' Some interesting code...

End Sub

As you have already seen, these minor syntactic variations are inconsequential in the eyes of
the .NET runtime, given that the respective compilers (csc.exe or vbc.exe, in this case) emit a simi-
lar set of CIL instructions. However, languages can also differ with regard to their overall level of
functionality. For example, a .NET language may or may not have a keyword to represent unsigned
data, and may or may not support pointer types. Given these possible variations, it would be ideal
to have a baseline to which all .NET-aware languages are expected to conform.

The CLS is a set of rules that describe in vivid detail the minimal and complete set of features a
given .NET-aware compiler must support to produce code that can be hosted by the CLR, while at
the same time be accessed in a uniform manner by all languages that target the .NET platform. In
many ways, the CLS can be viewed as a subset of the full functionality defined by the CTS.

The CLS is ultimately a set of rules that compiler builders must conform to, if they intend their
products to function seamlessly within the .NET universe. Each rule is assigned a simple name (e.g.,
“CLS Rule 6”) and describes how this rule affects those who build the compilers as well as those
who (in some way) interact with them. The crème de la crème of the CLS is the mighty Rule 1:

• Rule 1: CLS rules apply only to those parts of a type that are exposed outside the defining
assembly.

Given this rule, you can (correctly) infer that the remaining rules of the CLS do not apply to the
logic used to build the inner workings of a .NET type. The only aspects of a type that must conform
to the CLS are the member definitions themselves (i.e., naming conventions, parameters, and
return types). The implementation logic for a member may use any number of non-CLS techniques,
as the outside world won’t know the difference.

To illustrate, the following Add() method is not CLS-compliant, as the parameters and return
values make use of unsigned data (which is not a requirement of the CLS):

class Calc
{
// Exposed unsigned data is not CLS compliant!
public ulong Add(ulong x, ulong y)
{ return x + y;}

}

However, if you were to simply make use of unsigned data internally as follows:

class Calc
{
public int Add(int x, int y)
{
// As this ulong variable is only used internally,
// we are still CLS compliant.
ulong temp = 0;
...
return x + y;

}
}

you have still conformed to the rules of the CLS, and can rest assured that all .NET languages are
able to invoke the Add() method.

Of course, in addition to Rule 1, the CLS defines numerous other rules. For example, the
CLS describes how a given language must represent text strings, how enumerations should be
represented internally (the base type used for storage), how to define static members, and so forth.

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 21

8849CH01.qxd 10/1/07 10:30 AM Page 21

Luckily, you don’t have to commit these rules to memory to be a proficient .NET developer. Again,
by and large, an intimate understanding of the CTS and CLS specifications is only of interest to
tool/compiler builders.

Ensuring CLS Compliance
As you will see over the course of this book, C# does define a number of programming constructs
that are not CLS-compliant. The good news, however, is that you can instruct the C# compiler to
check your code for CLS compliance using a single .NET attribute:

// Tell the C# compiler to check for CLS compliance.
[assembly: System.CLSCompliant(true)]

Chapter 16 dives into the details of attribute-based programming. Until then, simply under-
stand that the [CLSCompliant] attribute will instruct the C# compiler to check each and every line of
code against the rules of the CLS. If any CLS violations are discovered, you receive a compiler error
and a description of the offending code.

Understanding the Common Language Runtime
In addition to the CTS and CLS specifications, the final TLA (three-letter abbreviation) to contend
with at the moment is the CLR. Programmatically speaking, the term runtime can be understood as
a collection of external services that are required to execute a given compiled unit of code. For
example, when developers make use of the MFC to create a new application, they are aware that
their program requires the MFC runtime library (i.e., mfc42.dll). Other popular languages also
have a corresponding runtime. VB6 programmers are also tied to a runtime module or two (e.g.,
msvbvm60.dll). Java developers are tied to the Java Virtual Machine (JVM), and so forth.

The .NET platform offers yet another runtime system. The key difference between the .NET
runtime and the various other runtimes I just mentioned is the fact that the .NET runtime provides
a single well-defined runtime layer that is shared by all languages and platforms that are .NET-
aware.

The crux of the CLR is physically represented by a library named mscoree.dll (a.k.a. the Com-
mon Object Runtime Execution Engine). When an assembly is referenced for use, mscoree.dll is
loaded automatically, which in turn loads the required assembly into memory. The runtime engine
is responsible for a number of tasks. First and foremost, it is the entity in charge of resolving the
location of an assembly and finding the requested type within the binary by reading the contained
metadata. The CLR then lays out the type in memory, compiles the associated CIL into platform-
specific instructions, performs any necessary security checks, and then executes the code in
question.

In addition to loading your custom assemblies and creating your custom types, the CLR will
also interact with the types contained within the .NET base class libraries when required. Although
the entire base class library has been broken into a number of discrete assemblies, the key assembly
is mscorlib.dll. mscorlib.dll contains a large number of core types that encapsulate a wide variety
of common programming tasks as well as the core data types used by all .NET languages. When you
build .NET solutions, you automatically have access to this particular assembly.

Figure 1-4 illustrates the workflow that takes place between your source code (which is making
use of base class library types), a given .NET compiler, and the .NET execution engine.

CHAPTER 1 ■ THE PHILOSOPHY OF .NET22

8849CH01.qxd 10/1/07 10:30 AM Page 22

Figure 1-4. mscoree.dll in action

The Assembly/Namespace/Type Distinction
Each of us understands the importance of code libraries. The point of libraries such as MFC, J2EE,
and ATL is to give developers a well-defined set of existing code to leverage in their applications.
However, the C# language does not come with a language-specific code library. Rather, C# develop-
ers leverage the language-neutral .NET libraries. To keep all the types within the base class libraries
well organized, the .NET platform makes extensive use of the namespace concept.

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 23

8849CH01.qxd 10/1/07 10:30 AM Page 23

Simply put, a namespace is a grouping of semantically related types contained in an assembly.
For example, the System.IO namespace contains file I/O–related types, the System.Data namespace
defines basic database types, and so on. It is very important to point out that a single assembly
(such as mscorlib.dll) can contain any number of namespaces, each of which can contain any
number of types.

To clarify, Figure 1-5 shows a screen shot of the Visual Studio 2008 Object Brower utility. This
tool allows you to examine the assemblies referenced by your current project, the namespaces
within a particular assembly, the types within a given namespace, and the members of a specific
type. Note that mscorlib.dll contains many different namespaces, each with its own semantically
related types.

Figure 1-5. A single assembly can have any number of namespaces.

The key difference between this approach and a language-specific library such as MFC is that
any language targeting the .NET runtime makes use of the same namespaces and same types. For
example, the following three programs all illustrate the ubiquitous “Hello World” application, writ-
ten in C#, VB .NET, and C++/CLI:

// Hello world in C#
using System;

public class MyApp
{
static void Main()
{
Console.WriteLine("Hi from C#");

}
}

' Hello world in VB
Imports System

Public Module MyApp
Sub Main()

CHAPTER 1 ■ THE PHILOSOPHY OF .NET24

8849CH01.qxd 10/1/07 10:30 AM Page 24

Console.WriteLine("Hi from VB")
End Sub

End Module

// Hello world in C++/CLI
#include "stdafx.h"
using namespace System;

int main(array<System::String ^> ^args)
{
Console::WriteLine(L"Hi from C++/CLI");
return 0;

}

Notice that each language is making use of the Console class defined in the System namespace.
Beyond minor syntactic variations, these three applications look and feel very much alike, both
physically and logically.

Clearly, your primary goal as a .NET developer is to get to know the wealth of types defined in
the (numerous) .NET namespaces. The most fundamental namespace to get your hands around is
named System. This namespace provides a core body of types that you will need to leverage time
and again as a .NET developer. In fact, you cannot build any sort of functional C# application with-
out at least making a reference to the System namespace, as the core data types (System.Int32,
System.String, etc.) are defined here. Table 1-3 offers a rundown of some (but certainly not all) of
the .NET namespaces grouped by related functionality.

Table 1-3. A Sampling of .NET Namespaces

.NET Namespace Meaning in Life

System Within System, you find numerous useful types dealing with
intrinsic data, mathematical computations, random number
generation, environment variables, and garbage collection,
as well as a number of commonly used exceptions and
attributes.

System.Collections These namespaces define a number of stock container types,
System.Collections.Generic as well as base types and interfaces that allow you to build

customized collections.

System.Data These namespaces are used for interacting with relational
System.Data.Odbc databases using ADO.NET.
System.Data.OracleClient
System.Data.OleDb
System.Data.SqlClient

System.IO These namespaces define numerous types used to work with
System.IO.Compression file I/O, compression of data, and port manipulation.
System.IO.Ports

System.Reflection These namespaces define types that support runtime type
System.Reflection.Emit discovery as well as dynamic creation of types.

System.Runtime.InteropServices This namespace provides facilities to allow .NET types to
interact with “unmanaged code” (e.g., C-based DLLs and
COM servers) and vice versa.

System.Drawing These namespaces define types used to build desktop
System.Windows.Forms applications using .NET’s original UI toolkit (Windows

Forms).

Continued

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 25

8849CH01.qxd 10/1/07 10:30 AM Page 25

Table 1-3. Continued

.NET Namespace Meaning in Life

System.Windows The System.Windows namespace is the root for several
System.Windows.Controls namespaces that represent the Windows Presentation
System.Windows.Shapes Foundation (WPF) UI toolkit.

System.Linq These namespaces define types used when programming
System.Xml.Linq against the LINQ API.
System.Data.Linq

System.Web This is one of many namespaces that allow you to build
ASP.NET web applications.

System.ServiceModel This is one of many namespaces used to build distributed
applications using the WCF API.

System.Workflow.Runtime These are two of many namespaces that define types used
System.Workflow.Activities to build “workflow-enabled” applications using the WCF API.

System.Threading This namespace defines numerous types to build
multithreaded applications.

System.Security Security is an integrated aspect of the .NET universe. In the
security-centric namespaces, you find numerous types
dealing with permissions, cryptography, and so on.

System.Xml The XML-centric namespaces contain numerous types used
to interact with XML data.

The Role of the Microsoft Namespaces
I’m sure you noticed while reading over the listings in Table 1-3 that System is the root namespace
for a good number of nested namespaces (System.IO, System.Data, etc.). As it turns out, however,
the .NET base class library defines a number of topmost root namespaces beyond System, the most
useful of which is named Microsoft.

In a nutshell, any namespace nested within Microsoft (e.g., Microsoft.CSharp, Microsoft.Ink,
Microsoft.ManagementConsole, and Microsoft.Win32) contain types that are used to interact with
services that are unique to the Windows operating system. Given this point, you should not assume
that these types could be used successfully on other .NET-enabled operating systems such as Mac
OS X. For the most part, this text will not dig into the details of the Microsoft rooted namespaces, so
be sure to consult the documentation if you are so interested.

■Note Chapter 2 will illustrate the use of the .NET Framework 3.5 SDK documentation, which provides details
regarding every namespace, type, and member found within the base class libraries.

Accessing a Namespace Programmatically
It is worth reiterating that a namespace is nothing more than a convenient way for us mere humans
to logically understand and organize related types. Consider again the System namespace. From
your perspective, you can assume that System.Console represents a class named Console that is
contained within a namespace called System. However, in the eyes of the .NET runtime, this is not
so. The runtime engine only sees a single entity named System.Console.

CHAPTER 1 ■ THE PHILOSOPHY OF .NET26

8849CH01.qxd 10/1/07 10:30 AM Page 26

In C#, the using keyword simplifies the process of referencing types defined in a particular
namespace. Here is how it works. Let’s say you are interested in building a traditional desktop appli-
cation. The main window renders a bar chart based on some information obtained from a back-end
database and displays your company logo. While learning the types each namespace contains takes
study and experimentation, here are some possible candidates to reference in your program:

// Here are all the namespaces used to build this application.
using System; // General base class library types.
using System.Drawing; // Graphical rendering types.
using System.Windows.Forms; // Windows Forms GUI widget types.
using System.Data; // General data-centric types.
using System.Data.SqlClient; // MS SQL Server data access types.

Once you have specified some number of namespaces (and set a reference to the assemblies
that define them), you are free to create instances of the types they contain. For example, if you are
interested in creating an instance of the Bitmap class (defined in the System.Drawing namespace),
you can write:

// Explicitly list the namespaces used by this file.
using System;
using System.Drawing;

class Program
{
public void DisplayLogo()
{
// Create a 20 * 20 pixel bitmap.
Bitmap companyLogo = new Bitmap(20, 20);
...

}
}

Because your code file is referencing System.Drawing, the compiler is able to resolve the Bitmap
class as a member of this namespace. If you did not specify the System.Drawing namespace, you
would be issued a compiler error. However, you are free to declare variables using a fully qualified
name as well:

// Not listing System.Drawing namespace!
using System;

class Program
{
public void DisplayLogo()
{
// Using fully qualified name.
System.Drawing.Bitmap companyLogo =
new System.Drawing.Bitmap(20, 20);

...
}

}

While defining a type using the fully qualified name provides greater readability, I think you’d
agree that the C# using keyword reduces keystrokes. In this text, I will avoid the use of fully qualified
names (unless there is a definite ambiguity to be resolved) and opt for the simplified approach of
the C# using keyword.

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 27

8849CH01.qxd 10/1/07 10:30 AM Page 27

However, always remember that the using keyword is simply a shorthand notation for specify-
ing a type’s fully qualified name, and either approach results in the exact same underlying CIL
(given the fact that CIL code always makes use of fully qualified names) and has no effect on per-
formance or the size of the assembly.

Referencing External Assemblies
In addition to specifying a namespace via the C# using keyword, you also need to tell the C# com-
piler the name of the assembly containing the actual CIL definition for the referenced type. As
mentioned, many core .NET namespaces live within mscorlib.dll. However, the System.Drawing.
Bitmap type is contained within a separate assembly named System.Drawing.dll. A vast majority of
the .NET Framework assemblies are located under a specific directory termed the global assembly
cache (GAC). On a Windows machine, this can be located by default under C:\Windows\Assembly,
as shown in Figure 1-6.

Figure 1-6. The base class libraries reside in the GAC.

Depending on the development tool you are using to build your .NET applications, you will
have various ways to inform the compiler which assemblies you wish to include during the compi-
lation cycle. You’ll examine how to do so in the next chapter, so I’ll hold off on the details for now.

Exploring an Assembly Using ildasm.exe
If you are beginning to feel a tad overwhelmed at the thought of gaining mastery over every name-
space in the .NET platform, just remember that what makes a namespace unique is that it contains
types that are somehow semantically related. Therefore, if you have no need for a user interface
beyond a simple console application, you can forget all about the System.Windows.Forms, System.
Windows, and System.Web namespaces (among others). If you are building a painting application, the
database namespaces are most likely of little concern. Like any new set of prefabricated code, you
learn as you go.

CHAPTER 1 ■ THE PHILOSOPHY OF .NET28

8849CH01.qxd 10/1/07 10:30 AM Page 28

The Intermediate Language Disassembler utility (ildasm.exe), which ships with the .NET
Framework 3.5 SDK, allows you to load up any .NET assembly and investigate its contents, includ-
ing the associated manifest, CIL code, and type metadata. To load ildasm.exe, open a Visual Studio
command prompt (using Start ➤ All Programs ➤ Microsoft Visual Studio 2008 ➤ Visual Studio
Tools), type ildasm and press the Enter key.

Once you run this tool, proceed to the File ➤ Open menu command and navigate to an assem-
bly you wish to explore. By way of illustration, here is the Calc.exe assembly generated based on the
Calc.cs file shown earlier in this chapter (see Figure 1-7). ildasm.exe presents the structure of an
assembly using a familiar tree-view format.

Figure 1-7. ildasm.exe allows you to see the CIL code, manifest, and metadata within a .NET assembly.

Viewing CIL Code
In addition to showing the namespaces, types, and members contained in a given assembly,
ildasm.exe also allows you to view the CIL instructions for a given member. For example, if you
were to double-click the Main() method of the Program class, a separate window would display the
underlying CIL (see Figure 1-8).

Figure 1-8. Viewing the underlying CIL

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 29

8849CH01.qxd 10/1/07 10:30 AM Page 29

Viewing Type Metadata
If you wish to view the type metadata for the currently loaded assembly, press Ctrl+M. Figure 1-9
shows the metadata for the Calc.Add() method.

Figure 1-9. Viewing type metadata via ildasm.exe

Viewing Assembly Metadata (a.k.a. the Manifest)
Finally, if you are interested in viewing the contents of the assembly’s manifest, simply double-click
the MANIFEST icon (see Figure 1-10).

Figure 1-10. Viewing manifest data via ildasm.exe.

To be sure, ildasm.exe has more options than shown here, and I will illustrate additional fea-
tures of the tool where appropriate in the text.

CHAPTER 1 ■ THE PHILOSOPHY OF .NET30

8849CH01.qxd 10/1/07 10:30 AM Page 30

Exploring an Assembly Using Lutz Roeder’s
Reflector
While using ildasm.exe is a very common task when you wish to dig into the guts of a .NET binary,
the one gotcha is that you are only able to view the underlying CIL code, rather than looking at an
assembly’s implementation using your managed language of choice. Thankfully, many .NET object
browsers are available for download, including the very popular Reflector.

This free tool can be downloaded from http://www.aisto.com/roeder/dotnet. Once you have
unzipped the archive, you are able to run the tool and plug in any assembly you wish using the
File ➤ Open menu option. Figure 1-11 shows our Calc.exe application once again.

Figure 1-11. Reflector is a very popular object browsing tool.

Notice that reflector.exe supports a Disassembler window (opened by pressing the spacebar)
as well as a drop-down list box that allows you to view the underlying code base in your language of
choice (including, of course, CIL code).

I’ll leave it up to you to check out the number of intriguing features found within this tool. Do
be aware that over the course of the remainder of the book, I’ll make use of both ildasm.exe as well
as reflector.exe to illustrate various concepts.

Deploying the .NET Runtime
It should come as no surprise that .NET assemblies can be executed only on a machine that has the
.NET Framework installed. For an individual who builds .NET software, this should never be an
issue, as your development machine will be properly configured at the time you install the freely
available .NET Framework 3.5 SDK (as well as commercial .NET development environments such as
Visual Studio 2008).

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 31

8849CH01.qxd 10/1/07 10:30 AM Page 31

http://www.aisto.com/roeder/dotnet

However, if you deploy an assembly to a computer that does not have .NET installed, it will
fail to run. For this reason, Microsoft provides a setup package named dotnetfx3setup.exe that can
be freely shipped and installed along with your .NET software. This installation program can be
freely downloaded from Microsoft from their .NET download area (http://msdn.microsoft.com/
netframework). Once dotNetFx35setup.exe is installed, the target machine will now contain the
.NET base class libraries, .NET runtime (mscoree.dll), and additional .NET infrastructure (such
as the GAC).

■Note The Vista operating system is preconfigured with the necessary .NET runtime infrastructure. However, if
you are deploying your application to Windows XP or Windows Server 2003, you will want to ensure the target
machine has the .NET runtime environment installed and configured.

The Platform-Independent Nature of .NET
To close this chapter, allow me to briefly comment on the platform-independent nature of the .NET
platform. To the surprise of most developers, .NET assemblies can be developed and executed on
non-Microsoft operating systems (Mac OS X, numerous Linux distributions, and Solaris, to name a
few). To understand how this is possible, you need to come to terms with yet another abbreviation
in the .NET universe: CLI (Common Language Infrastructure).

When Microsoft released the C# programming language and the .NET platform, they also
crafted a set of formal documents that described the syntax and semantics of the C# and CIL lan-
guages, the .NET assembly format, core .NET namespaces, and the mechanics of a hypothetical
.NET runtime engine (known as the Virtual Execution System, or VES).

Better yet, these documents have been submitted to (and ratified by) ECMA International as
official international standards (http://www.ecma-international.org). The specifications of
interest are

• ECMA-334: The C# Language Specification

• ECMA-335: The Common Language Infrastructure (CLI)

The importance of these documents becomes clear when you understand that they enable
third parties to build distributions of the .NET platform for any number of operating systems
and/or processors. ECMA-335 is perhaps the more “meaty” of the two specifications, so much so
that is has been broken into various partitions, including those shown in Table 1-4.

Table 1-4. Partitions of the CLI

Partitions of ECMA-335 Meaning in Life

Partition I: Architecture Describes the overall architecture of the CLI, including the rules of the
CTS and CLS, and the mechanics of the .NET runtime engine

Partition II: Metadata Describes the details of .NET metadata

Partition III: CIL Describes the syntax and semantics of CIL code

Partition IV: Libraries Gives a high-level overview of the minimal and complete class libraries
that must be supported by a .NET distribution.

Partition V: Annexes Provides a collection of “odds and ends” details such as class library
design guidelines and the implementation details of a CIL compiler

CHAPTER 1 ■ THE PHILOSOPHY OF .NET32

8849CH01.qxd 10/1/07 10:30 AM Page 32

http://msdn.microsoft.com/netframework
http://msdn.microsoft.com/netframework
http://www.ecma-international.org
http://msdn.microsoft.com/netframework
http://msdn.microsoft.com/netframework

Be aware that Partition IV (Libraries) defines only a minimal set of namespaces that represent
the core services expected by a CLI distribution (collections, console I/O, file I/O, threading, reflec-
tion, network access, core security needs, XML manipulation, and so forth). The CLI does not define
namespaces that facilitate web development (ASP.NET), database access (ADO.NET), or desktop
graphical user interface (GUI) application development (Windows Forms/Windows Presentation
Foundation).

The good news, however, is that the mainstream .NET distributions extend the CLI libraries
with Microsoft-compatible equivalents of ASP.NET, ADO.NET, and Windows Forms in order to
provide full-featured, production-level development platforms. To date, there are two major imple-
mentations of the CLI (beyond Microsoft’s Windows-specific offering). Although this text focuses on
the creation of .NET applications using Microsoft’s .NET distribution, Table 1-5 provides informa-
tion regarding the Mono and Portable .NET projects.

Table 1-5. Open Source .NET Distributions

Distribution Meaning in Life

http://www.mono-project.com The Mono project is an open source distribution of the CLI that
targets various Linux distributions (e.g., SuSE, Fedora, and so on)
as well as Win32 and Mac OS X.

http://www.dotgnu.org Portable.NET is another open source distribution of the CLI that
runs on numerous operating systems. Portable.NET aims to
target as many operating systems as possible (Win32, AIX, BeOS,
Mac OS X, Solaris, all major Linux distributions, and so on).

Both Mono and Portable.NET provide an ECMA-compliant C# compiler, .NET runtime engine,
code samples, documentation, as well as numerous development tools that are functionally equiva-
lent to the tools that ship with Microsoft’s .NET Framework 3.5 SDK. Furthermore, Mono and
Portable.NET collectively ship with a VB .NET, Java, and C complier.

■Note Coverage of creating cross-platform .NET applications using Mono can be found in Appendix B.

Summary
The point of this chapter was to lay out the conceptual framework necessary for the remainder of
this book. I began by examining a number of limitations and complexities found within the tech-
nologies prior to .NET, and followed up with an overview of how .NET and C# attempt to simplify
the current state of affairs.

.NET basically boils down to a runtime execution engine (mscoree.dll) and base class library
(mscorlib.dll and associates). The common language runtime (CLR) is able to host any .NET
binary (a.k.a. assembly) that abides by the rules of managed code. As you have seen, assemblies
contain CIL instructions (in addition to type metadata and the assembly manifest) that are com-
piled to platform-specific instructions using a just-in-time (JIT) compiler. In addition, you explored
the role of the Common Language Specification (CLS) and Common Type System (CTS).

This was followed by an examination of the ildasm.exe and reflector.exe object browsing
utilities, as well as coverage of how to configure a machine to host .NET applications using
dotnetfx3setup.exe. I wrapped up by briefly addressing the platform-independent nature of C#
and the .NET platform, a topic further examined in Appendix B.

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 33

8849CH01.qxd 10/1/07 10:30 AM Page 33

http://www.mono-project.com
http://www.dotgnu.org

8849CH01.qxd 10/1/07 10:30 AM Page 34

Building C# Applications

As a C# programmer, you may choose among numerous tools to build .NET applications. The
point of this chapter is to provide a tour of various .NET development options, including, of course,
Visual Studio 2008. The chapter opens, however, with an examination of working with the C#
command-line compiler, csc.exe, and the simplest of all text editors, the Notepad application
that ships with the Microsoft Windows OS.

Once you become comfortable compiling assemblies “IDE-free,” you will then examine various
lightweight editors (such as TextPad and Notepad++) that allow you to author C# source code files
and interact with the compiler in a slightly more sophisticated manner.

While you could work through this entire text using nothing other than csc.exe and a basic
text editor, I’d bet you are also interested in working with feature-rich integrated development
environments (IDEs). To this end, you will be introduced to a free, open source .NET IDE named
SharpDevelop. This IDE rivals the functionality of many commercial .NET development environ-
ments. After briefly examining the Visual C# 2008 Express IDE (which is also free), you will be given
a guided tour of the key features of Visual Studio 2008. This chapter wraps up with a quick tour of a
number of complementary .NET development tools (again, many of which are open source) and
describes where to obtain them.

■Note Over the course of this chapter, you will see a number of C# programming constructs we have not for-
mally examined. If you are unfamiliar with the syntax, don’t fret. Chapter 3 will formally begin your examination of
the C# language.

The Role of the .NET Framework 3.5 SDK
One common misconception regarding .NET development is the belief that programmers must
purchase a copy of Visual Studio in order to build their C# applications. The truth of the matter is
that you are able to build any sort of .NET program using the freely downloadable .NET Framework
3.5 Software Development Kit (SDK). This SDK provides you with numerous managed compilers,
command-line utilities, white papers, sample code, the .NET class libraries, and a complete docu-
mentation system.

■Note The .NET Framework 3.5 SDK (dotNetFx35setup.exe) can be obtained from the .NET download website
(http://msdn.microsoft.com/netframework).

35

C H A P T E R 2

8849CH02.qxd 9/24/07 10:50 AM Page 35

http://msdn.microsoft.com/netframework
http://msdn.microsoft.com/netframework

If you are indeed going to be using Visual Studio 2008 or Visual C# 2008 Express, you have no
need to manually install the .NET Framework 3.5 SDK. When you install either of these products,
the SDK is installed automatically, thereby giving you everything you need out of the box. However,
if you are not going to be using a Microsoft IDE as you work through this text, be sure to install the
SDK before proceeding.

The Visual Studio 2008 Command Prompt
When you install the .NET Framework 3.5 SDK, Visual Studio 2008, or Visual C# 2008 Express, you
will end up with a number of new directories on your local hard drive, each of which contains vari-
ous .NET development tools. Many of these tools are driven from the command prompt, so if you
wish to use these utilities from any Windows command window, you will need to register these
paths with the operating system.

While you could update your PATH variable manually to do so, you can save yourself some time
by simply making use of the Visual Studio 2008 Command Prompt that is accessible from the Start
➤ Programs ➤ Visual Studio 2008 ➤ Visual Studio Tools folder (see Figure 2-1).

Figure 2-1. The Visual Studio 2008 command prompt

The benefit of using this particular command prompt is that it has been preconfigured to
provide access to each of the .NET development tools. Assuming you have a .NET development
environment installed, type the following command and press the Enter key:

csc -?

If all is well, you should see a list of command-line arguments of the C# command-line
compiler (where csc stands for the C-sharp compiler).

Building C# Applications Using csc.exe
While it is true that you may never decide to build a large-scale application using the C# command-
line compiler, it is important to understand the basics of how to compile your code files by hand. I
can think of a few reasons you should get a grip on the process:

• The most obvious reason is the simple fact that you might not have a copy of Visual Studio
2008.

• You may be in a university setting where you are prohibited from using code generation
tools/IDEs in the classroom.

• You plan to make use of automated build tools such as MSBuild or NAnt, which require you
to know the command-line options of the tools you are utilizing.

CHAPTER 2 ■ BUILDING C# APPLICATIONS36

8849CH02.qxd 9/24/07 10:50 AM Page 36

• You want to deepen your understanding of C#. When you use graphical IDEs to build appli-
cations, you are ultimately instructing csc.exe how to manipulate your C# input files. In this
light, it’s edifying to see what takes place behind the scenes.

Another nice by-product of working with csc.exe in the raw is that you become that much
more comfortable manipulating other command-line tools included with the .NET Framework 3.5
SDK. As you will see throughout this book, a number of important utilities are accessible only from
the command line.

To illustrate how to build a .NET application IDE-free, we will build a simple executable assem-
bly named TestApp.exe using the C# command-line compiler and Notepad. First, you need some
source code. Open Notepad (using the Start ➤ Programs ➤ Accessories menu option) and enter the
following trivial C# code:

// A simple C# application.
using System;

class TestApp
{
static void Main()
{
Console.WriteLine("Testing! 1, 2, 3");

}
}

Once you have finished, save the file in a convenient location (e.g., C:\CscExample) as
TestApp.cs. Now, let’s get to know the core options of the C# compiler.

■Note As a convention, all C# code files take a *.cs file extension. The name of the file does not need to have
any mapping to the name of the type (or types) it is defining.

Specifying Input and Output Targets
The first point of interest is to understand how to specify the name and type of assembly to create
(e.g., a console application named MyShell.exe, a code library named MathLib.dll, a Windows
Forms application named Halo8.exe, and so forth). Each possibility is represented by a specific flag
passed into csc.exe as a command-line parameter (see Table 2-1).

Table 2-1. Output Options of the C# Compiler

Option Meaning in Life

/out This option is used to specify the name of the assembly to be created. By
default, the assembly name is the same as the name of the initial input *.cs
file.

/target:exe This option builds an executable console application. This is the default
assembly output type, and thus may be omitted when building this type of
application.

/target:library This option builds a single-file *.dll assembly.

/target:module This option builds a module. Modules are elements of multifile assemblies
(fully described in Chapter 15).

/target:winexe Although you are free to build graphical user interface–based applications
using the /target:exe option, /target:winexe prevents a console window
from appearing in the background.

CHAPTER 2 ■ BUILDING C# APPLICATIONS 37

8849CH02.qxd 9/24/07 10:50 AM Page 37

■Note The options sent to the command-line compiler (as well as most other command-line tools) can be pre-
fixed with either a dash (-?) or a slash (/?).

To compile TestApp.cs into a console application named TestApp.exe, change to the directory
containing your source code file:

cd C:\CscExample

and enter the following command set (note that command-line flags must come before the name of
the input files, not after):

csc /target:exe TestApp.cs

Here I did not explicitly specify an /out flag, therefore the executable will be named TestApp.exe,
given that TestApp is the name of the input file. Also be aware that most of the C# compiler flags
support an abbreviated version, such as /t rather than /target (you can view all abbreviations by
entering csc -? at the command prompt).

csc /t:exe TestApp.cs

Furthermore, given that the /t:exe flag is the default output used by the C# compiler, you
could also compile TestApp.cs simply by typing

csc TestApp.cs

TestApp.exe can now be run from the command line as shown in Figure 2-2.

Figure 2-2. TestApp.exe in action

Referencing External Assemblies
Next, let’s examine how to compile an application that makes use of types defined in a separate
.NET assembly. Speaking of which, just in case you are wondering how the C# compiler understood
your reference to the System.Console type, recall from Chapter 1 that mscorlib.dll is automatically
referenced during the compilation process (if for some strange reason you wish to disable this
behavior, you may specify the /nostdlib option of csc.exe).

Let’s update the TestApp application to display a Windows Forms message box. Open your
TestApp.cs file and modify it as follows:

using System;

// Add this!
using System.Windows.Forms;

class TestApp
{

CHAPTER 2 ■ BUILDING C# APPLICATIONS38

8849CH02.qxd 9/24/07 10:50 AM Page 38

static void Main()
{
Console.WriteLine("Testing! 1, 2, 3");

// Add this!
MessageBox.Show("Hello...");

}
}

Notice you are importing the System.Windows.Forms namespace via the C# using keyword
(introduced in Chapter 1). Recall that when you explicitly list the namespaces used within a given
*.cs file, you avoid the need to make use of fully qualified names of a type (which can lead to hand
cramps).

At the command line, you must inform csc.exe which assembly contains the namespaces you
are using. Given that you have made use of the System.Windows.Forms.MessageBox class, you must
specify the System.Windows.Forms.dll assembly using the /reference flag (which can be abbrevi-
ated to /r):

csc /r:System.Windows.Forms.dll TestApp.cs

If you now rerun your application, you should see what appears in Figure 2-3 in addition to the
console output.

Figure 2-3. Your first Windows Forms application

Referencing Multiple External Assemblies
On a related note, what if you need to reference numerous external assemblies using csc.exe?
Simply list each assembly using a semicolon-delimited list. You don’t need to specify multiple exter-
nal assemblies for the current example, but some sample usage follows:

csc /r:System.Windows.Forms.dll;System.Drawing.dll *.cs

Compiling Multiple Source Files
The current incarnation of the TestApp.exe application was created using a single *.cs source code
file. While it is perfectly permissible to have all of your .NET types defined in a single *.cs file, most
projects are composed of multiple *.cs files to keep your code base a bit more flexible. Assume you
have authored an additional class contained in a new file named HelloMsg.cs:

// The HelloMessage class
using System;
using System.Windows.Forms;

class HelloMessage
{

CHAPTER 2 ■ BUILDING C# APPLICATIONS 39

8849CH02.qxd 9/24/07 10:50 AM Page 39

public void Speak()
{
MessageBox.Show("Hello...");

}
}

Now, update your initial TestApp class to make use of this new class type, and comment out the
previous Windows Forms logic:

using System;

// Don't need this anymore.
// using System.Windows.Forms;

class TestApp
{
static void Main()
{
Console.WriteLine("Testing! 1, 2, 3");

// Don't need this anymore either.
// MessageBox.Show("Hello...");

// Use the HelloMessage class!
HelloMessage h = new HelloMessage();
h.Speak();

}
}

You can compile your C# files by listing each input file explicitly:

csc /r:System.Windows.Forms.dll TestApp.cs HelloMsg.cs

As an alternative, the C# compiler allows you to make use of the wildcard character (*) to
inform csc.exe to include all *.cs files contained in the project directory as part of the current
build:

csc /r:System.Windows.Forms.dll *.cs

When you run the program again, the output is identical. The only difference between the two
applications is the fact that the current logic has been split among multiple files.

Working with C# Response Files
As you might guess, if you were to build a complex C# application at the command prompt, you
would have to specify a tedious number of input options to inform the compiler how to process
your source code. To help lessen your typing burden, the C# compiler honors the use of response
files.

C# response files contain all the instructions to be used during the compilation of your current
build. By convention, these files end in a *.rsp (response) extension. Assume that you have created
a response file named TestApp.rsp that contains the following options (as you can see, comments
are denoted with the # character):

This is the response file
for the TestApp.exe example
of Chapter 2.

CHAPTER 2 ■ BUILDING C# APPLICATIONS40

8849CH02.qxd 9/24/07 10:50 AM Page 40

External assembly references.
/r:System.Windows.Forms.dll

output and files to compile (using wildcard syntax).
/target:exe /out:TestApp.exe *.cs

Now, assuming this file is saved in the same directory as the C# source code files to be com-
piled, you are able to build your entire application as follows (note the use of the @ symbol):

csc @TestApp.rsp

If the need should arise, you are also able to specify multiple *.rsp files as input (e.g., csc
@FirstFile.rsp @SecondFile.rsp @ThirdFile.rsp). If you take this approach, do be aware that the
compiler processes the command options as they are encountered! Therefore, command-line argu-
ments in a later *.rsp file can override options in a previous response file.

Also note that flags listed explicitly on the command line before a response file will be overrid-
den by the specified *.rsp file. Thus, if you were to enter the following:

csc /out:MyCoolApp.exe @TestApp.rsp

the name of the assembly would still be TestApp.exe (rather than MyCoolApp.exe), given the
/out:TestApp.exe flag listed in the TestApp.rsp response file. However, if you list flags after a
response file, the flag will override settings in the response file.

■Note The effect of the /reference flag is cumulative. Regardless of where you specify external assemblies
(before, after, or within a response file), the end result is a summation of each reference assembly.

The Default Response File (csc.rsp)
The final point to be made regarding response files is that the C# compiler has an associated default
response file (csc.rsp), which is located in the same directory as csc.exe itself (which is by default
installed under C:\Windows\Microsoft.NET\Framework\v3.5). If you were to open this file using
Notepad, you will find that numerous .NET assemblies have already been specified using the /r:
flag, including various libraries for web development, LINQ, data access, and other core libraries
(beyond mscorlib.dll).

When you are building your C# programs using csc.exe, this response file will be automatically
referenced, even when you supply a custom *.rsp file. Given the presence of the default response
file, the current TestApp.exe application could be successfully compiled using the following com-
mand set (as System.Windows.Forms.dll is referenced within csc.rsp):

csc /out:TestApp.exe *.cs

In the event that you wish to disable the automatic reading of csc.rsp, you can specify the
/noconfig option:

csc @TestApp.rsp /noconfig

■Note If you reference assemblies (via the /r option) that you do not actually make use of; they are ignored by
the compiler. Therefore, you have no need to worry about “code bloat.”

CHAPTER 2 ■ BUILDING C# APPLICATIONS 41

8849CH02.qxd 9/24/07 10:50 AM Page 41

mailto:@TestApp.rsp
mailto:@FirstFile.rsp
mailto:@SecondFile.rsp
mailto:@ThirdFile.rsp
mailto:@TestApp.rsp
mailto:@TestApp.rsp
mailto:@ThirdFile.rsp

Obviously, the C# command-line compiler has many other options that can be used to control
how the resulting .NET assembly is to be generated. If you wish to learn more details regarding the
functionality of csc.exe, look up my article titled “Working with the C# 2.0 Command Line Com-
piler” online at http://msdn.microsoft.com. While this article examines the options of the C# 2.0
compiler, thankfully the C# 2008 compiler supports the same set of features.

■Source Code The CscExample application can be found under the Chapter 2 subdirectory.

Building .NET Applications Using TextPad
While Notepad is fine for creating simple .NET programs, it offers nothing in the way of developer
productivity. It would be ideal to author *.cs files using an editor that supports (at a minimum) key-
word coloring and integration with a C# compiler. As luck would have it, such a tool does exist:
TextPad.

TextPad is an editor you can use to author code for numerous programming languages, includ-
ing C#. The chief advantage of this product is the fact that it is very simple to use and provides just
enough bells and whistles to enhance your coding efforts, without too many to obfuscate the learn-
ing process.

To obtain TextPad, navigate to http://www.textpad.com and download the latest version (5.0.3
at the time of this writing). Once you have installed the product, you will have a feature-complete
version of TextPad; however, this tool is not freeware. Until you purchase a single-user license
(for around US$30.00), you will be presented with a “friendly reminder” each time you run the
application.

Enabling C# Keyword Coloring
TextPad is not equipped to understand C# keywords or work with csc.exe out of the box. To do so,
you will need to register the *.cs file extension with the tool. Launch TextPad and perform the fol-
lowing tasks using the New Document Wizard:

1. Select the Configure ➤ New Document Class menu option.

2. Enter the name C# in the Document class name edit box.

3. In the next step, enter *.cs in the Class members edit box.

4. Finally, enable syntax highlighting, choose csharp.syn from the drop-down list box, and
close the wizard.

■Note Earlier versions of TextPad did not ship with the C# syntax file (csharp.syn); however, it could be down-
loaded from the TextPad website. In fact, syntax files for a variety of languages can be downloaded from the
TextPad website.

You can now tweak TextPad’s C# look and feel using the Document Classes node accessible
from the Configure ➤ Preferences menu option (see Figure 2-4).

CHAPTER 2 ■ BUILDING C# APPLICATIONS42

8849CH02.qxd 9/24/07 10:50 AM Page 42

http://msdn.microsoft.com
http://www.textpad.com

Figure 2-4. Setting TextPad’s C# preferences

Configuring the *.cs File Filter
The next configuration detail is to create a filter for C# source code files displayed by the Open and
Save dialog boxes:

1. Select the Configure ➤ Preferences menu option and select File Name Filters from the tree
view control.

2. Click the New button, and enter C# into the Description field and *.cs into the Wild cards
text box.

3. Move your new filter to the top of the list using the Move Up button and click OK.

Create a new file (using File ➤ New) and save it in a convenient location (such as
C:\TextPadTestApp) as TextPadTest.cs. Next, enter a trivial class definition (see Figure 2-5).

Hooking Into csc.exe
The last configuration detail to contend with is to load csc.exe from within TextPad so you can
compile your C# files. The first way to do so is using the Tools ➤ Run menu option. Here you are
presented with a dialog box that allows you to specify the name of the tool to run and any necessary
command-line flags. To compile TextPadTest.cs into a .NET console-based executable, follow these
steps:

1. Enter the full path to csc.exe into the Command text box (e.g., C:\Windows\Microsoft.NET\
Framework\v3.5\csc.exe).

2. Enter the command-line options you wish to specify within the Parameters text box (e.g.,
/out:myApp.exe *.cs). Recall that you can specify a custom response file to simplify matters
(e.g., @myInput.rsp).

3. Enter the directory containing the input files via the Initial folder text box (for example,
C:\TextPadTestApp).

4. If you wish TextPad to capture the compiler output directly (rather than within a separate
command window), select the Capture Output check box.

CHAPTER 2 ■ BUILDING C# APPLICATIONS 43

8849CH02.qxd 9/24/07 10:50 AM Page 43

mailto:@myInput.rsp

Figure 2-5. TextPad in action

Figure 2-6 shows some possible compilation settings.

Figure 2-6. Specifying a custom Run command

At this point, you can either run your program by double-clicking the executable using
Windows Explorer or leverage the Tools ➤ Run menu option once again to specify myApp.exe as
the current command (see Figure 2-7).

Figure 2-7. Instructing TextPad to run myApp.exe

CHAPTER 2 ■ BUILDING C# APPLICATIONS44

8849CH02.qxd 9/24/07 10:50 AM Page 44

When you click OK, you should see the program’s output displayed in the Tool Output window.

Associating Run Commands with Menu Items
TextPad also allows you to create custom menu items that represent predefined run commands.
Thus, rather than having to manually configure the tool, parameters, and starting folder each time
you wish to run the command, you can essentially do so once and save the settings for later use.
Let’s create a custom item under the Tools menu named “Compile C# Code” that will compile all C#
files in the current directory using a response file.

1. Select the Configure ➤ Preferences menu option and select Tools from the tree view control.

2. Using the Add button, select Program and specify the full path to csc.exe (again,
C:\Windows\Microsoft.NET\Framework\v3.5 by default) using the resulting dialog box
and click OK.

3. If you wish, rename your new menu item to a more descriptive label (Compile C#) by
selecting the name of the tool in the list box (to activate it for editing).

4. Finally, select your tool name (Compile C#) from the Tools node, and specify @build.rsp as
the sole value in the Parameters field; the $FileDir token in the Initial Folder field instructs
TextPad to look in the folder of the active file (see Figure 2-8).

Figure 2-8. Creating a Tools menu item

With this, you can now compile all C# files in the current directory using your custom Tools
menu item, provided that this same directory has a C# response file named build.rsp. Notice in
Figure 2-9 the Document Selector pane can be used to see each file opened within TextPad at the
current time. The Tool Output window shows the output of running our custom Tool menu.

This should be enough information regarding TextPad to get you in a good position for further
exploration. As you might suspect, this tool is a very rich editor that supports many additional plug-
in utilities (spell checkers, code formatters, clip libraries, autocompletion support, etc.). Check out
http://www.textpad.com/add-ons for further details.

CHAPTER 2 ■ BUILDING C# APPLICATIONS 45

8849CH02.qxd 9/24/07 10:50 AM Page 45

mailto:@build.rsp
http://www.textpad.com/add-ons

Figure 2-9. Executing the C# compiler using TextPad

Building .NET Applications Using Notepad++
The final simple text editor I’d like to point out is the open source (and freely downloadable)
Notepad++ application. This tool can be obtained from http://notepad-plus.sourceforge.net, and
like TextPad, it allows you to author code in a variety of languages, hook into the C# compiler (via
the Run menu), and install various plug-ins. In addition, Notepad++ provides a few other niceties,
including the following:

• Out-of-the-box support for C# keywords

• Support for syntax folding, which allows you to collapse and expand groups of code state-
ments within the editor (similar to Visual Studio 2008/C# 2008 Express)

• The ability to zoom in/zoom out text via Ctrl-mouse wheel

• Configurable autocompletion for a variety of C# keywords and .NET namespaces

Regarding this last point, the Ctrl+space keyboard combination will activate C# autocomple-
tion support (see Figure 2-10).

CHAPTER 2 ■ BUILDING C# APPLICATIONS46

8849CH02.qxd 9/24/07 10:50 AM Page 46

http://notepad-plus.sourceforge.net

Figure 2-10. Autocompletion using Notepad++

Customizing the Autocompletion List
The list of options shown within the autocomplete window can be modified and extended. Simply
open up the C:\Program Files\Notepad++\plugins\APIs\cs.api file for editing and add any addi-
tional entries. As you can see in Figure 2-11, each entry is listed on a single line.

Figure 2-11. Updating the autocompletion list of Notepad++

I won’t go into too many details of Notepad++ beyond what we have examined here, given that
the functionality of this application is similar to that of TextPad. If you require more assistance,
select the ? ➤ Online Help menu option.

CHAPTER 2 ■ BUILDING C# APPLICATIONS 47

8849CH02.qxd 9/24/07 10:50 AM Page 47

Building .NET Applications Using SharpDevelop
As you may agree, authoring C# code with TextPad and Notepad++ is a step in the right direction,
compared to Notepad and the command prompt. However, these tools do not provide rich Intelli-
Sense capabilities for C# code, designers for building graphical user interfaces, project templates, or
database manipulation tools. To address such needs, allow me to introduce the next .NET develop-
ment option: SharpDevelop (also known as #Develop).

SharpDevelop is an open source and feature-rich IDE that you can use to build .NET assem-
blies using C# or VB as well as using CIL and a Python-inspired .NET language named Boo. Beyond
the fact that this IDE is completely free, it is interesting to note that it was written entirely in C#. In
fact, you have the choice to download and compile the *.cs files manually or run a setup.exe pro-
gram to install SharpDevelop on your development machine. Both distributions can be obtained
from http://www.sharpdevelop.com.

SharpDevelop provides numerous productivity enhancements and in many cases is as feature
rich as Visual Studio .NET 2008 Standard Edition. Here is a hit list of some of the major benefits:

• Support for the Microsoft and Mono C# compilers

• IntelliSense, code completion, and code snippet capabilities

• An Add Reference dialog box to reference external assemblies, including assemblies
deployed to the global assembly cache (GAC)

• A visual Windows Forms designer

• Integrated object browsing and code definition utilities

• Visual database designer utilities

• A C# to VB (and vice versa) code conversion utility

• Integration with the NUnit (a .NET unit testing utility) and NAnt (a .NET build utility)

• Integration with the .NET Framework 3.5 SDK documentation

Impressive for a free IDE, is it not? Although this chapter doesn’t cover each of these points in
detail, let’s walk through a few items of interest.

Building a Simple Test Project
Once you have installed SharpDevelop, the File ➤ New ➤ Solution menu option allows you to pick
which type of project you wish to generate (and in which .NET language). For example, assume you
have created a C# Windows Application named MySDWinApp (see Figure 2-12).

CHAPTER 2 ■ BUILDING C# APPLICATIONS48

8849CH02.qxd 9/24/07 10:50 AM Page 48

http://www.sharpdevelop.com

Figure 2-12. The SharpDevelop New Project dialog box

Like Visual Studio, you have a GUI designer, toolbox (to drag and drop controls onto the
designer), and a Properties window to set up the look and feel of each UI item. Figure 2-13 illus-
trates configuring a Button type using the IDE.

Figure 2-13. Graphically designing a Windows Forms Application with SharpDevelop

CHAPTER 2 ■ BUILDING C# APPLICATIONS 49

8849CH02.qxd 9/24/07 10:50 AM Page 49

If you were to click the Source button mounted to the bottom of the form’s designer, you would
find the expected IntelliSense, code completion, and integrated help features (see Figure 2-14).

Figure 2-14. SharpDevelop supports numerous code-generation utilities.

SharpDevelop was designed to mimic much of the same functionality found within Microsoft’s
.NET IDEs (which we will examine next). Given this point, I won’t dive into all of the features of this
open source .NET IDE. If you require more information, simply use the provided Help menu.

■Note Appendix B will examine building cross-platform .NET applications using the open source Mono .NET dis-
tribution. As you read over that appendix, be sure you remember that SharpDevelop is Mono-aware!

Building .NET Applications Using Visual C# 2008
Express
During the summer of 2004, Microsoft introduced a brand-new line of IDEs that fall under the des-
ignation of “Express” products (http://msdn.microsoft.com/express). To date, there are various
members of the Express family (all of which are completely free and supported and maintained by
Microsoft Corporation), including the following:

• Visual Web Developer 2008 Express: A lightweight tool for building dynamic websites and
XML web services using ASP.NET

• Visual Basic 2008 Express: A streamlined programming tool ideal for novice programmers
who want to learn how to build applications using the user-friendly syntax of Visual Basic

• Visual C# 2008 Express and Visual C++ 2008 Express: Targeted IDEs for students and enthusi-
asts who wish to learn the fundamentals of computer science in their syntax of choice

• SQL Server Express: An entry-level database management system geared toward hobbyists,
enthusiasts, and student developers

CHAPTER 2 ■ BUILDING C# APPLICATIONS50

8849CH02.qxd 9/24/07 10:50 AM Page 50

http://msdn.microsoft.com/express

Some Unique Features of Visual C# Express
By and large, the Express products are slimmed-down versions of their Visual Studio 2008 counter-
parts and are primarily targeted at .NET hobbyists and students. Like SharpDevelop, Visual C# 2008
Express provides various object browsing tools, a Windows Forms designer, the Add References dia-
log box, IntelliSense capabilities, and code expansion templates.

However, Visual C# 2008 Express offers a few (important) features currently not available in
SharpDevelop, including the following:

• Rich support for Windows Presentation Foundation (WPF) XAML applications

• IntelliSense for new C# 2008 syntactical constructs including lambda expressions and LINQ
query statements

• The ability to program Xbox 360 and PC video games using the freely available Microsoft
XNA Game Studio

Consider Figure 2-15, which illustrates using Visual C# Express to author the XAML markup for
a WPF project.

Figure 2-15. Visual C# Express has integrated support for .NET 3.0 and .NET 3.5 APIs.

CHAPTER 2 ■ BUILDING C# APPLICATIONS 51

8849CH02.qxd 9/24/07 10:50 AM Page 51

Because the look and feel of Visual C# 2008 Express is so similar to that of Visual Studio 2008
(and, to some degree, SharpDevelop), I do not provide a walk-through of this particular IDE here. If
you do wish to learn more about the product, look up my article “An Introduction to Programming
Using Microsoft Visual C# 2005 Express Edition” online at http://msdn.microsoft.com. While this
article is based on Visual C# 2005 Express, a majority of the topics are identical.

Building .NET Applications Using
Visual Studio 2008
If you are a professional .NET software engineer, the chances are extremely good that your
employer has purchased Microsoft’s premier IDE, Visual Studio 2008, for your development endeav-
ors (http://msdn.microsoft.com/vstudio). This tool is far and away the most feature-rich and
enterprise-ready IDE examined in this chapter. Of course, this power comes at a price, which will
vary based on the version of Visual Studio 2008 you purchase. As you might suspect, each version
supplies a unique set of features.

■Note There are a staggering number of members within the Visual Studio 2008 family. My assumption during
the remainder of this text is that you have chosen to make use of Visual Studio 2008 Professional as your IDE of
choice.

Although I will assume you have a copy of Visual Studio 2008 Professional, understand that
owning a copy of this IDE is not required to use this edition of the text. In the worst case, I may
examine an option that is not provided by your IDE. However, rest assured that all of this book’s
sample code will compile just fine when processed by your tool of choice.

■Note Once you download the source code for this book from the Source Code/Downloads area of the Apress
website (http://www.apress.com), you may load the current example into Visual Studio 2008 (or C# 2008
Express) by double-clicking the example’s *.sln file. If you are not using Visual Studio 2008/C# 2008 Express,
you will need to manually insert the provided *.cs files into your IDE’s project workspace.

Some Unique Features of Visual Studio 2008
Visual Studio 2008 ships with the expected GUI designers, code snippet support, database manipu-
lation tools, object and project browsing utilities, and an integrated help system. Unlike many of
the IDEs we have already examined, Visual Studio 2008 provides numerous additions. Here is a
partial list:

• Visual XML editors/designers

• Support for mobile device development (such as Smartphones and Pocket PC devices)

• Support for Microsoft Office development

• Designer support for Windows Workflow Foundation projects

• Integrated support for code refactoring

CHAPTER 2 ■ BUILDING C# APPLICATIONS52

8849CH02.qxd 9/24/07 10:50 AM Page 52

http://msdn.microsoft.com
http://msdn.microsoft.com/vstudio
http://www.apress.com

• Visual class design utilities

• The Object Test Bench window, which allows you to create objects and invoke their members
directly within the IDE

To be completely honest, Visual Studio 2008 provides so many features that it would take an
entire book (a rather large book at that) to fully describe every aspect of the IDE. This is not that
book. However, I do want to point out some of the major features in the pages that follow. As you
progress through the text, you’ll learn more about the Visual Studio 2008 IDE where appropriate.

Targeting the .NET Framework Using the New Project
Dialog Box
If you are following along, create a new C# Console Application (named Vs2008Example) using the
File ➤ New ➤ Project menu item. As you can see in Figure 2-16, Visual Studio 2008 now (finally)
supports the ability to select which version of the .NET Framework you wish to build against (2.0,
3.0, or 3.5) using the drop-down list box on the upper right of the New Project dialog box. For each
project in this text, you can simply leave the default selection of .NET Framework 3.5.

Figure 2-16. Visual Studio 2008 now allows you to target a particular version of the .NET Framework.

Using the Solution Explorer Utility
The Solution Explorer utility (accessible from the View menu) allows you to view the set of all con-
tent files and referenced assemblies that comprise the current project (see Figure 2-17).

CHAPTER 2 ■ BUILDING C# APPLICATIONS 53

8849CH02.qxd 9/24/07 10:50 AM Page 53

Figure 2-17. The Solution Explorer utility

Notice that the References folder of Solution Explorer displays a list of each assembly you have
currently referenced, which will differ based on the type of project you select and the version of the
Framework you are compiling against.

Referencing External Assemblies
When you need to reference additional assemblies, right-click the References folder and select Add
Reference. At this point, you can select your assembly from the resulting dialog box (this is essen-
tially the way Visual Studio allows you to specify the /reference option of the command-line
compiler). The .NET tab (see Figure 2-18) displays a number of commonly used .NET assemblies;
however, the Browse tab allows you to navigate to any .NET assembly on your hard drive. As well,
the very useful Recent tab keeps a running tally of frequently referenced assemblies you have used
in other projects.

Figure 2-18. The Add Reference dialog box

CHAPTER 2 ■ BUILDING C# APPLICATIONS54

8849CH02.qxd 9/24/07 10:50 AM Page 54

Viewing Project Properties
Finally, notice an icon named Properties within Solution Explorer. When you double-click this item,
you are presented with a sophisticated project configuration editor (see Figure 2-19).

Figure 2-19. The Project Properties window

You will see various aspects of the Project Properties window as you progress through this
book. However, if you take some time to poke around, you will see that you can establish various
security settings, strongly name your assembly, deploy your application, insert application
resources, and configure pre- and postbuild events.

The Class View Utility
The next tool to examine is the Class View utility, which you can load from the View menu. The
purpose of this utility is to show all of the types in your current project from an object-oriented
perspective (rather than file-based view of Solution Explorer). The top pane displays the set of
namespaces and their types, while the bottom pane displays the currently selected type’s members
(see Figure 2-20).

Figure 2-20. The Class View utility

CHAPTER 2 ■ BUILDING C# APPLICATIONS 55

8849CH02.qxd 9/24/07 10:50 AM Page 55

The Object Browser Utility
Visual Studio 2008 also provides a utility to investigate the set of referenced assemblies within your
current project. Activate the Object Browser using the View menu, and then select the assembly you
wish to investigate (see Figure 2-21).

Figure 2-21. The Object Browser utility

■Note If you double-click an assembly icon from the References folder of Solution Explorer, the Object Browser
will open automatically with the selected assembly highlighted.

Integrated Support for Code Refactoring
One major feature that ships with Visual Studio 2008 is support to “refactor” existing code. Simply
put, refactoring is a formal and mechanical process whereby you improve an existing code base. In
the bad old days, refactoring typically involved a ton of manual labor. Luckily, Visual Studio 2008
does a great deal to automate the refactoring process.

Using the Refactor menu (which will only be available when a code file is active), related key-
board shortcuts, smart tags, and/or context-sensitive mouse clicks, you can dramatically reshape
your code with minimal fuss and bother. Table 2-2 defines some common refactorings recognized
by Visual Studio 2008.

Table 2-2. Visual Studio 2008 Refactorings

Refactoring Technique Meaning in Life

Extract Method Allows you to define a new method based on a selection of code
statements

Encapsulate Field Turns a public field into a private field encapsulated by a C# property

Extract Interface Defines a new interface type based on a set of existing type members

Reorder Parameters Provides a way to reorder member arguments

Remove Parameters Removes a given argument from the current list of parameters (as you
would expect)

CHAPTER 2 ■ BUILDING C# APPLICATIONS56

8849CH02.qxd 9/24/07 10:50 AM Page 56

Refactoring Technique Meaning in Life

Rename Allows you to rename a code token (method name, field, local variable,
and so on) throughout a project

Promote Local Variable Moves a local variable to the parameter set of the defining method
to Parameter

To illustrate refactoring in action, update your Main() method with the following code:

static void Main(string[] args)
{
// Set up Console UI (CUI)
Console.Title = "My Rocking App";
Console.ForegroundColor = ConsoleColor.Yellow;
Console.BackgroundColor = ConsoleColor.Blue;
Console.WriteLine("*************************************");
Console.WriteLine("***** Welcome to My Rocking App *****");
Console.WriteLine("*************************************");
Console.BackgroundColor = ConsoleColor.Black;

// Wait for Enter key to be pressed.
Console.ReadLine();

}

While there is nothing wrong with the preceding code as it now stands, imagine that you want
to display this welcome message at various places throughout your program. Rather than retyping
the same exact console user interface logic, it would be ideal to have a helper function that could be
called to do so. Given this, you will apply the Extract Method refactoring to your existing code.

First, select each code statement within Main() (except the final call to Console.ReadLine())
using the editor. Now, right-click the selected text and select the Extract Method option within the
Refactor context menu (see Figure 2-22).

Figure 2-22. Activating a code refactoring

CHAPTER 2 ■ BUILDING C# APPLICATIONS 57

8849CH02.qxd 9/24/07 10:50 AM Page 57

Name your new method ConfigureCUI using the resulting dialog box. When you have finished,
you will find that your Main() method calls the newly generated ConfigureCUI() method, which
now contains the previously selected code:

class Program
{
static void Main(string[] args)
{
ConfigureCUI();

// Wait for key press to close.
Console.ReadLine();

}

private static void ConfigureCUI()
{
// Set up Console UI (CUI)
Console.Title = "My Rocking App";
Console.ForegroundColor = ConsoleColor.Yellow;
Console.BackgroundColor = ConsoleColor.Blue;
Console.WriteLine("*************************************");
Console.WriteLine("***** Welcome to My Rocking App *****");
Console.WriteLine("*************************************");
Console.BackgroundColor = ConsoleColor.Black;

}
}

This is a simple example of using the built-in refactorings of Visual Studio 2008, and you’ll see
additional examples here and there over the course of this text. However, if you are interested in
more information on the refactoring process and a detailed walk-through of each refactoring sup-
ported by Visual Studio 2008, look up my article “Refactoring C# Code Using Visual Studio 2005”
online at http://msdn.microsoft.com (again, while this article was written for Visual Studio 2005,
Visual Studio 2008 has the same refactoring support).

Code Expansions and Surround with Technology
Visual Studio 2008 (as well as Visual C# 2008 Express) has the capability to insert prefabricated
blocks of C# code using menu selections, context-sensitive mouse clicks, and/or keyboard short-
cuts. The number of available code expansions is impressive and can be broken down into two
main groups:

• Snippets: These templates insert common code blocks at the location of the mouse cursor.

• Surround With: These templates wrap a block of selected statements within a relevant scope.

To see this functionality firsthand, assume that you wish to iterate over the incoming parame-
ters of the Main() method using a foreach construct. Rather than typing the code in by hand, you
can activate the foreach code snippet. When you have done so, the IDE will dump out a foreach
code template at the current location of the mouse cursor.

To illustrate, place the mouse cursor after the initial opening curly bracket of Main(). One way
to activate a code snippet is to right-click the mouse and activate the Insert Snippet (or Surround
With) menu option. Here, you will find a list of all code snippets of this category (press the Esc key
to dismiss the pop-up menu). As a shortcut, however, you can simply type in the name of the code
snippet, “foreach” in this case. In Figure 2-23, notice how the icon for a code snippet looks a bit like
a torn piece of paper.

CHAPTER 2 ■ BUILDING C# APPLICATIONS58

8849CH02.qxd 9/24/07 10:50 AM Page 58

http://msdn.microsoft.com

Figure 2-23. Activating a code snippet

Once you find the snippet you want to activate, press the Tab key twice. This will autocomplete
the entire snippet and leave a set of placeholders that you can fill in to complete the snippet. If you
press the Tab key, you can cycle between each placeholder and fill in the gaps (press the Esc key to
exit the code snippet edit mode).

If you were to right-click and select the Surround With menu, you would likewise be presented
with a list of options. Recall that when using Surround With snippets you typically first select a block
of code statements to represent what should be used to wrap them (try/catch block, etc.). Be sure
to take time to explore these predefined code expansion templates, as they can radically speed up
the development process.

■Note All code expansion templates are XML-based descriptions of the code to generate within the IDE.
Using Visual Studio 2008 (as well as Visual C# 2008 Express), you can create your own custom code templates.
Details of how to do so can be found in my article “Investigating Code Snippet Technology” at http://msdn.
microsoft.com.

The Visual Class Designer
Visual Studio 2008 gives us the ability to design classes visually (this capability is not included in
Visual C# 2008 Express). The Class Designer utility allows you to view and modify the relationships
of the types (classes, interfaces, structures, enumerations, and delegates) in your project. Using this
tool, you are able to visually add (or remove) members to (or from) a type and have your modifica-
tions reflected in the corresponding C# file. As well, as you modify a given C# file, changes are
reflected in the class diagram.

To work with this aspect of Visual Studio 2008, the first step is to insert a new class diagram file.
There are many ways to do so, one of which is to click the View Class Diagram button located on
Solution Explorer’s right side (see Figure 2-24).

CHAPTER 2 ■ BUILDING C# APPLICATIONS 59

8849CH02.qxd 9/24/07 10:50 AM Page 59

http://msdn

Figure 2-24. Inserting a class diagram file

Once you do, you will find class icons that represent the classes in your current project. If you
click the arrow icon for a given type, you can show or hide the type’s members. Using the Class
Designer toolbar, you can fine-tune the display options of the designer surface (see Figure 2-25).

Figure 2-25. The Class Diagram viewer

This utility works in conjunction with two other aspects of Visual Studio 2008: the Class Details
window (activated using the View ➤ Other Windows menu) and the Class Designer Toolbox (acti-
vated using the View ➤ Toolbox menu item). The Class Details window not only shows you the
details of the currently selected item in the diagram, but also allows you to modify existing mem-
bers and insert new members on the fly (see Figure 2-26).

CHAPTER 2 ■ BUILDING C# APPLICATIONS60

8849CH02.qxd 9/24/07 10:50 AM Page 60

Figure 2-26. The Class Details window

The Class Designer Toolbox (see Figure 2-27) allows you to insert new types into your project
(and create relationships between these types) visually. (Be aware you must have a class diagram as
the active window to view this toolbox.) As you do so, the IDE automatically creates new C# type
definitions in the background.

Figure 2-27. The Class Designer Toolbox

By way of example, drag a new Class from the Class Designer Toolbox onto your Class Designer.
Name this class Car in the resulting dialog box. Now, using the Class Details window, add a public
string field named PetName (see Figure 2-28).

Figure 2-28. Adding a field with the Class Details window

CHAPTER 2 ■ BUILDING C# APPLICATIONS 61

8849CH02.qxd 9/24/07 10:50 AM Page 61

If you now look at the C# definition of the Car class, you will see it has been updated accord-
ingly (minus the additional code comments):

public class Car
{
// Public data is typically a bad idea; however,
// it keeps this example simple.
public string PetName;

}

Drag another new Class onto the designer named SportsCar. Now, select the Inheritance icon
from the Class Designer Toolbox and click the top of the SportsCar icon. Without releasing the left
mouse button, move the mouse on top of the Car class icon and then release the mouse button.
If you performed these steps correctly, you have just derived the SportsCar class from Car (see
Figure 2-29).

Figure 2-29. Visually deriving from an existing class

To complete this example, update the generated SportsCar class with a public method named
GetPetName() authored as follows:

public class SportsCar : Car
{
public string GetPetName()
{
PetName = "Fred";
return PetName;

}
}

Object Test Bench
Another nice visual tool provided by Visual Studio 2008 is Object Test Bench (OTB). This aspect of
the IDE allows you to quickly create an instance of a class and invoke its members without running
the entire application. This can be extremely helpful when you wish to test a specific method, but

CHAPTER 2 ■ BUILDING C# APPLICATIONS62

8849CH02.qxd 9/24/07 10:50 AM Page 62

would rather not step through dozens of lines of code to do so. It is also very useful when you are
building a .NET code library, and would rather not create a client application to test its functionality.

■Note One limitation of the OTB is that it has no ability to handle incoming events sent from a given object.
If you need to test the incoming events, you will be required to build a separate assembly to do so.

To work with OTB, right-click the type you wish to create using the Class Designer. For example,
right-click the SportsCar type, and from the resulting context menu select Create Instance ➤
SportsCar(). This will display a dialog box that allows you to name your temporary object variable
(and supply any constructor arguments if required). Once the process is complete, you will find
your object hosted within the IDE. Right-click the object icon and invoke the GetPetName() method
(see Figure 2-30).

Figure 2-30. The Visual Studio 2008 Object Test Bench

Once you do, you will see the value Fred displayed in the Method Call Result dialog box. In fact,
if you wish, you can save this value as a new object (of type System.String) on the OTB.

The Integrated .NET Framework 3.5 Documentation System
The final aspect of Visual Studio 2008 you must be comfortable with from the outset is the fully inte-
grated help system. The .NET Framework 3.5 SDK documentation is extremely good, very readable,
and full of useful information. Given the huge number of predefined .NET types (which number
well into the thousands), you must be willing to roll up your sleeves and dig into the provided docu-
mentation. If you resist, you are doomed to a long, frustrating, and painful existence as a .NET
developer.

Visual Studio 2008 provides the Dynamic Help window (accessible from the Help menu), which
changes its contents based on what item (window, menu, source code keyword, etc.) is currently
selected. For example, if you place the cursor on the Console class, the Dynamic Help window dis-
plays a set of links regarding the System.Console type.

■Note Another great shortcut is to click once (but don’t select) a C# keyword or .NET type and press the F1 key.
This will automatically open the documentation for the item containing the blinking text cursor.

You should also be aware of a very important subdirectory of the .NET Framework 3.5 SDK
documentation. Under the .NET Development ➤ .NET Framework SDK ➤ .NET Framework ➤
.NET Framework Class Library Reference node of the documentation, you will find complete
documentation of each and every namespace in the .NET base class libraries (see Figure 2-31).

CHAPTER 2 ■ BUILDING C# APPLICATIONS 63

8849CH02.qxd 9/24/07 10:50 AM Page 63

Figure 2-31. The .NET base class library reference

Each node in the tree defines the set of types in a given namespace, the members of a given
type, and the parameters of a given member. Furthermore, when you view the help page for a given
type, you will be told the name of the assembly and namespace that contains the type in question
(located at the top of said page). As you read through the remainder of this book, I assume that
you will dive into this very, very critical node to read up on additional details of the entity under
examination.

■Note At the risk of sounding like a broken record, I really can’t emphasize enough how important it is that you
learn to use the .NET Framework 3.5 SDK documentation. No book, no matter how lengthy, can cover every aspect
of the .NET platform. Make sure you take some time to get comfortable using the help system; you’ll thank your-
self later.

A Partial Catalog of Additional .NET
Development Tools
To conclude this chapter, I would like to point out a number of .NET development tools that com-
plement the functionality provided by your IDE of choice. Many of the tools mentioned here are
open source, and all of them are free of charge. While I don’t have the space to cover the details of
these utilities, Table 2-3 lists a number of the tools I have found to be extremely helpful as well as
URLs you can visit to find more information about them.

CHAPTER 2 ■ BUILDING C# APPLICATIONS64

8849CH02.qxd 9/24/07 10:50 AM Page 64

Table 2-3. Select .NET Development Tools

Tool Meaning in Life URL

FxCop This is a must-have for any .NET developer http://www.gotdotnet.
interested in .NET best practices. FxCop com/team/fxcop
will test any .NET assembly against the
official Microsoft .NET best-practice
coding guidelines.

Lutz Roeder’s Reflector This advanced .NET decompiler/object http://www.aisto.com/
browser allows you to view the .NET roeder/dotnet
implementation of any .NET type using
a variety of languages.

NAnt NAnt is the .NET equivalent of Ant, the http://sourceforge.
popular Java automated build tool. NAnt net/projects/nant
allows you to define and execute detailed
build scripts using an XML-based syntax.

NDoc NDoc is a tool that will generate code http://sourceforge.
documentation files for C# code (or a net/projects/ndoc
compiled .NET assembly) in a variety
of popular formats (MSDN’s *.chm, XML,
HTML, Javadoc, and LaTeX).

NUnit NUnit is the .NET equivalent of the http://www.nunit.org
Java-centric JUnit unit testing tool. Using
NUnit, you are able to facilitate the testing
of your managed code.

Summary
So as you can see, you have many new toys at your disposal! The point of this chapter was to provide
you with a tour of the major programming tools a C# programmer may leverage during the develop-
ment process. You began the journey by learning how to generate .NET assemblies using nothing
other than the free C# compiler and Notepad. Next, you were introduced to the TextPad and
Notepad++ applications and walked through the process of using these tools to edit and compile
*.cs code files.

You also examined three feature-rich IDEs, starting with the open source SharpDevelop, fol-
lowed by Microsoft’s Visual C# 2008 Express and Visual Studio 2008 Professional. While this chapter
only scratched the surface of each tool’s functionality, you should be in a good position to explore
your chosen IDE at your leisure (and recall, you’ll see additional features of Visual Studio 2008 as
you progress through the book). The chapter wrapped up by examining various open source .NET
development tools that extend the functionality of your IDE of choice.

CHAPTER 2 ■ BUILDING C# APPLICATIONS 65

8849CH02.qxd 9/24/07 10:50 AM Page 65

http://www.gotdotnet
http://www.aisto.com
http://sourceforge
http://sourceforge
http://www.nunit.org

8849CH02.qxd 9/24/07 10:50 AM Page 66

Core C# Programming
Constructs

P A R T 2

8849CH03.qxd 9/24/07 11:07 AM Page 67

8849CH03.qxd 9/24/07 11:07 AM Page 68

Core C# Programming Constructs,
Part I

This chapter begins your formal investigation of the C# programming language by presenting a
number of bite-sized, stand-alone topics you must be comfortable with as you explore the .NET
Framework. The first order of business is to understand how to build your program’s application
object and the composition of an executable program’s entry point: the Main() method. Next, you
will investigate the intrinsic C# data types (and their equivalent types in the System namespace)
including an examination of the System.String and System.Text.StringBuilder class types.

Once you know the details of the fundamental .NET data types, you will then examine a num-
ber of data type conversion techniques, including narrowing operations, widening operations, and
the use of the unchecked keyword. We wrap up this chapter by examining the core operators, itera-
tion constructs, and decision constructs used to build valid C# code statements.

The Anatomy of a Simple C# Program
C# demands that all program logic be contained within a type definition (recall from Chapter 1 that
type is a general term referring to a member of the set {class, interface, structure, enumeration, del-
egate}). Unlike many other languages, in C# it is not possible to create global functions or global
points of data. Rather, all data members and methods must be contained within a type definition.
To get the ball rolling, create a new Console Application project named SimpleCSharpApp. As you
might agree, the initial code statements are rather uneventful:

using System;
using System.Collections.Generic;
using System.Text;
using System.Linq;

namespace SimpleCSharpApp
{
class Program
{
static void Main(string[] args)
{
}

}
}

69

C H A P T E R 3

8849CH03.qxd 9/24/07 11:07 AM Page 69

Given this, update the Main() method with the following code statements:

class Program
{
static void Main(string[] args)
{
// Display a simple message to the user.
Console.WriteLine("***** My First C# App *****");
Console.WriteLine("Hello World!");
Console.WriteLine();

// Wait for Enter key to be pressed before shutting down.
Console.ReadLine();

}
}

Here, we have a definition for a class type that supports a single method named Main(). By
default, Visual Studio 2008 names the class defining Main() “Program”; however, you are free to
change this if you so choose. Every executable C# application (console program, Windows desktop
program, or Windows service) must contain a class defining a Main() method, which is used to sig-
nify the entry point of the application.

Formally speaking, the class that defines the Main() method is termed the application object.
While it is possible for a single executable application to have more than one application object
(which can be useful when performing unit tests), you must inform the compiler which Main()
method should be used as the entry point via the /main option of the command-line compiler.

Note that the signature of Main() is adorned with the static keyword, which will be examined
in detail in Chapter 5. For the time being, simply understand that static members are scoped to the
class level (rather than the object level) and can thus be invoked without the need to first create a
new class instance.

■Note C# is a case-sensitive programming language. Therefore, “Main” is not the same as “main,” and
“Readline” is not the same as “ReadLine.” Given this, be aware that all C# keywords are lowercase (public,
lock, class, global, and so on), while namespaces, types, and member names begin (by convention) with an
initial capital letter and have capitalized the first letter of any embedded words (e.g., Console.WriteLine,
System.Windows.Forms.MessageBox, System.Data.SqlClient, and so on). As a rule of thumb, whenever
you receive a compiler error regarding “undefined symbols,” be sure to check your spelling!

In addition to the static keyword, this Main() method has a single parameter, which happens
to be an array of strings (string[] args). Although you are not currently bothering to process this
array, this parameter may contain any number of incoming command-line arguments (you’ll see
how to access them momentarily). Finally, this Main() method has been set up with a void return
value, meaning we do not explicitly define a return value using the return keyword before exiting
the method scope.

The logic of Program is within Main() itself. Here, you make use of the Console class, which is
defined within the System namespace. Among its set of members is the static WriteLine() which, as
you might assume, pumps a text string and carriage return to the standard output. You also make a
call to Console.ReadLine() to ensure the command prompt launched by the Visual Studio 2008 IDE
remains visible during a debugging session until you press the Enter key.

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I70

8849CH03.qxd 9/24/07 11:07 AM Page 70

Variations on the Main() Method
By default, Visual Studio 2008 will generate a Main() method that has a void return value and an
array of string types as the single input parameter. This is not the only possible form of Main(),
however. It is permissible to construct your application’s entry point using any of the following sig-
natures (assuming it is contained within a C# class or structure definition):

// int return type, array of strings as the argument.
static int Main(string[] args)
{
}

// No return type, no arguments.
static void Main()
{
}

// int return type, no arguments.
static int Main()
{
}

■Note The Main() method may also be defined as public as opposed to private, which is assumed if you do not
supply a specific access modifier. Visual Studio 2008 automatically defines a program’s Main() method as implic-
itly private. Doing so ensures other applications cannot directly invoke the entry point of another.

Obviously, your choice of how to construct Main() will be based on two questions. First, do you
want to return a value to the system when Main() has completed and your program terminates? If
so, you need to return an int data type rather than void. Second, do you need to process any user-
supplied command-line parameters? If so, they will be stored in the array of strings. Let’s examine
all of our options.

Specifying an Application Error Code
While a vast majority of your Main() methods will return void as the return value, the ability to
return an int from Main() keeps C# consistent with other C-based languages. By convention,
returning the value 0 indicates the program has terminated successfully, while another value (such
as -1) represents an error condition (do be aware that the value 0 is automatically returned, even if
you construct a Main() method prototyped to return void).

On the Windows operating system, an application’s return value is stored within a system envi-
ronment variable named %ERRORLEVEL%. If you were to create an application that programmatically
launches another executable (a topic examined in Chapter 17), you can obtain the value of
%ERRORLEVEL% using the static System.Diagnostics.Process.ExitCode property.

Given that an application’s return value is passed to the system at the time the application ter-
minates, it is obviously not possible for an application to obtain and display its final error code
while running. However, to illustrate how to view this error level upon program termination, begin
by updating the Main() method as follows:

// Note we are now returning an int, rather than void.
static int Main(string[] args)
{
// Display a message and wait for Enter key to be pressed.

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I 71

8849CH03.qxd 9/24/07 11:07 AM Page 71

Console.WriteLine("***** My First C# App *****");
Console.WriteLine("Hello World!");
Console.WriteLine();
Console.ReadLine();

// Return an arbitrary error code.
return -1;

}

Let’s now capture Main()’s return value with the help of a batch file. Using the Windows
Explorer, navigate to the folder containing your compiled application (for example,
C:\SimpleCSharpApp\bin\Debug). Add a new text file (named SimpleCSharpApp.bat) to the
Debug folder that contains the following instructions (if you have not authored *.bat files
before, don’t concern yourself with the details; this is a test . . . this is only a test):

@echo off

rem A batch file for SimpleCSharpApp.exe
rem which captures the app's return value.

SimpleCSharpApp
@if "%ERRORLEVEL%" == "0" goto success

:fail
echo This application has failed!
echo return value = %ERRORLEVEL%
goto end

:success
echo This application has succeeded!
echo return value = %ERRORLEVEL%
goto end

:end
echo All Done.

At this point, open a command prompt and navigate to the folder containing your executable
and new *.bat file (again, for example, C:\SimpleCSharpApp\bin\Debug). Execute the batch logic
by typing its name and pressing the Enter key. You should find the following output, given that your
Main() method is returning -1 (see Figure 3-1). Had the Main() method returned 0, you would see
the message “This application has succeeded!” print to the console.

Figure 3-1. Capturing an application’s return value via a batch file

Again, a vast majority (if not all) of your C# applications will use void as the return value from
Main(), which as you recall implicitly returns the error code of zero. To this end, the Main() methods

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I72

8849CH03.qxd 9/24/07 11:07 AM Page 72

used in this text will indeed return void (and the remaining projects will certainly not need to make
use of batch files to capture return codes!).

Processing Command-Line Arguments
Now that you better understand the return value of the Main() method, let’s examine the incoming
array of string data. Assume that you now wish to update your application to process any possible
command-line parameters. One way to do so is using a C# for loop (do note that C#’s iteration con-
structs will be examined in some detail near the end of this chapter):

static int Main(string[] args)
{
...
// Process any incoming args.
for(int i = 0; i < args.Length; i++)
Console.WriteLine("Arg: {0}", args[i]);

Console.ReadLine();
return -1;

}

Here, you are checking to see whether the array of strings contains some number of items
using the Length property of System.Array. As you’ll see in Chapter 4, all C# arrays actually alias the
System.Array type, and therefore share a common set of members. As you loop over each item in
the array, its value is printed to the console window. Supplying the arguments at the command line
is equally as simple, as shown in Figure 3-2.

Figure 3-2. Supplying arguments at the command line

As an alternative to the standard for loop, you may iterate over an incoming string array using
the C# foreach keyword. Here is some sample usage:

// Notice you have no need to check the size of the array when using "foreach".
static int Main(string[] args)
{
...
// Process any incoming args using foreach.
foreach(string arg in args)
Console.WriteLine("Arg: {0}", arg);

Console.ReadLine();
return -1;

}

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I 73

8849CH03.qxd 9/24/07 11:07 AM Page 73

Finally, you are also able to access command-line arguments using the static
GetCommandLineArgs() method of the System.Environment type. The return value of this method is
an array of strings. The first index identifies the name of the application itself, while the remaining
elements in the array contain the individual command-line arguments (note that when using this
approach, it is no longer necessary to define Main() as taking a string array as the input parameter,
although there is no harm in doing so):

static int Main(string[] args)
{
...
// Get arguments using System.Environment.
string[] theArgs = Environment.GetCommandLineArgs();
foreach(string arg in theArgs)
Console.WriteLine("Arg: {0}", arg);

Console.ReadLine();
return -1;

}

Of course, it is up to you to determine which command-line arguments your program will
respond to (if any) and how they must be formatted (such as with a - or / prefix). Here we simply
passed in a series of options that were printed directly to the command prompt. Assume, however,
you were creating a new video game and programmed your application to process an option named
-godmode. If the user starts your application with the flag, you know the user is in fact a cheater, and
can take an appropriate course of action.

Specifying Command-Line Arguments with Visual Studio 2008
In the real world, an end user supplies the command-line arguments used by a given application
when starting the program. However, during the development cycle, you may wish to specify possi-
ble command-line flags for testing purposes. To do so with Visual Studio 2008, double-click the
Properties icon from Solution Explorer and select the Debug tab on the left side. From here, specify
values using the Command line arguments text box (see Figure 3-3).

Figure 3-3. Setting command arguments via Visual Studio 2008

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I74

8849CH03.qxd 9/24/07 11:07 AM Page 74

An Interesting Aside: Some Additional Members of
the System.Environment Class
The Environment type exposes a number of extremely helpful methods beyond
GetCommandLineArgs(). Specifically, this class allows you to obtain a number of details regarding
the operating system currently hosting your .NET application using various static members. To
illustrate the usefulness of System.Environment, update your Main() method to call a helper method
named ShowEnvironmentDetails():

static int Main(string[] args)
{
...
// Helper method within the Program class.
ShowEnvironmentDetails();

Console.ReadLine();
return -1;

}

Implement this method within your Program class to call various members of the Environment
type. For example:

static void ShowEnvironmentDetails()
{
// Print out the drives on this machine,
// and other interesting details.
foreach (string drive in Environment.GetLogicalDrives())
Console.WriteLine("Drive: {0}", drive);

Console.WriteLine("OS: {0}", Environment.OSVersion);
Console.WriteLine("Number of processors: {0}",
Environment.ProcessorCount);

Console.WriteLine(".NET Version: {0}",
Environment.Version);

}

Figure 3-4 shows a possible test run of invoking this method (if you did not specify command-
line arguments via Visual Studio 2008’s Debug tab, you will not find them printed to the console).

Figure 3-4. Displaying system environment variables

The Environment type defines members other than those shown in the previous example.
Table 3-1 documents some additional properties of interest; however, be sure to check out the
.NET Framework 3.5 SDK documentation for full details.

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I 75

8849CH03.qxd 9/24/07 11:07 AM Page 75

Table 3-1. Select Properties of System.Environment

Property Meaning in Life

ExitCode Gets or sets the exit code anywhere within the application

MachineName Gets the name of the current machine

NewLine Gets the newline symbol for the current environment

StackTrace Gets the current stack trace information for the application

SystemDirectory Returns the full path to the system directory

UserName Returns the name of the user that started this application

■Source Code The SimpleCSharpApp project is located under the Chapter 3 subdirectory.

The System.Console Class
Almost all of the example applications created over the course of the initial chapters of this book
make extensive use of the System.Console class. While it is true that a console user interface (CUI)
is not as enticing as a graphical user interface (GUI) or web-based front end, restricting the early
examples to console programs will allow us to keep focused on the syntax of C# and the core
aspects of the .NET platform, rather than dealing with the complexities of building GUIs.

As its name implies, the Console class encapsulates input, output, and error-stream manipula-
tions for console-based applications. Table 3-2 lists some (but definitely not all) members of
interest.

Table 3-2. Select Members of System.Console

Member Meaning in Life

Beep() This method forces the console to emit a beep of a specified frequency and
duration.

BackgroundColor These properties set the background/foreground colors for the current
ForegroundColor output. They may be assigned any member of the ConsoleColor

enumeration.

BufferHeight These properties control the height/width of the console’s buffer area.
BufferWidth

Title This property sets the title of the current console.

WindowHeight These properties control the dimensions of the console in relation to the
WindowWidth established buffer.
WindowTop
WindowLeft

Clear() This method clears the established buffer and console display area.

Basic Input and Output with the Console Class
In addition to the members in Table 3-2, the Console type defines a set of methods to capture input
and output, all of which are static and are therefore called by prefixing the name of the class

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I76

8849CH03.qxd 9/24/07 11:07 AM Page 76

(Console) to the method name. As you have seen, WriteLine() pumps a text string (including a car-
riage return) to the output stream. The Write() method pumps text to the output stream without a
carriage return. ReadLine() allows you to receive information from the input stream up until the
Enter key is pressed, while Read() is used to capture a single character from the input stream.

To illustrate basic I/O using the Console class, create a new Console Application project named
BasicConsoleIO and update your Main() method to call a helper method named GetUserData():

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Basic Console I/O *****");
GetUserData();
Console.ReadLine();

}
}

Implement this method within the Program class with logic that prompts the user for some bits
of information and echoes each item to the standard output stream. For example, we could ask the
user for his or her name and age (which we will treat as a text value for simplicity, rather than the
expected numerical value) as follows:

static void GetUserData()
{
// Get name and age.
Console.Write("Please enter your name: ");
string userName = Console.ReadLine();
Console.Write("Please enter your age: ");
string userAge = Console.ReadLine();

// Change echo color, just for fun.
ConsoleColor prevColor = Console.ForegroundColor;
Console.ForegroundColor = ConsoleColor.Yellow;

// Echo to the console.
Console.WriteLine("Hello {0}! You are {1} years old.",
userName, userAge);

// Restore previous color.
Console.ForegroundColor = prevColor;

}

Not surprisingly, when you run this application, the input data is printed to the console (using
a custom color to boot!).

Formatting Console Output
During these first few chapters, you may have noticed numerous occurrences of the tokens {0}, {1},
and the like embedded within various string literals. The .NET platform introduces a style of string
formatting slightly akin to the printf() statement of C. Simply put, when you are defining a string
literal that contains segments of data whose value is not known until runtime, you are able to spec-
ify a placeholder within the literal using this curly-bracket syntax. At runtime, the value(s) passed
into Console.WriteLine() are substituted for each placeholder.

The first parameter to WriteLine() represents a string literal that contains optional place-
holders designated by {0}, {1}, {2}, and so forth. Be very aware that the first ordinal number of a
curly-bracket placeholder always begins with 0. The remaining parameters to WriteLine() are sim-
ply the values to be inserted into the respective placeholders.

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I 77

8849CH03.qxd 9/24/07 11:07 AM Page 77

■Note If you have a mismatch between the number of uniquely numbered curly-bracket placeholders and fill
arguments, you will receive a FormatException exception at runtime.

It is also permissible for a given placeholder to repeat within a given string. For example, if you
are a Beatles fan and want to build the string "9, Number 9, Number 9", you would write

// John says...
Console.WriteLine("{0}, Number {0}, Number {0}", 9);

Also know that it is possible to position each placeholder in any location within a string literal,
and it need not follow an increasing sequence. For example, consider the following code snippet:

// Prints: 20, 10, 30
Console.WriteLine("{1}, {0}, {2}", 10, 20, 30);

Formatting Numerical Data
If you require more elaborate formatting for numerical data, each placeholder can optionally con-
tain various format characters. Table 3-3 shows your core formatting options.

Table 3-3. .NET Numerical Format Characters

String Format Character Meaning in Life

C or c Used to format currency. By default, the flag will prefix the local cultural
symbol (a dollar sign [$] for US English).

D or d Used to format decimal numbers. This flag may also specify the
minimum number of digits used to pad the value.

E or e Used for exponential notation. Casing controls whether the
exponential constant is uppercase (E) or lowercase (e).

F or f Used for fixed-point formatting. This flag may also specify the
minimum number of digits used to pad the value.

G or g Stands for general. This character can be used to format a number to
fixed or exponential format.

N or n Used for basic numerical formatting (with commas).

X or x Used for hexadecimal formatting. If you use an uppercase X, your hex
format will also contain uppercase characters.

These format characters are suffixed to a given placeholder value using the colon token (e.g.,
{0:C}, {1:d}, {2:X}, and so on). To illustrate, update the Main() method to call a new helper function
named FormatNumericalData(). Implement this method to format a fixed value in a variety of ways,
for example:

// Now make use of some format tags.
static void FormatNumericalData()
{
Console.WriteLine("The value 99999 in various formats:");
Console.WriteLine("c format: {0:c}", 99999);
Console.WriteLine("d9 format: {0:d9}", 99999);
Console.WriteLine("f3 format: {0:f3}", 99999);
Console.WriteLine("n format: {0:n}", 99999);

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I78

8849CH03.qxd 9/24/07 11:07 AM Page 78

// Notice that upper- or lowercasing for hex
// determines if letters are upper- or lowercase.
Console.WriteLine("E format: {0:E}", 99999);
Console.WriteLine("e format: {0:e}", 99999);
Console.WriteLine("X format: {0:X}", 99999);
Console.WriteLine("x format: {0:x}", 99999);

}

Figure 3-5 shows the output for our current application.

Figure 3-5. Basic console I/O (with .NET string formatting)

Beyond controlling how numerical data is formatted, the .NET platform provides additional
tokens that may appear in a string literal that controls spacing and positioning of content.
Furthermore, the tokens applied to numerical data can be applied to other data types (such as
enumerations or the DateTime type) to control data formatting. Also be aware that it is possible
to build a custom class (or structure) that defines a custom formatting scheme through the imple-
mentation of the ICustomFormatter interface.

You’ll see additional formatting examples where required throughout this text; however, if you
are interested in digging into .NET string formatting further, look up the topic “Formatting Types”
within the .NET Framework 3.5 SDK documentation.

■Source Code The BasicConsoleIO project is located under the Chapter 3 subdirectory.

Formatting Numerical Data Beyond Console Applications
On a final note, be aware that the use of the .NET string formatting characters is not limited to con-
sole programs! This same formatting syntax can be used when calling the static string.Format()
method. This can be helpful when you need to compose textual data at runtime for use in any
application type (desktop GUI app, ASP.NET web app, XML web services, and so on).

By way of a quick example, assume you are building a graphical desktop application and need
to format a string for display in a message box:

void DisplayMessage()
{
// Using string.Format() to format a string literal.

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I 79

8849CH03.qxd 9/24/07 11:07 AM Page 79

string userMessage = string.Format("100000 in hex is {0:x}",
100000);

// You would need to reference System.Windows.Forms.dll
// in order to compile this line of code!
System.Windows.Forms.MessageBox.Show(userMessage);

}

Notice how string.Format() returns a new string object, which is formatted according to the
provided flags. After this point, you are free to use the textual data as you see fit.

System Data Types and C# Shorthand Notation
Like any programming language, C# defines an intrinsic set of data types, which are used to
represent local variables, member variables, return values, and input parameters. Unlike other pro-
gramming languages, however, these keywords are much more than simple compiler-recognized
tokens. Rather, the C# data type keywords are actually shorthand notations for full-blown types in
the System namespace. Table 3-4 lists each system data type, its range, the corresponding C# key-
word, and the type’s compliance with the Common Language Specification (CLS).

■Note Recall from Chapter 1 that CLS-compliant .NET code can be used by any managed programming lan-
guage. If you expose non–CLS-compliant data from your programs, other languages may not be able to make
use of it.

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I80

Table 3-4. The Intrinsic Data Types of C#

CLS
C# Shorthand Compliant? System Type Range Meaning in Life

bool Yes System.Boolean True or false Represents truth or
falsity

sbyte No System.SByte –128 to 127 Signed 8-bit number

byte Yes System.Byte 0 to 255 Unsigned 8-bit
number

short Yes System.Int16 –32,768 to 32,767 Signed 16-bit
number

ushort No System.UInt16 0 to 65,535 Unsigned 16-bit
number

int Yes System.Int32 –2,147,483,648 to Signed 32-bit
2,147,483,647 number

uint No System.UInt32 0 to 4,294,967,295 Unsigned 32-bit
number

long Yes System.Int64 –9,223,372,036,854,775,808 to Signed 64-bit
9,223,372,036,854,775,807 number

ulong No System.UInt64 0 to 18,446,744,073,709,551,615 Unsigned 64-bit
number

char Yes System.Char U+0000 to U+ffff Single 16-bit Unicode
character

8849CH03.qxd 9/24/07 11:07 AM Page 80

CLS
C# Shorthand Compliant? System Type Range Meaning in Life

float Yes System.Single ±1.5 ✕ 10–45 to ±3.4 ✕ 1038 32-bit floating-point
number

double Yes System.Double ±5.0 ✕ 10–324 to ±1.7 ✕ 10308 64-bit floating-point
number

decimal Yes System.Decimal ±1.0 ✕ 10e–28 to ±7.9 ✕ 10e28 96-bit signed number

string Yes System.String Limited by system memory Represents a set of
Unicode characters

object Yes System.Object Can store any type in an The base class of all
object variable types in the .NET

universe

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I 81

■Note By default, a real numeric literal on the right-hand side of the assignment operator is treated as double.
Therefore, to initialize a float variable, use the suffix f or F (for example, 5.3F).

Each of the numerical types (short, int, and so forth) map to a corresponding structure in the
System namespace. In a nutshell, structures are “value types” allocated on the stack. On the other
hand, string and object are “reference types,” meaning the variable is allocated on the managed
heap. You will examine full details of value and reference types in Chapter 4; however, for the time
being, simply understand that value types can be allocated into memory very quickly and have a
very fixed and predictable lifetime.

Variable Declaration and Initialization
When you are declaring a data type as a local variable (e.g., a variable within a member scope), you
do so by specifying the data type followed by the variable’s name. You’ll see how this is done by way
of a few examples. Create a new Console Application project named BasicDataTypes. Update the
Program class with the following helper method that is called from within Main():

static void LocalVarDeclarations()
{
Console.WriteLine("=> Data Declarations:");
// Local variables are declared as so:
// dataType varName;
int myInt;
string myString;
Console.WriteLine();

}

Do be aware that it is a compiler error to make use of a local variable before assigning an initial
value. Given this, it is good practice to assign an initial value to your local data points at the time of
declaration. You may do so on a single line, or by separating the declaration and assignment into
two code statements:

static void LocalVarDeclarations()
{
Console.WriteLine("=> Data Declarations:");
// Local variables are declared and initialized as follows:

8849CH03.qxd 9/24/07 11:07 AM Page 81

// dataType varName = initialValue;
int myInt = 0;

// You can also declare and assign on two lines.
string myString;
myString = "This is my character data";
Console.WriteLine();

}

It is also permissible to declare multiple variables of the same underlying type on a single line
of code:

static void LocalVarDeclarations()
{
Console.WriteLine("=> Data Declarations:");
int myInt = 0;
string myString;
myString = "This is my character data";

// Declare 3 bools on a single line.
bool b1 = true, b2 = false, b3 = b1;
Console.WriteLine();

}

As well, since the C# bool keyword is simply a shorthand notation for the System.Boolean struc-
ture, it is possible to allocate any data type using its full name (of course, the same point holds true
for any C# data type keyword). Here is the final implementation of LocalVarDeclarations():

static void LocalVarDeclarations()
{
Console.WriteLine("=> Data Declarations:");
// Local variables are declared and initialized as follows:
// dataType varName = initialValue;
int myInt = 0;

string myString;
myString = "This is my character data";

// Declare 3 bools on a single line.
bool b1 = true, b2 = false, b3 = b1;

// Very verbose manner in which to declare a bool.
System.Boolean b4 = false;

Console.WriteLine("Your data: {0}, {1}, {2}, {3}, {4}, {5}",
myInt, myString, b1, b2, b3, b4);

Console.WriteLine();
}

“New-ing” Intrinsic Data Types
All intrinsic data types support what is known as a default constructor (see Chapter 5). In a nutshell,
this feature allows you to create a variable using the new keyword, which automatically sets the vari-
able to its default value:

• bool types are set to false.

• Numeric data is set to 0 (or 0.0 in the case of floating-point data types).

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I82

8849CH03.qxd 9/24/07 11:07 AM Page 82

• char types are set to a single empty character.

• DateTime types are set to 1/1/0001 12:00:00 AM.

• Object references (including strings) are set to null.

Although it is more cumbersome to use the new keyword when creating a basic data type vari-
able, the following is syntactically well-formed C# code:

static void NewingDataTypes()
{
Console.WriteLine("=> Using new to create intrinsic data types:");
bool b = new bool(); // Set to false.
int i = new int(); // Set to 0.
double d = new double(); // Set to 0.
DateTime dt = new DateTime(); // Set to 1/1/0001 12:00:00 AM
Console.WriteLine("{0}, {1}, {2}, {3}", b, i, d, dt);
Console.WriteLine();

}

The Data Type Class Hierarchy
It is very interesting to note that even the primitive .NET data types are arranged in a “class hierar-
chy.” If you are new to the world of inheritance, you will discover the full details in Chapter 6. Until
then, just understand that types at the top of a class hierarchy provide some default behaviors that
are granted to the derived types. The relationship between these core system types can be under-
stood as shown in Figure 3-6.

Figure 3-6. The class hierarchy of system types

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I 83

8849CH03.qxd 9/24/07 11:07 AM Page 83

Notice that each of these types ultimately derives from System.Object, which defines a set of
methods (ToString(), Equals(), GetHashCode(), and so forth) common to all types in the .NET base
class libraries (these methods are fully detailed in Chapter 6).

Also note that many numerical data types derive from a class named System.ValueType.
Descendents of ValueType are automatically allocated on the stack and therefore have a very pre-
dictable lifetime and are quite efficient. On the other hand, types that do not have System.ValueType
in their inheritance chain (such as System.Type, System.String, System.Array, System.Exception,
and System.Delegate) are not allocated on the stack, but on the garbage-collected heap.

Without getting too hung up on the details of System.Object and System.ValueType for the time
being (again, more details in Chapter 4), just understand that because a C# keyword (such as int) is
simply shorthand notation for the corresponding system type (in this case, System.Int32), the fol-
lowing is perfectly legal syntax, given that System.Int32 (the C# int) eventually derives from
System.Object, and therefore can invoke any of its public members, as illustrated by this additional
helper function:

static void ObjectFunctionality()
{
Console.WriteLine("=> System.Object Functionality:");
// A C# int is really a shorthand for System.Int32.
// which inherits the following members from System.Object.
Console.WriteLine("12.GetHashCode() = {0}", 12.GetHashCode());
Console.WriteLine("12.Equals(23) = {0}", 12.Equals(23));
Console.WriteLine("12.ToString() = {0}", 12.ToString());
Console.WriteLine("12.GetType() = {0}", 12.GetType());
Console.WriteLine();

}

If you were to call this method from within Main(), you would find the output shown in
Figure 3-7.

Figure 3-7. All types (even numerical data) extend System.Object

Members of Numerical Data Types
To continue experimenting with the intrinsic C# data types, understand that the numerical types
of .NET support MaxValue and MinValue properties that provide information regarding the range a
given type can store. In addition to the MinValue/MaxValue properties, a given numerical system
type may define further useful members. For example, the System.Double type allows you to obtain
the values for epsilon and infinity (which may be of interest to those of you with a mathematical
flare). To illustrate, consider the following helper function:

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I84

8849CH03.qxd 9/24/07 11:07 AM Page 84

static void DataTypeFunctionality()
{
Console.WriteLine("=> Data type Functionality:");
Console.WriteLine("Max of int: {0}", int.MaxValue);
Console.WriteLine("Min of int: {0}", int.MinValue);
Console.WriteLine("Max of double: {0}", double.MaxValue);
Console.WriteLine("Min of double: {0}", double.MinValue);
Console.WriteLine("double.Epsilon: {0}", double.Epsilon);
Console.WriteLine("double.PositiveInfinity: {0}",
double.PositiveInfinity);

Console.WriteLine("double.NegativeInfinity: {0}",
double.NegativeInfinity);

Console.WriteLine();
}

Members of System.Boolean
Next, consider the System.Boolean data type. The only valid assignment a C# bool can take is from
the set {true | false}. Given this point, it should be clear that System.Boolean does not support a
MinValue/MaxValue property set, but rather TrueString/FalseString (which yields the string "True"
or "False", respectively). Add the following code statements to the DataTypeFunctionality() helper
method:

Console.WriteLine("bool.FalseString: {0}", bool.FalseString);
Console.WriteLine("bool.TrueString: {0}", bool.TrueString);

Figure 3-8 shows the output of invoking DataTypeFunctionality() from within Main().

Figure 3-8. Select functionality of various data types

Members of System.Char
C# textual data is represented by the intrinsic string and char keywords, which are simple short-
hand notations for System.String and System.Char, both of which are Unicode under the hood. As
you most likely already know, a string represents a contiguous set of characters (e.g., "Hello"),
while the char can represent a single slot in a string type (e.g., 'H').

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I 85

8849CH03.qxd 9/24/07 11:07 AM Page 85

The System.Char type provides you with a great deal of functionality beyond the ability to hold
a single point of character data. Using the static methods of System.Char, you are able to determine
whether a given character is numerical, alphabetical, a point of punctuation, or whatnot. Consider
the following method:

static void CharFunctionality()
{
Console.WriteLine("=> char type Functionality:");
char myChar = 'a';
Console.WriteLine("char.IsDigit('a'): {0}", char.IsDigit(myChar));
Console.WriteLine("char.IsLetter('a'): {0}", char.IsLetter(myChar));
Console.WriteLine("char.IsWhiteSpace('Hello There', 5): {0}",
char.IsWhiteSpace("Hello There", 5));

Console.WriteLine("char.IsWhiteSpace('Hello There', 6): {0}",
char.IsWhiteSpace("Hello There", 6));

Console.WriteLine("char.IsPunctuation('?'): {0}",
char.IsPunctuation('?'));

Console.WriteLine();
}

As illustrated in the previous code snippet, the members of System.Char have two calling con-
ventions: a single character or a string with a numerical index that specifies the position of the
character to test.

Parsing Values from String Data
The .NET data types provide the ability to generate a variable of their underlying type given a tex-
tual equivalent (e.g., parsing). This technique can be extremely helpful when you wish to convert a
bit of user input data (such as a selection from a GUI-based drop-down list box) into a numerical
value. Consider the following parsing logic within a method named ParseFromStrings():

static void ParseFromStrings()
{
Console.WriteLine("=> Data type parsing:");
bool b = bool.Parse("True");
Console.WriteLine("Value of b: {0}", b);
double d = double.Parse("99.884");
Console.WriteLine("Value of d: {0}", d);
int i = int.Parse("8");
Console.WriteLine("Value of i: {0}", i);
char c = Char.Parse("w");
Console.WriteLine("Value of c: {0}", c);
Console.WriteLine();

}

■Source Code The BasicDataTypes project is located under the Chapter 3 subdirectory.

Understanding the System.String Type
System.String provides a number of methods you would expect from such a utility class, including
methods that return the length of the character data, find substrings within the current string,

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I86

8849CH03.qxd 9/24/07 11:07 AM Page 86

convert to and from uppercase/lowercase, and so forth. Table 3-5 lists some (but by no means all) of
the interesting members.

Table 3-5. Select Members of System.String

String Member Meaning in Life

Length This property returns the length of the current string.

Compare() This method compares two strings.

Contains() This method determines whether a string contains a specific substring.

Equals() This method tests whether two string objects contain identical character data.

Format() This method formats a string using other primitives (e.g., numerical data, other
strings) and the {0} notation examined earlier in this chapter.

Insert() This method inserts a string within a given string.

PadLeft() These methods are used to pad a string with some characters.
PadRight()

Remove() Use these methods to receive a copy of a string, with modifications (characters
Replace() removed or replaced).

Split() This method returns a String array containing the substrings in this instance that
are delimited by elements of a specified Char or String array.

Trim() This method removes all occurrences of a set of specified characters from the
beginning and end of the current string.

ToUpper() These methods create a copy of the current string in uppercase or lowercase
ToLower() format, respectively.

Basic String Manipulation
Working with the members of System.String is as you would expect. Simply create a string data
type and make use of the provided functionality via the dot operator. Do be aware that a few of the
members of System.String are static members, and are therefore called at the class (rather than the
object) level. Assume you have created a new Console Application project named FunWithStrings.
Author the following method, which is called from within Main():

static void BasicStringFunctionality()
{
Console.WriteLine("=> Basic String functionality:");
string firstName = "Freddy";
Console.WriteLine("Value of firstName: {0}", firstName);
Console.WriteLine("firstName has {0} characters.", firstName.Length);
Console.WriteLine("firstName in uppercase: {0}", firstName.ToUpper());
Console.WriteLine("firstName in lowercase: {0}", firstName.ToLower());
Console.WriteLine("firstName contains the letter y?: {0}",
firstName.Contains("y"));

Console.WriteLine("firstName after replace: {0}", firstName.Replace("dy", ""));
Console.WriteLine();

}

Not too much to say here, as this method simply invokes various members (ToUpper(),
Contains(), etc.) on a local string variable to yield various formats and transformations. Figure 3-9
shows the initial output.

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I 87

8849CH03.qxd 9/24/07 11:07 AM Page 87

Figure 3-9. Basic string manipulation

String Concatenation
String variables can be connected together to build larger string types via the C# + operator. As you
may know, this technique is formally termed string concatenation. Consider the following new
helper function:

static void StringConcatenation()
{
Console.WriteLine("=> String concatenation:");
string s1 = "Programming the ";
string s2 = "PsychoDrill (PTP)";
string s3 = s1 + s2;
Console.WriteLine(s3);
Console.WriteLine();

}

You may be interested to know that the C# + symbol is processed by the compiler to emit a call
to the static String.Concat() method. In fact, if you were to compile the previous code and open
the assembly within ildasm.exe (see Chapter 1), you would find the CIL code shown in Figure 3-10.

Figure 3-10. The C# + operator results in a call to String.Concat().

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I88

8849CH03.qxd 9/24/07 11:07 AM Page 88

Given this, it is possible to perform string concatenation by calling String.Concat() directly
(although you really have not gained anything by doing so—in fact, you have incurred additional
keystrokes!):

static void StringConcatenation()
{
Console.WriteLine("=> String concatenation:");
string s1 = "Programming the ";
string s2 = "PsychoDrill (PTP)";
string s3 = String.Concat(s1, s2);
Console.WriteLine(s3);
Console.WriteLine();

}

Escape Characters
Like in other C-based languages, C# string literals may contain various escape characters, which
qualify how the character data should be printed to the output stream. Each escape character
begins with a backslash, followed by a specific token. In case you are a bit rusty on the meanings
behind these escape characters, Table 3-6 lists the more common options.

Table 3-6. String Literal Escape Characters

Character Meaning in Life

\' Inserts a single quote into a string literal.

\" Inserts a double quote into a string literal.

\\ Inserts a backslash into a string literal. This can be quite helpful when defining file
paths.

\a Triggers a system alert (beep). For console programs, this can be an audio clue to
the user.

\n Inserts a new line (on Win32 platforms).

\r Inserts a carriage return.

\t Inserts a horizontal tab into the string literal.

For example, to print a string that contains a tab between each word, you can make use of the
\t escape character. As another example, assume you wish to create a string literal that contains
quotation marks, another that defines a directory path, and a final string literal that inserts three
blank lines after printing the character data. To do so without compiler errors, you would need to
make use of the \", \\, and \n escape characters. As well, to annoy any person within a 10 foot
radius from you, notice that I have embedded an alarm within each string literal (to trigger a beep).
Consider the following:

static void EscapeChars()
{
Console.WriteLine("=> Escape characters:\a");
string strWithTabs = "Model\tColor\tSpeed\tPet Name\a ";
Console.WriteLine(strWithTabs);

Console.WriteLine("Everyone loves \"Hello World\"\a ");
Console.WriteLine("C:\\MyApp\\bin\\Debug\a ");

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I 89

8849CH03.qxd 9/24/07 11:07 AM Page 89

// Adds a total of 4 blank lines (then beep again!).
Console.WriteLine("All finished.\n\n\n\a ");
Console.WriteLine();

}

Defining Verbatim Strings
When you prefix a string literal with the @ symbol, you have created what is termed a verbatim
string. Using verbatim strings, you disable the processing of a literal’s escape characters and print
out a string as is. This can be most useful when working with strings representing directory and
network paths. Therefore, rather than making use of \\ escape characters, you can simply write the
following:

// The following string is printed verbatim
// thus, all escape characters are displayed.
Console.WriteLine(@"C:\MyApp\bin\Debug");

Also note that verbatim strings can be used to preserve white space for strings that flow over
multiple lines:

// White space is preserved with verbatim strings.
string myLongString = @"This is a very

very
very

long string";
Console.WriteLine(myLongString);

Using verbatim strings, you can also directly insert a double quote into a literal string by
doubling the " token, for example:

Console.WriteLine(@"Cerebus said ""Darrr! Pret-ty sun-sets""");

Figure 3-11 shows the result of invoking EscapeChars().

Figure 3-11. Escape characters and verbatim strings in action

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I90

8849CH03.qxd 9/24/07 11:07 AM Page 90

Strings and Equality
As fully explained in Chapter 4, a reference type is an object allocated on the garbage-collected man-
aged heap. By default, when you perform a test for equality on reference types (via the C# == and !=
operators), you will be returned true if the references are pointing to the same object in memory.
However, even though the string data type is indeed a reference type, the equality operators have
been redefined to compare the values of string objects, not the object in memory to which they refer:

static void StringEquality()
{
Console.WriteLine("=> String equality:");
string s1 = "Hello!";
string s2 = "Yo!";
Console.WriteLine("s1 = {0}", s1);
Console.WriteLine("s2 = {0}", s2);
Console.WriteLine();

// Test these strings for equality.
Console.WriteLine("s1 == s2: {0}", s1 == s2);
Console.WriteLine("s1 == Hello!: {0}", s1 == "Hello!");
Console.WriteLine("s1 == HELLO!: {0}", s1 == "HELLO!");
Console.WriteLine("s1 == hello!: {0}", s1 == "hello!");
Console.WriteLine("s1.Equals(s2): {0}", s1.Equals(s2));
Console.WriteLine("Yo.Equals(s2): {0}", "Yo!".Equals(s2));
Console.WriteLine();

}

Notice that the C# equality operators perform a case-sensitive, character-by-character equality
test. Therefore, "Hello!" is not equal to "HELLO!", which is different from "hello!". Also, keeping the
connection between string and System.String in mind, notice that we are able to test for equality
using the Equals() method of String as well as the baked-in equality operators. Finally, given that
every string literal (such as "Yo") is a valid System.String instance, we are able to access string-
centric functionality from a fixed sequence of characters.

Strings Are Immutable
One of the interesting aspects of System.String is that once you assign a string object with its ini-
tial value, the character data cannot be changed. At first glance, this might seem like a flat-out lie,
given that we are always reassigning strings to new values and due to the fact that the System.
String type defines a number of methods that appear to modify the character data in one way or
another (uppercasing, lowercasing, etc.). However, if you look more closely at what is happening
behind the scenes, you will notice the methods of the string type are in fact returning you a brand-
new string object in a modified format:

static void StringAreImmutable()
{
// Set initial string value.
string s1 = "This is my string.";
Console.WriteLine("s1 = {0}", s1);

// Uppercase s1?
string upperString = s1.ToUpper();
Console.WriteLine("upperString = {0}", upperString);

// Nope! s1 is in the same format!
Console.WriteLine("s1 = {0}", s1);

}

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I 91

8849CH03.qxd 9/24/07 11:07 AM Page 91

If you examine the relevant output in Figure 3-12, you can verify that the original string object
(s1) is not uppercased when calling ToUpper(), rather you are returned a copy of the string in a
modified format.

Figure 3-12. Strings are immutable!

The same law of immutability holds true when you use the C# assignment operator. To illus-
trate, comment out (or delete) any existing code within StringAreImmutable() (to decrease the
amount of generated CIL code) and add the following code statements:

static void StringAreImmutable()
{
string s2 = "My other string";
s2 = "New string value";

}

Now, compile your application and load the assembly into ildasm.exe (again, see Chapter 1). If
you were to double-click the Main() method, you would find the CIL code shown in Figure 3-13.

Figure 3-13. Assigning a value to a string object results in a new string object.

Although we have yet to examine the low-level details of the Common Intermediate Language
(CIL), do note that the Main() method makes numerous calls to the ldstr (load string) opcode. Sim-
ply put, the ldstr opcode of CIL loads a new string object on the managed heap. The previous
string object that contained the value "My other string." will eventually be garbage collected.

So, what exactly are we to gather from this insight? In a nutshell, the string type can be ineffi-
cient and result in bloated code if misused, especially when performing string concatenation. If you
need to represent basic character data such as a US Social Security number (SSN), first or last
names, or simple string literals used within your application, the string data type is the perfect
choice.

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I92

8849CH03.qxd 9/24/07 11:07 AM Page 92

However, if you are building an application that makes heavy use of textual data (such as a
word processing program), it would be a very bad idea to represent the word processing data using
string types, as you will most certainly (and often indirectly) end up making unnecessary copies of
string data. So what is a programmer to do? Glad you asked.

The System.Text.StringBuilder Type
Given that the string type can be inefficient when used with reckless abandon, the .NET base class
libraries provide the System.Text namespace. Within this (relatively small) namespace lives a class
named StringBuilder. Like the System.String class, StringBuilder defines methods that allow you
to replace or format segments and so forth. When you wish to use this type in your C# code files,
your first step is to import the correct namespace:

// StringBuilder lives here!
using System.Text;

What is unique about the StringBuilder is that when you call members of this type, you are
directly modifying the object’s internal character data (and is thus more efficient), not obtaining a
copy of the data in a modified format. When you create an instance of the StringBuilder, you can
supply the object’s initial startup values via one of many constructors. If you are new to the topic of
constructors, simply understand that constructors allow you to create an object with an initial state
when you apply the new keyword. Consider the following usage of StringBuilder:

static void FunWithStringBuilder()
{
Console.WriteLine("=> Using the StringBuilder:");
StringBuilder sb = new StringBuilder("**** Fantastic Games ****");
sb.Append("\n");
sb.AppendLine("Half Life");
sb.AppendLine("Beyond Good and Evil");
sb.AppendLine("Deus Ex 2");
sb.AppendLine("System Shock");
Console.WriteLine(sb.ToString());

sb.Replace("2", "Invisible War");
Console.WriteLine(sb.ToString());
Console.WriteLine("sb as {0} chars.", sb.Length);
Console.WriteLine();

}

Here we have constructed a StringBuilder set to the initial value "**** Fantastic Games
****". As you can see, we are appending to the internal buffer, and are able to replace (or remove)
characters at will. By default, a StringBuilder is only able to hold a string of 16 characters or less;
however, this initial value can be changed via an additional constructor argument:

// Make a StringBuilder with an initial size of 256.
StringBuilder sb = new StringBuilder("**** Fantastic Games ****", 256);

If you append more characters than the specified limit, the StringBuilder object will copy its
data into a new instance and grow the buffer by the specified limit. Figure 3-14 shows the output of
the current helper function.

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I 93

8849CH03.qxd 9/24/07 11:07 AM Page 93

Figure 3-14. The StringBuilder is more efficient than string.

■Source Code The FunWithStrings project is located under the Chapter 3 subdirectory.

System.DateTime and System.TimeSpan
To wrap up our examination of core data types, allow me to point out the fact that the System name-
space defines a few useful data types for which there is no C# keyword—specifically, the DateTime
and TimeSpan structures (I’ll leave the investigation of System.Guid and System.Void, as shown in
Figure 3-6, to interested readers).

The DateTime type contains data that represents a specific date (month, day, year) and time
value, both of which may be formatted in a variety of ways using the supplied members. By way of a
simple example, ponder the following statements:

// This constructor takes (year, month, day)
DateTime dt = new DateTime(2004, 10, 17);

// What day of the month is this?
Console.WriteLine("The day of {0} is {1}", dt.Date, dt.DayOfWeek);
dt = dt.AddMonths(2); // Month is now December.
Console.WriteLine("Daylight savings: {0}", dt.IsDaylightSavingTime());

The TimeSpan structure allows you to easily define and transform units of time using various
members, for example:

// This constructor takes (hours, minutes, seconds)
TimeSpan ts = new TimeSpan(4, 30, 0);
Console.WriteLine(ts);

// Subtract 15 minutes from the current TimeSpan and
// print the result.
Console.WriteLine(ts.Subtract(new TimeSpan(0, 15, 0)));

At this point, I hope you understand that each data type keyword of C# has a corresponding
type in the .NET base class libraries, each of which exposes a fixed functionality. While I have not
detailed each member of these core types, you are in a great position to dig into the details as you
see fit. Be sure to consult the .NET Framework 3.5 SDK documentation for full details regarding the
intrinsic .NET data types.

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I94

8849CH03.qxd 9/24/07 11:07 AM Page 94

Narrowing and Widening Data Type Conversions
Now that you understand how to interact with intrinsic data types, let’s examine the related topic of
data type conversion. Assume you have a new Console Application project (named TypeConversions)
that defines the following class type:

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Fun with type conversions *****");

// Add two shorts and print the result.
short numb1 = 9, numb2 = 10;
Console.WriteLine("{0} + {1} = {2}",
numb1, numb2, Add(numb1, numb2));

Console.ReadLine();
}

static int Add(int x, int y)
{ return x + y; }

}

Notice that the Add() method expects to be sent two int parameters. However, the Main()
method is in fact sending in two short variables. While this might seem like a complete and total
mismatch of data types, the program compiles and executes without error, returning the expected
result of 19.

The reason that the compiler treats this code as syntactically sound is due to the fact that there
is no possibility for loss of data. Given that the maximum value of a short (32,767) is well within the
range of an int (2,147,483,647), the compiler implicitly widens each short to an int. Formally
speaking, widening is the term used to define an implicit “upward cast” that does not result in a
loss of data.

■Note Look up the topic “Type Conversion Tables” within the .NET Framework 3.5 SDK documentation if you
wish to see permissible widening conversions for each C# data type.

Although this implicit widening worked in our favor for the previous example, other times this
“feature” can be the source of compile-time errors. For example, assume that you have set values
to numb1 and numb2 that (when added together) overflow the maximum value of a short. As well,
assume you are storing the return value of the Add() method within a new local short variable,
rather than directly printing the result to the console:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with type conversions *****");

// Compiler error below!
short numb1 = 30000, numb2 = 30000;
short answer = Add(numb1, numb2);
Console.WriteLine("{0} + {1} = {2}",
numb1, numb2, answer);

Console.ReadLine();
}

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I 95

8849CH03.qxd 9/24/07 11:07 AM Page 95

In this case, the compiler reports the following error:

Cannot implicitly convert type 'int' to 'short'. An explicit conversion exists
(are you missing a cast?)

The problem is that although the Add() method is capable of returning an int with the value
60,000 (as this fits within the range of a System.Int32), the value cannot be stored in a short (as it
overflows the bounds of this data type). Formally speaking, the CLR was unable to apply a
narrowing operation. As you can guess, narrowing is the logical opposite of widening, in that a
larger value is stored within a smaller variable.

It is important to point out that all narrowing conversions result in a compiler error, even when
you can reason that the narrowing conversion should indeed succeed. For example, the following
code also results in a compiler error:

// Another compiler error!
static void NarrowingAttempt()
{
byte myByte = 0;
int myInt = 200;
myByte = myInt;
Console.WriteLine("Value of myByte: {0}", myByte);

}

Here, the value contained within the int variable (myInt) is safely within the range of a byte,
therefore you would expect the narrowing operation to not result in a runtime error. However, given
that C# is a language built with type safety in mind, we do indeed receive a compiler error. When
you wish to inform the compiler than you are willing to deal with a possible loss of data due to a
narrowing operation, you must apply an explicit cast using the C# casting operator (). Consider the
following update to the Program type and resulting output in Figure 3-15.

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Fun with type conversions *****");
short numb1 = 30000, numb2 = 30000;

// Explicitly cast the int into a short (and allow loss of data).
short answer = (short)Add(numb1, numb2);

Console.WriteLine("{0} + {1} = {2}",
numb1, numb2, answer);

NarrowingAttempt();
Console.ReadLine();

}

static int Add(int x, int y)
{ return x + y; }

static void NarrowingAttempt()
{
byte myByte = 0;
int myInt = 200;

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I96

8849CH03.qxd 9/24/07 11:07 AM Page 96

// Explicitly cast the int into a byte (no loss of data).
myByte = (byte)myInt;
Console.WriteLine("Value of myByte: {0}", myByte);

}
}

Figure 3-15. OOPS! We lost some data when adding our numbers!

Trapping Narrowing Data Conversions
As you have just witnessed, an explicit cast allows you to force the compiler to apply a narrowing
conversion, even when doing so may result in a loss of data. In the case of the NarrowingAttempt()
method, this was not a problem, as the value 200 can fit snuggly within the range of a byte. How-
ever, in the case of adding the two shorts within Main(), the end result is completely unacceptable
(30,000 + 30,000 = –5536?). If you are building an application where loss of data is always unaccept-
able, C# provides the checked and unchecked keywords to ensure data loss does not escape
undetected.

To illustrate the use of these keywords, assume you have a new method within Program that
attempts to add two bytes, each of which has been assigned a value that is safely below the maxi-
mum (255). If you were to add the values of these types (casting the returned int to a byte), you
would assume that the result would be the exact sum of each member:

static void ProcessBytes()
{
byte b1 = 100;
byte b2 = 250;
byte sum = (byte)Add(b1, b2);

// sum should hold the value 350. However, we find the value 94!
Console.WriteLine("sum = {0}", sum);

}

If you were to view the output of this application, you might be surprised to find that sum con-
tains the value 94 (rather than the expected 350). The reason is simple. Given that a System.Byte can
hold a value only between 0 and 255 (inclusive, for a grand total of 256 slots), sum now contains the
overflow value (350 – 256 = 94). By default, if you take no corrective course of action, overflow/under-
flow conditions occur without error.

To handle overflow or underflow conditions in your application, you have two options. Your
first choice is to leverage your wits and programming skills to handle all overflow/underflow condi-
tions manually. Assuming you were indeed able to find each overflow condition in your program,
you could resolve the previous overflow error as follows:

// Store sum in an int to prevent overflow.
byte b1 = 100;
byte b2 = 250;
int sum = (byte)Add(b1, b2);

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I 97

8849CH03.qxd 9/24/07 11:07 AM Page 97

Of course, the problem with this technique is the simple fact that you are human, and even
your best attempts may result in errors that have escaped your eyes. Given this, C# provides the
checked keyword. When you wrap a statement (or a block of statements) within the scope of the
checked keyword, the C# compiler emits additional CIL instructions that test for overflow condi-
tions that may result when adding, multiplying, subtracting, or dividing two numerical data types.

If an overflow has occurred, you will receive a runtime exception (System.OverflowException to
be exact). Chapter 7 will examine all the details of structured exception handling and the use of the
try and catch keywords. Without getting too hung up on the specifics at this point, observe the fol-
lowing update:

static void ProcessBytes()
{
byte b1 = 100;
byte b2 = 250;

// This time, tell the compiler to add CIL code
// to throw an exception if overflow/underflow
// takes place.
try
{
byte sum = checked((byte)Add(b1, b2));
Console.WriteLine("sum = {0}", sum);

}
catch (OverflowException ex)
{
Console.WriteLine(ex.Message);

}
}

Notice that the return value of Add() has been wrapped within the scope of the checked key-
word. Since the sum is greater than a byte, we trigger a runtime exception. Notice the error message
printed out via the Message property in Figure 3-16.

Figure 3-16. The checked keyword forces runtime exceptions to be thrown when data loss occurs.

If you wish to force overflow checking to occur over a block of code statements, you can do so
by defining a checked scope as follows:

try
{
checked
{
byte sum = (byte)Add(b1, b2);
Console.WriteLine("sum = {0}", sum);

}
}
catch (OverflowException ex)
{
Console.WriteLine(ex.Message);

}

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I98

8849CH03.qxd 9/24/07 11:07 AM Page 98

In either case, the code in question will be evaluated for possible overflow conditions automat-
ically, which will trigger an overflow exception if encountered.

Setting Projectwide Overflow Checking
If you are creating an application that should never allow silent overflow to occur, you may find
yourself in the annoying position of wrapping numerous lines of code within the scope of the
checked keyword. As an alternative, the C# compiler supports the /checked flag. When enabled,
all of your arithmetic will be evaluated for overflow without the need to make use of the C# checked
keyword. If overflow has been discovered, you will still receive a runtime exception.

To enable this flag using Visual Studio 2008, open your project’s property page and click the
Advanced button on the Build tab. From the resulting dialog box, select the Check for arithmetic
overflow/underflow check box (see Figure 3-17).

Figure 3-17. Enabling projectwide overflow/underflow data checking

Enabling this setting can be very helpful when you’re creating a debug build. Once all of the
overflow exceptions have been squashed out of the code base, you’re free to disable the /checked
flag for subsequent builds (which will increase the runtime performance of your application).

The unchecked Keyword
Now, assuming you have enabled this projectwide setting, what are you to do if you have a block of
code where data loss is acceptable? Given that the /checked flag will evaluate all arithmetic logic, C#
provides the unchecked keyword to disable the throwing of an overflow exception on a case-by-case
basis. This keyword’s use is identical to that of the checked keyword in that you can specify a single
statement or a block of statements, for example:

// Assuming /checked is enabled,
// this block will not trigger
// a runtime exception.
unchecked
{
byte sum = (byte)(b1 + b2);
Console.WriteLine("sum = { 0} ", sum);

}

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I 99

8849CH03.qxd 9/24/07 11:07 AM Page 99

So, to summarize the C# checked and unchecked keywords, remember that the default behavior
of the .NET runtime is to ignore arithmetic overflow. When you want to selectively handle discrete
statements, make use of the checked keyword. If you wish to trap overflow errors throughout your
application, enable the /checked flag. Finally, the unchecked keyword may be used if you have a
block of code where overflow is acceptable (and thus should not trigger a runtime exception).

The Role of System.Convert
To wrap up the topic of data type conversions, I’d like to point out the fact that the System name-
space defines a class named Convert that can also be used to widen or narrow data:

static void NarrowWithConvert()
{
byte myByte = 0;
int myInt = 200;
myByte = Convert.ToByte(myInt);
Console.WriteLine("Value of myByte: {0}", myByte);

}

One benefit of using System.Convert is that it provides a language-neutral manner to convert
between data types. However, given that C# provides an explicit conversion operator, using the
Convert type to do your data type conversions is usually nothing more than a matter of personal
preference.

■Source Code The TypeConversions project is located under the Chapter 3 subdirectory.

C# Iteration Constructs
All programming languages provide ways to repeat blocks of code until a terminating condition
has been met. Regardless of which language you have used in the past, the C# iteration statements
should not raise too many eyebrows and should require little explanation. C# provides the following
four iteration constructs:

• for loop

• foreach/in loop

• while loop

• do/while loop

Let’s quickly examine each looping construct in turn, using a new Console Application project
named IterationsAndDecisions.

The for Loop
When you need to iterate over a block of code a fixed number of times, the for statement provides a
good deal of flexibility. In essence, you are able to specify how many times a block of code repeats
itself, as well as the terminating condition. Without belaboring the point, here is a sample of the
syntax:

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I100

8849CH03.qxd 9/24/07 11:07 AM Page 100

// A basic for loop.
static void ForAndForEachLoop()
{
// Note! "i" is only visible within the scope of the for loop.
for(int i = 0; i < 4; i++)
{
Console.WriteLine("Number is: {0} ", i);

}
// "i" is not visible here.

}

All of your old C, C++, and Java tricks still hold when building a C# for statement. You can
create complex terminating conditions, build endless loops, and make use of the goto, continue,
and break keywords. I’ll assume that you will bend this iteration construct as you see fit. Consult
the .NET Framework 3.5 SDK documentation if you require further details on the C# for keyword.

The foreach Loop
The C# foreach keyword allows you to iterate over all items within an array, without the need to test
for the array’s upper limit. Here are two examples using foreach, one to traverse an array of strings
and the other to traverse an array of integers:

// Iterate array items using foreach.
static void ForAndForEachLoop()
{
...
string[] carTypes = {"Ford", "BMW", "Yugo", "Honda" };
foreach (string c in carTypes)
Console.WriteLine(c);

int[] myInts = { 10, 20, 30, 40 };
foreach (int i in myInts)
Console.WriteLine(i);

}

In addition to iterating over simple arrays, foreach is also able to iterate over system-supplied
or user-defined collections. I’ll hold off on the details until Chapter 9, as this aspect of the foreach
keyword entails an understanding of interface-based programming and the role of the IEnumerator
and IEnumerable interfaces.

The while and do/while Looping Constructs
The while looping construct is useful should you wish to execute a block of statements until some
terminating condition has been reached. Within the scope of a while loop, you will, of course, need
to ensure this terminating event is indeed established; otherwise, you will be stuck in an endless
loop. In the following example, the message “In while loop” will be continuously printed until the
user terminates the loop by entering yes at the command prompt:

static void ExecuteWhileLoop()
{
string userIsDone = "";

// Test on a lower-class copy of the string.
while(userIsDone.ToLower() != "yes")
{
Console.Write("Are you done? [yes] [no]: ");

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I 101

8849CH03.qxd 9/24/07 11:07 AM Page 101

userIsDone = Console.ReadLine();
Console.WriteLine("In while loop");

}
}

Closely related to the while loop is the do/while statement. Like a simple while loop, do/while
is used when you need to perform some action an undetermined number of times. The difference is
that do/while loops are guaranteed to execute the corresponding block of code at least once (in con-
trast, it is possible that a simple while loop may never execute if the terminating condition is false
from the onset).

static void ExecuteDoWhileLoop()
{
string userIsDone = "";

do
{
Console.WriteLine("In do/while loop");
Console.Write("Are you done? [yes] [no]: ");
userIsDone = Console.ReadLine();

}while(userIsDone.ToLower() != "yes"); // Note the semicolon!
}

Decision Constructs and the Relational/Equality
Operators
Now that you can iterate over a block of statements, the next related concept is how to control the
flow of program execution. C# defines two simple constructs to alter the flow of your program,
based on various contingencies:

• The if/else statement

• The switch statement

The if/else Statement
First up is our good friend the if/else statement. Unlike in C and C++, however, the if/else state-
ment in C# operates only on Boolean expressions, not ad hoc values such as –1, 0. Given this,
if/else statements typically involve the use of the C# operators shown in Table 3-7 in order to
obtain a literal Boolean value.

Table 3-7. C# Relational and Equality Operators

C# Equality/Relational
Operator Example Usage Meaning in Life

== if(age == 30) Returns true only if each expression is the
same

!= if("Foo" != myStr) Returns true only if each expression is different

< if(bonus < 2000) Returns true if expression A is less than,
> if(bonus > 2000) greater than, less than or equal to, or greater
<= if(bonus <= 2000) than or equal to expression B
>= if(bonus >= 2000)

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I102

8849CH03.qxd 9/24/07 11:07 AM Page 102

Again, C and C++ programmers need to be aware that the old tricks of testing a condition for a
value “not equal to zero” will not work in C#. Let’s say you want to see whether the string you are
working with is longer than zero characters. You may be tempted to write

static void ExecuteIfElse()
{
// This is illegal, given that Length returns an int, not a bool.
string stringData = "My textual data";
if(stringData.Length)
{
Console.WriteLine("string is greater than 0 characters");

}
}

If you wish to make use of the String.Length property to determine truth or falsity, you need to
modify your conditional expression to resolve to a Boolean. For example:

// Legal, as this resolves to either true or false.
if(stringData.Length > 0)
{
Console.WriteLine("string is greater than 0 characters");

}

An if statement may be composed of complex expressions as well and can contain else
statements to perform more complex testing. The syntax is identical to C(++) and Java (and not too
far removed from Visual Basic). To build complex expressions, C# offers an expected set of condi-
tional operators, as shown in Table 3-8.

Table 3-8. C# Conditional Operators

Operator Example Meaning in Life

&& if((age == 30) && (name == "Fred")) Conditional AND operator

|| if((age == 30) || (name == "Fred")) Conditional OR operator

! if(!myBool) Conditional NOT operator

The switch Statement
The other simple selection construct offered by C# is the switch statement. As in other C-based
languages, the switch statement allows you to handle program flow based on a predefined set of
choices. For example, the following Main() logic prints a specific string message based on one of
two possible selections (the default case handles an invalid selection):

// Switch on a numerical value.
static void ExecuteSwitch()
{
Console.WriteLine("1 [C#], 2 [VB]");
Console.Write("Please pick your language preference: ");

string langChoice = Console.ReadLine();
int n = int.Parse(langChoice);

switch (n)
{
case 1:

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I 103

8849CH03.qxd 9/24/07 11:07 AM Page 103

Console.WriteLine("Good choice, C# is a fine language.");
break;
case 2:
Console.WriteLine("VB .NET: OOP, multithreading, and more!");

break;
default:
Console.WriteLine("Well...good luck with that!");

break;
}

}

■Note C# demands that each case (including default) that contains executable statements have a terminating
break or goto to avoid fall-through.

One nice feature of the C# switch statement is that you can evaluate string data in addition to
numeric data. Here is an updated switch statement that does this very thing (notice we have no
need to parse the user data into a numeric value with this approach):

static void ExecuteSwitchOnString()
{
Console.WriteLine("C# or VB");
Console.Write("Please pick your language preference: ");

string langChoice = Console.ReadLine();
switch (langChoice)
{
case "C#":
Console.WriteLine("Good choice, C# is a fine language.");

break;
case "VB":
Console.WriteLine("VB .NET: OOP, multithreading and more!");

break;
default:
Console.WriteLine("Well...good luck with that!");

break;
}

}

■Source Code The IterationsAndDecisions project is located under the Chapter 3 subdirectory.

Summary
The goal of this chapter was to expose you to numerous core aspects of the C# programming lan-
guage. Here, we examined the constructs that will be commonplace in any application you may be
interested in building. After examining the role of an application object, you learned that every C#
executable program must have a type defining a Main() method, which serves as the program’s
entry point. Within the scope of Main(), you typically create any number of objects that work
together to breathe life into your application.

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I104

8849CH03.qxd 9/24/07 11:07 AM Page 104

Next, we dove into the details of the built-in data types of C#, and came to understand that
each data type keyword (e.g., int) is really a shorthand notation for a full-blown type in the System
namespace (System.Int32 in this case). Given this, each C# data type has a number of built-in
members. Along the same vein, you also learned about the role of widening and narrowing as well
as the role of the checked and unchecked keywords.

We wrapped up by checking out the various iteration and decision constructs supported by C#.
Now that you have an understanding of some of the basic nuts and bolts, the next chapter com-
pletes our examination of core language features. After this point, you will be well prepared to
examine the object-oriented features of C#.

CHAPTER 3 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I 105

8849CH03.qxd 9/24/07 11:07 AM Page 105

8849CH03.qxd 9/24/07 11:07 AM Page 106

Core C# Programming Constructs,
Part II

This chapter picks up where the previous chapter left off, and completes your investigation of the
core aspects of the C# programming language. We begin by examining various details regarding the
construction of C# methods, exploring the out, ref, and params keywords along the way. Once you
examine the topic of method overloading, the next task is to investigate the details behind manipu-
lating array types using the syntax of C# and get to know the functionality contained within the
related System.Array class type.

In addition, this chapter provides a discussion regarding the construction of enumeration and
structure types, including a fairly detailed examination of the distinction between a value type and
a reference type. We wrap this up by examining the role of nullable data types and the ? and ??
operators.

Methods and Parameter Modifiers
To begin this chapter, let’s examine the details of defining type methods. Just like the Main() method
(see Chapter 3), your custom methods may or may not take parameters and may or may not return
values. As you will see over the next several chapters, methods can be implemented within the
scope of classes or structures (and prototyped within interface types) and may be decorated with
various keywords (internal, virtual, public, new, etc.) to qualify their behavior. At this point in the
text, each of our methods has followed this basic format:

// Recall that static methods can be called directly
// without creating a class instance.
class Program
{
// static returnVal MethodName(args) {...}
static int Add(int x, int y){ return x + y; }

}

While the definition of a method in C# is quite straightforward, there are a handful of keywords
that you can use to control how arguments are passed to the method in question, and these are
listed in Table 4-1.

107

C H A P T E R 4

8849CH04.qxd 10/1/07 10:31 AM Page 107

Table 4-1. C# Parameter Modifiers

Parameter Modifier Meaning in Life

(None) If a parameter is not marked with a parameter modifier, it is assumed to be
passed by value, meaning the called method receives a copy of the original
data.

out Output parameters must be assigned by the method being called (and
therefore are passed by reference). If the called method fails to assign
output parameters, you are issued a compiler error.

ref The value is initially assigned by the caller and may be optionally reassigned
by the called method (as the data is also passed by reference). No compiler
error is generated if the called method fails to assign a ref parameter.

params This parameter modifier allows you to send in a variable number of
arguments as a single logical parameter. A method can have only a single
params modifier, and it must be the final parameter of the method.

To illustrate the use of these keywords, create a new Console Application project named
FunWithMethods. Now, let’s walk through the role of each keyword in turn.

The Default Parameter-Passing Behavior
The default manner in which a parameter is sent into a function is by value. Simply put, if you do
not mark an argument with a parameter-centric modifier, a copy of the data is passed into the func-
tion. As explained at the end of this chapter, exactly what is copied will depend on whether the
parameter is a value type or a reference type. For the time being, assume the following method
within the Program class that operates on two numerical data types passed by value:

// Arguments are passed by value by default.
static int Add(int x, int y)
{
int ans = x + y;

// Caller will not see these changes
// as you are modifying a copy of the
// original data.
x = 10000; y = 88888;
return ans;

}

Numerical data falls under the category of value types. Therefore, if you change the values of
the parameters within the scope of the member, the caller is blissfully unaware, given that you are
changing the values on a copy of the caller’s data:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Methods *****");

// Pass two variables in by value.
int x = 9, y = 10;
Console.WriteLine("Before call: X: {0}, Y: {1}", x, y);
Console.WriteLine("Answer is: {0}", Add(x, y));
Console.WriteLine("After call: X: {0}, Y: {1}", x, y);
Console.ReadLine();

}

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I108

8849CH04.qxd 10/1/07 10:31 AM Page 108

As you would hope, the values of x and y remain identical before and after the call to Add(), as
shown in Figure 4-1.

Figure 4-1. By default, parameters are passed by value.

The out Modifier
Next, we have the use of output parameters. Methods that have been defined to take output param-
eters (via the out keyword) are under obligation to assign them to an appropriate value before
exiting the method in question (if you fail to do so, you will receive compiler errors).

To illustrate, here is an alternative version of the Add() method that returns the sum of two
integers using the C# out modifier (note the physical return value of this method is now void):

// Output parameters must be assigned by the called method.
static void Add(int x, int y, out int ans)
{
ans = x + y;

}

Calling a method with output parameters also requires the use of the out modifier. Recall that
local variables passed as output variables are not required to be assigned before use (if you do so,
the original value is lost after the call), for example:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Methods *****");

...
// No need to assign initial value to local variables
// used as output parameters.
int ans;
Add(90, 90, out ans);
Console.WriteLine("90 + 90 = {0}", ans);
Console.ReadLine();

}

The previous example is intended to be illustrative in nature; you really have no reason to
return the value of your summation using an output parameter. However, the C# out modifier
does serve a very useful purpose: it allows the caller to obtain multiple return values from a single
method invocation.

// Returning multiple output parameters.
static void FillTheseValues(out int a, out string b, out bool c)
{
a = 9;
b = "Enjoy your string.";
c = true;

}

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I 109

8849CH04.qxd 10/1/07 10:31 AM Page 109

The caller would be able to invoke the following method:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Methods *****");

...
int i; string str; bool b;

FillTheseValues(out i, out str, out b);
Console.WriteLine("Int is: {0}", i);
Console.WriteLine("String is: {0}", str);
Console.WriteLine("Boolean is: {0}", b);
Console.ReadLine();

}

Finally, remember that methods that define output parameters must assign the parameter to a
valid value before exiting the methods. Therefore, the following method will result in a compiler
error, as the integer parameter has not been assigned within the method scope:

static void ThisWontCompile(out int a)
{
Console.WriteLine("This is an error...");

}

The ref Modifier
Now consider the use of the C# ref parameter modifier. Reference parameters are necessary when
you wish to allow a method to operate on (and usually change the values of) various data points
declared in the caller’s scope (such as a sorting or swapping routine). Note the distinction between
output and reference parameters:

• Output parameters do not need to be initialized before they passed to the method. The
reason for this? The method must assign output parameters before exiting.

• Reference parameters must be initialized before they are passed to the method. The reason
for this? You are passing a reference to an existing variable. If you don’t assign it to an initial
value, that would be the equivalent of operating on an unassigned local variable.

Let’s check out the use of the ref keyword by way of a method that swaps two strings:

// Reference parameters.
public static void SwapStrings(ref string s1, ref string s2)
{
string tempStr = s1;
s1 = s2;
s2 = tempStr;

}

This method can be called as follows:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Methods *****");

...
string s1 = "Flip";
string s2 = "Flop";
Console.WriteLine("Before: {0}, {1} ", s1, s2);
SwapStrings(ref s1, ref s2);

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I110

8849CH04.qxd 10/1/07 10:31 AM Page 110

Console.WriteLine("After: {0}, {1} ", s1, s2);
Console.ReadLine();

}

Here, the caller has assigned an initial value to local string data (s and s2). Once the call to
SwapStrings() returns, s1 now contains the value "Flop", while s2 reports the value "Flip" (see
Figure 4-2).

Figure 4-2. Reference parameters can be changed by the called method.

■Note The C# ref keyword will be revisited later in this chapter in the section “Understanding Value Types and
Reference Types.” As you will see, the behavior of this keyword changes just a bit depending on whether the argu-
ment is a “value type” (structure) or “reference type” (class).

The params Modifier
Last but not least, C# supports the use of parameter arrays. To understand the role of the params
keyword, you must (as the name implies) understand how to manipulate C# arrays. If this is not the
case, you may wish to return to this section once you have finished this chapter, as we will formally
examine the System.Array type a bit later in this chapter in the section “Array Manipulation in C#.”

The params keyword allows you to pass into a method a variable number of parameters (of the
same type) as a single logical parameter. As well, arguments marked with the params keyword can be
processed if the caller sends in a strongly typed array or a comma-delimited list of items. Yes, this
can be confusing! To clear things up, assume you wish to create a function that allows the caller to
pass in any number of arguments and return the calculated average.

If you were to prototype this method to take an array of doubles, this would force the caller to
first define the array, then fill the array, and finally pass it into the method. However, if you define
CalculateAverage() to take a params of integer data types, the caller can simply pass a comma-
delimited list of doubles. The .NET runtime will automatically package the set of doubles into an
array of type double behind the scenes:

// Return average of "some number" of doubles.
static double CalculateAverage(params double[] values)
{
Console.WriteLine("You sent me {0} doubles.", values.Length);

double sum = 0;
if(values.Length == 0)
return sum;

for (int i = 0; i < values.Length; i++)
sum += values[i];

return (sum / values.Length);
}

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I 111

8849CH04.qxd 10/1/07 10:31 AM Page 111

This method has been defined to take a parameter array of doubles. What this method is in fact
saying is, “Send me any number of doubles and I’ll compute the average.” Given this, you can call
CalculateAverage() in any of the following ways (if you did not make use of the params modifier in
the definition of CalculateAverage(), the first invocation of this method would result in a compiler
error):

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Methods *****");

...
// Pass in a comma-delimited list of doubles...
double average;
average = CalculateAverage(4.0, 3.2, 5.7, 64.22, 87.2);
Console.WriteLine("Average of data is: {0}", average);

// ...or pass an array of doubles.
double[] data = { 4.0, 3.2, 5.7 };
average = CalculateAverage(data);
Console.WriteLine("Average of data is: {0}", average);

// Average of 0 is 0!
Console.WriteLine("Average of data is: {0}", CalculateAverage());

Console.ReadLine();
}

■Note To avoid any ambiguity, C# demands a method only support a single params argument, which must be
the final argument in the parameter list.

As you might guess, this technique is nothing more than a convenience for the caller, given that
the array is created by the CLR as necessary. By the time the array is within the scope of the method
being called, you are able to treat it as a full-blown .NET array that contains all the functionality of
the System.Array base class library type. Figure 4-3 illustrates the output.

Figure 4-3. The params keyword allows you to build methods with a variable number of arguments.

■Source Code The FunWithMethods application is located under the Chapter 4 subdirectory.

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I112

8849CH04.qxd 10/1/07 10:31 AM Page 112

Understanding Member Overloading
Like other modern object-oriented languages, C# allows a method to be overloaded. Simply put,
when you define a set of identically named members that differ by the number (or type) of parame-
ters, the member in question is said to be overloaded. To check this out firsthand, create a new
Console Application project named MethodOverloading.

To understand why overloading is so useful, consider life as a Visual Basic 6.0 developer.
Assume you are using VB6 to build a set of methods that return the sum of various incoming types
(Integers, Doubles, and so on). Given that VB6 does not support method overloading, you would be
required to define a unique set of methods that essentially do the same thing (return the sum of the
arguments):

' VB6 code.
Public Function AddInts(ByVal x As Integer, ByVal y As Integer) As Integer
AddInts = x + y

End Function
Public Function AddDoubles(ByVal x As Double, ByVal y As Double) As Double
AddDoubles = x + y

End Function
Public Function AddLongs(ByVal x As Long, ByVal y As Long) As Long
AddLongs = x + y

End Function

Not only can code such as this become tough to maintain, but the caller must now be painfully
aware of the name of each method. Using overloading, we are able to allow the caller to call a single
method named Add(). Again, the key is to ensure that each version of the method has a distinct set
of arguments (members differing only by return type are not unique enough). Consider the follow-
ing class definition:

// C# code.
class Program
{
static void Main(string[] args) { }

// Overloaded Add() method.
static int Add(int x, int y)
{ return x + y; }
static double Add(double x, double y)
{ return x + y; }
static long Add(long x, long y)
{ return x + y; }

}

■Note As explained in Chapter 10, it is possible to build generic methods that take the concept of overloading to
the next level. Using generics, you can define “placeholders” for a method implementation that are specified at the
time you invoke the member.

The caller can now simply invoke Add() with the required arguments and the compiler is happy
to comply, given the fact that the compiler is able to resolve the correct implementation to invoke
given the provided arguments:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Method Overloading *****");

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I 113

8849CH04.qxd 10/1/07 10:31 AM Page 113

// Calls int version of Add()
Console.WriteLine(Add(10, 10));
// Calls long version of Add()
Console.WriteLine(Add(900000000000, 900000000000));
// Calls double version of Add()
Console.WriteLine(Add(4.3, 4.4));
Console.ReadLine();

}

The Visual Studio 2008 IDE provides assistance when calling overloaded members to boot.
When you type in the name of an overloaded method (such as our good friend Console.
WriteLine()), IntelliSense will list each version of the method in question. Note that you are able
to cycle through each version of an overloaded method using the up and down arrow keys shown
in Figure 4-4.

Figure 4-4. Visual Studio IntelliSense for overloaded members

■Source Code The MethodOverloading application is located under the Chapter 4 subdirectory.

That wraps up our initial examination of building methods using the syntax of C#. Next up, let’s
check out how to build and manipulate arrays, enumerations, and structures.

Array Manipulation in C#
As I would guess you are already aware, an array is a set of data items, accessed using a numerical
index. More specifically, an array is a set of contiguous data points of the same type (an array of
ints, an array of strings, an array of SportsCars, and so on). Declaring an array with C# is quite
straightforward. To illustrate, create a new Console Application project (named FunWithArrays) that
contains a helper method named SimpleArrays(), invoked from within Main():

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I114

8849CH04.qxd 10/1/07 10:31 AM Page 114

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Fun with Arrays *****");
SimpleArrays();

}

static void SimpleArrays()
{
Console.WriteLine("=> Simple Array Creation.");
// Assign an array ints containing 3 elements {0 - 2}
int[] myInts = new int[3];

// Initialize a 100 item string array, numbered {0 - 99}
string[] booksOnDotNet = new string[100];
Console.WriteLine();

}
}

Look closely at the previous code comments. When declaring a C# array using this syntax, the
number used in the array declaration represents the total number of items, not the upper bound.
Also note that the lower bound of an array always begins at 0. Thus, when you write int[]
myInts[3], you end up with a array holding three elements ({0, 1, 2}).

Once you have defined an array, you are then able to fill the elements index by index as shown
in the updated SimpleArrays() method:

static void SimpleArrays()
{
Console.WriteLine("=> Simple Array Creation.");
// Create and fill an array of 3 Integers
int[] myInts = new int[3];
myInts[0] = 100;
myInts[1] = 200;
myInts[2] = 300;

// Now print each value.
foreach(int i in myInts)
Console.WriteLine(i);

Console.WriteLine();
}

■Note Do be aware that if you declare an array, but do not explicitly fill each index, each item will be set to the
default value of the data type (e.g., an array of bools will be set to false, an array of ints will be set to 0, and
so forth).

C# Array Initialization Syntax
In addition to filling an array element by element, you are also able to fill the items of an array using
C# array initialization syntax. To do so, specify each array item within the scope of curly brackets
({}). This syntax can be helpful when you are creating an array of a known size and wish to quickly
specify the initial values. For example, consider the following alternative array declarations:

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I 115

8849CH04.qxd 10/1/07 10:31 AM Page 115

static void ArrayInitialization()
{
Console.WriteLine("=> Array Initialization.");

// Array initialization syntax using the new keyword.
string[] stringArray = new string[]
{ "one", "two", "three" };

Console.WriteLine("stringArray has {0} elements", stringArray.Length);

// Array initialization syntax without using the new keyword.
bool[] boolArray = { false, false, true };
Console.WriteLine("boolArray has {0} elements", boolArray.Length);

// Array initialization with new keyword and size.
int[] intArray = new int[4] { 20, 22, 23, 0 };
Console.WriteLine("intArray has {0} elements", intArray.Length);
Console.WriteLine();

}

Notice that when you make use of this “curly bracket” syntax, you do not need to specify the
size of the array (seen when constructing the stringArray type), given that this will be inferred by
the number of items within the scope of the curly brackets. Also notice that use of the new keyword
is optional (shown when constructing the boolArray type).

In the case of the intArray declaration, again recall the numeric value specified represents the
number of elements in the array, not the value of the upper bound. If there is a mismatch between
the declared size and the number of initializers, you are issued a compile-time error:

// OOPS! Mismatch of size and elements!
int[] intArray = new int[2] { 20, 22, 23, 0 };

Defining an Array of Objects
As mentioned, when you define an array, you do so by specifying the type of item that can be within
the array variable. While this seems quite straightforward, there is one notable twist. As you will
come to understand in Chapter 6, System.Object is the ultimate base class to each and every type
(including fundamental data types) in the .NET type system. Given this fact, if you were to define an
array of objects, the subitems could be anything at all. Consider the following ArrayOfObjects()
method (which again can be invoked from Main() for testing):

static void ArrayOfObjects()
{
Console.WriteLine("=> Array of Objects.");

// An array of objects can be anything at all.
object[] myObjects = new object[4];
myObjects[0] = 10;
myObjects[1] = false;
myObjects[2] = new DateTime(1969, 3, 24);
myObjects[3] = "Form & Void";

foreach (object obj in myObjects)
{
// Print the type and value for each item in array.
Console.WriteLine("Type: {0}, Value: {1}", obj.GetType(), obj);

}
Console.WriteLine();

}

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I116

8849CH04.qxd 10/1/07 10:31 AM Page 116

Here, as we are iterating over the contents of myObjects, we print out the underlying type of
each item using the GetType() method of System.Object as well as the value of the current item.
Without going into too much detail regarding System.Object.GetType() at this point in the text,
simply understand that this method can be used to obtain the fully qualified name of the item
(Chapter 16 fully examines the topic of type information and reflection services). Figure 4-5 shows
the output of the previous snippet.

Figure 4-5. Arrays of type object can hold anything at all.

Working with Multidimensional Arrays
In addition to the single-dimension arrays you have seen thus far, C# also supports two varieties of
multidimensional arrays. The first of these is termed a rectangular array, which is simply an array of
multiple dimensions, where each row is of the same length. To declare and fill a multidimensional
rectangular array, proceed as follows:

static void RectMultidimensionalArray()
{
Console.WriteLine("=> Rectangular multidimensional array.");
// A rectangular MD array.
int[,] myMatrix;
myMatrix = new int[6,6];

// Populate (6 * 6) array.
for(int i = 0; i < 6; i++)
for(int j = 0; j < 6; j++)
myMatrix[i, j] = i * j;

// Print (6 * 6) array.
for(int i = 0; i < 6; i++)
{
for(int j = 0; j < 6; j++)
Console.Write(myMatrix[i, j] + "\t");

Console.WriteLine();
}
Console.WriteLine();

}

The second type of multidimensional array is termed a jagged array. As the name implies,
jagged arrays contain some number of inner arrays, each of which may have a unique upper limit,
for example:

static void JaggedMultidimensionalArray()
{
Console.WriteLine("=> Jagged multidimensional array.");
// A jagged MD array (i.e., an array of arrays).

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I 117

8849CH04.qxd 10/1/07 10:31 AM Page 117

// Here we have an array of 5 different arrays.
int[][] myJagArray = new int[5][];

// Create the jagged array.
for (int i = 0; i < myJagArray.Length; i++)
myJagArray[i] = new int[i + 7];

// Print each row (remember, each element is defaulted to zero!)
for(int i = 0; i < 5; i++)
{
for(int j = 0; j < myJagArray[i].Length; j++)
Console.Write(myJagArray[i][j] + " ");

Console.WriteLine();
}
Console.WriteLine();

}

Figure 4-6 shows the output of calling each of these methods within Main().

Figure 4-6. Rectangular and jagged multidimensional arrays

Arrays As Parameters (and Return Values)
Once you have created an array, you are free to pass it as a parameter and receive it as a member
return value. For example, the following PrintArray() method takes an incoming array of ints and
prints each member to the console, while the GetStringArray() method populates an array of
strings and returns it to the caller:

static void PrintArray(int[] myInts)
{
for(int i = 0; i < myInts.Length; i++)
Console.WriteLine("Item {0} is {1}", i, myInts[i]);

}

static string[] GetStringArray()
{
string[] theStrings = { "Hello", "from", "GetStringArray" };
return theStrings;

}

These methods may be invoked as you would expect:

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I118

8849CH04.qxd 10/1/07 10:31 AM Page 118

static void PassAndReceiveArrays()
{
Console.WriteLine("=>Arrays as params and return values.");
// Pass array as parameter.
int[] ages = {20, 22, 23, 0} ;
PrintArray(ages);

// Get array as return value.
string[] strs = GetStringArray();
foreach(string s in strs)
Console.WriteLine(s);

Console.WriteLine();
}

So, at this point you hopefully feel comfortable with the process of defining, filling, and exam-
ining the contents of a C# array type. To complete the picture, let’s now examine the role of the
System.Array class.

The System.Array Base Class
Every array you create gathers much of its functionality from the System.Array class. Using these
common members, we are able to operate on an array using a consistent object model. Table 4-2
gives a rundown of some of the more interesting members (be sure to check the .NET Framework
3.5 SDK for full details).

Table 4-2. Select Members of System.Array

Member of Array Class Meaning in Life

Clear() This static method sets a range of elements in the array to empty values
(0 for value items, static for object references).

CopyTo() This method is used to copy elements from the source array into the
destination array.

GetEnumerator() This method returns the IEnumerator interface for a given array. I
address interfaces in Chapter 9, but for the time being, keep in mind
that this interface is required by the foreach construct.

Length This property returns the number of items within the array.

Rank This property returns the number of dimensions of the current array.

Reverse() This static method reverses the contents of a one-dimensional array.

Sort() This static method sorts a one-dimensional array of intrinsic types. If
the elements in the array implement the IComparer interface, you can
also sort your custom types (see Chapter 9).

Let’s see some of these members in action. The following helper method makes use of the static
Reverse() and Clear() methods to pump out information about an array of string types to the
console:

static void SystemArrayFunctionality()
{
Console.WriteLine("=> Working with System.Array.");
// Initialize items at startup.
string[] gothicBands = {"Tones on Tail", "Bauhaus", "Sisters of Mercy"};

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I 119

8849CH04.qxd 10/1/07 10:31 AM Page 119

// Print out names in declared order.
Console.WriteLine(" -> Here is the array:");
for (int i = 0; i <= gothicBands.GetUpperBound(0); i++)
{
// Print a name
Console.Write(gothicBands[i] + " ");

}
Console.WriteLine("\n");

// Reverse them...
Array.Reverse(gothicBands);
Console.WriteLine(" -> The reversed array");
// ... and print them.
for (int i = 0; i <= gothicBands.GetUpperBound(0); i++)
{
// Print a name
Console.Write(gothicBands[i] + " ");

}
Console.WriteLine("\n");

// Clear out all but the final member.
Console.WriteLine(" -> Cleared out all but one...");
Array.Clear(gothicBands, 1, 2);
for (int i = 0; i <= gothicBands.GetUpperBound(0); i++)
{
// Print a name
Console.Write(gothicBands[i] + " ");

}
Console.WriteLine();

}

If you invoke this method from within Main(), you will get the output shown in Figure 4-7.

Figure 4-7. The System.Array class provides functionality to all .NET arrays.

Notice that many members of System.Array are defined as static members and are therefore
called at the class level (for example, the Array.Sort() or Array.Reverse() methods). Methods such
as these are passed in the array you wish to process. Other methods of System.Array (such as the
GetUpperBound() method or Length property) are bound at the object level, and thus you are able to
invoke the member directly on the array.

■Source Code The FunWithArrays application is located under the Chapter 4 subdirectory.

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I120

8849CH04.qxd 10/1/07 10:31 AM Page 120

Understanding the Enum Type
Recall from Chapter 1 that the .NET type system is composed of classes, structures, enumerations,
interfaces, and delegates. To begin our exploration of these types, let’s check out the role of the
enumeration (or simply, enums) using a new Console Application project named FunWithEnums.

When building a system, it is often convenient to create a set of symbolic names that map to
known numerical values. For example, if you are creating a payroll system, you may want to refer
to the type of employees using constants such as vice president, manager, contractor, and grunt.
C# supports the notion of custom enumerations for this very reason. For example, here is an
enumeration named EmpType:

// A custom enumeration.
enum EmpType
{
Manager, // = 0
Grunt, // = 1
Contractor, // = 2
VicePresident // = 3

}

The EmpType enumeration defines four named constants, corresponding to discrete numerical
values. By default, the first element is set to the value zero (0), followed by an n+1 progression. You
are free to change the initial value as you see fit. For example, if it made sense to number the mem-
bers of EmpType as 102 through 105, you could do so as follows:

// Begin with 102.
enum EmpType
{
Manager = 102,
Grunt, // = 103
Contractor, // = 104
VicePresident // = 105

}

Enumerations do not necessarily need to follow a sequential ordering, and need not have
unique values. If (for some reason or another) it makes sense to establish your EmpType as shown
here, the compiler continues to be happy:

// Elements of an enumeration need not be sequential!
enum EmpType
{
Manager = 10,
Grunt = 1,
Contractor = 100,
VicePresident = 9

}

Controlling the Underlying Storage for an Enum
By default, the storage type used to hold the values of an enumeration is a System.Int32 (the C#
int); however, you are free to change this to your liking. C# enumerations can be defined in a simi-
lar manner for any of the core system types (byte, short, int, or long). For example, if you want to
set the underlying storage value of EmpType to be a byte rather than an int, you can write the
following:

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I 121

8849CH04.qxd 10/1/07 10:31 AM Page 121

// This time, EmpType maps to an underlying byte.
enum EmpType : byte
{
Manager = 10,
Grunt = 1,
Contractor = 100,
VicePresident = 9

}

Changing the underlying type of an enumeration can be helpful if you are building a .NET
application that will be deployed to a low-memory device (such as a .NET-enabled cell phone or
PDA) and need to conserve memory wherever possible. Of course, if you do establish your enumer-
ation to use a byte as storage, each value must be within its range!

Declaring and Using Enums
Once you have established the range and storage type of your enumeration, you can use it in place
of so-called magic numbers. Because enumerations are nothing more than a user-defined type, you
are able to use them as function return values, method parameters, local variables, and so forth.
Assume you have a method named AskForBonus(), taking an EmpType variable as the sole parameter.
Based on the value of the incoming parameter, you will print out a fitting response to the pay bonus
request:

class Program
{
static void Main(string[] args)
{
Console.WriteLine("**** Fun with Enums *****");
// Make a contractor type.
EmpType emp = EmpType.Contractor;
AskForBonus(emp);
Console.ReadLine();

}

// Enums as parameters.
static void AskForBonus(EmpType e)
{
switch (e)
{
case EmpType.Manager:
Console.WriteLine("How about stock options instead?");

break;
case EmpType.Grunt:
Console.WriteLine("You have got to be kidding...");

break;
case EmpType.Contractor:
Console.WriteLine("You already get enough cash...");

break;
case EmpType.VicePresident:
Console.WriteLine("VERY GOOD, Sir!");

break;
}

}
}

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I122

8849CH04.qxd 10/1/07 10:31 AM Page 122

Notice that when you are assigning a value to an enum variable, you must scope the enum
name (EmpType) to the value (Grunt). Because enumerations are a fixed set of name/value pairs, it is
illegal to set an enum variable to a value that is not defined directly by the enumerated type:

static void Main(string[] args)
{
Console.WriteLine("**** Fun with Enums *****");

// Error! SalesManager is not in the EmpType enum!
EmpType emp = EmpType.SalesManager;

// Error! Forgot to scope Grunt value to EmpType enum!
emp= Grunt;

Console.ReadLine();
}

The System.Enum Type
The interesting thing about .NET enumerations is that they gain functionality from the System.Enum
class type. This class defines a number of methods that allow you to interrogate and transform a
given enumeration. One helpful method is the static Enum.GetUnderlyingType(), which as the name
implies returns the data type used to store the values of the enumerated type (System.Byte in the
case of the current EmpType declaration).

static void Main(string[] args)
{
Console.WriteLine("**** Fun with Enums *****");
// Make a contractor type.
EmpType emp = EmpType.Contractor;
AskForBonus(emp);

// Print storage for the enum.
Console.WriteLine("EmpType uses a {0} for storage",
Enum.GetUnderlyingType(emp.GetType()));

Console.ReadLine();
}

If you were to consult the Visual Studio 2008 object browser, you would be able to verify that
the Enum.GetUnderlyingType() method requires you to pass in a System.Type as the first parameter.
As fully examined in Chapter 16, Type represents the metadata description of a given .NET entity.

One possible way to obtain metadata (as shown previously) is to use the GetType() method,
which is common to all types in the .NET base class libraries. Another approach is to make use of
the C# typeof operator. One benefit of doing so is that you do not need to have a variable of the
entity you wish to obtain a metadata description of:

// This time use typeof to extract a Type.
Console.WriteLine("EmpType uses a {0} for storage",

Enum.GetUnderlyingType(typeof(EmpType)));

Dynamically Discovering an Enum’s Name/Value Pairs
Beyond the Enum.GetUnderlyingType() method, all C# enumerations support a method named
ToString(), which returns the string name of the current enumeration’s value. For example:

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I 123

8849CH04.qxd 10/1/07 10:31 AM Page 123

static void Main(string[] args)
{
Console.WriteLine("**** Fun with Enums *****");
EmpType emp = EmpType.Contractor;

// Prints out "emp is a Contractor".
Console.WriteLine("emp is a {0}.", emp.ToString());
Console.ReadLine();

}

If you are interested in discovering the value of a given enumeration variable, rather than its
name, you can simply cast the enum variable against the underlying storage type. For example:

static void Main(string[] args)
{
Console.WriteLine("**** Fun with Enums *****");
EmpType emp = EmpType.Contractor;

// Prints out "Contractor = 100".
Console.WriteLine("{0} = {1}", emp.ToString(), (byte)emp);
Console.ReadLine();

}

■Note The static Enum.Format() method provides a finer level of formatting options by specifying a desired
format flag. Consult the .NET Framework 3.5 SDK documentation for full details of the System.Enum.Format()
method.

System.Enum also defines another static method named GetValues(). This method returns an
instance of System.Array. Each item in the array corresponds to a member of the specified enumer-
ation. Consider the following method, which will print out each name/value pair within any
enumeration you pass in as a parameter:

// This method will print out the details of any enum.
static void EvaluateEnum(System.Enum e)
{
Console.WriteLine("=> Information about {0}", e.GetType().Name);

Console.WriteLine("Underlying storage type: {0}",
Enum.GetUnderlyingType(e.GetType()));

// Get all name/value pairs for incoming parameter.
Array enumData = Enum.GetValues(e.GetType());
Console.WriteLine("This enum has {0} members.", enumData.Length);

// Now show the string name and associated value.
for(int i = 0; i < enumData.Length; i++)
{
Console.WriteLine("Name: {0}, Value: {0:D}",
enumData.GetValue(i));

}
Console.WriteLine();

}

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I124

8849CH04.qxd 10/1/07 10:31 AM Page 124

To test this new method, update your Main() method to create variables of several enumeration
types declared in the System namespace (as well as an EmpType enumeration for good measure). For
example:

static void Main(string[] args)
{
Console.WriteLine("**** Fun with Enums *****");
EmpType e2;

// These types are enums in the System namespace.
DayOfWeek day;
ConsoleColor cc;

EvaluateEnum(e2);
EvaluateEnum(day);
EvaluateEnum(cc);
Console.ReadLine();

}

The output is shown in Figure 4-8.

Figure 4-8. Dynamically discovering name/value pairs of enumeration types.

As you will see over the course of this text, enumerations are used extensively throughout
the .NET base class libraries. For example, ADO.NET makes use of numerous enumerations to

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I 125

8849CH04.qxd 10/1/07 10:31 AM Page 125

represent the state of a database connection (opened, closed, etc.), the state of a row in a DataTable
(changed, new, detached, etc.), and so forth. Therefore, when you make use of any enumeration,
always remember that you are able to interact with the name/value pairs using the members of
System.Enum.

■Source Code The FunWithEnums project is located under the Chapter 4 subdirectory.

Understanding the Structure Type
Now that you understand the role of enumeration types, let’s examine the use of .NET structures (or
simply structs). Structure types are well suited for modeling mathematical, geometrical, and other
“atomic” entities in your application. A structure (like an enumeration) is a user-defined type; how-
ever, structures are not simply a collection of name/value pairs. Rather, structures are types that can
contain any number of data fields and members that operate on these fields.

Furthermore, structures can define constructors, can implement interfaces, and can contain
any number of properties, methods, events, and overloaded operators. (If some of these terms are
unfamiliar at this point, don’t fret. All of these topics are fully examined in chapters to come.)

■Note If you have a background in OOP, you can think of a structure as a “lightweight class type,” given that
structures provide a way to define a type that supports encapsulation, but cannot be used to build a family of
related types (as structures are implicitly sealed). When you need to build a family of related types through inheri-
tance, you will need to make use of class types.

On the surface, the process of defining and using structures is very simple, but as they say, the
devil is in the details. To begin understanding the basics of structure types, create a new project
named FunWithStructures. In C#, structures are created using the struct keyword. Define a new
structure named Point, which defines two member variables of type int and a set of methods to
interact with said data:

struct Point
{
// Fields of the structure.
public int X;
public int Y;

// Add 1 to the (X, Y) position.
public void Increment()
{
X++; Y++;

}

// Subtract 1 from the (X, Y) position.
public void Decrement()
{
X--; Y--;

}

// Display the current position.
public void Display()

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I126

8849CH04.qxd 10/1/07 10:31 AM Page 126

{
Console.WriteLine("X = {0}, Y = {1}", X, Y);

}
}

Here, we have defined our two integer data types (X and Y) using the public keyword, which is
an access control modifier (full details in the next chapter). Declaring data with the public keyword
ensures the caller has direct access to the data from a given Point variable (via the dot operator).

■Note It is typically considered bad style to define public data within a class or structure. Rather, you will want to
define private data, which can be accessed and changed using public properties. These details will be examined in
Chapter 5.

Here is a Main() method that takes our Point type out for a test drive. Figure 4-9 shows the pro-
gram’s output.

static void Main(string[] args)
{
Console.WriteLine("***** A First Look at Structures *****");
// Create an initial Point.
Point myPoint;
myPoint.X = 349;
myPoint.Y = 76;
myPoint.Display();

// Adjust the X and Y values.
myPoint.Increment();
myPoint.Display();
Console.ReadLine();

}

Figure 4-9. Our Point structure in action

Creating Structure Variables
When you wish to create a structure variable, you have a variety of options. Here, we simply create a
Point variable and assign each piece of public field data before invoking its members. If we do not
assign each piece of public field data (X and Y in our case) before making use of the structure, we
will receive a compiler error:

// Error! Did not assign Y value.
Point p1;
p1.X = 10;
p1.Display();

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I 127

8849CH04.qxd 10/1/07 10:31 AM Page 127

// OK! Both fields assigned before use.
Point p2;
p2.X = 10;
p2.Y = 10;
p2.Display();

As an alternative, we can create structure variables using the C# new keyword, which will invoke
the structure’s default constructor. By definition, a default constructor takes any input parameters.
The benefit of invoking the default constructor of a structure is that each piece of field data is auto-
matically set to its default value:

// Set all fields to default values
// using the default constructor.
Point p1 = new Point();

// Prints X=0,Y=0
p1.Display();

It is also possible to design a structure with a custom constructor. This allows you to specify the
values of field data upon variable creation, rather than having to set each data member field by
field. Chapter 5 will provide a detailed examination of constructors; however, to illustrate, update
the Point structure with the following code:

struct Point
{
// Fields of the structure.
public int X;
public int Y;

// A custom constructor.
public Point(int XPos, int YPos)
{
X = XPos;
Y = YPos;

}
...
}

With this, we could now create Point types as follows:

// Call custom constructor.
Point p2 = new Point(50, 60);

// Prints X=50,Y=60
p2.Display();

As mentioned, working with structures on the surface is quite simple. However, to deepen your
understanding of this type, we need to explore the distinction between a .NET value type and a
.NET reference type.

■Source Code The FunWithStructures project is located under the Chapter 4 subdirectory.

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I128

8849CH04.qxd 10/1/07 10:31 AM Page 128

Understanding Value Types and Reference Types

■Note The following discussion of value types and reference types assumes that you have a background in
object-oriented programming. We will examine a number of topics that assume you have a background in object-
oriented programming. If this is not the case, you may wish to reread this section once you have completed
Chapters 5 and 6.

Unlike arrays, strings, or enumerations, C# structures do not have an identically named representa-
tion in the .NET library (that is, there is no System.Structure class), but are implicitly derived from
System.ValueType. Simply put, the role of System.ValueType is to ensure that the derived type (e.g.,
any structure) is allocated on the stack rather than the garbage collected heap.

Functionally, the only purpose of System.ValueType is to “override” the virtual methods defined
by System.Object to use value-based, versus reference-based, semantics. As you may know, overrid-
ing is the process of changing the implementation of a virtual (or possibly abstract) method defined
within a base class. The base class of ValueType is System.Object. In fact, the instance methods
defined by System.ValueType are identical to those of System.Object:

// Structures and enumerations extend System.ValueType.
public abstract class ValueType : object
{
public virtual bool Equals(object obj);
public virtual int GetHashCode();
public Type GetType();
public virtual string ToString();

}

Given the fact that value types are using value-based semantics, the lifetime of a structure
(which includes all numerical data types [int, float, etc.], as well as any enum or custom structure)
is very predictable. When a structure variable falls out of the defining scope, it is removed from
memory immediately:

// Local structures are popped off
// the stack when a method returns.
static void LocalValueTypes()
{
// Recall! "int" is really a System.Int32 structure.
int i = 0;

// Recall! Point is a structure type.
Point p = new Point();

} // "i" and "p" popped off the stack here!

Value Types, References Types, and the Assignment Operator
When you assign one value type to another, a member-by-member copy of the field data is
achieved. In the case of a simple data type such as System.Int32, the only member to copy is the
numerical value. However, in the case of our Point, the X and Y values are copied into the new
structure variable. To illustrate, create a new Console Application project named
ValueAndReferenceTypes and copy your previous Point definition into your new namespace.
Now, add the following method to your Program type:

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I 129

8849CH04.qxd 10/1/07 10:31 AM Page 129

// Assigning two intrinsic value types results in
// two independent variables on the stack.
static void ValueTypeAssignment()
{
Console.WriteLine("Assigning value types\n");

Point p1 = new Point(10, 10);
Point p2 = p1;

// Print both points.
p1.Display();
p2.Display();

// Change p1.X and print again. p2.X is not changed.
p1.X = 100;
Console.WriteLine("\n=> Changed p1.X\n");
p1.Display();
p2.Display();

}

Here you have created a variable of type Point (named p1) that is then assigned to another
Point (p2). Because Point is a value type, you have two copies of the MyPoint type on the stack, each
of which can be independently manipulated. Therefore, when you change the value of p1.X, the
value of p2.X is unaffected. Figure 4-10 shows the output once this method is called from Main().

Figure 4-10. Assignment of value types results in a verbatim copy of each field.

In stark contrast to value types, when you apply the assignment operator to reference types
(meaning all class instances), you are redirecting what the reference variable points to in memory.
To illustrate, create a new class type named PointRef that has the exact same members as the Point
structures, beyond renaming the constructor to match the class name:

// Classes are always reference types.
class PointRef
{
// Same members as the Point structure.

// Be sure to change your constructor name to PointRef!
public PointRef(int XPos, int YPos)
{
X = XPos;

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I130

8849CH04.qxd 10/1/07 10:31 AM Page 130

Y = YPos;
}

}

Now, make use of your PointRef type within the following new method (note the code is identi-
cal to the ValueTypeAssignment() method). Assuming you have called this new method within
Main(), your output should look like that in Figure 4-11.

static void ReferenceTypeAssignment()
{
Console.WriteLine("Assigning reference types\n");
PointRef p1 = new PointRef(10, 10);
PointRef p2 = p1;

// Print both point refs.
p1.Display();
p2.Display();

// Change p1.X and print again.
p1.X = 100;
Console.WriteLine("\n=> Changed p1.X\n");
p1.Display();
p2.Display();

}

Figure 4-11. Assignment of reference types copies the reference.

In this case, you have two references pointing to the same object on the managed heap. There-
fore, when you change the value of X using the p2 reference, p1.X reports the same value.

Value Types Containing Reference Types
Now that you have a better feeling for the core differences between value types and reference types,
let’s examine a more complex example. Assume you have the following reference (class) type that
maintains an informational string that can be set using a custom constructor:

class ShapeInfo
{
public string infoString;
public ShapeInfo(string info)
{ infoString = info; }

}

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I 131

8849CH04.qxd 10/1/07 10:31 AM Page 131

Now assume that you want to contain a variable of this class type within a value type named
Rectangle. To allow the caller to set the value of the inner ShapeInfo member variable, you also pro-
vide a custom constructor. Here is the complete definition of the Rectangle type:

struct Rectangle
{
// The Rectangle structure contains a reference type member.
public ShapeInfo rectInfo;

public int rectTop, rectLeft, rectBottom, rectRight;

public Rectangle(string info, int top, int left, int bottom, int right)
{
rectInfo = new ShapeInfo(info);
rectTop = top; rectBottom = bottom;
rectLeft = left; rectRight = right;

}

public void Display()
{
Console.WriteLine("String = {0}, Top = {1}, Bottom = {2}," +
"Left = {3}, Right = {4}",
rectInfo.infoString, rectTop, rectBottom, rectLeft, rectRight);

}
}

At this point, you have contained a reference type within a value type. The million-dollar ques-
tion now becomes, What happens if you assign one Rectangle variable to another? Given what you
already know about value types, you would be correct in assuming that the integer data (which is
indeed a structure) should be an independent entity for each Rectangle variable. But what about
the internal reference type? Will the object’s state be fully copied, or will the reference to that object
be copied? To answer this question, define the following method and invoke it from Main(). Check
out Figure 4-12 for the answer.

static void ValueTypeContainingRefType()
{
// Create the first Rectangle.
Console.WriteLine("-> Creating r1");
Rectangle r1 = new Rectangle("First Rect", 10, 10, 50, 50);

// Now assign a new Rectangle to r1.
Console.WriteLine("-> Assigning r2 to r1");
Rectangle r2 = r1;

// Change some values of r2.
Console.WriteLine("-> Changing values of r2");
r2.rectInfo.infoString = "This is new info!";
r2.rectBottom = 4444;

// Print values of both rectangles.
r1.Display();
r2.Display();

}

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I132

8849CH04.qxd 10/1/07 10:31 AM Page 132

Figure 4-12. The internal references point to the same object!

As you can see, when you change the value of the informational string using the r2 reference,
the r1 reference displays the same value. By default, when a value type contains other reference
types, assignment results in a copy of the references. In this way, you have two independent struc-
tures, each of which contains a reference pointing to the same object in memory (i.e., a “shallow
copy”). When you want to perform a “deep copy,” where the state of internal references is fully
copied into a new object, one approach is to implement the ICloneable interface (as you will do in
Chapter 9).

■Source Code The ValueAndReferenceTypes project is located under the Chapter 4 subdirectory.

Passing Reference Types by Value
Reference types or value types can obviously be passed as parameters to type members. However,
passing a reference type (e.g., a class) by reference is quite different from passing it by value. To
understand the distinction, assume you have a simple Person class defined in a new Console Appli-
cation project named RefTypeValTypeParams, defined as follows:

class Person
{
public string personName;
public int personAge;

// Constructors.
public Person(string name, int age)
{
personName = name;
personAge = age;

}
public Person(){}

public void Display()
{
Console.WriteLine("Name: {0}, Age: {1}", personName, personAge);

}
}

Now, what if you create a method that allows the caller to send in the Person type by value
(note the lack of parameter modifiers):

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I 133

8849CH04.qxd 10/1/07 10:31 AM Page 133

static void SendAPersonByValue(Person p)
{
// Change the age of "p"?
p.personAge = 99;

// Will the caller see this reassignment?
p = new Person("Nikki", 99);

}

Notice how the SendAPersonByValue() method attempts to reassign the incoming Person
reference to a new object as well as change some state data. Now let’s test this method using the
following Main() method:

static void Main(string[] args)
{
// Passing ref-types by value.
Console.WriteLine("***** Passing Person object by value *****");
Person fred = new Person("Fred", 12);
Console.WriteLine("\nBefore by value call, Person is:");
fred.Display();

SendAPersonByValue(fred);
Console.WriteLine("\nAfter by value call, Person is:");
fred. Display();
Console.ReadLine();

}

Figure 4-13 shows the output of this call.

Figure 4-13. Passing reference types by value locks the reference in place.

As you can see, the value of personAge has been modified. This behavior seems to fly in the face
of what it means to pass a parameter “by value.” Given that you were able to change the state of the
incoming Person, what was copied? The answer: a copy of the reference to the caller’s object. There-
fore, as the SendAPersonByValue() method is pointing to the same object as the caller, it is possible
to alter the object’s state data. What is not possible is to reassign what the reference is pointing to.

Passing Reference Types by Reference
Now assume you have a SendAPersonByReference() method, which passes a reference type by refer-
ence (note the ref parameter modifier):

static void SendAPersonByReference(ref Person p)
{
// Change some data of "p".
p.personAge = 555;

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I134

8849CH04.qxd 10/1/07 10:31 AM Page 134

// "p" is now pointing to a new object on the heap!
p = new Person("Nikki", 999);

}

As you might expect, this allows complete flexibility of how the callee is able to manipulate the
incoming parameter. Not only can the callee change the state of the object, but if it so chooses, it
may also reassign the reference to a new Person type. Now ponder the following updated Main()
method and check Figure 4-14 for output:

static void Main(string[] args)
{
// Passing ref-types by ref.
Console.WriteLine("\n***** Passing Person object by reference *****");
Person mel = new Person("Mel", 23);
Console.WriteLine("Before by ref call, Person is:");
mel.Display();

SendAPersonByReference(ref mel);
Console.WriteLine("After by ref call, Person is:");
mel.Display();
Console.ReadLine();

}

Figure 4-14. Passing reference types by reference allows the reference to be redirected.

As you can see, an object named Mel returns after the call as a type named Nikki, as the
method was able to change what the incoming reference pointed to in memory. The golden rule to
keep in mind when passing reference types:

• If a reference type is passed by reference, the callee may change the values of the object’s
state data as well as the object it is referencing.

• If a reference type is passed by value, the callee may change the values of the object’s state
data but not the object it is referencing.

■Source Code The RefTypeValTypeParams project is located under the Chapter 4 subdirectory.

Value and Reference Types: Final Details
To wrap up this topic, consider the information in Table 4-3, which summarizes the core distinc-
tions between value types and reference types.

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I 135

8849CH04.qxd 10/1/07 10:31 AM Page 135

Table 4-3. Value Types and Reference Types Side by Side

Intriguing Question Value Type Reference Type

Where is this type allocated? Allocated on the stack. Allocated on the managed
heap.

How is a variable represented? Value type variables Reference type variables are
are local copies. pointing to the memory

occupied by the allocated
instance.

What is the base type? Must derive from Can derive from any other
System.ValueType. type (except System.

ValueType), as long as that
type is not “sealed” (more
details on this in Chapter 6).

Can this type function as a No. Value types are always Yes. If the type is not sealed,
base to other types? sealed and cannot be it may function as a base to

extended. other types.

What is the default parameter Variables are passed by value Variables are passed by
passing behavior? (i.e., a copy of the variable is reference (i.e., the address

passed into the called function). of the variable is passed into
the called function).

Can this type override No. Value types are never placed Yes, indirectly (more details
System.Object.Finalize()? onto the heap and therefore do on this in Chapter 8).

not need to be finalized.

Can I define constructors Yes, but the default constructor But of course!
for this type? is reserved (i.e., your custom

constructors must all have
arguments).

When do variables of this When they fall out of the When the object is garbage
type die? defining scope. collected.

Despite their differences, value types and reference types both have the ability to implement
interfaces and may support any number of fields, methods, overloaded operators, constants, prop-
erties, and events.

Understanding C# Nullable Types
To wrap up this chapter, let’s examine the role of nullable data type using a final Console Applica-
tion named NullableTypes. As you know, CLR data types have a fixed range and are represented as a
type in the System namespace. For example, the System.Boolean data type can be assigned a value
from the set {true, false}. Now, recall that all of the numerical data types (as well as the Boolean
data type) are value types. As a rule, value types can never be assigned the value of null, as that is
used to establish an empty object reference:

static void Main(string[] args)
{
// Compiler errors!
// Value types cannot be set to null!
bool myBool = null;
int myInt = null;

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I136

8849CH04.qxd 10/1/07 10:31 AM Page 136

// OK! Strings are reference types.
string myString = null;

}

Since the release of .NET 2.0, it has been possible to create nullable data types. Simply put, a
nullable type can represent all the values of its underlying type, plus the value null. Thus, if we
declare a nullable System.Boolean, it could be assigned a value from the set {true, false, null}.
This can be extremely helpful when working with relational databases, given that it is quite com-
mon to encounter undefined columns in database tables. Without the concept of a nullable data
type, there is no convenient manner in C# to represent a numerical data point with no value.

To define a nullable variable type, the question mark symbol (?) is suffixed to the underlying
data type. Do note that this syntax is only legal when applied to value types. If you attempt to create
a nullable reference type (including strings), you are issued a compile-time error. Like a nonnul-
lable variable, local nullable variables must be assigned an initial value:

static void LocalNullableVariables()
{
// Define some local nullable types.
int? nullableInt = 10;
double? nullableDouble = 3.14;
bool? nullableBool = null;
char? nullableChar = 'a';
int?[] arrayOfNullableInts = new int?[10];

// Error! Strings are reference types!
// string? s = "oops";

}

In C#, the ? suffix notation is a shorthand for creating an instance of the generic System.
Nullable<T> structure type. Although we will not examine generics until Chapter 10, it is important
to understand that the System.Nullable<T> type provides a set of members that all nullable types
can make use of.

For example, you are able to programmatically discover whether the nullable variable indeed
has been assigned a null value using the HasValue property or the != operator. The assigned value of
a nullable type may be obtained directly or via the Value property. Given that the ? suffix is just a
shorthand for using Nullable<T>, you could implement your LocalNullableVariables() method as
follows:

static void LocalNullableVariables()
{
// Define some local nullable types using Nullable<T>.
Nullable<int> nullableInt = 10;
Nullable<double> nullableDouble = 3.14;
Nullable<bool> nullableBool = null;
Nullable<char> nullableChar = 'a';
Nullable<int>[] arrayOfNullableInts = new int?[10];

}

Working with Nullable Types
As stated, nullable data types can be particularly useful when you are interacting with databases,
given that columns in a data table may be intentionally empty (e.g., undefined). To illustrate,
assume the following class, which simulates the process of accessing a database that has a table
containing two columns that may be null. Note that the GetIntFromDatabase() method is not

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I 137

8849CH04.qxd 10/1/07 10:31 AM Page 137

assigning a value to the nullable integer member variable, while GetBoolFromDatabase() is assigning
a valid value to the bool? member:

class DatabaseReader
{
// Nullable data field.
public int? numericValue = null;
public bool? boolValue = true;

// Note the nullable return type.
public int? GetIntFromDatabase()
{ return numericValue; }

// Note the nullable return type.
public bool? GetBoolFromDatabase()
{ return boolValue; }

}

Now, assume the following Main() method, which invokes each member of the DatabaseReader
class, and discovers the assigned values using the HasValue and Value members as well as using the
C# equality operator (not-equal, to be exact):

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Nullable Data *****\n");
DatabaseReader dr = new DatabaseReader();

// Get int from "database".
int? i = dr.GetIntFromDatabase();
if (i.HasValue)
Console.WriteLine("Value of 'i' is: {0}", i.Value);

else
Console.WriteLine("Value of 'i' is undefined.");

// Get bool from "database".
bool? b = dr.GetBoolFromDatabase();
if (b != null)
Console.WriteLine("Value of 'b' is: {0}", b.Value);

else
Console.WriteLine("Value of 'b' is undefined.");

Console.ReadLine();
}

The ?? Operator
The final aspect of nullable types to be aware of is that they can make use of the C# ?? operator.
This operator allows you to assign a value to a nullable type if the retrieved value is in fact null. For
this example, assume you wish to assign a local nullable integer to 100 if the value returned from
GetIntFromDatabase() is null (of course, this method is programmed to always return null, but I
am sure you get the general idea):

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Nullable Data *****\n");
DatabaseReader dr = new DatabaseReader();

...
// If the value from GetIntFromDatabase() is null,

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I138

8849CH04.qxd 10/1/07 10:31 AM Page 138

// assign local variable to 100.
int? myData = dr.GetIntFromDatabase() ?? 100;
Console.WriteLine("Value of myData: {0}", myData.Value);
Console.ReadLine();

}

■Source Code The NullableTypes application is located under the Chapter 4 subdirectory.

Summary
This chapter began with an examination of several C# keywords that allow you to build custom
methods. Recall that by default, parameters are passed by value; however, you may pass a para-
meter by reference if you mark it with ref. or out. You also learned about the role of optional
parameters and how to define and invoke methods taking parameter arrays.

Once we investigated the topic of method overloading, the bulk of this chapter examined sev-
eral details regarding how arrays, enumerations, and structures are defined in C# and represented
within the .NET base class libraries. Along the way, you examined several details regarding value
types and reference types, including how they respond when passing them as parameters to meth-
ods, and how to interact with nullable data types using the ? and ?? operators. With this, our initial
investigation of the C# programming language is complete! In the next chapter, we will begin to dig
into the details of object-oriented development.

CHAPTER 4 ■ CORE C# PROGRAMMING CONSTRUCTS, PART I I 139

8849CH04.qxd 10/1/07 10:31 AM Page 139

8849CH04.qxd 10/1/07 10:31 AM Page 140

Defining Encapsulated Class Types

In the previous two chapters, you investigated a number of core syntactical constructs that are
commonplace to any .NET application you may be developing. Here, you will begin your examina-
tion of the object-oriented capabilities of C#. The first order of business is to examine the process of
building well-defined class types that support any number of constructors. Once you understand
the basics of defining classes and allocating objects, the remainder of this chapter will examine the
role of encapsulation. Along the way you will understand how to define class properties as well as
the role of static fields and members, read-only fields, and constant data. We wrap up by examining
the role of XML code documentation syntax.

Introducing the C# Class Type
As far as the .NET platform is concerned, the most fundamental programming construct is the class
type. Formally, a class is a user-defined type that is composed of field data (often called member
variables) and members that operate on this data (such as constructors, properties, methods,
events, and so forth). Collectively, the set of field data represents the “state” of a class instance (oth-
erwise known as an object). The power of object-based languages such as C# is that by grouping
data and related functionality in a class definition, you are able to model your software after entities
in the real world.

To get the ball rolling, create a new C# Console Application named SimpleClassExample. Next,
insert a new class file (named Car.cs) into your project using the Project ➤ Add Class menu selec-
tion, choose the Class icon from the resulting dialog box as shown in Figure 5-1, and click the Add
button.

A class is defined in C# using the class keyword. Here is the simplest possible declaration:

class Car
{
}

Once you have defined a class type, you will need to consider the set of member variables that
will be used to represent its state. For example, you may decide that cars maintain an int data type
to represent the current speed and a string data type to represent the car’s friendly pet name. Given
these initial design notes, update your Car class as follows:

class Car
{
// The 'state' of the Car.
public string petName;
public int currSpeed;

}

141

C H A P T E R 5

8849CH05.qxd 10/22/07 1:34 PM Page 141

Figure 5-1. Inserting a new C# class type

Notice that these member variables are declared using the public access modifier. Public
members of a class are directly accessible once an object of this type has been created. As you may
already know, the term “object” is used to represent an instance of a given class type created using
the new keyword.

■Note Field data of a class should seldom (if ever) be defined as public. To preserve the integrity of your state
data, it is a far better design to define data as private (or possibly protected) and allow controlled access to the
data via type properties (as shown later in this chapter). However, to keep this first example as simple as possible,
public data fits the bill.

After you have defined the set of member variables that represent the state of the type, the next
design step is to establish the members that model its behavior. For this example, the Car class will
define one method named SpeedUp() and another named PrintState():

class Car
{
// The 'state' of the Car.
public string petName;
public int currSpeed;

// The functionality of the Car.
public void PrintState()
{
Console.WriteLine("{0} is going {1} MPH.", petName, currSpeed);

}
public void SpeedUp(int delta)
{

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES142

8849CH05.qxd 10/22/07 1:34 PM Page 142

currSpeed += delta;
}

}

As you can see, PrintState() is more or less a diagnostic function that will simply dump the
current state of a given Car object to the command window. SpeedUp() will increase the speed of the
Car by the amount specified by the incoming int parameter. Now, update your Main() method with
the following code:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Class Types *****\n");
// Allocate and configure a Car object.
Car myCar = new Car();
myCar.petName = "Henry";
myCar.currSpeed = 10;

// Speed up the car a few times and print out the
// new state.
for (int i = 0; i <= 10; i++)
{
myCar.SpeedUp(5);
myCar.PrintState();

}
Console.ReadLine();

}

Once you run your program, you will see that the Car object (myCar) maintains its current state
throughout the life of the application, as shown in Figure 5-2.

Figure 5-2. Taking the Car for a test drive (pun intended)

Allocating Objects with the new Keyword
As shown in the previous code example, objects must be allocated into memory using the new key-
word. If you do not make use of the new keyword and attempt to make use of your class variable in a
subsequent code statement, you will receive a compiler error:

static void Main(string[] args)
{
// Error! Forgot to use 'new'!
Car myCar;

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 143

8849CH05.qxd 10/22/07 1:34 PM Page 143

myCar.petName = "Fred";
}

To correctly create a class type variable, you may define and allocate a Car object on a single
line of code:

static void Main(string[] args)
{
Car myCar = new Car();
myCar.petName = "Fred";

}

As an alternative, if you wish to define and allocate an object on separate lines of code, you
may do so as follows:

static void Main(string[] args)
{
Car myCar;
myCar = new Car();
myCar.petName = "Fred";

}

Here, the first code statement simply declares a reference to a yet-to-be-determined Car object.
It is not until you assign a reference to an object via the new keyword that this reference points to a
valid class instance in memory.

In any case, at this point we have a trivial class type that defines a few points of data and some
basic methods. To enhance the functionality of the current Car type, we need to understand the role
of class constructors.

Understanding Class Constructors
Given that objects have state (represented by the values of an object’s member variables), the object
user will typically want to assign relevant values to the object’s field data before use. Currently, the
Car type demands that the petName and currSpeed fields be assigned on a field-by-field basis. For the
current example, this is not too problematic, given that we have only two public data points. How-
ever, it is not uncommon for a class to have dozens of fields to contend with. Clearly, it would be
undesirable to author 20 initialization statements to set 20 points of data.

Thankfully, C# supports the use of class constructors, which allow the state of an object to be
established at the time of creation. A constructor is a special method of a class that is called indi-
rectly when creating an object using the new keyword. However, unlike a “normal” method,
constructors never have a return value (not even void) and are always named identically to the
class they are constructing.

■Note As shown in Chapter 13, C# 2008 provides a new object initialization syntax, which allows you to set the
values of public fields and invoke public properties at the time of construction.

The Role of the Default Constructor
Every C# class is provided with a freebee default constructor that you may redefine if need be. By
definition, a default constructor never takes arguments. Beyond allocating the new object into
memory, the default constructor ensures that all field data is set to an appropriate default value
(see Chapter 3 for information regarding the default values of C# data types).

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES144

8849CH05.qxd 10/22/07 1:34 PM Page 144

If you are not satisfied with these default assignments, you may redefine the default construc-
tor to suit your needs. To illustrate, update your C# Car class as follows:

class Car
{
// The 'state' of the Car.
public string petName;
public int currSpeed;

// A custom default constructor.
public Car()
{
petName = "Chuck";
currSpeed = 10;

}
...
}

In this case, we are forcing all Car objects to begin life named Chuck at a rate of 10 mph. With
this, you are able to create a Car object set to these default values as follows:

static void Main(string[] args)
{
// Invoking the default constructor.
Car chuck = new Car();

// Prints "Chuck is going 10 MPH."
chuck.PrintState();

}

Defining Custom Constructors
Typically, classes define additional constructors beyond the default. In doing so, you provide the
object user with a simple and consistent way to initialize the state of an object directly at the time
of creation. Ponder the following update to the Car class, which now supports a total of three class
constructors:

class Car
{
// The 'state' of the Car.
public string petName;
public int currSpeed;

// A custom default constructor.
public Car()
{
petName = "Chuck";
currSpeed = 10;

}

// Here, currSpeed will receive the
// default value of an int (zero).
public Car(string pn)
{
petName = pn;

}

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 145

8849CH05.qxd 10/22/07 1:34 PM Page 145

// Let caller set the full 'state' of the Car.
public Car(string pn, int cs)
{
petName = pn;
currSpeed = cs;

}
...
}

Keep in mind that what makes one constructor different from another (in the eyes of the C#
compiler) is the number of and type of constructor arguments. Recall from Chapter 4, when you
define a method of the same name that differs by the number or type of arguments, you have
overloaded the method. Thus, the Car type has overloaded the constructor to provide a number of
ways to create the object at the time of declaration. In any case, you are now able to create Car
objects using any of the public constructors. For example:

static void Main(string[] args)
{
// Make a Car called Chuck going 10 MPH.
Car chuck = new Car();
chuck.PrintState();

// Make a Car called Mary going 0 MPH.
Car mary = new Car("Mary");
mary.PrintState();

// Make a Car called Daisy going 75 MPH.
Car daisy = new Car("Daisy", 75);
daisy.PrintState();

}

The Default Constructor Revisited
As you have just learned, all classes are endowed with a free default constructor. Thus, if you insert a
new class into your current project named Motorcycle, defined like so:

class Motorcycle
{
public void PopAWheely()
{
Console.WriteLine("Yeeeeeee Haaaaaeewww!");

}
}

you are able to create an instance of the Motorcycle type via the default constructor out of the box:

static void Main(string[] args)
{
Motorcycle mc = new Motorcycle();
mc.PopAWheely();

}

However, as soon as you define a custom constructor, the default constructor is silently removed
from the class and is no longer available! Think of it this way: if you do not define a custom con-
structor, the C# compiler grants you a default in order to allow the object user to allocate an
instance of your type with field data set to the correct default values. However, when you define
a unique constructor, the compiler assumes you have taken matters into your own hands.

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES146

8849CH05.qxd 10/22/07 1:34 PM Page 146

Therefore, if you wish to allow the object user to create an instance of your type with the
default constructor, as well as your custom constructor, you must explicitly redefine the default. To
this end, understand that in a vast majority of cases, the implementation of the default constructor
of a class is intentionally empty, as all you require is the ability to create an object with default
values. Consider the following update to the Motorcycle class:

class Motorcycle
{
public int driverIntensity;

public void PopAWheely()
{
for (int i = 0; i <= driverIntensity; i++)
{
Console.WriteLine("Yeeeeeee Haaaaaeewww!");

}
}

// Put back the default constructor.
public Motorcycle() {}

// Our custom constructor.
public Motorcycle(int intensity)
{ driverIntensity = intensity; }

}

The Role of the this Keyword
Like other C-based languages, C# supplies a this keyword that provides access to the current class
instance. One possible use of the this keyword is to resolve scope ambiguity, which can arise when
an incoming parameter is named identically to a data field of the type. Of course, ideally you would
simply adopt a naming convention that does not result in such ambiguity; however, to illustrate this
use of the this keyword, update your Motorcycle class with a new string field (named name) to rep-
resent the driver’s name. Next, add a method named SetDriverName() implemented as follows:

class Motorcycle
{
public int driverIntensity;
public string name;

public void SetDriverName(string name)
{ name = name; }

...
}

Although this code will compile just fine, if you update Main() to call SetDriverName() and then
print out the value of the name field, you may be surprised to find that the value of the name field is an
empty string!

// Make a Motorcycle with a rider named Tiny?
Motorcycle c = new Motorcycle(5);
c.SetDriverName("Tiny");
c.PopAWheely();
Console.WriteLine("Rider name is {0}", c.name); // Prints an empty name value!

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 147

8849CH05.qxd 10/22/07 1:34 PM Page 147

The problem is that the implementation of SetDriverName() is assigning the incoming parame-
ter back to itself given that the compiler assumes name is referring to the variable currently in the
method scope rather than the name field at the class scope. To inform the compiler that you wish to
set the current object’s name data field to the incoming name parameter, simply use this to resolve
the ambiguity:

public void SetDriverName(string name)
{ this.name = name; }

Do understand that if there is no ambiguity, you are not required to make use of the this key-
word when a class wishes to access its own data or members. For example, if we rename the string
data member to driverName, the use of this is optional as there is no longer a scope ambiguity:

class Motorcycle
{
public int driverIntensity;
public string driverName;

public void SetDriverName(string name)
{
// These two statements are functionally the same.
driverName = name;
this.driverName = name;

}
...
}

Even though there is little to be gained when using this in unambiguous situations, you may
still find this keyword useful when implementing members, as IDEs such as SharpDevelop and
Visual Studio 2008 will enable IntelliSense when this is specified. This can be very helpful when
you have forgotten the name of a class member and want to quickly recall the definition. Consider
Figure 5-3.

Figure 5-3. The IntelliSense of this

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES148

8849CH05.qxd 10/22/07 1:34 PM Page 148

■Note It is a compiler error to use the this keyword within the implementation of a static member (explained
shortly). As you will see, static members operate on the class (not object) level, and therefore at the class level,
there is no current object (thus no this)!

Chaining Constructor Calls Using this
Another use of the this keyword is to design a class using a technique termed constructor chaining.
This design pattern is helpful when you have a class that defines multiple constructors. Given the
fact that constructors often validate the incoming arguments to enforce various business rules, it
can be quite common to find redundant validation logic within a class’s constructor set. Consider
the following updated Motorcycle:

class Motorcycle
{
public int driverIntensity;
public string driverName;

public Motorcycle() { }

// Redundent constructor logic!
public Motorcycle(int intensity)
{
if (intensity > 10)
{
intensity = 10;

}
driverIntensity = intensity;

}

public Motorcycle(int intensity, string name)
{
if (intensity > 10)
{
intensity = 10;

}
driverIntensity = intensity;
driverName = name;

}
...
}

Here (perhaps in an attempt to ensure the safety of the rider), each constructor is ensuring that
the intensity level is never greater than 10. While this is all well and good, we do have redundant
code statements in two constructors. This is less than ideal, as we are now required to update code
in multiple locations if our rules change (for example, if the intensity should not be greater than 5).

One way to improve the current situation is to define a method in the Motorcycle class that will
validate the incoming argument(s). If we were to do so, each constructor could make a call to this
method before making the field assignment(s). While this approach does allow us to isolate the
code we need to update when the business rules change, we are now dealing with the following
redundancy:

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 149

8849CH05.qxd 10/22/07 1:34 PM Page 149

class Motorcycle
{
public int driverIntensity;
public string driverName;

// Constructors.
public Motorcycle() { }

public Motorcycle(int intensity)
{
SetIntensity(intensity);

}
public Motorcycle(int intensity, string name)
{
SetIntensity(intensity);
driverName = name;

}

public void SetIntensity(int intensity)
{
if (intensity > 10)
{
intensity = 10;

}
driverIntensity = intensity;

}
...
}

A cleaner approach is to designate the constructor that takes the greatest number of arguments
as the “master constructor” and have its implementation perform the required validation logic. The
remaining constructors can make use of the this keyword to forward the incoming arguments to
the master constructor and provide any additional parameters as necessary. In this way, we only
need to worry about maintaining a single constructor for the entire class, while the remaining con-
structors are basically empty.

Here is the final iteration of the Motorcycle class (with one additional constructor for the sake
of illustration). When chaining constructors, note how the this keyword is “dangling” off the con-
structor’s declaration (via a colon operator) outside the scope of the constructor itself:

class Motorcycle
{
public int driverIntensity;
public string driverName;

// Constructor chaining.
public Motorcycle() {}
public Motorcycle(int intensity)
: this(intensity, "") {}

public Motorcycle(string name)
: this(0, name) {}

// This is the 'master' constructor that does all the real work.
public Motorcycle(int intensity, string name)
{
if (intensity > 10)
{
intensity = 10;

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES150

8849CH05.qxd 10/22/07 1:34 PM Page 150

}
driverIntensity = intensity;
driverName = name;

}
...
}

Understand that using the this keyword to chain constructor calls is never mandatory. How-
ever, when you make use of this technique, you do tend to end up with a more maintainable and
concise class definition. Again, using this technique you can simplify your programming tasks, as
the real work is delegated to a single constructor (typically the constructor that has the most param-
eters), while the other constructors simply “pass the buck.”

Observing Constructor Flow
On a final note, do know that once a constructor passes arguments to the designated master con-
structor (and that constructor has processed the data), the constructor invoked originally by the
caller will finish executing any remaining code statements. To clarify, update each of the construc-
tors of the Motorcycle class with a fitting call to Console.WriteLine():

class Motorcycle
{
public int driverIntensity;
public string driverName;

// Constructor chaining.
public Motorcycle()
{
Console.WriteLine("In default ctor");

}
public Motorcycle(int intensity)
: this(intensity, "")

{
Console.WriteLine("In ctor taking an int");

}

public Motorcycle(string name)
: this(0, name)

{
Console.WriteLine("In ctor taking a string");

}

// This is the 'master' constructor that does all the real work.
public Motorcycle(int intensity, string name)
{
Console.WriteLine("In master ctor ");
if (intensity > 10)
{
intensity = 10;

}
driverIntensity = intensity;
driverName = name;

}
...
}

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 151

8849CH05.qxd 10/22/07 1:34 PM Page 151

Now, ensure your Main() method exercises a Motorcycle object as follows:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with class Types *****\n");

// Make a Motorcycle.
Motorcycle c = new Motorcycle(5);
c.SetDriverName("Tiny");
c.PopAWheely();
Console.WriteLine("Rider name is {0}", c.driverName);
Console.ReadLine();

}

With this, ponder the output in Figure 5-4.

Figure 5-4. Constructor chaining at work

As you can see, the flow of constructor logic is as follows:

• We create our object by invoking the constructor requiring a single int.

• This constructor forwards the supplied data to the master constructor and provides any
additional startup arguments not specified by the caller.

• The master constructor assigns the incoming data to the object’s field data.

• Control is returned to the constructor originally called, and executes any remaining code
statements.

Great! At this point you are able to define a class with field data (aka member variables) and
various members that can be created using any number of constructors. Next up, let’s formalize the
role of the static keyword.

■Source Code The SimpleClassExample project is included under the Chapter 5 subdirectory.

Understanding the static Keyword
A C# class (or structure) may define any number of static members via the static keyword. When
you do so, the member in question must be invoked directly from the class level, rather than from a

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES152

8849CH05.qxd 10/22/07 1:34 PM Page 152

type instance. To illustrate the distinction, consider our good friend System.Console. As you have
seen, you do not invoke the WriteLine() method from the object level:

// Error! WriteLine() is not an instance level method!
Console c = new Console();
c.WriteLine("I can't be printed...");

but instead simply prefix the type name to the static WriteLine() member:

// Correct! WriteLine() is a static method.
Console.WriteLine("Thanks...");

Simply put, static members are items that are deemed (by the type designer) to be so common-
place that there is no need to create an instance of the type when invoking the member. While any
class (or structure) can define static members, they are most commonly found within “utility
classes.” For example, if you were to use the Visual Studio 2008 object browser (via the View ➤
Object Browser menu item) and examine the members of System.Console, System.Math,
System.Environment, or System.GC (to name a few), you will find that all of their functionality is
exposed from static members.

Defining Static Methods (and Fields)
Assume you have a new Console Application project named StaticMethods and have inserted a
class named Teenager that defines a static method named Complain(). This method returns a ran-
dom string, obtained in part by calling a static helper function named GetRandomNumber():

class Teenager
{
public static Random r = new Random();

public static int GetRandomNumber(short upperLimit)
{
return r.Next(upperLimit);

}

public static string Complain()
{
string[] messages = {"Do I have to?", "He started it!",
"I'm too tired...", "I hate school!",
"You are sooooooo wrong!"};

return messages[GetRandomNumber(5)];
}

}

Notice that the System.Random member variable and the GetRandomNumber() helper function
method have also been declared as static members of the Teenager class, given the rule that static
members can operate only on other static members.

■Note Allow me to repeat myself: static members can operate only on static data and call static methods of the
defining class. If you attempt to make use of nonstatic class data or call a nonstatic method of the class within a
static member’s implementation, you’ll receive compile-time errors.

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 153

8849CH05.qxd 10/22/07 1:34 PM Page 153

Like any static member, to call Complain(), prefix the name of the defining class:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Static Methods *****\n");
for(int i =0; i < 5; i++)
Console.WriteLine(Teenager.Complain());

Console.ReadLine();
}

■Source Code The StaticMethods application is located under the Chapter 5 subdirectory.

Defining Static Data
In addition to static members, a type may also define static field data (such as the Random member
variable seen in the previous Teenager class). Understand that when a class defines nonstatic data
(properly referred to as instance data), each object of this type maintains an independent copy of
the field. For example, assume a class that models a savings account is defined in a new Console
Application project named StaticData:

// A simple savings account class.
class SavingsAccount
{
public double currBalance;
public SavingsAccount(double balance)
{
currBalance = balance;

}
}

When you create SavingsAccount objects, memory for the currBalance field is allocated for
each class instance. Static data, on the other hand, is allocated once and shared among all objects
of the same type. To illustrate the usefulness of static data, add a static point of data named
currInterestRate to the SavingsAccount class, which is set to a default value of 0.04:

// A simple savings account class.
class SavingsAccount
{
public double currBalance;

// A static point of data.
public static double currInterestRate = 0.04;

public SavingsAccount(double balance)
{
currBalance = balance;

}
}

If you were to create three instances of SavingsAccount as follows:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Static Data *****\n");

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES154

8849CH05.qxd 10/22/07 1:34 PM Page 154

Dim s1 As new SavingsAccount(50);
Dim s2 As new SavingsAccount(100);
Dim s3 As new SavingsAccount(10000.75);
Console.ReadLine();

}

the in-memory data allocation would look something like Figure 5-5.

Figure 5-5. Static data is allocated once and shared among all instances of the class.

Let’s update the SavingsAccount class to define two static methods to get and set the interest
rate value:

// A simple savings account class.
class SavingsAccount
{
public double currBalance;

// A static point of data.
public static double currInterestRate = 0.04;

public SavingsAccount(double balance)
{
currBalance = balance;

}

// Static members to get/set interest rate.
public static void SetInterestRate(double newRate)
{ currInterestRate = newRate; }
public static double GetInterestRate()
{ return currInterestRate; }

}

Now, observe the following usage and the output in Figure 5-6:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Static Data *****\n");
SavingsAccount s1 = new SavingsAccount(50);
SavingsAccount s2 = new SavingsAccount(100);

// Print the current interest rate.
Console.WriteLine("Interest Rate is: {0}", SavingsAccount.GetInterestRate());

Savings Account:S1

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 155

8849CH05.qxd 10/22/07 1:34 PM Page 155

// Make new object, this does NOT 'reset' the interest rate.
SavingsAccount s3 = new SavingsAccount(10000.75);
Console.WriteLine("Interest Rate is: {0}", SavingsAccount.GetInterestRate());
Console.ReadLine();

}

Figure 5-6. Static data is allocated only once.

As you can see, when you create new instances of the SavingsAccount class, the value of the
static data is not reset, as the CLR will allocate the data into memory exactly one time. After that
point, all objects of type SavingsAccount operate on the same value.

As stated, static methods can operate only on static data. However, a nonstatic method can
make use of both static and nonstatic data. This should make sense, given that static data is
available to all instances of the type. To illustrate, update SavingsAccount with the following
instance-level members:

class SavingsAccount
{
public double currBalance;
public static double currInterestRate = 0.04;

// Instance members to get/set interest rate.
public void SetInterestRateObj(double newRate)
{ currInterestRate = newRate; }
public double GetInterestRateObj()
{ return currInterestRate; }

...
}

Here, SetInterestRateObj() and GetInterestRateObj() are operating on the same static field
as the static SetInterestRate()/GetInterestRate() methods. Thus, if one object were to change the
interest rate, all other objects report the same value:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Static Data *****\n");
SavingsAccount.SetInterestRate(0.09);
SavingsAccount s1 = new SavingsAccount(50);
SavingsAccount s2 = new SavingsAccount(100);

// All three lines print out "Interest Rate is: 0.09"
Console.WriteLine("Interest Rate is: {0}", s1.GetInterestRateObj());
Console.WriteLine("Interest Rate is: {0}", s2.GetInterestRateObj());
Console.WriteLine("Interest Rate is: {0}", SavingsAccount.GetInterestRate());
Console.ReadLine();

}

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES156

8849CH05.qxd 10/22/07 1:34 PM Page 156

In this case, the value 0.09 is returned regardless of which SavingsAccount object we ask
(including asking via the static GetInterestRate() method).

Defining Static Constructors
As explained earlier in this chapter, constructors are used to set the value of a type’s data at the time
of creation. Thus, if you were to assign a value to a static data member within an instance-level con-
structor, you may be surprised to find that the value is reset each time you create a new object! For
example, assume you have updated the SavingsAccount class as follows:

class SavingsAccount
{
public double currBalance;
public static double currInterestRate;

public SavingsAccount(double balance)
{
currInterestRate = 0.04;
currBalance = balance;

}
...
}

If you execute the previous Main() method, notice how the currInterestRate variable is reset
each time you create a new SavingsAccount object (see Figure 5-7).

Figure 5-7. Assigning static data in an instance level constructor “resets” the value.

While you are always free to establish the initial value of static data using the member initial-
ization syntax, what if the value for your static data needed to be obtained from a database or
external file? To perform such tasks requires a method scope (such as a constructor) to execute the
code statements. For this very reason, C# allows you to define a static constructor:

class SavingsAccount
{
public double currBalance;
public static double currInterestRate;

public SavingsAccount(double balance)
{
currBalance = balance;

}

// A static constructor.
static SavingsAccount()
{
Console.WriteLine("In static ctor!");

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 157

8849CH05.qxd 10/22/07 1:34 PM Page 157

currInterestRate = 0.04;
}

...
}

Simply put, a static constructor is a special constructor that is an ideal place to initialize the
values of static data when the value is not known at compile time (e.g., you need to read in the value
from an external file, generate a random number, etc.). Here are a few points of interest regarding
static constructors:

• A given class (or structure) may define only a single static constructor.

• A static constructor does not take an access modifier and cannot take any parameters.

• A static constructor executes exactly one time, regardless of how many objects of the type are
created.

• The runtime invokes the static constructor when it creates an instance of the class or before
accessing the first static member invoked by the caller.

• The static constructor executes before any instance-level constructors.

Given this modification, when you create new SavingsAccount objects, the value of the static
data is preserved, as the static member is set only one time within the static constructor, regardless
of the number of objects created.

Defining Static Classes
Since the release of .NET 2.0, the C# language expanded the scope of the static keyword by intro-
ducing static classes. When a class has been defined as static, it is not creatable using the new
keyword, and it can contain only members or fields marked with the static keyword (if this is not
the case, you receive compiler errors).

At first glance, this might seem like a fairly useless feature, given that a class that cannot be cre-
ated does not appear all that helpful. However, if you create a class that contains nothing but static
members and/or constant data, the class has no need to be allocated in the first place. Consider the
following new static class type:

// Static classes can only
// contain static members!
static class TimeUtilClass
{
public static void PrintTime()
{ Console.WriteLine(DateTime.Now.ToShortTimeString()); }
public static void PrintDate()
{ Console.WriteLine(DateTime.Today.ToShortDateString()); }

}

Given that this class has been defined with the static keyword, we cannot create an instance
of TimeUtilClass using the new keyword:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Static Data *****\n");
TimeUtilClass.PrintDate();

// Compiler error! Can't create static classes.
TimeUtilClass u = new TimeUtilClass ();

...
}

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES158

8849CH05.qxd 10/22/07 1:34 PM Page 158

Prior to .NET 2.0, the only way to prevent the creation of a class type was to either redefine the
default constructor as private or mark the class as an abstract type using the C# abstract keyword
(full details regarding abstract types are in Chapter 6):

class TimeUtilClass
{
// Redefine the default ctor as private
// to prevent creation.
private TimeUtilClass (){}

public static void PrintTime()
{ Console.WriteLine(DateTime.Now.ToShortTimeString()); }
public static void PrintDate()
{ Console.WriteLine(DateTime.Today.ToShortDateString()); }

}

// Define type as abstract to prevent
// creation
abstract class TimeUtilClass
{
public static void PrintTime()
{ Console.WriteLine(DateTime.Now.ToShortTimeString()); }
public static void PrintDate()
{ Console.WriteLine(DateTime.Today.ToShortDateString()); }

}

While these constructs are still permissible, the use of static classes is a cleaner solution and
more type-safe, given that the previous two techniques allowed nonstatic members to appear
within the class definition without error.

On a related note, a project’s application object (e.g., the class defining the Main() method) is
often defined as a static class, to ensure it only contains static members and cannot be directly
created. For example:

// Define the application object as static.
static class Program
{
static void Main(string[] args)
{
...

}
}

At this point in the chapter you hopefully feel comfortable defining simple class types contain-
ing constructors, fields, and various static (and nonstatic) members. Now that you have the basics
under your belt, we can formally investigate the three pillars of object-oriented programming.

■Source Code The StaticData project is located under the Chapter 5 subdirectory.

Defining the Pillars of OOP
All object-based languages must contend with three core principals of object-oriented program-
ming, often called the “pillars of object-oriented programming (OOP)”:

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 159

8849CH05.qxd 10/22/07 1:34 PM Page 159

• Encapsulation: How does this language hide an object’s internal implementation details and
preserve data integrity?

• Inheritance: How does this language promote code reuse?

• Polymorphism: How does this language let you treat related objects in a similar way?

Before digging into the syntactic details of each pillar, it is important that you understand the
basic role of each. Here is an overview of each pillar, which will be examined in full detail over the
remainder of this chapter and the next.

The Role of Encapsulation
The first pillar of OOP is called encapsulation. This trait boils down to the language’s ability to hide
unnecessary implementation details from the object user. For example, assume you are using a
class named DatabaseReader, which has two primary methods: Open() and Close():

// This type encapsulates the details of opening and closing a database.
DatabaseReader dbReader = new DatabaseReader();
dbReader.Open(@"C:\MyCars.mdf");

// Do something with data file and close the file.
dbReader.Close();

The fictitious DatabaseReader class encapsulates the inner details of locating, loading, mani-
pulating, and closing the data file. Object users love encapsulation, as this pillar of OOP keeps
programming tasks simpler. There is no need to worry about the numerous lines of code that are
working behind the scenes to carry out the work of the DatabaseReader class. All you do is create an
instance and send the appropriate messages (e.g., “Open the file named MyCars.mdf located on my
C drive”).

Closely related to the notion of encapsulating programming logic is the idea of data hiding.
Ideally, an object’s state data should be specified using the private (or possibly protected) keyword.
In this way, the outside world must ask politely in order to change or obtain the underlying value.
This is a good thing, as publicly declared data points can easily become corrupted (hopefully by
accident rather than intent!). You will formally examine this aspect of encapsulation in just a bit.

The Role of Inheritance
The next pillar of OOP, inheritance, boils down to the language’s ability to allow you to build new
class definitions based on existing class definitions. In essence, inheritance allows you to extend the
behavior of a base (or parent) class by inheriting core functionality into the derived subclass (also
called a child class). Figure 5-8 shows a simple example.

You can read the diagram in Figure 5-8 as “A Hexagon is-a Shape that is-an Object.” When you
have classes related by this form of inheritance, you establish “is-a” relationships between types.
The “is-a” relationship is termed classical inheritance.

Here, you can assume that Shape defines some number of members that are common to all
descendents. Given that the Hexagon class extends Shape, it inherits the core functionality defined by
Shape and Object, as well as defines additional hexagon-related details of its own (whatever those
may be).

■Note Under the .NET platform, System.Object is always the topmost parent in any class hierarchy, which
defines some bare-bones functionality fully described in Chapter 6.

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES160

8849CH05.qxd 10/22/07 1:34 PM Page 160

Figure 5-8. The “is-a” relationship

There is another form of code reuse in the world of OOP: the containment/delegation model
(also known as the “has-a” relationship or aggregation). This form of reuse is not used to establish
parent/child relationships. Rather, the “has-a” relationship allows one class to define a member
variable of another class and expose its functionality (if required) to the object user indirectly.

For example, assume you are again modeling an automobile. You might want to express the
idea that a car “has-a” radio. It would be illogical to attempt to derive the Car class from a Radio, or
vice versa (a Car “is-a” Radio? I think not!). Rather, you have two independent classes working
together, where the Car class creates and exposes the Radio’s functionality:

class Radio
{
public void Power(bool turnOn)
{
Console.WriteLine("Radio on: {0}", turnOn);

}
}

class Car
{
// Car 'has-a' Radio
private Radio myRadio = new Radio();

public void TurnOnRadio(bool onOff)
{
// Delegate call to inner object.
myRadio.Power(onOff);

}
}

Notice that the object user has no clue that the Car class is making use of an inner Radio object.

static void Main(string[] args)
{
// Call is forwarded to Radio internally.
Car viper = new Car();
viper.TurnOnRadio(false);

}

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 161

8849CH05.qxd 10/22/07 1:34 PM Page 161

The Role of Polymorphism
The final pillar of OOP is polymorphism. This trait captures a language’s ability to treat related
objects in a similar manner. Specifically, this tenant of an object-oriented language allows a base
class to define a set of members (formally termed the polymorphic interface) that are available to all
descendents. A class’s polymorphic interface is constructed using any number of virtual or abstract
members (see Chapter 6 for full details).

In a nutshell, a virtual member is a member in a base class that defines a default implementa-
tion that may be changed (or more formally speaking, overridden) by a derived class. In contrast, an
abstract method is a member in a base class that does not provide a default implementation, but
does provide a signature. When a class derives from a base class defining an abstract method, it
must be overridden by a derived type. In either case, when derived types override the members
defined by a base class, they are essentially redefining how they respond to the same request.

To preview polymorphism, let’s provide some details behind the shapes hierarchy shown in
Figure 5-8. Assume that the Shape class has defined a virtual method named Draw() that takes no
parameters. Given the fact that every shape needs to render itself in a unique manner, subclasses
(such as Hexagon and Circle) are free to override this method to their own liking (see Figure 5-9).

Figure 5-9. Classical polymorphism

Once a polymorphic interface has been designed, you can begin to make various assumptions
in your code. For example, given that Hexagon and Circle derive from a common parent (Shape), an
array of Shape types could contain anything deriving from this base class. Furthermore, given that
Shape defines a polymorphic interface to all derived types (the Draw() method in this example), we
can assume each member in the array has this functionality.

Consider the following Main() method, which instructs an array of Shape-derived types to ren-
der themselves using the Draw() method:

class Program
{
static void Main(string[] args)
{
Shape[] myShapes = new Shape[3];
myShapes[0] = new Hexagon();
myShapes[1] = new Circle();
myShapes[2] = new Hexagon();

foreach (Shape s in myShapes)
{
s.Draw();

}

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES162

8849CH05.qxd 10/22/07 1:34 PM Page 162

Console.ReadLine();
}

}

This wraps up our brisk overview of the pillars of OOP. Now that you have the theory in your
mind, the remainder of this chapter explores further details of how encapsulation is handled under
C#. The next chapter will tackle the details of inheritance and polymorphism.

C# Access Modifiers
When working with encapsulation, you must always take into account which aspects of a type are
visible to various parts of your application. Specifically, types (classes, interfaces, structures, enu-
merations, delegates) and their members (properties, methods, constructors, fields, and so forth)
are always defined using a specific keyword to control how “visible” the item is to other parts of
your application. Although C# defines numerous keywords to control access, they differ on where
they can be successfully applied (type or member). Table 5-1 documents the role of each access
modifier and where it may be applied.

Table 5-1. C# Access Modifiers

C# Access Modifier May Be Applied To Meaning in Life

public Types or type members Public items have no access
restrictions. A public member can be
accessed from an object as well as
any derived class. A public type can
be accessed from other external
assemblies.

private Type members or nested types Private items can only be accessed
by the class (or structure) that
defines the item.

protected Type members or nested types Protected items are not directly
accessible from an object variable;
however, they are accessible by the
defining type as well as by derived
classes.

internal Types or type members Internal items are accessible only
within the current assembly.
Therefore, if you define a set of
internal types within a .NET class
library, other assemblies are not able
to make use of them.

protected internal Type members or nested types When the protected and internal
keywords are combined on an item,
the item is accessible within the
defining assembly, the defining
class, and by derived classes.

In this chapter, we are only concerned with the public and private keywords. Later chapters
will examine the role of the internal and protected internal modifiers (useful when you build
.NET code libraries) and the protected modifier (useful when you are creating class hierarchies).

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 163

8849CH05.qxd 10/22/07 1:34 PM Page 163

The Default Access Modifiers
By default, type members are implicitly private while types are implicitly internal. Thus, the
following class definition is automatically set to internal, while the type’s default constructor is
automatically set to private:

// An internal class with a private default constructor.
class Radio
{
Radio(){}

}

Thus, to allow other types to invoke members of an object, you must mark them as publically
accessible. As well, if you wish to expose the Radio to external assemblies (again, useful when build-
ing .NET code libraries; see Chapter 15) you will need to add the public modifier.

// A public class with a public default constructor.
public class Radio
{
public Radio(){}

}

Access Modifiers and Nested Types
As mentioned in Table 5-1, the private, protected, and protected internal access modifiers can be
applied to a nested type. Chapter 6 will examine nesting in detail. What you need to know at this
point, however, is that a nested type is a type declared directly within the scope of class or structure.
By way of example, here is a private enumeration (named Color) nested within a public class
(named SportsCar):

public class SportsCar
{
// OK! Nested types can be marked private.
private enum CarColor
{
Red, Green, Blue

}
}

Here, it is permissible to apply the private access modifier on the nested type. However,
nonnested types (such as the SportsCar) can only be defined with the public or internal modifiers.
Therefore, the following class definition is illegal:

// Error! Nonnested types cannot be marked private!
private class SportsCar
{}

The First Pillar: C#’s Encapsulation Services
The concept of encapsulation revolves around the notion that an object’s internal data should not
be directly accessible from an object instance. Rather, if the caller wants to alter the state of an
object, the user does so indirectly using accessor (i.e., “getter”) and mutator (i.e., “setter”) methods.
In C#, encapsulation is enforced at the syntactic level using the public, private, internal, and
protected keywords. To illustrate the need for encapsulation services, assume you have created the
following class definition:

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES164

8849CH05.qxd 10/22/07 1:34 PM Page 164

// A class with a single public field.
class Book
{
public int numberOfPages;

}

The problem with public field data is that the items have no ability to intrinsically “under-
stand” whether the current value to which they are assigned is valid with regard to the current
business rules of the system. As you know, the upper range of a C# int is quite large (2,147,483,647).
Therefore, the compiler allows the following assignment:

// Humm. That is one heck of a mini-novel!
static void Main(string[] args)
{
Book miniNovel = new Book();
miniNovel.numberOfPages = 30000000;

}

Although you have not overflowed the boundaries of an int data type, it should be clear that a
mini-novel with a page count of 30,000,000 pages is a bit unreasonable. As you can see, public fields
do not provide a way to trap logical upper (or lower) limits. If your current system has a business
rule that states a book must be between 1 and 1,000 pages, you are at a loss to enforce this program-
matically. Because of this, public fields typically have no place in a production-level class definition.

Encapsulation provides a way to preserve the integrity of an object’s state data. Rather than
defining public fields (which can easily foster data corruption), you should get in the habit of defin-
ing private data, which is indirectly manipulated using one of two main techniques:

• Define a pair of accessor (get) and mutator (set) methods.

• Define a type property.

Additionally, C# provides the readonly keyword, which also delivers a level of data protection.
Whichever technique you choose, the point is that a well-encapsulated class should hide the details
of how it operates from the prying eyes of the outside world. This is often termed black box pro-
gramming. The beauty of this approach is that an object is free to change how a given method is
implemented under the hood. It does this without breaking any existing code making use of it, pro-
vided that the signature of the method remains constant.

Encapsulation Using Traditional Accessors and Mutators
Over the remaining pages in this chapter, we will be building a fairly complete class that models a
general employee. To get the ball rolling, create a new Console Application named EmployeeApp
and insert a new class file (named Employee.cs) using the Project ➤ Add class menu item. Update
the Employee class with the following fields, methods, and constructors:

class Employee
{
// Field data.
private string empName;
private int empID;
private float currPay;

// Constructors.
public Employee() {}
public Employee(string name, int id, float pay)
{
empName = name;

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 165

8849CH05.qxd 10/22/07 1:34 PM Page 165

empID = id;
currPay = pay;

}

// Members.
public void GiveBonus(float amount)
{
currPay += amount;

}
public void DisplayStats()
{
Console.WriteLine("Name: {0}", empName);
Console.WriteLine("ID: {0}", empID);
Console.WriteLine("Pay: {0}", currPay);

}
}

Notice that the fields of the Employee class are currently defined using the private access key-
word. Given this, the empName, empID, and currPay fields are not directly accessible from an object
variable:

static void Main(string[] args)
{
// Error! Cannot directly access private members
// from an object!
Employee emp = new Employee();
emp.empName = "Marv";

}

If you want the outside world to interact with your private string representing a worker’s full
name, tradition dictates defining an accessor (get method) and a mutator (set method). For exam-
ple, to encapsulate the empName field, you could add the following public members to the existing
Employee class type:

class Employee
{
// Field data.
private string empName;
...
// Accessor (get method)
public string GetName()
{
return empName;

}

// Mutator (set method)
public void SetName(string name)
{
// Remove any illegal characters (!,@,#,$,%),
// check maximum length or case before making assignment.
empName = name;

}
}

This technique requires two uniquely named methods to operate on a single data point. To
illustrate, update your Main() method as follows:

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES166

8849CH05.qxd 10/22/07 1:34 PM Page 166

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Encapsulation *****\n");
Employee emp = new Employee("Marvin", 456, 30000);
emp.GiveBonus(1000);
emp.DisplayStats();

// Use the get/set methods to interact with the object's name.
emp.SetName("Marv");
Console.WriteLine("Employee is named: {0}", emp.GetName());
Console.ReadLine();

}

Encapsulation Using Type Properties
Although you can encapsulate a piece of field data using traditional get and set methods, .NET lan-
guages prefer to enforce data protection using properties. First of all, understand that properties
always map to “real” accessor and mutator methods in terms of CIL code. Therefore, as a class
designer, you are still able to perform any internal logic necessary before making the value assign-
ment (e.g., uppercase the value, scrub the value for illegal characters, check the bounds of a
numerical value, and so on).

Here is the updated Employee class, now enforcing encapsulation of each field using property
syntax rather than traditional get and set methods:

class Employee
{
// Field data.
private string empName;
private int empID;
private float currPay;

// Properties.
public string Name
{
get { return empName; }
set { empName = value; }

}

public int ID
{
get { return empID; }
set { empID = value; }

}

public float Pay
{
get { return currPay; }
set { currPay = value; }

}
...
}

A C# property is composed by defining a get scope (accessor) and set scope (mutator) directly
within the property scope itself. Once we have these properties in place, it appears to the caller that
it is getting and setting a public point of data; however, the correct get and set block is called
behind the scenes to preserve encapsulation:

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 167

8849CH05.qxd 10/22/07 1:34 PM Page 167

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Encapsulation *****\n");
Employee emp = new Employee("Marvin", 456, 30000);
emp.GiveBonus(1000);
emp.DisplayStats();

// Set and get the Name property.
emp.Name = "Marv";
Console.WriteLine("Employee is named: {0}", emp.Name);
Console.ReadLine();

}

Properties (as opposed to accessors and mutators) also make your types easier to manipulate,
in that properties are able to respond to the intrinsic operators of C#. To illustrate, assume that the
Employee class type has an internal private member variable representing the age of the employee.
Here is the relevant update:

class Employee
{
...
private int empAge;
public int Age
{
get { return empAge; }
set { empAge = value; }

}

// Constructors
public Employee() {}
public Employee(string name, int age, int id, float pay)
{
empName = name;
empID = id;
empAge = age;
currPay = pay;

}

public void DisplayStats()
{
Console.WriteLine("Name: {0}", empName);
Console.WriteLine("ID: {0}", empID);
Console.WriteLine("Age: {0}", empAge);
Console.WriteLine("Pay: {0}", currPay);

}
}

Now assume you have created an Employee object named joe. On his birthday, you wish to
increment the age by one. Using traditional accessor and mutator methods, you would need to
write code such as the following:

Employee joe = new Employee();
joe.SetAge(joe.GetAge() + 1);

However, if you encapsulate empAge using a property named Age, you are able to simply write

Employee joe = new Employee();
joe.Age++;

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES168

8849CH05.qxd 10/22/07 1:34 PM Page 168

Internal Representation of Properties
Many programmers (especially those who program with a C-based language such as C++) tend to
name traditional accessor and mutator methods using get_ and set_ prefixes (e.g., get_Name() and
set_Name()). This naming convention itself is not problematic as far as C# is concerned. However, it
is important to understand that under the hood, a property is represented in CIL code using these
same prefixes.

For example, if you open up the EmployeeApp.exe assembly using ildasm.exe, you see that each
property is mapped to hidden get_XXX()/set_XXX() methods called internally by the CLR (see
Figure 5-10).

Figure 5-10. A property is represented by get/set methods internally.

Assume the Employee type now has a private member variable named empSSN to represent
an individual’s Social Security number, which is manipulated by a property named
SocialSecurityNumber (and also assume you have updated your type’s custom constructor
and DisplayStats() method to account for this new piece of field data).

// Add support for a new field representing the employee's SSN.
class Employee
{
...
private string empSSN;
public string SocialSecurityNumber
{
get { return empSSN; }
set { empSSN = value; }

}

// Constructors
public Employee() {}
public Employee(string name, int age, int id, float pay, string ssn)

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 169

8849CH05.qxd 10/22/07 1:34 PM Page 169

{
empName = name;
empID = id;
empAge = age;
currPay = pay;
empSSN = ssn;

}

public void DisplayStats()
{
Console.WriteLine("Name: {0}", empName);
Console.WriteLine("ID: {0}", empID);
Console.WriteLine("Age: {0}", empAge);
Console.WriteLine("SSN: {0}", empSSN);
Console.WriteLine("Pay: {0}", currPay);

}
...
}

If you were to also define two methods named get_SocialSecurityNumber() and set_
SocialSecurityNumber() in the same class, you would be issued compile-time errors:

// Remember, a property really maps to a get_/set_ pair!
class Employee
{
...
public string get_SocialSecurityNumber()
{
return empSSN;

}
public void set_SocialSecurityNumber(string ssn)
{
empSSN = ssn;

}
}

■Note The .NET base class libraries always favor type properties over traditional accessor and mutator methods
when encapsulating field data. Therefore, if you wish to build custom types that integrate well with the .NET plat-
form, avoid defining traditional get and set methods.

Controlling Visibility Levels of Property Get/Set Statements
Prior to .NET 2.0, the visibility of get and set logic was solely controlled by the access modifier of the
property declaration:

// The get and set logic is both public,
// given the declaration of the property.
public string SocialSecurityNumber
{
get { return empSSN; }
set { empSSN = value; }

}

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES170

8849CH05.qxd 10/22/07 1:34 PM Page 170

In some cases, it would be useful to specify unique accessibility levels for get and set logic. To
do so, simply prefix an accessibility keyword to the appropriate get or set keyword (the unqualified
scope takes the visibility of the property’s declaration):

// Object users can only get the value, however
// the Employee class and derived types can set the value.
public string SocialSecurityNumber
{
get { return empSSN; }
protected set { empSSN = value; }

}

In this case, the set logic of SocialSecurityNumber can only be called by the current class and
derived classes and therefore cannot be called from an object instance. Again, the protected
keyword will be formally detailed in the next chapter when we examine inheritance and poly-
morphism.

Read-Only and Write-Only Properties
When encapsulating data, you may wish to configure a read-only property. To do so, simply omit the
set block. Likewise, if you wish to have a write-only property, omit the get block. For example, here
is how the SocialSecurityNumber property could be retrofitted as read-only:

public string SocialSecurityNumber
{
get { return empSSN; }

}

Given this adjustment, the only manner in which an employee’s US Social Security number can
be set is through a constructor argument. Therefore it would now be a compiler error to attempt to
set an employee’s SSN value as so:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Encapsulation *****\n");
Employee emp = new Employee("Marvin", 24, 456, 30000, "111-11-1111");
emp.GiveBonus(1000);
emp.DisplayStats();

// Error! SSN is read only!
emp.SocialSecurityNumber = "222-22-2222";

Console.ReadLine();
}

Static Properties
C# also supports static properties. Recall from earlier in this chapter that static members are
accessed at the class level, not from an instance (object) of that class. For example, assume that the
Employee type defines a static point of data to represent the name of the organization employing
these workers. You may encapsulate a static property as follows:

// Static properties must operate on static data!
class Employee
{
...
private static string companyName;

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 171

8849CH05.qxd 10/22/07 1:34 PM Page 171

public static string Company
{
get { return companyName; }
set { companyName = value; }

}
...

}

Static properties are manipulated in the same manner as static methods, as shown here:

// Interact with the static property.
static void Main(string[] args)
{
Console.WriteLine("***** Fun with Encapsulation *****\n");

// Set company.
Employee.Company = "Intertech Training";
Console.WriteLine("These folks work at {0}.", Employee.Company);

Employee emp = new Employee("Marvin", 24, 456, 30000, "111-11-1111");
emp.GiveBonus(1000);
emp.DisplayStats();

Console.ReadLine();
}

Finally, recall that classes can support static constructors. Thus, if you wanted to ensure that
the name of the static companyName field was always assigned to “Intertech Training,” you would
write the following:

// Static constructors are used to initialize static data.
public class Employee
{
private Static companyName As string

...
static Employee()
{
companyName = "Intertech Training";

}
}

Using this approach, there is no need to explicitly call the Company property to set the initial
value:

// Automatically set to "Intertech Training" via static constructor.
static void Main(string[] args)
{
Console.WriteLine("These folks work at {0}", Employee.Company);

}

To wrap up the examination of encapsulation using C# properties, understand that these syn-
tactic entities are used for the same purpose as traditional accessor (get)/mutator (set) methods.
The benefit of properties is that the users of your objects are able to manipulate the internal data
point using a single named item.

■Note In Chapter 13 you will examine a new C# 2008 construct called automatic properties. This feature allows
you to define a property definition and the related private member variable using a very concise syntax.

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES172

8849CH05.qxd 10/22/07 1:34 PM Page 172

Understanding Constant Data
Now that you can create fields that can be modified using type properties, allow me to illustrate how
to define data that can never change after the initial assignment. C# offers the const keyword to
define constant data. As you might guess, this can be helpful when you are defining a set of known
values for use in your applications that are logically connected to a given class or structure.

Turning away from the Employee example for a moment, assume you are building a utility class
named MyMathClass that needs to define a value for the value PI (which we will assume to be 3.14).
Begin by creating a new Console Application project named ConstData. Given that we would not
want to allow other developers to change this value in code, PI could be modeled with the following
constant:

namespace ConstData
{
class MyMathClass
{
public const double PI = 3.14;

}

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Fun with Const *****\n");
Console.WriteLine("The value of PI is: {0}", MyMathClass.PI);

// Error! Can't change a constant!
MyMathClass.PI = 3.1444;

Console.ReadLine();
}

}
}

Notice that we are referencing the constant data defined by MyMathClass using a class name
prefix (i.e., MyMathClass.PI). This is due to the fact that constant fields of a class or structure are
implicitly static. However, it is permissible to define and access a local constant variable within a
type member. By way of example:

static void LocalConstStringVariable()
{
// A local constant data point can be directly accessed.
const string fixedStr = "Fixed string Data";
Console.WriteLine(fixedStr);

// Error!
fixedStr = "This will not work!";

}

Regardless of where you define a constant piece of data, the one point to always remember is
that the initial value assigned to the constant must be specified at the time you define the constant.
Thus, if you were to modify your MyMathClass in such a way that the value of PI is assigned in a class
constructor as follows:

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 173

8849CH05.qxd 10/22/07 1:34 PM Page 173

class MyMathClass
{
// Try to set PI in ctor?
public const double PI;

public MyMathClass()
{
// Error!
PI = 3.14;

}
}

you would receive a compile-time error. The reason for this restriction has to do with the fact the
value of constant data must be known at compile time. Constructors, as you know, are invoked at
runtime.

Understanding Read-Only Fields
Closely related to constant data is the notion of read-only field data (which should not be confused
with a read-only property). Like a constant, a read-only field cannot be changed after the initial
assignment. However, unlike a constant, the value assigned to a read-only field can be determined
at runtime, and therefore can legally be assigned within the scope of a constructor (but nowhere
else).

This can be very helpful when you don’t know the value of a field until runtime (perhaps
because you need to read an external file to obtain the value), but wish to ensure that the value will
not change after that point. For the sake of illustration, assume the following update to MyMathClass:

class MyMathClass
{
// Read-only fields can be assigned in ctors,
// but nowhere else.
public readonly double PI;
public MyMathClass ()
{
PI = 3.14;

}
}

Again, any attempt to make assignments to a field marked readonly outside the scope of a con-
structor results in a compiler error:

class MyMathClass
{
public readonly double PI;
public MyMathClass ()
{
PI = 3.14;

}

// Error!
public void ChangePI()
{ PI = 3.14444;}

}

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES174

8849CH05.qxd 10/22/07 1:34 PM Page 174

Static Read-Only Fields
Unlike a constant field, read-only fields are not implicitly static. Thus, if you wish to expose PI from
the class level, you must explicitly make use of the static keyword. If you know the value of a static
read-only field at compile time, the initial assignment looks very similar to that of a constant:

class MyMathClass
{
public static readonly double PI = 3.14;

}

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Fun with Const *****");
Console.WriteLine("The value of PI is: {0}", MyMathClass.PI);
Console.ReadLine();

}
}

However, if the value of a static read-only field is not known until runtime, you must make use
of a static constructor as described earlier in this chapter:

class MyMathClass
{
public static readonly double PI;

static MyMathClass()
{ PI = 3.14; }

}

Now that we have examined the role of constant data and read-only fields, we can return to the
Employee example and put the wraps on this chapter.

■Source Code The ConstData project is included under the Chapter 5 subdirectory.

Understanding Partial Types
Classes and structures can be defined with a type modifier named partial that allows you to define
a type across multiple *.cs files. Earlier versions of the language required all code for a given type
be defined within a single *.cs file. Given the fact that a production-level C# class may be hundreds
of lines of code (or more), this can end up being a mighty lengthy file indeed.

In these cases, it may be beneficial to partition a type’s implementation across numerous *.cs
files in order to separate code that is in some way more important from other aspects of the type
definition. For example, using the partial class modifier, you could place all of the Employee con-
structors and properties into a new file named Employee.Internals.cs:

partial class Employee
{
// Constructors

...
// Properties

...
}

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 175

8849CH05.qxd 10/22/07 1:34 PM Page 175

while the private field data and type methods are defined within the initial Employee.cs:

partial class Employee
{
// Field data.
private string empName;
private int empID;
private float currPay;
private int empAge;
private string empSSN;
private static string companyName;

public void GiveBonus(float amount)
{
currPay += amount;

}

public void DisplayStats()
{
Console.WriteLine("Name: {0}", empName);
Console.WriteLine("ID: {0}", empID);
Console.WriteLine("Age: {0}", empAge);
Console.WriteLine("SSN: {0}", empSSN);
Console.WriteLine("Pay: {0}", currPay);

}
}

As you might guess, this can be helpful to new team members who need to quickly learn about
the public interface of the type. Rather than reading through a single (lengthy) C# file to find the
members of interest, they can focus on the public members. Of course, once these files are com-
piled by the C# compiler, the end result is a single unified type. To this end, the partial modifier is
purely a design-time construct.

Also know that the names you give to the files that contain partial type definitions are entirely
up to you. Here, Employee.Internal.cs was chosen simply to indicate that this file contains grungy
infrastructure code that most developers can ignore. The only requirement when defining partial
types is that the type’s name (Employee in this case) is identical and defined within the same .NET
namespace.

■Note Visual Studio 2008 makes use of the partial keyword to partition code generated by the IDE’s designer
tools (such as various GUI designers). Using this approach, you can keep focused on your current solution, and be
blissfully unaware of the designer-generated code.

Documenting C# Source Code via XML
The final task of this chapter is to examine a specific way to comment your code that yields XML-
based code documentation. If you have worked with the Java programming language, you may be
familiar with the javadoc utility. Using javadoc, you are able to turn Java source code into a corre-
sponding HTML representation (provided the *.java file contains the correct code comment
syntax). The C# documentation model is slightly different, in that the code-comments-to-XML con-
version process is the job of the C# compiler (via the /doc option) rather than a stand-alone utility.

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES176

8849CH05.qxd 10/22/07 1:34 PM Page 176

So, why use XML to document our type definitions rather than HTML? The main reason is that
XML is a very “enabling technology.” Given that XML separates the definition of data from the pres-
entation of that data, we can apply any number of XML transformations to the underlying XML to
display the code documentation in a variety of formats (MSDN format, HTML, etc.).

When you wish to document your C# types in XML, your first step is to make use of the new
triple slash (///) code comment notations. Once a documentation comment has been declared,
you are free to use any well-formed XML elements, including the recommended set shown in
Table 5-2.

Table 5-2. Recommended Code Comment XML Elements

Predefined XML Documentation
Element Meaning in Life

<c> Indicates that the following text should be displayed in a specific
“code font”

<code> Indicates multiple lines should be marked as code

<example> Mocks up a code example for the item you are describing

<exception> Documents which exceptions a given class may throw

<list> Inserts a list or table into the documentation file

<param> Describes a given parameter

<paramref> Associates a given XML tag with a specific parameter

<permission> Documents the security constraints for a given member

<remarks> Builds a description for a given member

<returns> Documents the return value of the member

<see> Cross-references related items in the document

<seealso> Builds an “also see” section within a description

<summary> Documents the “executive summary” for a given member

<value> Documents a given property

If you are making use of the new C# XML code comment notation, do be aware the Visual Stu-
dio 2008 IDE will generate documentation skeletons on your behalf. For example, if you add a triple
slash above the definition of your Employee class, you end up with the following skeleton:

/// <summary>
///
/// </summary>
partial class Employee
{
...
}

Simply fill in the blanks with your custom content:

/// <summary>
/// This class represents an Employee.
/// </summary>
partial class Employee
{
...
}

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 177

8849CH05.qxd 10/22/07 1:34 PM Page 177

By way of another example, insert a triple slash code comment to your custom five-argument
constructor. This time the comment builder utility has been kind enough to add <param> elements:

/// <summary>
///
/// </summary>
/// <param name="name"></param>
/// <param name="age"></param>
/// <param name="id"></param>
/// <param name="pay"></param>
/// <param name="ssn"></param>
public Employee(string name, int age, int id, float pay, string ssn)
{

empName = name;
empID = id;
empAge = age;
currPay = pay;
empSSN = ssn;

}

Also be aware that these XML code comments can be entered using the Class Details window
(see Chapter 2) of Visual Studio 2008, as shown in Figure 5-11.

Figure 5-11. Entering XML comments using the Class Details window

One benefit of annotating your code with XML comments is that you are able to view this
information from within Visual Studio’s IntelliSense (see Figure 5-12). As you would guess, this can
be helpful to other members on your team who might not know the role of a given type member.

Figure 5-12. XML comments are viewable via IntelliSense.

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES178

8849CH05.qxd 10/22/07 1:34 PM Page 178

Generating the XML File
In any case, once you have documented your code with XML comments, the next step is to generate
a corresponding *.xml file based on the XML data. If you are building your C# programs using the
command-line compiler (csc.exe), the /doc flag is used to generate a specified *.xml file based on
your XML code comments:

csc /doc:XmlCarDoc.xml *.cs

Visual Studio 2008 projects allow you to specify the name of an XML documentation file using
the Generate XML documentation file check box option found on the Build tab of the Properties
window (see Figure 5-13).

Figure 5-13. Generating an XML code comment file via Visual Studio 2008

Once you have enabled this behavior, the compiler will place the generated *.xml file within
your project’s \bin\Debug folder. You can verify this for yourself by clicking the Show All Files but-
ton on the Solution Explorer, generating the result in Figure 5-14.

Figure 5-14. Locating the generated XML documentation file

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 179

8849CH05.qxd 10/22/07 1:34 PM Page 179

■Note There are many other elements and notations that may appear in C# XML code comments. If you are
interested in more details, look up the topic “XML Documentation Comments (C# Programming Guide)” within the
.NET Framework SDK 3.5 documentation.

Transforming XML Code Comments via NDoc
Now that you have generated an *.xml file that contains your source code comments, you may be
wondering exactly what to do with it. Sadly, Visual Studio 2008 does not provide a built-in utility
that transforms XML data into a more user-friendly help format (such as an HTML page). If you are
comfortable with the ins and outs of XML transformations, you are, of course, free to manually cre-
ate your own style sheets.

A simpler alternative, however, are the numerous third-party tools that will translate an XML
code file into various helpful formats. For example, recall from Chapter 2 that the NDoc application
generates documentation in several different formats. Assuming you have this tool installed, the
first step is to specify the location of your *.xml file and the corresponding assembly. To do so, click
the Add button of the NDoc GUI. This will open the dialog box shown in Figure 5-15.

Figure 5-15. Specifying the XML file and corresponding assembly

At this point, you can select for output location (via the OutputDirectory property) and docu-
ment type (via the Documentation Type drop-down list). For this example, let’s pick an MSDN-
CHM format, which will generate documentation that looks and feels identical to the .NET
Framework 3.5 documentation (see Figure 5-16).

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES180

8849CH05.qxd 10/22/07 1:34 PM Page 180

Figure 5-16. Specifying the output directory and documentation format

Obviously, we could establish other settings using the NDoc GUI, however once you select the
Documentation ➤ Build menu option, NDoc will generate a full help system for your application.
Figure 5-17 shows the end result.

Figure 5-17. Our MSDN-style help system for the EmployeeApp project

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 181

8849CH05.qxd 10/22/07 1:34 PM Page 181

■Note At the time of this writing, Microsoft has released as a Community Technology Preview (CTP) a tool
named Sandcastle, which is similar in functionally to the open source NDoc utility. Check out http://www.
sandcastledocs.com for more information (this URL is subject to change).

Visualizing the Fruits of Our Labor
At this point, you have created a fairly interesting class named Employee. If you are using Visual
Studio 2008, you may wish to insert a new class diagram file (see Chapter 2) in order to view (and
maintain) your class at design time. Figure 5-18 shows the completed Employee class type.

Figure 5-18. The completed Employee class

As you will see in the next chapter, this Employee class will function as a base class for a family
of derived class types (WageEmployee, SalesEmployee, and Manager).

■Source Code The EmployeeApp project can be found under the Chapter 5 subdirectory.

Summary
The point of this chapter was to introduce you to the role of the C# class type. As you have seen,
classes can take any number of constructors that enable the object user to establish the state of the
object upon creation. This chapter also illustrated several class design techniques (and related key-
words). Recall that the this keyword can be used to obtain access to the current object, the static

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES182

8849CH05.qxd 10/22/07 1:34 PM Page 182

http://www

keyword allows you to define fields and members that are bound at the class (not object) level, and
the const keyword (and readonly modifier) allows you to define a point of data that can never
change after the initial assignment.

The bulk of this chapter dug into the details of the first pillar of OOP: encapsulation. Here you
learned about the access modifiers of C# and the role of type properties, partial classes, and XML
code documentation. With this behind us, we are now able to turn to the next chapter where you
will learn to build a family of related classes using inheritance and polymorphism.

CHAPTER 5 ■ DEFINING ENCAPSULATED CLASS TYPES 183

8849CH05.qxd 10/22/07 1:34 PM Page 183

8849CH05.qxd 10/22/07 1:34 PM Page 184

Understanding Inheritance and
Polymorphism

The previous chapter examined the first pillar of OOP: encapsulation. At that time you learned
how to build a single well-defined class type with constructors and various members (fields, prop-
erties, constants, read-only fields, etc.). This chapter will focus on the remaining two pillars of OOP:
inheritance and polymorphism.

First, you will learn how to build families of related classes using inheritance. As you will see,
this form of code reuse allows you to define common functionality in a parent class that can be
leveraged (and possibly altered) by child classes. Along the way, you will learn how to establish a
polymorphic interface into the class hierarchies using virtual and abstract members. We wrap up by
examining the role of the ultimate parent class in the .NET base class libraries: System.Object.

The Basic Mechanics of Inheritance
Recall from the previous chapter that inheritance is the aspect of OOP that facilitates code reuse.
Specifically speaking, code reuse comes in two flavors: classical inheritance (the “is-a” relationship)
and the containment/delegation model (the “has-a” relationship). Let’s begin this chapter by exam-
ining the classical “is-a” inheritance model.

When you establish “is-a” relationships between classes, you are building a dependency
between two or more class types. The basic idea behind classical inheritance is that new classes
may leverage (and possibly extend) the functionality of existing classes. To begin with a very simple
example, create a new Console Application project named BasicInheritance. Now assume you have
designed a simple class named Car that models some basic details of an automobile:

// A simple base class.
class Car
{
public readonly int maxSpeed;
private int currSpeed;

public Car(int max)
{
maxSpeed = max;

}
public Car()
{
maxSpeed = 55;

}

185

C H A P T E R 6

8849CH06.qxd 10/1/07 10:35 AM Page 185

public int Speed
{
get { return currSpeed; }
set
{
currSpeed += value;
if (currSpeed > maxSpeed)
{
currSpeed = maxSpeed;

}
}

}
}

Notice that the Car class is making use of encapsulation services to control access to the private
currSpeed field using a public property named Speed. At this point you can exercise your Car type as
follows:

static void Main(string[] args)
{
Console.WriteLine("***** Basic Inheritance *****\n");
// Make a Car type.
Car myCar = new Car(80);
myCar.Speed = 50;
Console.WriteLine("My car is going {0} MPH", myCar.Speed);
Console.ReadLine();

}

Specifying a Class Type’s Parent Class
Now assume you wish to build a new class named MiniVan. Like a basic Car, you wish to define the
MiniVan class to support a maximum speed, current speed, and a property named Speed to allow the
object user to modify the object’s state. Clearly, the Car and MiniVan classes are related; in fact we
can say that a MiniVan “is-a” Car. The “is-a” relationship (formally termed classical inheritance)
allows you to build new class definitions that extend the functionality of an existing class.

The existing class that will serve as the basis for the new class is termed a base or parent class.
The role of a base class is to define all the common data and members for the classes that extend it.
The extending classes are formally termed derived or child classes. In C#, we make use of the colon
operator on the class definition to establish an “is-a” relationship between classes:

// MiniVan 'is-a' Car.
class MiniVan : Car
{
}

So, what have we gained by extending our MiniVan from the Car base class? Simply put, MiniVan
objects now have access to each public member defined within the parent class. Given the relation
between these two class types, we could now make use of the MiniVan type like so:

static void Main(string[] args)
{
Console.WriteLine("***** Basic Inheritance *****\n");

...
// Make a MiniVan type.
MiniVan myVan = new MiniVan();
myVan.Speed = 10;
Console.WriteLine("My van is going {0} MPH",

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM186

8849CH06.qxd 10/1/07 10:35 AM Page 186

myVan.Speed);
Console.ReadLine();

}

Notice that although we have not added any members to the MiniVan class, we have direct
access to the public Speed property of our parent class, and have thus reused code. Recall, however,
that encapsulation is preserved; therefore the following code results in a compiler error:

static void Main(string[] args)
{
Console.WriteLine("***** Basic Inheritance *****\n");

...
// Make a MiniVan type.
MiniVan myVan = new MiniVan();
myVan.Speed = 10;
Console.WriteLine("My van is going {0} MPH",
myVan.Speed);

// Error! Can't access private members using an object reference!
myVan.currSpeed = 55;
Console.ReadLine();

}

On a related note, if the MiniVan defined its own set of members, it would not be able to access
any private member of the Car base class:

// MiniVan derives from Car.
class MiniVan : Car
{
public void TestMethod()
{
// OK! Can access public members
// of a parent within a derived type.
Speed = 10;

// Error! Cannot access private
// members of parent within a derived type.
currSpeed = 10;

}
}

Regarding Multiple Base Classes
Speaking of base classes, it is important to keep in mind that the .NET platform demands that a
given class have exactly one direct base class. It is not possible to create a class type that directly
derives from two or more base classes (this technique [which is supported in other C-based lan-
guages, such as unmanaged C++] is known as multiple inheritance, or simply MI):

// Illegal! The .NET platform does not allow
// multiple inheritance for classes!
class WontWork
: BaseClassOne, BaseClassTwo

{}

As you will see in Chapter 9, the .NET platform does allow a given class (or structure) type to
implement any number of discrete interfaces. In this way, a C# type can exhibit a number of behav-
iors while avoiding the complexities associated with MI. On a related note, while a class can have

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 187

8849CH06.qxd 10/1/07 10:35 AM Page 187

only one direct base class, it is permissible for an interface to directly derive from multiple inter-
faces. Using this technique, you can build sophisticated interface hierarchies that model complex
behaviors (again, see Chapter 9).

The sealed Keyword
C# supplies another keyword, sealed, that prevents inheritance from occurring. When you mark a
class as sealed, the compiler will not allow you to derive from this type. For example, assume you
have decided that it makes no sense to further extend the MiniVan class:

// This class cannot be extended!
sealed class MiniVan : Car
{
}

If you (or a teammate) were to attempt to derive from this class, you would receive a compile-
time error:

// Error! Cannot extend
// a class marked with the sealed keyword!
class DeluxeMiniVan
: MiniVan

{}

Most often, sealing a class makes the best sense when you are designing a utility class. For
example, the System namespace defines numerous sealed classes. You can verify this for yourself
by opening up the Visual Studio 2008 Object Browser (via the View menu) and selecting the
System.String type defined within the mscorlib.dll assembly. Notice in Figure 6-1 the use of the
sealed keyword highlighted in the Summary window.

Figure 6-1. The base class libraries define numerous sealed types.

Thus, just like the MiniVan, if you attempted to build a new class that extends System.String,
you will receive a compile-time error:

// Another error! Cannot extend
// a class marked as sealed!
class MyString
: String

{}

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM188

8849CH06.qxd 10/1/07 10:35 AM Page 188

■Note In Chapter 4 you learned that C# structures are always implicitly sealed (see Table 4-3). Therefore, you
can never derive one structure from another structure, a class from a structure or a structure from a class.

As you would guess, there are many more details to inheritance that you will come to know
during the remainder of this chapter. For now, simply keep in mind that the colon operator allows
you to establish base/derived class relationships, while the sealed keyword prevents inheritance
from occurring.

■Note C# 2008 introduces the concept of extension methods. As you will see in Chapter 13, this technique
makes it possible to add new functionality to precompiled types (including sealed types) within your current
project.

Revising Visual Studio Class Diagrams
Back in Chapter 2, I briefly mentioned that Visual Studio 2008 allows you to establish base/derived
class relationships visually at design time. To leverage this aspect of the IDE, your first step is to
include a new class diagram file into your current project. To do so, access the Project ➤ Add New
Item menu option and select the Class Diagram icon (in Figure 6-2, I renamed the file from
ClassDiagram1.cd to Cars.cd).

Figure 6-2. Inserting a new class diagram

Once you click the Add button, you will be presented with a blank designer surface. To add
types to a class designer, simply drag each file from the Solution Explorer window onto the surface.
When you do so, the IDE responds by automatically including all types on the designer surface.

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 189

8849CH06.qxd 10/1/07 10:35 AM Page 189

Realize that if you delete an item from the visual designer, this will not delete the associated source
code, but simply take it off the designer surface. Our current class hierarchy is shown in Figure 6-3.

Figure 6-3. The visual designer of Visual Studio

■Note As a shortcut, if you wish to automatically add all of your project’s types to a designer surface, select the
Project node within the Solution Explorer and click the View Class Diagram button in the upper right of the Solution
Explorer window.

Beyond simply displaying the relationships of the types within your current application, recall
from Chapter 2 that you can also create brand new types (and populate their members) using the
Class Designer toolbox and Class Details window. If you wish to make use of these visual tools
during the remainder of the book, feel free. However, always make sure you analyze the generated
code so you have a solid understanding of what these tools have done on your behalf.

■Source Code The BasicInheritance project is located under the Chapter 6 subdirectory.

The Second Pillar: The Details of Inheritance
Now that you have seen the basic syntax of inheritance, let’s create a more complex example and
get to know the numerous details of building class hierarchies. To do so, we will be reusing the
Employee class we designed in Chapter 5. To begin, create a brand new C# Console Application
named Employees. Next, activate the Project ➤ Add Existing Item menu option and navigate to the
location of your Employee.cs and Employee.Internals.cs files. Select each of them (via a Ctrl-click)
and click the OK button. Visual Studio 2008 responds by copying each file into the current project.

Before we start to build derived classes, you have one detail to attend to. Because the Employee
class was created in a project named EmployeeApp, the type has been wrapped within an identi-
cally named .NET namespace scope. Chapter 15 will examine namespaces in detail; however for
simplicity, rename the current namespace (in both file locations) to Employee in order to match your
new project name:

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM190

8849CH06.qxd 10/1/07 10:35 AM Page 190

// Be sure to change the namespace name in both files!
namespace Employees
{
/// <summary>
/// This class represents an Employee.
/// </summary>
partial class Employee
{...}

}

Our goal is to create a family of classes that model various types of employees in a company.
Assume that you wish to leverage the functionality of the Employee class to create two new classes
(SalesPerson and Manager). The class hierarchy we will be building initially looks something like
what you see in Figure 6-4.

Figure 6-4. The initial Employees hierarchy

As illustrated in Figure 6-4, you can see that a SalesPerson “is-a” Employee (as is a Manager).
Remember that under the classical inheritance model, base classes (such as Employee) are used to
define general characteristics that are common to all descendents. Subclasses (such as SalesPerson
and Manager) extend this general functionality while adding more specific behaviors.

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 191

8849CH06.qxd 10/1/07 10:35 AM Page 191

For our example, we will assume that the Manager class extends Employee by recording the num-
ber of stock options, while the SalesPerson class maintains the number of sales made. Insert a new
class file (Manager.cs) that defines the Manager type as follows:

// Managers need to know their number of stock options.
class Manager : Employee
{
private int numberOfOptions;
public int StockOptions
{
get { return numberOfOptions; }
set { numberOfOptions = value; }

}
}

Next, add another new class file (SalesPerson.cs) that defines the SalesPerson type:

// Salespeople need to know their number of sales.
class SalesPerson : Employee
{
private int numberOfSales;
public int SalesNumber
{
get { return numberOfSales; }
set { numberOfSales = value; }

}
}

Now that you have established an “is-a” relationship, SalesPerson and Manager have automati-
cally inherited all public members of the Employee base class. To illustrate, update your Main()
method as follows:

// Create a subclass and access base class functionality.
static void Main(string[] args)
{
Console.WriteLine("***** The Employee Class Hierarchy *****\n");
SalesPerson danny = new SalesPerson();
danny.Age = 31;
danny.Name = "Danny";
danny.SalesNumber = 50;
Console.ReadLine();

}

Controlling Base Class Creation with the base Keyword
Currently, SalesPerson and Manager can only be created using the freebee default constructor (see
Chapter 5). With this in mind, assume you have added a new six-argument constructor to the
Manager type, which is invoked as follows:

static void Main(string[] args)
{
...
// Assume Manager has a constructor matching this signature:
// (string fullName, int age, int empID,
// float currPay, string ssn, int numbOfOpts)
Manager chucky = new Manager("Chucky", 50, 92, 100000, "333-23-2322", 9000);
Console.ReadLine();

}

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM192

8849CH06.qxd 10/1/07 10:35 AM Page 192

If you look at the argument list, you can clearly see that most of these parameters should be
stored in the member variables defined by the Employee base class. To do so, you might implement
this custom constructor on the Manager class as follows:

public Manager(string fullName, int age, int empID,
float currPay, string ssn, int numbOfOpts)

{
// This field is defined by the Manager class.
numberOfOptions = numbOfOpts;

// Assign incoming parameters using the
// inherited properties of the parent class.
ID = empID;
Age = age;
Name = fullName;
Pay = currPay;

// OOPS! This would be a compiler error,
// as the SSN property is read-only!
SocialSecurityNumber = ssn;

}

The first issue with this approach is that we defined the SocialSecurityNumber property in the
parent as read-only; therefore we are unable to assign the incoming string parameter to this field,
as seen in the final code statement of this custom constructor.

The second issue is that we have indirectly created a rather inefficient constructor, given the
fact that under C#, unless you say otherwise, the default constructor of a base class is called auto-
matically before the logic of the derived constructor is executed. After this point, the current
implementation accesses numerous public properties of the Employee base class to establish its
state. Thus, you have really made seven hits (five inherited properties and two constructor calls)
during the creation of a Manager object!

To help optimize the creation of a derived class, you will do well to implement your subclass
constructors to explicitly call an appropriate custom base class constructor, rather than the default.
In this way, you are able to reduce the number of calls to inherited initialization members (which
saves processing time). Let’s retrofit the custom constructor of the Manager type to do this very thing
using the base keyword:

public Manager(string fullName, int age, int empID,
float currPay, string ssn, int numbOfOpts)
: base(fullName, age, empID, currPay, ssn)

{
// This field is defined by the Manager class.
numberOfOptions = numbOfOpts;

}

Here, the base keyword is hanging off the constructor signature (much like the syntax used to
chain constructors on a single class using the this keyword; see Chapter 5), which always indicates
a derived constructor is passing data to the immediate parent constructor. In this situation, you are
explicitly calling the five-argument constructor defined by Employee and saving yourself unneces-
sary calls during the creation of the child class. The custom SalesPerson constructor looks almost
identical:

// As a general rule, all subclasses should explicitly call an appropriate
// base class constructor.
public SalesPerson(string fullName, int age, int empID,
float currPay, string ssn, int numbOfSales)
: base(fullName, age, empID, currPay, ssn)

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 193

8849CH06.qxd 10/1/07 10:35 AM Page 193

{
// This belongs with us!
numberOfSales = numbOfSales;

}

Also be aware that you may use the base keyword anytime a subclass wishes to access a public
or protected member defined by a parent class. Use of this keyword is not limited to constructor
logic. You will see examples using base in this manner during our examination of polymorphism
later in this chapter.

Finally, recall that once you add a custom constructor to a class definition, the default
constructor is silently removed. Therefore, be sure to redefine the default constructor for the
SalesPerson and Manager types, for example:

// Add back the default ctor
// in the Manager class as well.
public SalesPerson() {}

Keeping Family Secrets: The protected Keyword
As you already know, public items are directly accessible from anywhere, while private items cannot
be accessed from any object beyond the class that has defined it. Recall from Chapter 5 that C#
takes the lead of many other modern object languages and provides an additional keyword to
define member accessibility: protected.

When a base class defines protected data or protected members, it establishes a set of items
that can be accessed directly by any descendent. If you wish to allow the SalesPerson and Manager
child classes to directly access the data sector defined by Employee, you can update the original
Employee class definition as follows:

// protected state data.
partial class Employee
{
// Derived classes can now directly access this information.
protected string empName;
protected int empID;
protected float currPay;
protected int empAge;
protected string empSSN;
protected static string companyName;

...
}

The benefit of defining protected members in a base class is that derived types no longer have
to access the data indirectly using public methods or properties. The possible downfall, of course, is
that when a derived type has direct access to its parent’s internal data, it is very possible to acciden-
tally bypass existing business rules found within public properties. When you define protected
members, you are creating a level of trust between the parent and child class, as the compiler will
not catch any violation of your type’s business rules.

Finally, understand that as far as the object user is concerned, protected data is regarded as
private (as the user is “outside” of the family). Therefore, the following is illegal:

static void Main(string[] args)
{
// Error! Can't access protected data from object instance.
Employee emp = new Employee();
emp.empName = "Fred";

}

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM194

8849CH06.qxd 10/1/07 10:35 AM Page 194

■Note Although protected field data can break encapsulation, it is quite safe (and useful) to define protected
methods. When building class hierarchies, it is very common to define a set of methods that are only for use by
derived types.

Adding a Sealed Class
Recall that a sealed class cannot be extended by other classes. As mentioned, this technique is most
often used when you are designing a utility class. However, when building class hierarchies, you
might find that a certain branch in the inheritance chain should be “capped off,” as it makes no
sense to further extend the linage. For example, assume you have added yet another class to your
program (PTSalesPerson) that extends the existing SalesPerson type. Figure 6-5 shows the current
update.

Figure 6-5. The PTSalesPerson class

PTSalesPerson is a class representing (of course) a part-time salesperson. For the sake of
argument, let’s say that you wish to ensure that no other developer is able to subclass from
PTSalesPerson. (After all, how much more part-time can you get than “part-time”?) Again, to
prevent others from extending a class, make use of the sealed keyword:

sealed class PTSalesPerson : SalesPerson
{
public PTSalesPerson(string fullName, int age, int empID,
float currPay, string ssn, int numbOfSales)
:base (fullName, age, empID, currPay, ssn, numbOfSales)

{
}
// Assume other members here...

}

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 195

8849CH06.qxd 10/1/07 10:35 AM Page 195

Given that sealed classes cannot be extended, you may wonder if it is possible to reuse the
code within a class marked sealed. If you wish to build a new class that leverages the functionality
of a sealed class, your only option is to forego classical inheritance and make use of the contain-
ment/delegation model (aka the “has-a” relationship).

Programming for Containment/Delegation
As noted a bit earlier in this chapter, code reuse comes in two flavors. We have just explored the
classical “is-a” relationship. Before we examine the third pillar of OOP (polymorphism), let’s exam-
ine the “has-a” relationship (also known as the containment/delegation model or aggregation).
Assume you have created a new class that models an employee benefits package:

// This type will function as a contained class.
class BenefitPackage
{
// Assume we have other members that represent
// 401K plans, dental/health benefits, and so on.
public double ComputePayDeduction()
{
return 125.0;

}
}

Obviously, it would be rather odd to establish an “is-a” relationship between the
BenefitPackage class and the employee types. (Employee “is-a” BenefitPackage? I don’t think so.)
However, it should be clear that some sort of relationship between the two could be established.
In short, you would like to express the idea that each employee “has-a” BenefitPackage. To do so,
you can update the Employee class definition as follows:

// Employees now have benefits.
partial class Employee
{
// Contain a BenefitPackage object.
protected BenefitPackage empBenefits = new BenefitPackage();

...
}

At this point, you have successfully contained another object. However, to expose the function-
ality of the contained object to the outside world requires delegation. Delegation is simply the act of
adding members to the containing class that make use of the contained object’s functionality. For
example, we could update the Employee class to expose the contained empBenefits object using a
custom property as well as make use of its functionality internally using a new method named
GetBenefitCost():

public partial class Employee
{
// Contain a BenefitPackage object.
protected BenefitPackage empBenefits = new BenefitPackage();

// Expose certain benefit behaviors of object.
public double GetBenefitCost()
{ return empBenefits.ComputePayDeduction(); }

// Expose object through a custom property.
public BenefitPackage Benefits
{

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM196

8849CH06.qxd 10/1/07 10:35 AM Page 196

get { return empBenefits; }
set { empBenefits = value; }

}
...
}

In the following updated Main() method, notice how we can interact with the internal
BenefitsPackage type defined by the Employee type:

static void Main(string[] args)
{
Console.WriteLine("***** The Employee Class Hierarchy *****\n");
Manager chucky = new Manager("Chucky", 50, 92, 100000, "333-23-2322", 9000);
double cost = chucky.GetBenefitCost();
Console.ReadLine();

}

Understanding Nested Type Definitions
The previous chapter briefly mentioned the concept of nested types, which is a spin on the “has-a”
relationship we have just examined. In C# (as well as other .NET languages), it is possible to define
a type (enum, class, interface, struct, or delegate) directly within the scope of a class or structure.
When you have done so, the nested (or “inner”) type is considered a member of the nesting (or
“outer”) class, and in the eyes of the runtime can be manipulated like any other member (fields,
properties, methods, events, etc.). The syntax used to nest a type is quite straightforward:

public class OuterClass
{
// A public nested type can be used by anybody.
public class PublicInnerClass {}

// A private nested type can only be used by members
// of the containing class.
private class PrivateInnerClass {}

}

Although the syntax is clean, understanding why you might do this is not readily apparent.
To understand this technique, ponder the following traits of nesting a type:

• Nested types allow you to gain complete control over the access level of the inner type, as
they may be declared privately (recall that nonnested classes cannot be declared using the
private keyword).

• Because a nested type is a member of the containing class, it can access private members of
the containing class.

• Oftentimes, a nested type is only useful as a helper for the outer class, and is not intended for
use by the outside world.

When a type nests another class type, it can create member variables of the type, just as it
would for any point of data. However, if you wish to make use of a nested type from outside of the
containing type, you must qualify it by the scope of the nesting type. Consider the following code:

static void Main(string[] args)
{
// Create and use the public inner class. OK!
OuterClass.PublicInnerClass inner;
inner = new OuterClass.PublicInnerClass();

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 197

8849CH06.qxd 10/1/07 10:35 AM Page 197

// Compiler Error! Cannot access the private class.
OuterClass.PrivateInnerClass inner2;
inner2 = new OuterClass.PrivateInnerClass();

}

To make use of this concept within our employees example, assume we have now nested the
BenefitPackage directly within the Employee class type:

partial class Employee
{
public class BenefitPackage
{
// Assume we have other members that represent
// 401K plans, dental/health benefits, and so on.
public double ComputePayDeduction()
{
return 125.0;

}
}

...
}

The nesting process can be as “deep” as you require. For example, assume we wish to create
an enumeration named BenefitPackageLevel, which documents the various benefit levels an
employee may choose. To programmatically enforce the tight connection between Employee,
BenefitPackage, and BenefitPackageLevel, we could nest the enumeration as follows:

// Employee nests BenefitPackage.
public partial class Employee
{
// BenefitPackage nests BenefitPackageLevel.
public class BenefitPackage
{
public enum BenefitPackageLevel
{
Standard, Gold, Platinum

}
public double ComputePayDeduction()
{
return 125.0;

}
}

...
}

Because of the nesting relationships, note how we are required to make use of this
enumeration:

static void Main(string[] args)
{
...
// Define my benefit level.
Employee.BenefitPackage.BenefitPackageLevel myBenefitLevel =
Employee.BenefitPackage.BenefitPackageLevel.Platinum;

Console.ReadLine()
}

Excellent! At this point you have been exposed to a number of keywords (and concepts) that
allow you to build hierarchies of related types via classical inheritance, containment, and nested

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM198

8849CH06.qxd 10/1/07 10:35 AM Page 198

types. If the details aren’t crystal clear at this point, don’t sweat it. You will be building a number of
additional hierarchies over the remainder of this text. Next up, let’s examine the final pillar of OOP:
polymorphism.

The Third Pillar: C#’s Polymorphic Support
Recall that the Employee base class defined a method named GiveBonus(), which was originally
implemented as follows:

public partial class Employee
{
public void GiveBonus(float amount)
{
currPay += amount;

}
...
}

Because this method has been defined with the public keyword, you can now give bonuses to
salespeople and managers (as well as part-time salespeople):

static void Main(string[] args)
{
Console.WriteLine("***** The Employee Class Hierarchy *****\n");

// Give each employee a bonus?
Manager chucky = new Manager("Chucky", 50, 92, 100000, "333-23-2322", 9000);
chucky.GiveBonus(300);
chucky.DisplayStats();
Console.WriteLine();

SalesPerson fran = new SalesPerson("Fran", 43, 93, 3000, "932-32-3232", 31);
fran.GiveBonus(200);
fran.DisplayStats();
Console.ReadLine();

}

The problem with the current design is that the publicly inherited GiveBonus() method oper-
ates identically for all subclasses. Ideally, the bonus of a salesperson or part-time salesperson
should take into account the number of sales. Perhaps managers should gain additional stock
options in conjunction with a monetary bump in salary. Given this, you are suddenly faced with an
interesting question: “How can related types respond differently to the same request?” Glad you
asked!

The virtual and override Keywords
Polymorphism provides a way for a subclass to define its own version of a method defined by its
base class, using the process termed method overriding. To retrofit your current design, you need to
understand the meaning of the virtual and override keywords. If a base class wishes to define a
method that may be (but does not have to be) overridden by a subclass, it must mark the method
with the virtual keyword:

partial class Employee
{
// This method can now be 'overridden' by a derived class.
public virtual void GiveBonus(float amount)

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 199

8849CH06.qxd 10/1/07 10:35 AM Page 199

{
currPay += amount;

}
...
}

■Note Methods that have been marked with the virtual keyword are (not surprisingly) termed virtual methods.

When a subclass wishes to change the implementation details of a virtual method, it does so
using the override keyword. For example, the SalesPerson and Manager could override GiveBonus()
as follows (assume that PTSalesPerson will not override GiveBonus() and therefore simply inherit
the version defined by SalesPerson):

class SalesPerson : Employee
{
...
// A salesperson's bonus is influenced by the number of sales.
public override void GiveBonus(float amount)
{
int salesBonus = 0;
if (numberOfSales >= 0 && numberOfSales <= 100)
{ salesBonus = 10; }
else
{
if (numberOfSales >= 101 && numberOfSales <= 200)
{
salesBonus = 15;

}
else
{ salesBonus = 20; }

}
base.GiveBonus(amount * salesBonus);

}
}

class Manager : Employee
{
...
public override void GiveBonus(float amount)
{
base.GiveBonus(amount);
Random r = new Random();
numberOfOptions += r.Next(500);

}
}

Notice how each overridden method is free to leverage the default behavior using the base key-
word. In this way, you have no need to completely reimplement the logic behind GiveBonus(), but
can reuse (and possibly extend) the default behavior of the parent class.

Also assume that the current DisplayStats() method of the Employee class has been declared
virtually. By doing so, each subclass can override this method to account for displaying the number
of sales (for salespeople) and current stock options (for managers). For example, consider the
Manager’s version of the DisplayStats() method (the SalesPerson class would implement
DisplayStats() in a similar manner):

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM200

8849CH06.qxd 10/1/07 10:35 AM Page 200

public override void DisplayStats()
{
base.DisplayStats();
Console.WriteLine("Number of Stock Options: {0}", numberOfOptions);

}

Now that each subclass can interpret what these virtual methods means to itself, each object
instance behaves as a more independent entity:

static void Main(string[] args)
{
Console.WriteLine("***** The Employee Class Hierarchy *****\n");

// A better bonus system!
Manager chucky = new Manager("Chucky", 50, 92, 100000, "333-23-2322", 9000);
chucky.GiveBonus(300);
chucky.DisplayStats();
Console.WriteLine();

SalesPerson fran = new SalesPerson("Fran", 43, 93, 3000, "932-32-3232", 31);
fran.GiveBonus(200);
fran.DisplayStats();
Console.ReadLine();

}

Figure 6-6 shows a possible test run of our application thus far.

Figure 6-6. Output of the current Employees application

Overriding Virtual Members Using Visual Studio 2008
As you may have already noticed, when you are overriding a member, you must recall the type of
each and every parameter—not to mention the method name and parameter passing conventions
(ref, params, etc.). Visual Studio 2008 has a very helpful feature that you can make use of when over-
riding a virtual member. If you type the word “override” within the scope of a class type, IntelliSense
will automatically display a list of all the overridable members defined in your parent classes, as you
see in Figure 6-7.

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 201

8849CH06.qxd 10/1/07 10:35 AM Page 201

Figure 6-7. Quickly viewing overridable methods à la Visual Studio 2008

When you select a member and hit the Enter key, the IDE responds by automatically filling in
the method stub on your behalf. Note that you also receive a code statement that calls your parent’s
version of the virtual member (you are free to delete this line if it is not required):

public override void DisplayStats()
{
base.DisplayStats();

}

Sealing Virtual Members
Recall that the sealed keyword can be applied to a class type to prevent other types from extending
its behavior via inheritance. As you may remember, we sealed PTSalesPerson as we assumed it
made no sense for other developers to extend this line of inheritance any further.

On a related note, sometimes you may not wish to seal an entire class, but simply want to pre-
vent derived types from overriding particular virtual methods. For example, assume we do not want
part-time salespeople to obtain customized bonuses. To prevent the PTSalesPerson class from over-
riding the virtual GiveBonus() method, we could effectively seal this method in the SalesPerson
class as follows:

// SalesPerson has sealed the GiveBonus() method!
class SalesPerson : Employee
{
...
public override sealed void GiveBonus(float amount)
{

...
}

}

Here, SalesPerson has indeed overridden the virtual GiveBonus() method defined in the
Employee class; however, it has explicitly marked it as sealed. Thus, if we attempted to override this
method in the PTSalesPerson class:

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM202

8849CH06.qxd 10/1/07 10:35 AM Page 202

sealed class PTSalesPerson : SalesPerson
{
public PTSalesPerson(string fullName, int age, int empID,
float currPay, string ssn, int numbOfSales)
:base (fullName, age, empID, currPay, ssn, numbOfSales)
{
}

// No bonus for you! Error!
public override void GiveBonus(float amount)
{
// Rats. Can't change this method any further.

}
}

we receive compile-time errors.

Understanding Abstract Classes
Currently, the Employee base class has been designed to supply protected member variables for its
descendents, as well as supply two virtual methods (GiveBonus() and DisplayStats()) that may be
overridden by a given descendent. While this is all well and good, there is a rather odd byproduct of
the current design; you can directly create instances of the Employee base class:

// What exactly does this mean?
Employee X = new Employee();

In this example, the only real purpose of the Employee base class is to define common members
for all subclasses. In all likelihood, you did not intend anyone to create a direct instance of this
class, reason being that the Employee type itself is too general of a concept. For example, if I were to
walk up to you and say, “I’m an employee!” I would bet your very first question to me would be,
“What kind of employee are you?” (a consultant, trainer, admin assistant, copy editor, White House
aide, etc.).

Given that many base classes tend to be rather nebulous entities, a far better design for our
example is to prevent the ability to directly create a new Employee object in code. In C#, you can
enforce this programmatically by using the abstract keyword, thus creating an abstract base class:

// Update the Employee class as abstract
// to prevent direct instantiation.
abstract partial class Employee
{
...

}

With this, if you now attempt to create an instance of the Employee class, you are issued a
compile-time error:

// Error! Cannot create an abstract class!
Employee X = new Employee();

At this point you have constructed a fairly interesting employee hierarchy. We will add a bit
more functionality to this application later in this chapter when examining C# casting rules. Until
then, Figure 6-8 illustrates the core design of our current types.

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 203

8849CH06.qxd 10/1/07 10:35 AM Page 203

Figure 6-8. The Employee hierarchy

■Source Code The Employees project is included under the Chapter 6 subdirectory.

Building a Polymorphic Interface
When a class has been defined as an abstract base class (via the abstract keyword), it may define
any number of abstract members. Abstract members can be used whenever you wish to define a
member that does not supply a default implementation. By doing so, you enforce a polymorphic
interface on each descendent, leaving them to contend with the task of providing the details behind
your abstract methods.

Simply put, an abstract base class’s polymorphic interface simply refers to its set of virtual and
abstract methods. This is much more interesting than first meets the eye, as this trait of OOP allows
us to build very extendable and flexible software applications. To illustrate, we will be implementing
(and slightly modifying) the hierarchy of shapes briefly examined in Chapter 5 during our overview
of the pillars of OOP. To begin, create a new C# Console Application project named Shapes.

In Figure 6-9, notice that the Hexagon and Circle types each extend the Shape base class. Like
any base class, Shape defines a number of members (a PetName property and Draw() method in this
case) that are common to all descendents.

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM204

8849CH06.qxd 10/1/07 10:35 AM Page 204

Figure 6-9. The shapes hierarchy

Much like the employee hierarchy, you should be able to tell that you don’t want to allow the
object user to create an instance of Shape directly, as it is too abstract of a concept. Again, to prevent
the direct creation of the Shape type, you could define it as an abstract class. As well, given that we
wish the derived types to respond uniquely to the Draw() method, let’s mark it as virtual and define
a default implementation:

// The abstract base class of the hierarchy.
abstract class Shape
{
protected string shapeName;

public Shape()
{ shapeName = "NoName"; }

public Shape(string s)
{ shapeName = s; }

// A single virtual method.
public virtual void Draw()
{
Console.WriteLine("Inside Shape.Draw()");

}

public string PetName
{
get { return shapeName; }
set { shapeName = value; }

}
}

Notice that the virtual Draw() method provides a default implementation that simply prints out
a message that informs us we are calling the Draw() method within the Shape base class. Now recall
that when a method is marked with the virtual keyword, the method provides a default implemen-
tation that all derived types automatically inherit. If a child class so chooses, it may override the
method but does not have to. Given this, consider the following implementation of the Circle and
Hexagon types:

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 205

8849CH06.qxd 10/1/07 10:35 AM Page 205

// Circle DOES NOT override Draw().
class Circle : Shape
{
public Circle() {}
public Circle(string name) : base(name){}

}

// Hexagon DOES override Draw().
class Hexagon : Shape
{
public Hexagon() {}
public Hexagon(string name) : base(name){}
public override void Draw()
{
Console.WriteLine("Drawing {0} the Hexagon", shapeName);

}
}

The usefulness of abstract methods becomes crystal clear when you once again remember that
subclasses are never required to override virtual methods (as in the case of Circle). Therefore, if you
create an instance of the Hexagon and Circle types, you’d find that the Hexagon understands how to
“draw” itself correctly (or at least print out an appropriate message to the console). The Circle,
however, is more than a bit confused (see Figure 6-10 for output):

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Polymorphism *****\n");

Hexagon hex = new Hexagon("Beth");
hex.Draw();

Circle cir = new Circle("Cindy");
// Calls base class implementation!
cir.Draw();
Console.ReadLine();

}

Figure 6-10. Hmm . . . something is not quite right.

Clearly, this is not a very intelligent design for the current hierarchy. To force each child class to
override the Draw() method, you can define Draw() as an abstract method of the Shape class, which
by definition means you provide no default implementation whatsoever. To mark a method as
abstract in C#, you use the abstract keyword. Notice that abstract members do not provide any
implementation whatsoever:

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM206

8849CH06.qxd 10/1/07 10:35 AM Page 206

// Force all child classes to define how to be rendered.
public abstract class Shape
{
public abstract void Draw();
...

}

■Note Abstract methods can only be defined in abstract classes. If you attempt to do otherwise, you will be
issued a compiler error.

Methods marked with abstract are pure protocol. They simply define the name, return value
(if any), and argument set (if required). Here, the abstract Shape class informs the derived types “I
have a subroutine named Draw() that takes no arguments. If you derive from me, you figure out the
details.”

Given this, we are now obligated to override the Draw() method in the Circle class. If you do
not, Circle is also assumed to be a noncreatable abstract type that must be adorned with the
abstract keyword (which is obviously not very useful in this example). Here is the code update:

// If we did not implement the abstract Draw() method, Circle would also be
// considered abstract, and would have to be marked abstract!
class Circle : Shape
{
public Circle() {}
public Circle(string name) : base(name) {}
public override void Draw()
{
Console.WriteLine("Drawing {0} the Circle", shapeName);

}
}

The short answer is that we can now make the assumption that anything deriving from
Shape does indeed have a unique version of the Draw() method. To illustrate the full story of
polymorphism, consider the following code:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Polymorphism *****\n");

// Make an array of Shape-compatible objects.
Shape[] myShapes = {new Hexagon(), new Circle(), new Hexagon("Mick"),
new Circle("Beth"), new Hexagon("Linda")};

// Loop over each item and interact with the
// polymorphic interface.
foreach (Shape s in myShapes)
{
s.Draw();

}
Console.ReadLine();

}

Figure 6-11 shows the output.

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 207

8849CH06.qxd 10/1/07 10:35 AM Page 207

Figure 6-11. Polymorphism in action

This Main() method illustrates polymorphism at its finest. Although it is not possible to directly
create an abstract base class (the Shape), you are able to freely store references to any subclass with
an abstract base variable. Therefore, when you are creating an array of Shapes, the array can hold
any object deriving from the Shape base class (if you attempt to place Shape-incompatible objects
into the array, you receive a compiler error).

Given that all items in the myShapes array do indeed derive from Shape, we know they all sup-
port the same polymorphic interface (or said more plainly, they all have a Draw() method). As you
iterate over the array of Shape references, it is at runtime that the underlying type is determined. At
this point, the correct version of the Draw() method is invoked.

This technique also makes it very simple to safely extend the current hierarchy. For example,
assume we derived five more classes from the abstract Shape base class (Triangle, Square, etc.). Due
to the polymorphic interface, the code within our for loop would not have to change in the slightest
as the compiler enforces that only Shape-compatible types are placed within the myShapes array.

Understanding Member Shadowing
C# provides a facility that is the logical opposite of method overriding termed shadowing. Formally
speaking, if a derived class defines a member that is identical to a member defined in a base class,
the derived class has shadowed the parent’s version. In the real world, the possibility of this occur-
ring is the greatest when you are subclassing from a class you (or your team) did not create
yourselves (for example, if you purchase a third-party .NET software package).

For the sake of illustration, assume you receive a class named ThreeDCircle from a coworker
(or classmate) that defines a subroutine named Draw() taking no arguments:

class ThreeDCircle
{
public void Draw()
{
Console.WriteLine("Drawing a 3D Circle");

}
}

You figure that a ThreeDCircle “is-a” Circle, so you derive from your existing Circle type:

class ThreeDCircle : Circle
{
public void Draw()
{
Console.WriteLine("Drawing a 3D Circle");

}
}

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM208

8849CH06.qxd 10/1/07 10:35 AM Page 208

Once you recompile, you find a warning in the Visual Studio 2008 error window (see
Figure 6-12).

Figure 6-12. Oops! We just shadowed a member in our parent class.

To address this issue, you have two options. You could simply update the parent’s version of
Draw() using the override keyword (as suggested by the compiler). With this approach, the
ThreeDCircle type is able to extend the parent’s default behavior as required. However, if you don’t
have access to the code defining the base class (again, as would be the case in many third-party
libraries), you would be unable to modify the Draw() method as a virtual member, as you don’t have
access to the code file!

As an alternative, you can include the new keyword to the offending Draw() member of the
derived type (ThreeDCircle in this example). Doing so explicitly states that the derived type’s imple-
mentation is intentionally designed to hide the parent’s version (again, in the real world, this can be
helpful if external .NET software somehow conflicts with your current software).

// This class extends Circle and hides the inherited Draw() method.
class ThreeDCircle : Circle
{
// Hide any Draw() implementation above me.
public new void Draw()
{
Console.WriteLine("Drawing a 3D Circle");

}
}

You can also apply the new keyword to any member type inherited from a base class (field, con-
stant, static member, property, etc.). As a further example, assume that ThreeDCircle wishes to hide
the inherited shapeName field:

// This class extends Circle and hides the inherited Draw() method.
class ThreeDCircle : Circle
{
// Hide the shapeName field above me.
protected new string shapeName;

// Hide any Draw() implementation above me.
public new void Draw()
{
Console.WriteLine("Drawing a 3D Circle");

}
}

Finally, be aware that it is still possible to trigger the base class implementation of a shadowed
member using an explicit cast (described in the next section). For example:

static void Main(string[] args)
{
...

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 209

8849CH06.qxd 10/1/07 10:35 AM Page 209

// This calls the Draw() method of the ThreeDCircle.
ThreeDCircle o = new ThreeDCircle();
o.Draw();

// This calls the Draw() method of the parent!
((Circle)o).Draw();
Console.ReadLine();

}

■Source Code The Shapes project can be found under the Chapter 6 subdirectory.

Understanding Base Class/Derived Class
Casting Rules
Now that you can build a family of related class types, you need to learn the laws of class type cast-
ing operations. To do so, let’s return to the Employees hierarchy created earlier in this chapter.
Under the .NET platform, the ultimate base class in the system is System.Object. Therefore, every-
thing “is-a” Object and can be treated as such. Given this fact, it is legal to store an instance of any
type within an object variable:

// A Manager "is-a" System.Object.
object frank = new Manager("Frank Zappa", 9, 3000, 40000, "111-11-1111", 5);

In the Employees system, Managers, SalesPerson, and PTSalesPerson types all extend Employee,
so we can store any of these objects in a valid base class reference. Therefore, the following state-
ments are also legal:

// A Manager "is-an" Employee too.
Employee moonUnit = new Manager("MoonUnit Zappa", 2, 3001, 20000, "101-11-1321", 1);

// A PTSalesPerson "is-a" SalesPerson.
SalesPerson jill = new PTSalesPerson("Jill", 834, 3002, 100000, "111-12-1119", 90);

The first law of casting between class types is that when two classes are related by an “is-a”
relationship, it is always safe to store a derived type within a base class reference. Formally, this is
called an implicit cast, as “it just works” given the laws of inheritance. This leads to some powerful
programming constructs. For example, assume you have defined a new method within your current
Program class:

static void FireThisPerson(Employee emp)
{
// Remove from database...
// Get key and pencil sharpener from fired employee...

}

Because this method takes a single parameter of type Employee, you can effectively pass any
descendent from the Employee class into this method directly, given the “is-a” relationship:

// Streamline the staff.
FireThisPerson(moonUnit); // "moonUnit" was declared as an Employee.
FireThisPerson(jill); // "jill" was declared as a SalesPerson.

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM210

8849CH06.qxd 10/1/07 10:35 AM Page 210

The previous code compiles given the implicit cast from the base class type (Employee) to the
derived type. However, what if you also wanted to fire Frank Zappa (currently stored in a generic
System.Object reference)? If you pass the frank object directly into FireThisPerson() as follows:

// Error!
object frank = new Manager("Frank Zappa", 9, 3000, 40000, "111-11-1111", 5);
FireThisPerson(frank);

you will find a compiler error. As you can see, however, the object reference is pointing to an
Employee-compatible object. You can satisfy the compiler by performing an explicit cast. This is the
second law of casting: you must explicitly downcast using the C# casting operator. Thus, the previ-
ous problem can be avoided as follows:

// OK!
FireThisPerson((Manager)frank);

The C# as Keyword
Be very aware that explicit casting is evaluated at runtime, not compile time. Therefore, if you were
to author the following C# code:

// Ack! You can't cast frank to a Hexagon!
Hexagon hex = (Hexagon)frank;

you would receive a runtime error, or more formally a runtime exception. Chapter 7 will examine
the full details of structured exception handling; however, it is worth pointing out for the time being
when you are performing an explicit cast, you can trap the possibility of an invalid cast using the
try and catch keywords (again, don’t fret over the details):

// Catch a possible invalid cast.
try
{
Hexagon hex = (Hexagon)frank;

}
catch (InvalidCastException ex)
{
Console.WriteLine(ex.Message);

}

While this is a fine example of defensive programming, C# provides the as keyword to quickly
determine at runtime whether a given type is compatible with another. When you use the as key-
word, you are able to determine compatibility by checking against a null return value. Consider the
following:

// Use 'as' to test compatability.
Hexagon hex2 = frank as Hexagon;
if (hex2 == null)
Console.WriteLine("Sorry, frank is not a Hexagon...");

The C# is Keyword
Given that the FireThisPerson() method has been designed to take any possible type derived from
Employee, one question on your mind may be how this method can determine which derived type
was sent into the method. On a related note, given that the incoming parameter is of type Employee,
how can you gain access to the specialized members of the SalesPerson and Manager types?

In addition to the as keyword, the C# language provides the is keyword to determine whether
two items are compatible. Unlike the as keyword, however, the is keyword returns false, rather

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 211

8849CH06.qxd 10/1/07 10:35 AM Page 211

than a null reference, if the types are incompatible. Consider the following implementation of the
FireThisPerson() method:

static void FireThisPerson(Employee emp)
{
if (emp is SalesPerson)
{
Console.WriteLine("Lost a sales person named {0}", emp.Name);
Console.WriteLine("{0} made {1} sale(s)...", emp.Name,
((SalesPerson)emp).SalesNumber);

Console.WriteLine();
}
if (emp is Manager)
{
Console.WriteLine("Lost a suit named {0}", emp.Name);
Console.WriteLine("{0} had {1} stock options...", emp.Name,
((Manager)emp).StockOptions);

Console.WriteLine();
}

}

Here you are performing a runtime check to determine what the incoming base class reference
is actually pointing to in memory. Once you determine whether you received a SalesPerson or
Manager type, you are able to perform an explicit cast to gain access to the specialized members of
the class. Also notice that you are not required to wrap your casting operations within a try/catch
construct, as you know that the cast is safe if you enter either if scope, given our conditional check.

The Master Parent Class: System.Object
To wrap up this chapter, I’d like to examine the details of the master parent class in the .NET plat-
form: Object. As you were reading the previous section, you may have noticed that the base classes
in our hierarchies (Car, Shape, Employee) never explicitly specify their parent classes:

// Who is the parent of Car?
class Car
{...}

In the .NET universe, every type ultimately derives from a base class named System.Object.
The Object class defines a set of common members for every type in the framework. In fact, when
you do build a class that does not explicitly define its parent, the compiler automatically derives
your type from Object. If you want to be very clear in your intentions, you are free to define classes
that derive from Object as follows:

// Here we are explicitly deriving from System.Object.
class Car : object
{...}

Like any class, System.Object defines a set of members. In the following formal C# definition,
note that some of these items are declared virtual, which specifies that a given member may be
overridden by a subclass, while others are marked with static (and are therefore called at the class
level):

public class Object
{
// Virtual members.
public virtual bool Equals(object obj);
protected virtual void Finalize();

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM212

8849CH06.qxd 10/1/07 10:35 AM Page 212

public virtual int GetHashCode();
public virtual string ToString();

// Instance level, nonvirtual members.
public Type GetType();
protected object MemberwiseClone();

// Static members.
public static bool Equals(object objA, object objB);
public static bool ReferenceEquals(object objA, object objB);

}

Table 6-1 offers a rundown of the functionality provided by each method.

Table 6-1. Core Members of System.Object

Instance Method of Object Class Meaning in Life

Equals() By default, this method returns true only if the items being
compared refer to the exact same item in memory. Thus,
Equals() is used to compare object references, not the state of
the object. Typically, this method is overridden to return true
only if the objects being compared have the same internal state
values (that is, value-based semantics). Be aware that if you
override Equals(), you should also override GetHashCode(), as
these methods are used internally by Hashtable types to retrieve
subobjects from the container.

GetHashCode() This method returns an int that identifies a specific object
instance.

GetType() This method returns a Type object that fully describes the object
you are currently referencing. In short, this is a Runtime Type
Identification (RTTI) method available to all objects (discussed
in greater detail in Chapter 16).

ToString() This method returns a string representation of this object, using
the <namespace>.<type name> format (termed the fully qualified
name). This method can be overridden by a subclass to return a
tokenized string of name/value pairs that represent the object’s
internal state, rather than its fully qualified name.

Finalize() For the time being, you can understand this method (when
overridden) is called to free any allocated resources before the
object is destroyed. I talk more about the CLR garbage collection
services in Chapter 8.

MemberwiseClone() This method exists to return a member-by-member copy of the
current object, which is often used when cloning an object (see
Chapter 9).

To illustrate some of the default behavior provided by the Object base class, create a new C#
Console Application named ObjectOverrides. Insert a new C# class type that contains the following
empty class definition for a type named Person:

// Remember! Person extends Object.
class Person {}

Now, update your Main() method to interact with the inherited members of System.Object as
follows:

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 213

8849CH06.qxd 10/1/07 10:35 AM Page 213

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Fun with System.Object *****\n");
Person p1 = new Person();

// Use inherited members of System.Object.
Console.WriteLine("ToString: {0}", p1.ToString());
Console.WriteLine("Hash code: {0}", p1.GetHashCode());
Console.WriteLine("Type: {0}", p1.GetType());

// Make some other references to p1.
Person p2 = p1;
object o = p2;

// Are the references pointing to the same object in memory?
if (o.Equals(p1) && p2.Equals(o))
{
Console.WriteLine("Same instance!");

}
Console.ReadLine();

}
}

Figure 6-13 shows the output.

Figure 6-13. Invoking the inherited members of System.Object

First, notice how the default implementation of ToString() returns the fully qualified name of
the current type (ObjectOverrides.Person). As you will see later during our examination of building
custom namespaces (Chapter 15), every C# project defines a “root namespace,” which has the same
name of the project itself. Here, we created a project named ObjectOverrides; thus the Person type
(as well as the Program class) have both been placed within the ObjectOverrides namespace.

The default behavior of Equals() is to test whether two variables are pointing to the same
object in memory. Here, you create a new Person variable named p1. At this point, a new Person
object is placed on the managed heap. p2 is also of type Person. However, you are not creating a new
instance, but rather assigning this variable to reference p1. Therefore, p1 and p2 are both pointing to
the same object in memory, as is the variable o (of type object, which was thrown in for good meas-
ure). Given that p1, p2, and o all point to the same memory location, the equality test succeeds.

Although the canned behavior of System.Object can fit the bill in a number of cases, it is quite
common for your custom types to override some of these inherited methods. To illustrate, update
the Person class to support some state data representing an individual’s first name, last name, and
age, each of which can be set by a custom constructor:

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM214

8849CH06.qxd 10/1/07 10:35 AM Page 214

// Remember! Person extends Object.
class Person
{
// Public only for simplicity. Properties and private data
// would obviously be preferred.
public string fName;
public string lName;
public byte personAge;

public Person(string firstName, string lastName, byte age)
{
fName = firstName;
lName = lastName;
personAge = age;

}
public Person(){}

}

Overriding System.Object.ToString()
Many classes (and structures) that you create can benefit from overriding ToString() in order to
return a string textual representation of the type’s current state. This can be quite helpful for pur-
poses of debugging (among other reasons). How you choose to construct this string is a matter of
personal choice; however, a recommended approach is to separate each name/value pair with
semicolons and wrap the entire string within square brackets (many types in the .NET base class
libraries follow this approach). Consider the following overridden ToString() for our Person class:

public override string ToString()
{
string myState;
myState = string.Format("[First Name: {0}; Last Name: {1}; Age: {2}]",
fName, lName, personAge);

return myState;
}

This implementation of ToString() is quite straightforward, given that the Person class only
has three pieces of state data. However, always remember that a proper ToString() override should
also account for any data defined up the chain of inheritance. When you override ToString() for a
class extending a custom base class, the first order of business is to obtain the ToString() value
from your parent using base. Once you have obtained your parent’s string data, you can append the
derived class’s custom information.

Overriding System.Object.Equals()
Let’s also override the behavior of Object.Equals() to work with value-based semantics. Recall that
by default, Equals() returns true only if the two objects being compared reference the same object
instance in memory. For the Person class, it may be helpful to implement Equals() to return true
if the two variables being compared contain the same state values (e.g., first name, last name,
and age).

First of all, notice that the incoming argument of the Equals() method is a generic System.
Object. Given this, our first order of business is to ensure the caller has indeed passed in a Person
type, and as an extra safeguard, to make sure the incoming parameter is not an unallocated object.

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 215

8849CH06.qxd 10/1/07 10:35 AM Page 215

Once we have established the caller has passed us an allocated Person, one approach to imple-
ment Equals() is to perform a field-by-field comparison against the data of the incoming object to
the data of the current object:

public override bool Equals(object obj)
{
if (obj is Person && obj != null)
{
Person temp;
temp = (Person)obj;
if (temp.fName == this.fName && temp.lName == this.fName

&& temp.personAge == this.personAge)
{
return true;

}
else
{
return false;

}
}
return false;

}

Here, you are examining the values of the incoming object against the values of our internal
values (note the use of the this keyword). If the name and age of each are identical, you have two
objects with the exact same state data and therefore return true. Any other possibility results in
returning false.

While this approach does indeed work, you can certainly imagine how labor intensive it would
be to implement a custom Equals() method for nontrivial types that may contain dozens of data
fields. One common shortcut is to leverage your own implementation of ToString(). If a class has
a prim-and-proper implementation of ToString() that accounts for all field data up the chain of
inheritance, you can simply perform a comparison of the object’s string data:

public override bool Equals(object obj)
{
// No need to cast 'obj' to a Person anymore,
// as everything has a ToString() method.
return obj.ToString() == this.ToString();

}

Overriding System.Object.GetHashCode()
When a class overrides the Equals() method, you should also override the default implementation
of GetHashCode(). Simply put, a hash code is a numerical value that represents an object as a partic-
ular state. For example, if you create two string objects that hold the value Hello, you would obtain
the same hash code. However, if one of the string objects were in all lowercase (hello), you would
obtain different hash codes.

By default, System.Object.GetHashCode() uses your object’s current location in memory to
yield the hash value. However, if you are building a custom type that you intend to store in a
Hashtable type (within the System.Collections namespace), you should always override this mem-
ber, as the Hashtable will be internally invoking Equals() and GetHashCode() to retrieve the correct
object.

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM216

8849CH06.qxd 10/1/07 10:35 AM Page 216

Although we are not going to place our Person into a System.Collections.Hashtable, for com-
pletion, let’s override GetHashCode(). There are many algorithms that can be used to create a hash
code, some fancy, others not so fancy. Most of the time, you are able to generate a hash code value
by leveraging the System.String’s GetHashCode() implementation.

Given that the String class already has a solid hash code algorithm that is using the character
data of the String to compute a hash value, if you can identify a piece of field data on your class that
should be unique for all instances (such as the Social Security number), simply call GetHashCode()
on that point of field data. If this is not the case, but you have overridden ToString(), call
GetHashCode() on your own string representation:

// Return a hash code based on the person's ToString() value.
public override int GetHashCode()
{
return this.ToString().GetHashCode();

}

Testing Our Modified Person Class
Now that we have overridden the virtual members of Object, update Main() to test your updates
(see Figure 6-14 for output).

static void Main(string[] args)
{
Console.WriteLine("***** Fun with System.Object *****\n");

// NOTE: We want these to be identical to test
// the Equals() and GetHashCode() methods.
Person p1 = new Person("Homer", "Simpson", 50);
Person p2 = new Person("Homer", "Simpson", 50);

// Get stringified version of objects.
Console.WriteLine("p1.ToString() = {0}", p1.ToString());
Console.WriteLine("p2.ToString() = {0}", p2.ToString());

// Test Overridden Equals()
Console.WriteLine("p1 = p2?: {0}", p1.Equals(p2));

// Test hash codes.
Console.WriteLine("Same hash codes?: {0}", p1.GetHashCode() == p2.GetHashCode());
Console.WriteLine();

// Change age of p2 and test again.
p2.personAge = 45;
Console.WriteLine("p1.ToString() = {0}", p1.ToString());
Console.WriteLine("p2.ToString() = {0}", p2.ToString());
Console.WriteLine("p1 = p2?: {0}", p1.Equals(p2));
Console.WriteLine("Same hash codes?: {0}", p1.GetHashCode() == p2.GetHashCode());
Console.ReadLine();

}

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM 217

8849CH06.qxd 10/1/07 10:35 AM Page 217

Figure 6-14. Our customized Person type

The Static Members of System.Object
In addition to the instance-level members you have just examined, System.Object does define two
(very helpful) static members that also test for value-based or reference-based equality. Consider
the following code:

static void SharedMembersOfObject()
{
// Static members of System.Object.
Person p3 = new Person("Sally", "Jones", 4);
Person p4 = new Person("Sally", "Jones", 4);
Console.WriteLine("P3 and P4 have same state: {0}", object.Equals(p3, p4));
Console.WriteLine("P3 and P4 are pointing to same object: {0}",
object.ReferenceEquals(p3, p4));

}

Here, you are able to simply send in two objects (of any type) and allow the System.Object class
to determine the details automatically. These methods can be very helpful when you have redefined
equality for a custom type, yet still need to quickly determine whether two reference variables point
to the same location in memory (via the static ReferenceEquals() method).

■Source Code The ObjectOverrides project is located under the Chapter 6 subdirectory.

Summary
This chapter explored the role and details of inheritance and polymorphism. Over these pages you
were introduced to numerous new keywords and tokens to support each of these techniques. For
example, recall that the colon token is used to establish the parent class of a given type. Parent types
are able to define any number of virtual and/or abstract members to establish a polymorphic inter-
face. Derived types override such members using the override keyword.

In addition to building numerous class hierarchies, this chapter also examined how to explic-
itly cast between base and derived types, and wrapped up by diving into the details of the cosmic
parent class in the .NET base class libraries: System.Object.

CHAPTER 6 ■ UNDERSTANDING INHERITANCE AND POLYMORPHISM218

8849CH06.qxd 10/1/07 10:35 AM Page 218

Understanding Structured
Exception Handling

The point of this chapter is to understand how to handle runtime anomalies in your C# code base
through the use of structured exception handling. Not only will you learn about the C# keywords
that allow you to handle such matters (try, catch, throw, finally), but you will also come to under-
stand the distinction between application-level and system-level exceptions and learn the role of
the System.Exception base class. This discussion will also provide a lead-in to the topic of building
custom exceptions, as well as how to leverage the exception-centric debugging tools of Visual
Studio 2008.

Ode to Errors, Bugs, and Exceptions
Despite what our (sometimes inflated) egos may tell us, no programmer is perfect. Writing software
is a complex undertaking, and given this complexity, it is quite common for even the best software
to ship with various . . . problems. Sometimes the problem is caused by “bad code” (such as over-
flowing the bounds of an array). Other times, a problem is caused by bogus user input that has not
been accounted for in the application’s code base (e.g., a phone number input field assigned to the
value “Chucky”). Now, regardless of the cause of said problem, the end result is that your applica-
tion does not work as expected. To help frame the upcoming discussion of structured exception
handling, allow me to provide definitions for three commonly used anomaly-centric terms:

• Bugs: These are, simply put, errors on the part of the programmer. For example, assume you
are programming with unmanaged C++. If you fail to delete dynamically allocated memory
(resulting in a memory leak), you have a bug.

• User errors: Unlike bugs, user errors are typically caused by the individual running your
application, rather than by those who created it. For example, an end user who enters a mal-
formed string into a text box could very well generate an error if you fail to handle this faulty
input in your code base.

• Exceptions: Exceptions are typically regarded as runtime anomalies that are difficult, if not
impossible, to account for while programming your application. Possible exceptions include
attempting to connect to a database that no longer exists, opening a corrupted file, or con-
tacting a machine that is currently offline. In each of these cases, the programmer (and end
user) has little control over these “exceptional” circumstances.

Given the previous definitions, it should be clear that .NET structured exception handling is a
technique well suited to deal with runtime exceptions. However, as for the bugs and user errors that
have escaped your view, the CLR will often generate a corresponding exception that identifies the
problem at hand.

219

C H A P T E R 7

8849CH07.qxd 10/1/07 10:38 AM Page 219

The .NET base class libraries define numerous exceptions such as FormatException,
IndexOutOfRangeException, FileNotFoundException, ArgumentOutOfRangeException, and so forth.
Within the .NET nomenclature, an “exception” accounts for bugs, bogus user input, and runtime
errors, even though we programmers may view each possibility as a distinct issue. However, before
we get too far ahead of ourselves, let’s formalize the role of structured exception handling and check
out how it differs from traditional error-handling techniques.

■Note To make the code examples used in this book as clean as possible, I will not catch every possible excep-
tion that may be thrown by a given method in the base class libraries. In your production-level projects, you
should, of course, make liberal use of the techniques presented in this chapter.

The Role of .NET Exception Handling
Prior to .NET, error handling under the Windows operating system was a confused mishmash of
techniques. Many programmers rolled their own error-handling logic within the context of a given
application. For example, a development team may define a set of numerical constants that repre-
sent known error conditions, and make use of them as method return values. By way of an example,
ponder the following partial C code:

/* A very C-style error trapping mechanism. */
#define E_FILENOTFOUND 1000

int SomeFunction()
{
// Assume something happens in this f(x)
// that causes the following return value.
return E_FILENOTFOUND;

}

void main()
{
int retVal = SomeFunction();
if(retVal == E_FILENOTFOUND)
printf("Cannot find file...");

}

This approach is less than ideal, given the fact that the constant E_FILENOTFOUND is little more
than a numerical value, and is far from being a helpful agent regarding how to deal with the prob-
lem. Ideally, you would like to wrap the error’s name, a descriptive message, and other helpful
information regarding this error condition into a single, well-defined package (which is exactly
what happens under structured exception handling).

In addition to a developer’s ad hoc techniques, the Windows API defines hundreds of error
codes that come by way of #defines, HRESULTs, and far too many variations on the simple Boolean
(bool, BOOL, VARIANT_BOOL, and so on). Also, many C++ COM developers (and indirectly, many VB6
COM developers) have made use of a small set of standard COM interfaces (e.g., ISupportErrorInfo,
IErrorInfo, ICreateErrorInfo) to return meaningful error information to a COM client.

The obvious problem with these previous techniques is the tremendous lack of symmetry. Each
approach is more or less tailored to a given technology, a given language, and perhaps even a given
project. In order to put an end to this madness, the .NET platform provides a standard technique to
send and trap runtime errors: structured exception handling (SEH).

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING220

8849CH07.qxd 10/1/07 10:38 AM Page 220

The beauty of this approach is that developers now have a unified approach to error handling,
which is common to all languages targeting the .NET platform. Therefore, the way in which a C#
programmer handles errors is syntactically similar to that of a VB .NET programmer, and a C++ pro-
grammer using managed extensions. As an added bonus, the syntax used to throw and catch
exceptions across assemblies and machine boundaries is identical.

Another bonus of .NET exceptions is the fact that rather than receiving a cryptic numerical
value that identifies the problem at hand, exceptions are objects that contain a human-readable
description of the problem, as well as a detailed snapshot of the call stack that triggered the excep-
tion in the first place. Furthermore, you are able to provide the end user with help link information
that points the user to a URL that provides detailed information regarding the error at hand as well
as custom programmer-defined data.

The Atoms of .NET Exception Handling
Programming with structured exception handling involves the use of four interrelated entities:

• A class type that represents the details of the exception

• A member that throws an instance of the exception class to the caller

• A block of code on the caller’s side that invokes the exception-prone member

• A block of code on the caller’s side that will process (or catch) the exception should it occur

The C# programming language offers four keywords (try, catch, throw, and finally) that allow
you to throw and handle exceptions. The type that represents the problem at hand is a class derived
from System.Exception (or a descendent thereof). Given this fact, let’s check out the role of this
exception-centric base class.

The System.Exception Base Class
All user- and system-defined exceptions ultimately derive from the System.Exception base class,
which in turn derives from System.Object. Here is the crux of this type (note that some of these
members are virtual and may thus be overridden by derived classes):

public class Exception : ISerializable, _Exception
{
// Public constructors
public Exception(string message, Exception innerException);
public Exception(string message);
public Exception();

// Methods
public virtual Exception GetBaseException();
public virtual void GetObjectData(SerializationInfo info,
StreamingContext context);

// Properties
public virtual IDictionary Data { get; }
public virtual string HelpLink { get; set; }
public System.Exception InnerException { get; }
public virtual string Message { get; }
public virtual string Source { get; set; }
public virtual string StackTrace { get; }
public MethodBase TargetSite { get; }

}

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 221

8849CH07.qxd 10/1/07 10:38 AM Page 221

As you can see, many of the properties defined by System.Exception are read-only in nature.
This is due to the simple fact that derived types will typically supply default values for each property
(for example, the default message of the IndexOutOfRangeException type is “Index was outside the
bounds of the array”).

■Note The Exception class implements two .NET interfaces. Although we have yet to examine interfaces
(see Chapter 9), simply understand that the _Exception interface allows a .NET exception to be processed by an
unmanaged code base (such as a COM application), while the ISerializable interface allows an exception
object to be persisted across boundaries (such as a machine boundary).

Table 7-1 describes the details of some (but not all) of the members of System.Exception.

Table 7-1. Core Members of the System.Exception Type

System.Exception Property Meaning in Life

Data This property retrieves a collection of key/value pairs (represented
by an object implementing IDictionary) that provides additional,
programmer-defined information about the exception. By default,
this collection is empty (e.g., null).

HelpLink This property returns a URL to a help file or website describing the
error in full detail.

InnerException This read-only property can be used to obtain information about
the previous exception(s) that caused the current exception to
occur. The previous exception(s) are recorded by passing them
into the constructor of the most current exception.

Message This read-only property returns the textual description of a given
error. The error message itself is set as a constructor parameter.

Source This property returns the name of the assembly that threw the
exception.

StackTrace This read-only property contains a string that identifies the
sequence of calls that triggered the exception. As you might guess,
this property is very useful during debugging or if you wish to dump
the error to an external error log.

TargetSite This read-only property returns a MethodBase type, which describes
numerous details about the method that threw the exception
(invoking ToString() will identify the method by name).

The Simplest Possible Example
To illustrate the usefulness of structured exception handling, we need to create a type that may
throw an exception under the correct circumstances. Assume we have created a new C# Console
Application project (named SimpleException) that defines two class types (Car and Radio) associ-
ated by the “has-a” relationship. The Radio type defines a single method that turns the radio’s power
on or off:

class Radio
{
public void TurnOn(bool on)

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING222

8849CH07.qxd 10/1/07 10:38 AM Page 222

{
if(on)
Console.WriteLine("Jamming...");

else
Console.WriteLine("Quiet time...");

}
}

In addition to leveraging the Radio type via containment/delegation, the Car type is defined in
such a way that if the user accelerates a Car object beyond a predefined maximum speed (specified
using a constant member variable named MaxSpeed), its engine explodes, rendering the Car unus-
able (captured by a bool member variable named carIsDead).

Beyond these points, the Car type has a few member variables to represent the current speed
and a user supplied “pet name” as well as various constructors to set the state of a new Car object.
Here is the complete definition (with code annotations):

class Car
{
// Constant for maximum speed.
public const int MaxSpeed = 100;

// Internal state data.
private int currSpeed;
private string petName;

// Is the car still operational?
private bool carIsDead;

// A car has-a radio.
private Radio theMusicBox = new Radio();

// Constructors.
public Car() {}
public Car(string name, int currSp)
{
currSpeed = currSp;
petName = name;

}

public void CrankTunes(bool state)
{
// Delegate request to inner object.
theMusicBox.TurnOn(state);

}

// See if Car has overheated.
public void Accelerate(int delta)
{
if (carIsDead)
Console.WriteLine("{0} is out of order...", petName);

else
{
currSpeed += delta;
if (currSpeed > MaxSpeed)
{
Console.WriteLine("{0} has overheated!", petName);
currSpeed = 0;

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 223

8849CH07.qxd 10/1/07 10:38 AM Page 223

carIsDead = true;
}
else
Console.WriteLine("=> CurrSpeed = {0}", currSpeed);

}
}

}

Now, if we were to implement a Main() method that forces a Car object to exceed the prede-
fined maximum speed as shown here:

static void Main(string[] args)
{
Console.WriteLine("***** Simple Exception Example *****");
Console.WriteLine("=> Creating a car and stepping on it!");
Car myCar = new Car("Zippy", 20);
myCar.CrankTunes(true);

for (int i = 0; i < 10; i++)
myCar.Accelerate(10);

Console.ReadLine();
}

we would see the output displayed in Figure 7-1.

Figure 7-1. The Car in action

Throwing a Generic Exception
Now that we have a functional Car type, I’ll illustrate the simplest way to throw an exception. The
current implementation of Accelerate() simply displays an error message if the caller attempts to
speed up the Car beyond its upper limit.

To retrofit this method to throw an exception if the user attempts to speed up the automobile
after it has met its maker, you want to create and configure a new instance of the System.Exception
class, setting the value of the read-only Message property via the class constructor. When you wish to
send the error object back to the caller, make use of the C# throw keyword. Here is the relevant code
update to the Accelerate() method:

// This time, throw an exception if the user speeds up beyond MaxSpeed.
public void Accelerate(int delta)
{

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING224

8849CH07.qxd 10/1/07 10:38 AM Page 224

if (carIsDead)
Console.WriteLine("{0} is out of order...", petName);

else
{
currSpeed += delta;
if (currSpeed >= MaxSpeed)
{
carIsDead = true;
currSpeed = 0;

// Use the "throw" keyword to raise an exception.
throw new Exception(string.Format("{0} has overheated!", petName));

}
else
Console.WriteLine("=> CurrSpeed = {0}", currSpeed);

}
}

Before examining how a caller would catch this exception, a few points of interest. First of all,
when you are throwing an exception, it is always up to you to decide exactly what constitutes the
error in question, and when it should be thrown. Here, you are making the assumption that if the
program attempts to increase the speed of a car that has expired, a System.Exception type should
be thrown to indicate the Accelerate() method cannot continue (which may or may not be a valid
assumption).

Alternatively, you could implement Accelerate() to recover automatically without needing to
throw an exception in the first place. By and large, exceptions should be thrown only when a more
terminal condition has been met (for example, not finding a necessary file, failing to connect to a
database, and whatnot). Deciding exactly what constitutes throwing an exception is a design issue
you must always contend with. For our current purposes, assume that asking a doomed automobile
to increase its speed justifies a cause to throw an exception.

Catching Exceptions
Because the Accelerate() method now throws an exception, the caller needs to be ready to handle
the exception should it occur. When you are invoking a method that may throw an exception, you
make use of a try/catch block. Once you have caught the exception object, you are able to invoke
the members of the System.Exception type to extract the details of the problem. What you do with
this data is largely up to you. You may wish to log this information to a report file, write the data to
the Windows event log, e-mail a system administrator, or display the problem to the end user. Here,
you will simply dump the contents to the console window:

// Handle the thrown exception.
static void Main(string[] args)
{
Console.WriteLine("***** Simple Exception Example *****");
Console.WriteLine("=> Creating a car and stepping on it!");
Car myCar = new Car("Zippy", 20);
myCar.CrankTunes(true);

// Speed up past the car's max speed to
// trigger the exception.
try
{
for(int i = 0; i < 10; i++)
myCar. Accelerate(10);

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 225

8849CH07.qxd 10/1/07 10:38 AM Page 225

}
catch(Exception e)
{
Console.WriteLine("\n*** Error! ***");
Console.WriteLine("Method: {0}", e.TargetSite);
Console.WriteLine("Message: {0}", e.Message);
Console.WriteLine("Source: {0}", e.Source);

}

// The error has been handled, processing continues with the next statement.
Console.WriteLine("\n***** Out of exception logic *****");
Console.ReadLine();

}

In essence, a try block is a section of statements that may throw an exception during execu-
tion. If an exception is detected, the flow of program execution is sent to the appropriate catch
block. On the other hand, if the code within a try block does not trigger an exception, the catch
block is skipped entirely, and all is right with the world. Figure 7-2 shows a test run of this program.

Figure 7-2. Dealing with the error using structured exception handling

As you can see, once an exception has been handled, the application is free to continue on
from the point after the catch block. In some circumstances, a given exception may be critical
enough to warrant the termination of the application. However, in a good number of cases, the logic
within the exception handler will ensure the application will be able to continue on its merry way
(although it may be slightly less functional, such as the case of not being able to connect to a remote
data source).

Configuring the State of an Exception
Currently, the System.Exception object configured within the Accelerate() method simply estab-
lishes a value exposed to the Message property (via a constructor parameter). As shown previously in
Table 7-1, however, the Exception class also supplies a number of additional members (TargetSite,
StackTrace, HelpLink, and Data) that can be useful in further qualifying the nature of the problem.
To spruce up our current example, let’s examine further details of these members on a case-by-case
basis.

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING226

8849CH07.qxd 10/1/07 10:38 AM Page 226

The TargetSite Property
The System.Exception.TargetSite property allows you to determine various details about the
method that threw a given exception. As shown in the previous Main() method, printing the value of
TargetSite will display the return value, name, and parameters of the method that threw the excep-
tion. However, TargetSite does not simply return a vanilla-flavored string, but a strongly typed
System.Reflection.MethodBase object. This type can be used to gather numerous details regarding
the offending method as well as the class that defines the offending method. To illustrate, assume
the previous catch logic has been updated as follows:

static void Main(string[] args)
{
...
// TargetSite actually returns a MethodBase object.
catch(Exception e)
{
Console.WriteLine("\n*** Error! ***");
Console.WriteLine("Member name: {0}", e.TargetSite);
Console.WriteLine("Class defining member: {0}",
e.TargetSite.DeclaringType);

Console.WriteLine("Member type: {0}", e.TargetSite.MemberType);
Console.WriteLine("Message: {0}", e.Message);
Console.WriteLine("Source: {0}", e.Source);

}
Console.WriteLine("\n***** Out of exception logic *****");
Console.ReadLine();

}

This time, you make use of the MethodBase.DeclaringType property to determine the fully
qualified name of the class that threw the error (SimpleException.Car in this case) as well as the
MemberType property of the MethodBase object to identify the type of member (such as a property vs.
a method) where this exception originated. Figure 7-3 shows the updated output.

Figure 7-3. Obtaining aspects of the target site

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 227

8849CH07.qxd 10/1/07 10:38 AM Page 227

The StackTrace Property
The System.Exception.StackTrace property allows you to identify the series of calls that resulted in
the exception. Be aware that you never set the value of StackTrace as it is established automatically
at the time the exception is created. To illustrate, assume you have once again updated your catch
logic:

catch(Exception e)
{
...
Console.WriteLine("Stack: {0}", e.StackTrace);

}

If you were to run the program, you would find the following stack trace is printed to the con-
sole (your line numbers and file paths may differ, of course):

Stack: at SimpleException.Car.Accelerate(Int32 delta)
in c:\MyApps\SimpleException\car.cs:line 65 at SimpleException.Program.Main()
in c:\MyApps\SimpleException\Program.cs:line 21

The string returned from StackTrace documents the sequence of calls that resulted in the
throwing of this exception. Notice how the bottommost line number of this string identifies the first
call in the sequence, while the topmost line number identifies the exact location of the offending
member. Clearly, this information can be quite helpful during the debugging or logging of a given
application, as you are able to “follow the flow” of the error’s origin.

The HelpLink Property
While the TargetSite and StackTrace properties allow programmers to gain an understanding of
a given exception, this information is of little use to the end user. As you have already seen, the
System.Exception.Message property can be used to obtain human-readable information that may
be displayed to the current user. In addition, the HelpLink property can be set to point the user to a
specific URL or standard Windows help file that contains more detailed information.

By default, the value managed by the HelpLink property is an empty string. If you wish to
fill this property with a more interesting value, you will need to do so before throwing the System.
Exception type. Here are the relevant updates to the Car.Accelerate() method:

public void Accelerate(int delta)
{
if (carIsDead)
Console.WriteLine("{0} is out of order...", petName);

else
{
currSpeed += delta;
if (currSpeed >= MaxSpeed)
{
carIsDead = true;
currSpeed = 0;

// We need to call the HelpLink property, thus we need to
// create a local variable before throwing the Exception object.
Exception ex =
new Exception(string.Format("{0} has overheated!", petName));

ex.HelpLink = "http://www.CarsRUs.com";
throw ex;

}

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING228

8849CH07.qxd 10/1/07 10:38 AM Page 228

http://www.CarsRUs.com
http://www.CarsRUs.com

else
Console.WriteLine("=> CurrSpeed = {0}", currSpeed);

}
}

The catch logic could now be updated to print out this help link information as follows:

catch(Exception e)
{
...
Console.WriteLine("Help Link: {0}", e.HelpLink);

}

The Data Property
The Data property of System.Exception allows you to fill an exception object with relevant auxiliary
information (such as a time stamp or what have you). The Data property returns an object imple-
menting an interface named IDictionary, defined in the System.Collections namespace. Chapter 9
examines the role of interface-based programming as well as the System.Collections namespace.
For the time being, just understand that dictionary collections allow you to create a set of values
that are retrieved using a specific key. Observe the next update to the Car.Accelerate() method:

public void Accelerate(int delta)
{
if (carIsDead)
Console.WriteLine("{0} is out of order...", petName);

else
{
currSpeed += delta;
if (currSpeed >= MaxSpeed)
{
carIsDead = true;
currSpeed = 0;

// We need to call the HelpLink property, thus we need
// to create a local variable before throwing the Exception object.
Exception ex =
new Exception(string.Format("{0} has overheated!", petName));

ex.HelpLink = "http://www.CarsRUs.com";

// Stuff in custom data regarding the error.
ex.Data.Add("TimeStamp",
string.Format("The car exploded at {0}", DateTime.Now));

ex.Data.Add("Cause", "You have a lead foot.");
throw ex;

}
else
Console.WriteLine("=> CurrSpeed = {0}", currSpeed);

}
}

To successfully enumerate over the key/value pairs, you first must make sure to specify a using
directive for the System.Collections namespace, given we will make use of a DictionaryEntry type
in the file containing the class implementing your Main() method:

using System.Collections;

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 229

8849CH07.qxd 10/1/07 10:38 AM Page 229

http://www.CarsRUs.com
http://www.CarsRUs.com

Next, we need to update the catch logic to test that the value returned from the Data property is
not null (the default value). After this point, we make use of the Key and Value properties of the Dic-
tionaryEntry type to print the custom data to the console:

catch (Exception e)
{
...
// By default, the data field is empty, so check for null.
Console.WriteLine("\n-> Custom Data:");
if (e.Data != null)
{
foreach (DictionaryEntry de in e.Data)
Console.WriteLine("-> {0}: {1}", de.Key, de.Value);

}
}

With this, we would now find the update shown in Figure 7-4.

Figure 7-4. Obtaining programmer-defined data

The Data property is very useful in that it allows us to pack in custom information regarding the
error at hand without requiring us to build a brand-new class type extending the Exception base
class (which, prior to .NET 2.0, was our only option!). As helpful as the Data property may be, how-
ever, it is still common for .NET developers to build strongly typed exception classes, which account
for custom data using strongly typed properties.

This approach allows the caller to catch a specific Exception-derived type, rather than having
to dig into a data collection to obtain additional details. To understand how to do so, we need to
examine the distinction between system-level and application-level exceptions.

■Source Code The SimpleException project is included under the Chapter 7 subdirectory.

System-Level Exceptions
(System.SystemException)
The .NET base class libraries define many classes which ultimately derive from System.Exception.
For example, the System namespace defines core error objects such as ArgumentOutOfRangeException,

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING230

8849CH07.qxd 10/1/07 10:38 AM Page 230

IndexOutOfRangeException, StackOverflowException, and so forth. Other namespaces define excep-
tions that reflect the behavior of that namespace (e.g., System.Drawing.Printing defines printing
exceptions, System.IO defines IO-based exceptions, System.Data defines database-centric excep-
tions, and so forth).

Exceptions that are thrown by the .NET platform are (appropriately) called system exceptions.
These exceptions are regarded as nonrecoverable, fatal errors. System exceptions derive directly
from a base class named System.SystemException, which in turn derives from System.Exception
(which derives from System.Object):

public class SystemException : Exception
{
// Various constructors.

}

Given that the System.SystemException type does not add any additional functionality beyond
a set of custom constructors, you might wonder why SystemException exists in the first place. Sim-
ply put, when an exception type derives from System.SystemException, you are able to determine
that the .NET runtime is the entity that has thrown the exception, rather than the code base of the
executing application. You can verify this quite simply using the is keyword:

// True! NullReferenceException is-a SystemException.
NullReferenceException nullRefEx = new NullReferenceException();

Console.WriteLine("NullReferenceException is-a SystemException? : {0}",
nullRefEx is SystemException);

Application-Level Exceptions
(System.ApplicationException)
Given that all .NET exceptions are class types, you are free to create your own application-specific
exceptions. However, due to the fact that the System.SystemException base class represents excep-
tions thrown from the CLR, you may naturally assume that you should derive your custom
exceptions from the System.Exception type. While you could do so, best practice dictates that
you instead derive from the System.ApplicationException type:

public class ApplicationException : Exception
{
// Various constructors.

}

Like SystemException, ApplicationException does not define any additional members beyond
a set of constructors. Functionally, the only purpose of System.ApplicationException is to identify
the source of the error. When you handle an exception deriving from System.ApplicationException,
you can assume the exception was raised by the code base of the executing application, rather than
by the .NET base class libraries or .NET runtime engine.

Building Custom Exceptions, Take One
While you can always throw instances of System.Exception to signal a runtime error (as shown in
our first example), it is sometimes advantageous to build a strongly typed exception that represents
the unique details of your current problem. For example, assume you wish to build a custom excep-
tion (named CarIsDeadException) to represent the error of speeding up a doomed automobile. The
first step is to derive a new class from System.ApplicationException (by convention, all exception
classes end with the “Exception” suffix; in fact, this is a .NET best practice).

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 231

8849CH07.qxd 10/1/07 10:38 AM Page 231

■Note As a rule, all custom exception classes should be defined as public types (recall, the default access
modifier of a non-nested type is internal). The reason is that exceptions are often passed outside of assembly
boundaries, and should therefore be accessible to the calling code base.

Create a new Console Application project named CustomException, and copy the previous Car
and Radio definitions into your new project using the Project ➤ Add Existing Item menu option (be
sure to change the namespace that defines the Car and Radio types from SimpleException to
CustomException). Next, add the following class definition:

// This custom exception describes the details of the car-is-dead condition.
public class CarIsDeadException : ApplicationException
{}

Like any class, you are free to include any number of custom members that can be called
within the catch block of the calling logic. You are also free to override any virtual members defined
by your parent classes. For example, we could implement CarIsDeadException by overriding the
virtual Message property.

As well, rather than filling the data collection (via the Data property) when throwing our excep-
tion, our constructor allows the sender to pass in a time stamp and reason for the error. Finally, the
time stamp data and cause of the error can be obtained using strongly typed properties:

public class CarIsDeadException : ApplicationException
{
private string messageDetails;
private DateTime errorTimeStamp;
private string causeOfError;

public DateTime TimeStamp
{
get {return errorTimeStamp;}
set {errorTimeStamp = value;}

}

public string Cause
{
get {return causeOfError;}
set {causeOfError = value;}

}

public CarIsDeadException(){}
public CarIsDeadException(string message,
string cause, DateTime time)

{
messageDetails = message;
causeOfError = cause;
errorTimeStamp = time;

}

// Override the Exception.Message property.
public override string Message
{
get
{

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING232

8849CH07.qxd 10/1/07 10:38 AM Page 232

return string.Format("Car Error Message: {0}", messageDetails);
}

}
}

Here, the CarIsDeadException type maintains a private data member (messageDetails) that
represents data regarding the current exception, which can be set using a custom constructor.
Throwing this error from the Accelerate() method is straightforward. Simply allocate, configure,
and throw a CarIsDeadException type rather than a System.Exception (notice that in this case, we
no longer need to fill the data collection manually):

// Throw the custom CarIsDeadException.
public void Accelerate(int delta)
{
...
CarIsDeadException ex =
new CarIsDeadException (string.Format("{0} has overheated!", petName),
"You have a lead foot", DateTime.Now);
ex.HelpLink = "http://www.CarsRUs.com";
throw ex;

...
}

To catch this incoming exception, your catch scope can now be updated to catch a specific
CarIsDeadException type (however, given that CarIsDeadException “is-a” System.Exception, it is still
permissible to catch a System.Exception as well):

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Custom Exceptions *****\n");
Car myCar = new Car("Rusty", 90);

try
{
// Trip exception.
myCar.Accelerate(50);

}
catch (CarIsDeadException e)
{
Console.WriteLine(e.Message);
Console.WriteLine(e.TimeStamp);
Console.WriteLine(e.Cause);

}
Console.ReadLine();

}

So, now that you understand the basic process of building a custom exception, you may won-
der when you are required to do so. Typically, you only need to create custom exceptions when the
error is tightly bound to the class issuing the error (for example, a custom file-centric class that
throws a number of file-related errors, a Car class that throws a number of car-related errors, and
so forth). In doing so, you provide the caller with the ability to handle numerous exceptions on a
descriptive error-by-error basis.

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 233

8849CH07.qxd 10/1/07 10:38 AM Page 233

http://www.CarsRUs.com
http://www.CarsRUs.com

Building Custom Exceptions, Take Two
The current CarIsDeadException type has overridden the System.Exception.Message property in
order to configure a custom error message and supplied two custom properties to account for addi-
tional bits of data. In reality, however, we are not required to override the virtual Message property,
as we could simply pass the incoming message to our parent’s constructor as follows:

public class CarIsDeadException : ApplicationException
{
private DateTime errorTimeStamp;
private string causeOfError;

public DateTime TimeStamp
{
get { return errorTimeStamp; }
set { errorTimeStamp = value; }

}

public string Cause
{
get { return causeOfError; }
set { causeOfError = value; }

}

public CarIsDeadException() { }

// Feed message to parent constructor.
public CarIsDeadException(string message,
string cause, DateTime time)
:base(message)

{
causeOfError = cause;
errorTimeStamp = time;

}
}

Notice that this time you have not defined a string variable to represent the message, and have
not overridden the Message property. Rather, you are simply passing the parameter to your base
class constructor. With this design, a custom exception class is little more than a uniquely named
class deriving from System.ApplicationException, devoid of any base class overrides.

Don’t be surprised if most (if not all) of your custom exception classes follow this simple
pattern. Many times, the role of a custom exception is not necessarily to provide additional func-
tionality beyond what is inherited from the base classes, but to provide a strongly named type that
clearly identifies the nature of the error.

Building Custom Exceptions, Take Three
If you wish to build a truly prim-and-proper custom exception class, you would want to make sure
your type adheres to the exception-centric .NET best practices. Specifically, this requires that your
custom exception

• Derives from Exception/ApplicationException

• Is marked with the [System.Serializable] attribute

• Defines a default constructor

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING234

8849CH07.qxd 10/1/07 10:38 AM Page 234

• Defines a constructor that sets the inherited Message property

• Defines a constructor to handle “inner exceptions”

• Defines a constructor to handle the serialization of your type

Now, based on your current background with .NET, you may have no idea regarding the role
of attributes or object serialization, which is just fine. I’ll address these topics later in the text (see
Chapter 16 for information on attributes and Chapter 21 for details on serialization services).
However, to finalize our examination of building custom exceptions, here is the final iteration of
CarIsDeadException, which accounts for each of these special constructors:

[Serializable]
public class CarIsDeadException : ApplicationException
{
public CarIsDeadException() { }
public CarIsDeadException(string message) : base(message) { }
public CarIsDeadException(string message,
System.Exception inner) : base(message, inner) { }

protected CarIsDeadException(
System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)
: base(info, context) { }

// Any additional custom properties, constructors and data members...
}

Given that building custom exceptions that adhere to .NET best practices really only differ by
their name, you will be happy to know that Visual Studio 2008 provides a code snippet template
named “Exception” (see Figure 7-5), which will autogenerate a new exception class that adheres to
.NET best practices (see Chapter 2 for an explanation of code snippet templates).

Figure 7-5. The Exception code snippet template

■Source Code The CustomException project is included under the Chapter 7 subdirectory.

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 235

8849CH07.qxd 10/1/07 10:38 AM Page 235

Processing Multiple Exceptions
In its simplest form, a try block has a single catch block. In reality, you often run into a situation
where the statements within a try block could trigger numerous possible exceptions. Create a new
C# Console Application project named ProcessMultipleExceptions, add your existing Car, Radio,
and CarIsDeadException classes to the new project (via Project ➤ Add Existing Item), and update
your namespace names accordingly.

Now, update the Car’s Accelerate() method to also throw a base class library–predefined
ArgumentOutOfRangeException if you pass an invalid parameter (which we will assume is any value
less than zero):

// Test for invalid argument before proceeding.
public void Accelerate(int delta)
{
if(delta < 0)
throw new ArgumentOutOfRangeException("Speed must be greater than zero!");

...
}

The catch logic could now specifically respond to each type of exception:

static void Main(string[] args)
{
Console.WriteLine("***** Handling Multiple Exceptions *****\n");
Car myCar = new Car("Rusty", 90);

try
{
// Trip Arg out of range exception.
myCar.Accelerate(-10);

}
catch (CarIsDeadException e)
{
Console.WriteLine(e.Message);

}
catch (ArgumentOutOfRangeException e)
{
Console.WriteLine(e.Message);

}
Console.ReadLine();

}

When you are authoring multiple catch blocks, you must be aware that when an exception is
thrown, it will be processed by the “first available” catch. To illustrate exactly what the “first avail-
able” catch means, assume you retrofitted the previous logic with an additional catch scope that
attempts to handle all exceptions beyond CarIsDeadException and ArgumentOutOfRangeException
by catching a general System.Exception as follows:

// This code will not compile!
static void Main(string[] args)
{
Console.WriteLine("***** Handling Multiple Exceptions *****\n");
Car myCar = new Car("Rusty", 90);

try
{
// Trip Arg out of range exception.
myCar.Accelerate(-10);

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING236

8849CH07.qxd 10/1/07 10:38 AM Page 236

}
catch(Exception e)
{
// Process all other exceptions?
Console.WriteLine(e.Message);

}
catch (CarIsDeadException e)
{
Console.WriteLine(e.Message);

}
catch (ArgumentOutOfRangeException e)
{
Console.WriteLine(e.Message);

}
Console.ReadLine();

}

This exception-handling logic generates compile-time errors. The problem is due to the fact
that the first catch block can handle anything derived from System.Exception (given the “is-a” rela-
tionship), including the CarIsDeadException and ArgumentOutOfRangeException types. Therefore, the
final two catch blocks are unreachable!

The rule of thumb to keep in mind is to make sure your catch blocks are structured such that
the very first catch is the most specific exception (i.e., the most derived type in an exception type
inheritance chain), leaving the final catch for the most general (i.e., the base class of a given excep-
tion inheritance chain, in this case System.Exception).

Thus, if you wish to define a catch block that will handle any errors beyond CarIsDeadException
and ArgumentOutOfRangeException, you would write the following:

// This code compiles just fine.
static void Main(string[] args)
{
Console.WriteLine("***** Handling Multiple Exceptions *****\n");
Car myCar = new Car("Rusty", 90);
try
{
// Trip Arg out of range exception.
myCar.Accelerate(-10);

}
catch (CarIsDeadException e)
{
Console.WriteLine(e.Message);

}
catch (ArgumentOutOfRangeException e)
{
Console.WriteLine(e.Message);

}
// This will catch any other exception
// beyond CarIsDeadException or
// ArgumentOutOfRangeException.
catch(Exception e)
{
Console.WriteLine(e.Message);

}
Console.ReadLine();

}

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 237

8849CH07.qxd 10/1/07 10:38 AM Page 237

Generic catch Statements
C# also supports a “generic” catch scope that does not explicitly receive the exception object
thrown by a given member:

// A generic catch.
static void Main(string[] args)
{
Console.WriteLine("***** Handling Multiple Exceptions *****\n");
Car myCar = new Car("Rusty", 90);
try
{
myCar.Accelerate(90);

}
catch
{
Console.WriteLine("Something bad happened...");

}
Console.ReadLine();

}

Obviously, this is not the most informative way to handle exceptions, given that you have no
way to obtain meaningful data about the error that occurred (such as the method name, call stack,
or custom message). Nevertheless, C# does allow for such a construct, which can be helpful when
you wish to handle all errors in a very generic fashion.

Rethrowing Exceptions
Be aware that it is permissible for logic in a try block to rethrow an exception up the call stack to the
previous caller. To do so, simply make use of the throw keyword within a catch block. This passes the
exception up the chain of calling logic, which can be helpful if your catch block is only able to par-
tially handle the error at hand:

// Passing the buck.
static void Main(string[] args)
{
...
try
{
// Speed up car logic...

}
catch(CarIsDeadException e)
{
// Do any partial processing of this error and pass the buck.
throw;

}
...
}

Be aware that in this example code, the ultimate receiver of CarIsDeadException is the CLR,
given that it is the Main() method rethrowing the exception. Given this point, your end user is pre-
sented with a system-supplied error dialog box. Typically, you would only rethrow a partial handled
exception to a caller that has the ability to handle the incoming exception more gracefully.

Also notice that we are not explicitly rethrowing the CarIsDeadException object, but rather
making use of the throw keyword with no argument. Doing so preserves the context of the original
target.

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING238

8849CH07.qxd 10/1/07 10:38 AM Page 238

Inner Exceptions
As you may suspect, it is entirely possible to trigger an exception at the time you are handling
another exception. For example, assume that you are handling a CarIsDeadException within a par-
ticular catch scope, and during the process you attempt to record the stack trace to a file on your
C drive named carErrors.txt (you must specify you are using the System.IO namespace to gain
access to these I/O-centric types):

catch(CarIsDeadException e)
{
// Attempt to open a file named carErrors.txt on the C drive.
FileStream fs = File.Open(@"C:\carErrors.txt", FileMode.Open);
...

}

Now, if the specified file is not located on your C drive, the call to File.Open() results in a
FileNotFoundException! Later in this text, you will learn all about the System.IO namespace where
you will discover how to programmatically determine whether a file exists on the hard drive before
attempting to open the file in the first place (thereby avoiding the exception altogether). However,
to keep focused on the topic of exceptions, assume the exception has been raised.

When you encounter an exception while processing another exception, best practice states
that you should record the new exception object as an “inner exception” within a new object of the
same type as the initial exception (that was a mouthful). The reason we need to allocate a new
object of the exception being handled is that the only way to document an inner exception is via
a constructor parameter. Consider the following code:

catch (CarIsDeadException e)
{
try
{
FileStream fs = File.Open(@"C:\carErrors.txt", FileMode.Open);
...

}
catch (Exception e2)
{
// Throw an exception that records the new exception,
// as well as the message of the first exception.
throw new CarIsDeadException(e.Message, e2);

}
}

Notice in this case, we have passed in the FileNotFoundException object as the second parame-
ter to the CarIsDeadException constructor. Once we have configured this new object, we throw it up
the call stack to the next caller, which in this case would be the Main() method.

Given that there is no “next caller” after Main() to catch the exception, we would be again pre-
sented with an error dialog box. Much like the act of rethrowing an exception, recording inner
exceptions is usually only useful when the caller has the ability to gracefully catch the exception in
the first place. If this is the case, the caller’s catch logic can make use of the InnerException property
to extract the details of the inner exception object.

The Finally Block
A try/catch scope may also define an optional finally block. The motivation behind a finally
block is to ensure that a set of code statements will always execute, exception (of any type) or not.

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 239

8849CH07.qxd 10/1/07 10:38 AM Page 239

To illustrate, assume you wish to always power down the car’s radio before exiting Main(), regardless
of any handled exception:

static void Main(string[] args)
{
Console.WriteLine("***** Handling Multiple Exceptions *****\n");
Car myCar = new Car("Rusty", 90);
myCar.CrankTunes(true);

try
{
// Speed up car logic.

}
catch(CarIsDeadException e)
{
// Process CarIsDeadException.

}
catch(ArgumentOutOfRangeException e)
{
// Process ArgumentOutOfRangeException.

}
catch(Exception e)
{
// Process any other Exception.

}
finally
{
// This will always occur. Exception or not.
myCar.CrankTunes(false);

}
Console.ReadLine();

}

If you did not include a finally block, the radio would not be turned off if an exception is
encountered (which may or may not be problematic). In a more real-world scenario, when you
need to dispose of objects, close a file, detach from a database (or whatever), a finally block
ensures a location for proper cleanup.

Who Is Throwing What?
Given that a method in the .NET Framework could throw any number of exceptions (under various
circumstances), a logical question would be “How do I know which exceptions may be thrown by a
given base class library method?” The ultimate answer is simple: consult the .NET Framework 3.5
SDK documentation. Each method in the help system documents the exceptions a given member
may throw. As a quick alternative, Visual Studio 2008 allows you to view the list of all exceptions
thrown by a base class library member (if any) simply by hovering your mouse cursor over the
member name in the code window (see Figure 7-6).

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING240

8849CH07.qxd 10/1/07 10:38 AM Page 240

Figure 7-6. Identifying the exceptions thrown from a given method

For those coming to .NET from a Java background, understand that type members are not pro-
totyped with the set of exceptions it may throw (in other words, .NET does not support checked
exceptions). For better or for worse, you are not required to handle each and every exception
thrown from a given member. In many cases, you can handle all possible errors thrown from a set
scope by catching a single System.Exception:

static void Main(string[] args)
{
try
{
File.Open("IDontExist.txt", FileMode.Open);

}
catch(Exception ex)
{
Console.WriteLine(ex.Message);

}
}

However, if you do wish to handle specific exceptions uniquely, just make use of multiple catch
blocks as shown throughout this chapter.

The Result of Unhandled Exceptions
At this point, you might be wondering what would happen if you do not handle an exception
thrown your direction. Assume that the logic in Main() increases the speed of the Car object beyond
the maximum speed, without the benefit of try/catch logic. The result of ignoring an exception
would be highly obstructive to the end user of your application, as an “unhandled exception” dialog
box is displayed (see Figure 7-7).

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 241

8849CH07.qxd 10/1/07 10:38 AM Page 241

Figure 7-7. The result of not dealing with exceptions

■Source Code The ProcessMultipleExceptions project is included under the Chapter 7 subdirectory.

Debugging Unhandled Exceptions Using
Visual Studio
To wrap things up, do be aware that Visual Studio 2008 provides a number of tools that help you
debug unhandled custom exceptions. Again, assume you have increased the speed of a Car object
beyond the maximum. If you were to start a debugging session (using the Debug ➤ Start menu
selection), Visual Studio automatically breaks at the time the uncaught exception is thrown. Better
yet, you are presented with a window (see Figure 7-8) displaying the value of the Message property.

Figure 7-8. Debugging unhandled custom exceptions with Visual Studio 2008

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING242

8849CH07.qxd 10/1/07 10:38 AM Page 242

If you click the View Detail link, you will find the details regarding the state of the object (see
Figure 7-9).

Figure 7-9. Viewing exception details

■Note If you fail to handle an exception thrown by a method in the .NET base class libraries, the Visual Studio
2008 debugger breaks at the statement that called the offending method.

Summary
In this chapter, you examined the role of structured exception handling. When a method needs to
send an error object to the caller, it will allocate, configure, and throw a specific System.Exception
derived type via the C# throw keyword. The caller is able to handle any possible incoming excep-
tions using the C# catch keyword and an optional finally scope.

When you are creating your own custom exceptions, you ultimately create a class type deriving
from System.ApplicationException, which denotes an exception thrown from the currently execut-
ing application. In contrast, error objects deriving from System.SystemException represent critical
(and fatal) errors thrown by the CLR. Last but not least, this chapter illustrated various tools within
Visual Studio 2008 that can be used to create custom exceptions (according to .NET best practices)
as well as debug exceptions.

CHAPTER 7 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 243

8849CH07.qxd 10/1/07 10:38 AM Page 243

8849CH07.qxd 10/1/07 10:38 AM Page 244

Understanding Object Lifetime

At this point in the text, you have learned a great deal about how to build custom class types using
C#. Here, you will come to understand how the CLR is managing allocated objects via garbage col-
lection. C# programmers never directly deallocate a managed object from memory (recall there is
no delete keyword in the C# language). Rather, .NET objects are allocated onto a region of memory
termed the managed heap, where they will be automatically destroyed by the garbage collector
“sometime in the future.”

Once you have examined the core details of the collection process, you will learn how to pro-
grammatically interact with the garbage collector using the System.GC class type. Next you examine
how the virtual System.Object.Finalize() method and IDisposable interface can be used to build
types that release internal unmanaged resources in a timely manner. By the time you have com-
pleted this chapter, you will have a solid understanding of how .NET objects are managed by
the CLR.

Classes, Objects, and References
To frame the topics examined in this chapter, it is important to further clarify the distinction
between classes, objects, and references. Recall that a class is nothing more than a blueprint that
describes how an instance of this type will look and feel in memory. Classes, of course, are defined
within a code file (which in C# takes a *.cs extension by convention). Consider a simple Car class
defined within a new C# Console Application project named SimpleGC:

// Car.cs
public class Car
{
private int currSp;
private string petName;

public Car(){}
public Car(string name, int speed)
{
petName = name;
currSp = speed;

}
public override string ToString()
{
return string.Format("{0} is going {1} MPH",
petName, currSp);

}
}

245

C H A P T E R 8

8849CH08.qxd 10/22/07 1:27 PM Page 245

Once a class is defined, you can allocate any number of objects using the C# new keyword.
Understand, however, that the new keyword returns a reference to the object on the heap, not the
actual object itself. This reference variable is stored on the stack for further use in your application.
When you wish to invoke members on the object, apply the C# dot operator to the stored reference:

class Program
{
static void Main(string[] args)
{
// Create a new Car object on
// the managed heap. We are
// returned a reference to this
// object ("refToMyCar").
Car refToMyCar = new Car("Zippy", 50);

// The C# dot operator (.) is used
// to invoke members on the object
// using our reference variable.
Console.WriteLine(refToMyCar.ToString());
Console.ReadLine();

}
}

Figure 8-1 illustrates the class, object, and reference relationship.

Figure 8-1. References to objects on the managed heap

The Basics of Object Lifetime
When you are building your C# applications, you are correct to assume that the managed heap will
take care of itself without your direct intervention. In fact, the golden rule of .NET memory manage-
ment is simple:

■Rule Allocate an object onto the managed heap using the new keyword and forget about it.

Once instantiated, the garbage collector will destroy the object when it is no longer needed.
The next obvious question, of course, is, “How does the garbage collector determine when an object
is no longer needed?” The short (i.e., incomplete) answer is that the garbage collector removes an
object from the heap when it is unreachable by any part of your code base. Assume you have a
method in your Program class that allocates a local Car object:

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME246

8849CH08.qxd 10/22/07 1:27 PM Page 246

static void MakeACar()
{
// If myCar is the only reference to the Car object,
// it *may* be destroyed when this method returns.
Car myCar = new Car();

}

Notice that the Car reference (myCar) has been created directly within the MakeACar() method
and has not been passed outside of the defining scope (via a return value or ref/out parameters).
Thus, once this method call completes, the myCar reference is no longer reachable, and the associ-
ated Car object is now a candidate for garbage collection. Understand, however, that you cannot
guarantee that this object will be reclaimed from memory immediately after MakeACar() has com-
pleted. All you can assume at this point is that when the CLR performs the next garbage collection,
the myCar object could be safely destroyed.

As you will most certainly discover, programming in a garbage-collected environment will
greatly simplify your application development. In stark contrast, C++ programmers are painfully
aware that if they fail to manually delete heap-allocated objects, memory leaks are never far behind.
In fact, tracking down memory leaks is one of the most time-consuming (and tedious) aspects of
programming with unmanaged languages. By allowing the garbage collector to be in charge of
destroying objects, the burden of memory management has been taken from your shoulders and
placed onto those of the CLR.

■Note If you happen to have a background in COM development, do know that .NET objects do not maintain
an internal reference counter, and therefore managed objects do not expose methods such as AddRef() or
Release().

The CIL of new
When the C# compiler encounters the new keyword, it will emit a CIL newobj instruction into the
method implementation. If you were to compile the current example code and investigate the
resulting assembly using ildasm.exe, you would find the following CIL statements within the
MakeACar() method:

.method public hidebysig static void MakeACar() cil managed
{
// Code size 7 (0x7)
.maxstack 1
.locals init ([0] class SimpleGC.Car c)
IL_0000: newobj instance void SimpleGC.Car::.ctor()
IL_0005: stloc.0
IL_0006: ret

} // end of method Program::MakeACar

Before we examine the exact rules that determine when an object is removed from the
managed heap, let’s check out the role of the CIL newobj instruction in a bit more detail. First,
understand that the managed heap is more than just a random chunk of memory accessed by the
CLR. The .NET garbage collector is quite a tidy housekeeper of the heap, given that it will compact
empty blocks of memory (when necessary) for purposes of optimization. To aid in this endeavor,
the managed heap maintains a pointer (commonly referred to as the next object pointer or new
object pointer) that identifies exactly where the next object will be located.

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME 247

8849CH08.qxd 10/22/07 1:27 PM Page 247

These things being said, the newobj instruction informs the CLR to perform the following core
tasks:

• Calculate the total amount of memory required for the object to be allocated (including the
necessary memory required by the type’s data members and the type’s base classes).

• Examine the managed heap to ensure that there is indeed enough room to host the object to
be allocated. If this is the case, the type’s constructor is called, and the caller is ultimately
returned a reference to the new object in memory, whose address just happens to be identi-
cal to the last position of the next object pointer.

• Finally, before returning the reference to the caller, advance the next object pointer to point
to the next available slot on the managed heap.

The basic process is illustrated in Figure 8-2.

Figure 8-2. The details of allocating objects onto the managed heap

As your application is busy allocating objects, the space on the managed heap may eventually
become full. When processing the newobj instruction, if the CLR determines that the managed heap
does not have sufficient memory to allocate the requested type, it will perform a garbage collection
in an attempt to free up memory. Thus, the next rule of garbage collection is also quite simple:

■Rule If the managed heap does not have sufficient memory to allocate a requested object, a garbage collection
will occur.

When a collection does take place, the garbage collector temporarily suspends all active
threads within the current process to ensure that the application does not access the heap during
the collection process. We will examine the topic of threads in Chapter 18; however, for the time
being, simply regard a thread as a path of execution within a running executable. Once the garbage
collection cycle has completed, the suspended threads are permitted to carry on their work. Thank-
fully, the .NET garbage collector is highly optimized; you will seldom (if ever) notice this brief
interruption in your application.

Setting Object References to null
Those of you who have created COM objects using Visual Basic 6.0 were well aware that it was
always preferable to set their references to Nothing when you were finished using them. Under the
covers, the reference count of the COM object was decremented by one, and may be removed from
memory if the object’s reference count equaled 0. In a similar fashion, C/C++ programmers often
set pointer variables to null to ensure they are no longer referencing unmanaged memory.

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME248

8849CH08.qxd 10/22/07 1:27 PM Page 248

Given these facts, you might wonder what the end result is of assigning object references to
null under C#. For example, assume the MakeACar() subroutine has now been updated as follows:

static void MakeACar()
{
Car myCar = new Car();
myCar = null;

}

When you assign object references to null, the compiler will generate CIL code that ensures
the reference (myCar in this example) no longer points to any object. If you were once again to make
use of ildasm.exe to view the CIL code of the modified MakeACar(), you would find the ldnull
opcode (which pushes a null value on the virtual execution stack) followed by a stloc.0 opcode
(which sets the null reference on the allocated Car):

.method private hidebysig static void MakeACar() cil managed
{
// Code size 10 (0xa)
.maxstack 1
.locals init ([0] class SimpleGC.Car myCar)
IL_0000: nop
IL_0001: newobj instance void SimpleGC.Car::.ctor()
IL_0006: stloc.0
IL_0007: ldnull
IL_0008: stloc.0
IL_0009: ret

} // end of method Program::MakeACar

What you must understand, however, is that assigning a reference to null does not in any way
force the garbage collector to fire up at that exact moment and remove the object from the heap.
The only thing you have accomplished is explicitly clipping the connection between the reference
and the object it previously pointed to. Given this point, setting references to null under C# is far
less consequential than doing so in other C-based languages (or VB 6.0); however, doing so will cer-
tainly not cause any harm.

The Role of Application Roots
Now, back to the topic of how the garbage collector determines when an object is “no longer
needed.” To understand the details, you need to be aware of the notion of application roots. Simply
put, a root is a storage location containing a reference to an object on the heap. Strictly speaking, a
root can fall into any of the following categories:

• References to global objects (while not allowed in C#, CIL code does permit allocation of
global objects)

• References to any static objects/static fields

• References to local objects within an application’s code base

• References to object parameters passed into a method

• References to objects waiting to be finalized (described later in this chapter)

• Any CPU register that references an object

During a garbage collection process, the runtime will investigate objects on the managed heap
to determine whether they are still reachable (aka rooted) by the application. To do so, the CLR will
build an object graph, which represents each reachable object on the heap. Object graphs will be

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME 249

8849CH08.qxd 10/22/07 1:27 PM Page 249

explained in some detail during our discussion of object serialization (Chapter 21). For now, just
understand that object graphs are used to document all reachable objects. As well, be aware that
the garbage collector will never graph the same object twice, thus avoiding the nasty circular refer-
ence count found in COM programming.

Assume the managed heap contains a set of objects named A, B, C, D, E, F, and G. During a
garbage collection, these objects (as well as any internal object references they may contain) are
examined for active roots. Once the graph has been constructed, unreachable objects (which we
will assume are objects C and F) are marked as garbage. Figure 8-3 diagrams a possible object graph
for the scenario just described (you can read the directional arrows using the phrase depends on or
requires, for example, “E depends on G and indirectly B,” “A depends on nothing,” and so on).

Figure 8-3. Object graphs are constructed to determine which objects are reachable by application
roots.

Once an object has been marked for termination (C and F in this case—as they are not
accounted for in the object graph), they are swept from memory. At this point, the remaining space
on the heap is compacted, which in turn will cause the CLR to modify the set of active application
roots (and the underlying pointers) to refer to the correct memory location (this is done automati-
cally and transparently). Last but not least, the next object pointer is readjusted to point to the next
available slot. Figure 8-4 illustrates the resulting readjustment.

Figure 8-4. A clean and compacted heap

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME250

8849CH08.qxd 10/22/07 1:27 PM Page 250

■Note Strictly speaking, the garbage collector makes use of two distinct heaps, one of which is specifically used
to store very large objects. This heap is less frequently consulted during the collection cycle, given possible per-
formance penalties involved with relocating large objects. Regardless of this fact, it is safe to consider the
“managed heap” as a single region of memory.

Understanding Object Generations
When the CLR is attempting to locate unreachable objects, is does not literally examine each and
every object placed on the managed heap. Obviously, doing so would involve considerable time,
especially in larger (i.e., real-world) applications.

To help optimize the process, each object on the heap is assigned to a specific “generation.”
The idea behind generations is simple: the longer an object has existed on the heap, the more likely
it is to stay there. For example, the object implementing Main() will be in memory until the program
terminates. Conversely, objects that have been recently placed on the heap (such as an object allo-
cated within a method scope) are likely to be unreachable rather quickly. Given these assumptions,
each object on the heap belongs to one of the following generations:

• Generation 0: Identifies a newly allocated object that has never been marked for collection

• Generation 1: Identifies an object that has survived a garbage collection (i.e., it was marked
for collection, but was not removed due to the fact that the sufficient heap space was
acquired)

• Generation 2: Identifies an object that has survived more than one sweep of the garbage
collector

The garbage collector will investigate all generation 0 objects first. If marking and sweeping
these objects results in the required amount of free memory, any surviving objects are promoted
to generation 1. To illustrate how an object’s generation affects the collection process, ponder
Figure 8-5, which diagrams how a set of surviving generation 0 objects (A, B, and E) are promoted
once the required memory has been reclaimed.

Figure 8-5. Generation 0 objects that survive a garbage collection are promoted to generation 1.

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME 251

8849CH08.qxd 10/22/07 1:27 PM Page 251

If all generation 0 objects have been evaluated, but additional memory is still required, genera-
tion 1 objects are then investigated for their “reachability” and collected accordingly. Surviving
generation 1 objects are then promoted to generation 2. If the garbage collector still requires addi-
tional memory, generation 2 objects are then evaluated for their reachability. At this point, if a
generation 2 object survives a garbage collection, it remains a generation 2 object given the prede-
fined upper limit of object generations.

The bottom line is that by assigning a generational value to objects on the heap, newer objects
(such as local variables) will be removed quickly, while older objects (such as a program’s applica-
tion object) are not “bothered” as often.

The System.GC Type
The base class libraries provide a class type named System.GC that allows you to programmatically
interact with the garbage collector using a set of static members. Now, do be very aware that you
will seldom (if ever) need to make use of this type directly in your code. Typically speaking, the only
time you will make use of the members of System.GC is when you are creating types that make use of
unmanaged resources. Table 8-1 provides a rundown of some of the more interesting members
(consult the .NET Framework 3.5 SDK documentation for complete details).

Table 8-1. Select Members of the System.GC Type

System.GC Member Meaning in Life

AddMemoryPressure() Allow you to specify a numerical value that represents the
RemoveMemoryPressure() calling object’s “urgency level” regarding the garbage collection

process. Be aware that these methods should alter pressure in
tandem and thus never remove more pressure than the total
amount you have added.

Collect() Forces the GC to perform a garbage collection. This method has
been overloaded to specify a generation to collect, as well as the
mode of collection (via the GCCollectionMode enumeration).

CollectionCount() Returns a numerical value representing how many times a given
generation has been swept.

GetGeneration() Returns the generation to which an object currently belongs.

GetTotalMemory() Returns the estimated amount of memory (in bytes) currently
allocated on the managed heap. The Boolean parameter specifies
whether the call should wait for garbage collection to occur
before returning.

MaxGeneration Returns the maximum of generations supported on the target
system. Under Microsoft’s .NET 3.5, there are three possible
generations (0, 1, and 2).

SuppressFinalize() Sets a flag indicating that the specified object should not have its
Finalize() method called.

WaitForPendingFinalizers() Suspends the current thread until all finalizable objects have
been finalized. This method is typically called directly after
invoking GC.Collect().

To illustrate how the System.GC type can be used to obtain various garbage collection–centric
details, consider the following Main() method, which makes use of several members of GC:

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME252

8849CH08.qxd 10/22/07 1:27 PM Page 252

static void Main(string[] args)
{
Console.WriteLine("***** Fun with System.GC *****");

// Print out estimated number of bytes on heap.
Console.WriteLine("Estimated bytes on heap: {0}",
GC.GetTotalMemory(false));

// MaxGeneration is zero based, so add 1 for display purposes.
Console.WriteLine("This OS has {0} object generations.\n",
(GC.MaxGeneration + 1));

Car refToMyCar = new Car("Zippy", 100);
Console.WriteLine(refToMyCar.ToString());

// Print out generation of refToMyCar object.
Console.WriteLine("Generation of refToMyCar is: {0}",
GC.GetGeneration(refToMyCar));

Console.ReadLine();
}

Forcing a Garbage Collection
Again, the whole purpose of the .NET garbage collector is to manage memory on our behalf. How-
ever, under some very rare circumstances, it may be beneficial to programmatically force a garbage
collection using GC.Collect(). Specifically:

• Your application is about to enter into a block of code that you do not wish to be interrupted
by a possible garbage collection.

• Your application has just finished allocating an extremely large number of objects and you
wish to remove as much of the acquired memory as possible.

If you determine it may be beneficial to have the garbage collector check for unreachable
objects, you could explicitly trigger a garbage collection, as follows:

static void Main(string[] args)
{
...
// Force a garbage collection and wait for
// each object to be finalized.
GC.Collect();
GC.WaitForPendingFinalizers();

...
}

When you manually force a garbage collection, you should always make a call to GC.
WaitForPendingFinalizers(). With this approach, you can rest assured that all finalizable objects
have had a chance to perform any necessary cleanup before your program continues forward.
Under the hood, GC.WaitForPendingFinalizers() will suspend the calling “thread” during the col-
lection process. This is a good thing, as it ensures your code does not invoke methods on an object
currently being destroyed!

The GC.Collect() method can also be supplied a numerical value that identifies the oldest
generation on which a garbage collection will be performed. For example, if you wished to instruct
the CLR to only investigate generation 0 objects, you would write the following:

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME 253

8849CH08.qxd 10/22/07 1:27 PM Page 253

static void Main(string[] args)
{
...
// Only investigate generation 0 objects.
GC.Collect(0);
GC.WaitForPendingFinalizers();

...
}

As well, as of .NET 3.5, the Collect() method can also be passed in a value of the
GCCollectionMode enumeration as a second parameter, to fine-tune exactly how the runtime
should force the garbage collection. This enum defines the following values:

public enum GCCollectionMode
{
Default, // Forced is the current default.
Forced, // Tells the runtime to collect immediately!
Optimized // Allows the runtime to determine

// whether the current time is optimal to reclaim objects.
}

Like any garbage collection, calling GC.Collect() will promote surviving generations. To illus-
trate, assume that our Main() method has been updated as follows:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with System.GC *****");

// Print out estimated number of bytes on heap.
Console.WriteLine("Estimated bytes on heap: {0}",
GC.GetTotalMemory(false));

// MaxGeneration is zero based.
Console.WriteLine("This OS has {0} object generations.\n",
(GC.MaxGeneration + 1));

Car refToMyCar = new Car("Zippy", 100);
Console.WriteLine(refToMyCar.ToString());

// Print out generation of refToMyCar.
Console.WriteLine("\nGeneration of refToMyCar is: {0}",
GC.GetGeneration(refToMyCar));

// Make a ton of objects for testing purposes.
object[] tonsOfObjects = new object[50000];
for (int i = 0; i < 50000; i++)
tonsOfObjects[i] = new object();

// Collect only gen 0 objects.
GC.Collect(0, GCCollectionMode.Forced);
GC.WaitForPendingFinalizers();

// Print out generation of refToMyCar.
Console.WriteLine("Generation of refToMyCar is: {0}",
GC.GetGeneration(refToMyCar));

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME254

8849CH08.qxd 10/22/07 1:27 PM Page 254

// See if tonsOfObjects[9000] is still alive.
if (tonsOfObjects[9000] != null)
{
Console.WriteLine("Generation of tonsOfObjects[9000] is: {0}",
GC.GetGeneration(tonsOfObjects[9000]));

}
else
Console.WriteLine("tonsOfObjects[9000] is no longer alive.");

// Print out how many times a generation has been swept.
Console.WriteLine("\nGen 0 has been swept {0} times",
GC.CollectionCount(0));

Console.WriteLine("Gen 1 has been swept {0} times",
GC.CollectionCount(1));

Console.WriteLine("Gen 2 has been swept {0} times",
GC.CollectionCount(2));

Console.ReadLine();
}

Here, we have purposely created a very large array of object types (50,000 to be exact) for test-
ing purposes. As you can see from the output shown in Figure 8-6, even though this Main() method
only made one explicit request for a garbage collection (via the GC.Collect() method), the CLR per-
formed a number of them in the background.

Figure 8-6. Interacting with the CLR garbage collector via System.GC

At this point in the chapter, I hope you feel more comfortable regarding the details of object
lifetime. The remainder of this chapter examines the garbage collection process a bit further by
addressing how you can build finalizable objects as well as disposable objects. Be very aware that the
following techniques will only be useful if you are building managed classes that maintain internal
unmanaged resources.

■Source Code The SimpleGC project is included under the Chapter 8 subdirectory.

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME 255

8849CH08.qxd 10/22/07 1:27 PM Page 255

Building Finalizable Objects
In Chapter 6, you learned that the supreme base class of .NET, System.Object, defines a virtual
method named Finalize(). The default implementation of this method does nothing whatsoever:

// System.Object
public class Object
{
...
protected virtual void Finalize() {}

}

When you override Finalize() for your custom classes, you establish a specific location to per-
form any necessary cleanup logic for your type. Given that this member is defined as protected, it is
not possible to directly call an object’s Finalize() method from a class instance via the dot opera-
tor. Rather, the garbage collector will call an object’s Finalize() method (if supported) before
removing the object from memory.

■Note It is illegal to override Finalize() on structure types. This makes perfect sense given that structures are
value types, which are never allocated on the heap to begin with, and therefore are not garbage collected!

Of course, a call to Finalize() will (eventually) occur during a “natural” garbage collection
or when you programmatically force a collection via GC.Collect(). In addition, a type’s finalizer
method will automatically be called when the application domain hosting your application is
unloaded from memory. Based on your current background in .NET, you may know that application
domains (or simply AppDomains) are used to host an executable assembly and any necessary
external code libraries. If you are not familiar with this .NET concept, you will be by the time you’ve
finished Chapter 17. The short answer is that when your AppDomain is unloaded from memory, the
CLR automatically invokes finalizers for every finalizable object created during its lifetime.

Now, despite what your developer instincts may tell you, a vast majority of your C# classes will
not require any explicit cleanup logic and will not need a custom finalizer. The reason is simple: if
your types are simply making use of other managed objects, everything will eventually be garbage
collected. The only time you would need to design a class that can clean up after itself is when you
are making use of unmanaged resources (such as raw OS file handles, raw unmanaged database
connections, chunks of unmanaged memory, or other unmanaged resources). Under the .NET plat-
form, unmanaged resources are obtained by directly calling into the API of the operating system
using Platform Invocation Services (PInvoke) or due to some very elaborate COM interoperability
scenarios. Given this, consider the next rule of garbage collection:

■Rule The only reason to override Finalize() is if your C# class is making use of unmanaged resources via
PInvoke or complex COM interoperability tasks (typically via various members defined by the System.Runtime.
InteropServices.Marshal type).

Overriding System.Object.Finalize()
In the rare case that you do build a C# class that makes use of unmanaged resources, you will obvi-
ously wish to ensure that the underlying memory is released in a predictable manner. Assume you
have created a new C# Console Application named SimpleFinalize and inserted a class named
MyResourceWrapper that makes use of an unmanaged resource (whatever that may be) and you wish

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME256

8849CH08.qxd 10/22/07 1:27 PM Page 256

to override Finalize(). The odd thing about doing so in C# is that you cannot do so using the
expected override keyword:

public class MyResourceWrapper
{
// Compile-time error!
protected override void Finalize(){ }

}

Rather, when you wish to configure your custom C# class types to override the Finalize()
method, you make use of a (C++-like) destructor syntax to achieve the same effect. The reason for
this alternative form of overriding a virtual method is that when the C# compiler processes the
finalizer syntax, it will automatically add a good deal of required infrastructure within the implicitly
overridden Finalize() method (shown in just a moment).

C# finalizers look very similar to a constructor in that they are named identically to the class
they are defined within. In addition, finalizers are prefixed with a tilde symbol (~). Unlike a con-
structor, however, finalizers never take an access modifier (they are implicitly protected), never take
parameters and cannot be overloaded (only one finalizer per class).

Here is a custom finalizer for MyResourceWrapper that will issue a system beep when invoked.
Obviously this is only for instructional purposes. A real-world finalizer would do nothing more than
free any unmanaged resources and would not interact with other managed objects, even those ref-
erenced by the current object, as you cannot assume they are still alive at the point the garbage
collector invokes your Finalize() method:

// Override System.Object.Finalize() via finalizer syntax.
class MyResourceWrapper
{
~MyResourceWrapper()
{
// Clean up unmanaged resources here.

// Beep when destroyed (testing purposes only!)
Console.Beep();

}
}

If you were to examine this C# destructor using ildasm.exe, you will see that the compiler
inserts some necessary error checking code. First, the code statements within the scope of your
Finalize() method are placed within a try block (see Chapter 7). The related finally block ensures
that your base classes’ Finalize() method will always execute, regardless of any exceptions
encountered within the try scope:

.method family hidebysig virtual instance void
Finalize() cil managed

{
// Code size 13 (0xd)
.maxstack 1
.try
{
IL_0000: ldc.i4 0x4e20
IL_0005: ldc.i4 0x3e8
IL_000a: call
void [mscorlib]System.Console::Beep(int32, int32)
IL_000f: nop
IL_0010: nop
IL_0011: leave.s IL_001b

} // end .try

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME 257

8849CH08.qxd 10/22/07 1:27 PM Page 257

finally
{
IL_0013: ldarg.0
IL_0014:
call instance void [mscorlib]System.Object::Finalize()

IL_0019: nop
IL_001a: endfinally

} // end handler
IL_001b: nop
IL_001c: ret

} // end of method MyResourceWrapper::Finalize

If you were to now test the MyResourceWrapper type, you would find that a system beep occurs
when the application terminates, given that the CLR will automatically invoke finalizers upon
AppDomain shutdown:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Finalizers *****\n");
Console.WriteLine("Hit the return key to shut down this app");
Console.WriteLine("and force the GC to invoke Finalize()");
Console.WriteLine("for finalizable objects created in this AppDomain.");
Console.ReadLine();
MyResourceWrapper rw = new MyResourceWrapper();

}

■Source Code The SimpleFinalize project is included under the Chapter 8 subdirectory.

Detailing the Finalization Process
Not to beat a dead horse, but always remember that the role of the Finalize() method is to ensure
that a .NET object can clean up unmanaged resources when garbage collected. Thus, if you are
building a type that does not make use of unmanaged entities (by far the most common case), final-
ization is of little use. In fact, if at all possible, you should design your types to avoid supporting a
Finalize() method for the very simple reason that finalization takes time.

When you allocate an object onto the managed heap, the runtime automatically determines
whether your object supports a custom Finalize() method. If so, the object is marked as
finalizable, and a pointer to this object is stored on an internal queue named the finalization queue.
The finalization queue is a table maintained by the garbage collector that points to each and every
object that must be finalized before it is removed from the heap.

When the garbage collector determines it is time to free an object from memory, it examines
each entry on the finalization queue and copies the object off the heap to yet another managed
structure termed the finalization reachable table (often abbreviated as freachable, and pronounced
“eff-reachable”). At this point, a separate thread is spawned to invoke the Finalize() method for
each object on the freachable table at the next garbage collection. Given this, it will take at the very
least two garbage collections to truly finalize an object.

The bottom line is that while finalization of an object does ensure an object can clean up
unmanaged resources, it is still nondeterministic in nature, and due to the extra behind-the-
curtains processing, considerably slower.

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME258

8849CH08.qxd 10/22/07 1:27 PM Page 258

Building Disposable Objects
As you have seen, finalizers can be used to release unmanaged resources when the garbage collec-
tor kicks in. However, given that many unmanaged objects are “precious items” (such as database or
file handles), it may be valuable to release them as soon as possible instead of relying on a garbage
collection to occur. As an alternative to overriding Finalize(), your class could implement the
IDisposable interface, which defines a single method named Dispose():

public interface IDisposable
{
void Dispose();

}

If you are new to interface-based programming, Chapter 9 will take you through the details. In
a nutshell, an interface as a collection of abstract members a class or structure may support. When
you do support the IDisposable interface, the assumption is that when the object user is finished
using the object, it manually calls Dispose() before allowing the object reference to drop out of
scope. In this way, an object can perform any necessary cleanup of unmanaged resources without
incurring the hit of being placed on the finalization queue and without waiting for the garbage col-
lector to trigger the class’s finalization logic.

■Note Structures and class types can both implement IDisposable (unlike overriding Finalize(), which is
reserved for class types), as the object user (not the garbage collector) invokes the Dispose() method.

To illustrate the use of this interface, create a new C# Console Application named Simple-
Dispose. Here is an updated MyResourceWrapper class that now implements IDisposable, rather
than overriding System.Object.Finalize():

// Implementing IDisposable.
public class MyResourceWrapper : IDisposable
{
// The object user should call this method
// when they finish with the object.
public void Dispose()
{
// Clean up unmanaged resources...

// Dispose other contained disposable objects...

// Just for a test.
Console.WriteLine("***** In Dispose! *****");

}
}

Notice that a Dispose() method is not only responsible for releasing the type’s unmanaged
resources, but should also call Dispose() on any other contained disposable methods. Unlike
Finalize(), it is perfectly safe to communicate with other managed objects within a Dispose()
method. The reason is simple: the garbage collector has no clue about the IDisposable interface
and will never call Dispose(). Therefore, when the object user calls this method, the object is still
living a productive life on the managed heap and has access to all other heap-allocated objects.
The calling logic is straightforward:

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME 259

8849CH08.qxd 10/22/07 1:27 PM Page 259

public class Program
{
static void Main()
{
Console.WriteLine("***** Fun with Dispose *****\n");

// Create a disposable object and call Dispose()
// to free any internal resources.
MyResourceWrapper rw = new MyResourceWrapper();
rw.Dispose();
Console.ReadLine();

}
}

Of course, before you attempt to call Dispose() on an object, you will want to ensure the type
supports the IDisposable interface. While you will typically know which base class library types
implement IDisposable by consulting the .NET Framework 3.5 SDK documentation, a program-
matic check can be accomplished using the is or as keywords discussed in Chapter 6:

public class Program
{
static void Main()
{
Console.WriteLine("***** Fun with Dispose *****\n");
MyResourceWrapper rw = new MyResourceWrapper();
if (rw is IDisposable)
rw.Dispose();

Console.ReadLine();
}

}

This example exposes yet another rule of working with garbage-collected types.

■Rule Always call Dispose() on any object you directly create if the object supports IDisposable. The
assumption you should make is that if the class designer chose to support the Dispose() method, the type has
some cleanup to perform.

There is one caveat to the previous rule. A number of types in the base class libraries that do
implement the IDisposable interface provide a (somewhat confusing) alias to the Dispose()
method, in an attempt to make the disposal-centric method sound more natural for the defining
type. By way of an example, while the System.IO.FileStream class implements IDisposable (and
therefore supports a Dispose() method), it also defines a Close() method that is used for the same
purpose:

// Assume you have imported
// the System.IO namespace...
static void DisposeFileStream()
{
FileStream fs = new FileStream("myFile.txt", FileMode.OpenOrCreate);

// Confusing, to say the least!
// These method calls do the same thing!
fs.Close();
fs.Dispose();

}

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME260

8849CH08.qxd 10/22/07 1:27 PM Page 260

While it does feel more natural to “close” a file rather than “dispose” of one, you may agree that
this doubling up of disposal-centric methods is confusing. For the few types that do provide an
alias, just remember that if a type implements IDisposable, calling Dispose() is always a correct
course of action.

Reusing the C# using Keyword
When you are handling a managed object that implements IDisposable, it will be quite common to
make use of structured exception handling to ensure the type’s Dispose() method is called in the
event of a runtime exception:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Dispose *****\n");
MyResourceWrapper rw = new MyResourceWrapper ();
try
{
// Use the members of rw.

}
finally
{
// Always call Dispose(), error or not.
rw.Dispose();

}
}

While this is a fine example of defensive programming, the truth of the matter is that few devel-
opers are thrilled by the prospects of wrapping each and every disposable type within a try/finally
block just to ensure the Dispose() method is called. To achieve the same result in a much less obtru-
sive manner, C# supports a special bit of syntax that looks like this:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Dispose *****\n");
// Dispose() is called automatically when the
// using scope exits.
using(MyResourceWrapper rw = new MyResourceWrapper())
{
// Use rw object.

}
}

If you were to look at the CIL code of the Main() method using ildasm.exe, you will find the
using syntax does indeed expand to try/final logic, with the expected call to Dispose():

.method private hidebysig static void Main(string[] args) cil managed
{
...
.try
{
...

} // end .try
finally
{

...
IL_0012: callvirt instance void
SimpleFinalize.MyResourceWrapper::Dispose()

} // end handler

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME 261

8849CH08.qxd 10/22/07 1:27 PM Page 261

...
} // end of method Program::Main

■Note If you attempt to “use” an object that does not implement IDisposable, you will receive a compiler
error.

While this syntax does remove the need to manually wrap disposable objects within
try/finally logic, the C# using keyword unfortunately now has a double meaning (specifying
namespaces and invoking a Dispose() method). Nevertheless, when you are working with .NET
types that support the IDisposable interface, this syntactical construct will ensure that the object
“being used” will automatically have its Dispose() method called once the using block has exited.

Also, be aware that it is possible to declare multiple objects of the same type within a using
scope. As you would expect, the compiler will inject code to call Dispose() on each declared object:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Dispose *****\n");

// Use a comma-delimited list to declare multiple objects to dispose.
using(MyResourceWrapper rw = new MyResourceWrapper(),

rw2 = new MyResourceWrapper())
{
// Use rw and rw2 objects.

}
}

■Source Code The SimpleDispose project is included under the Chapter 8 subdirectory.

Building Finalizable and Disposable Types
At this point, we have seen two different approaches to construct a class that cleans up internal
unmanaged resources. On the one hand, we could override System.Object.Finalize(). Using this
technique, we have the peace of mind that comes with knowing the object cleans itself up when
garbage collected (whenever that may be) without the need for user interaction. On the other hand,
we could implement IDisposable to provide a way for the object user to clean up the object as soon
as it is finished. However, if the caller forgets to call Dispose(), the unmanaged resources may be
held in memory indefinitely.

As you might suspect, it is possible to blend both techniques into a single class definition. By
doing so, you gain the best of both models. If the object user does remember to call Dispose(), you
can inform the garbage collector to bypass the finalization process by calling GC.SuppressFinalize().
If the object user forgets to call Dispose(), the object will eventually be finalized and have a chance
to free up the internal resources. The good news is that the object’s internal unmanaged resources
will be freed one way or another.

Here is the next iteration of MyResourceWrapper, which is now finalizable and disposable,
defined in a C# Console Application named FinalizableDisposableClass:

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME262

8849CH08.qxd 10/22/07 1:27 PM Page 262

// A sophisticated resource wrapper.
public class MyResourceWrapper : IDisposable
{
// The garbage collector will call this method if the
// object user forgets to call Dispose().
~ MyResourceWrapper()
{
// Clean up any internal unmanaged resources.
// Do **not** call Dispose() on any managed objects.

}

// The object user will call this method to clean up
// resources ASAP.
public void Dispose()
{
// Clean up unmanaged resources here.
// Call Dispose() on other contained disposable objects.

// No need to finalize if user called Dispose(),
// so suppress finalization.
GC.SuppressFinalize(this);

}
}

Notice that this Dispose() method has been updated to call GC.SuppressFinalize(), which
informs the CLR that it is no longer necessary to call the destructor when this object is garbage col-
lected, given that the unmanaged resources have already been freed via the Dispose() logic.

A Formalized Disposal Pattern
The current implementation of MyResourceWrapper does work fairly well; however, we are left with a
few minor drawbacks. First, the Finalize() and Dispose() methods each have to clean up the same
unmanaged resources. This could result in duplicate code, which can easily become a nightmare to
maintain. Ideally, you would define a private helper function that is called by either method.

Next, you would like to make sure that the Finalize() method does not attempt to dispose of
any managed objects, while the Dispose() method should do so. Finally, you would also like to
make sure that the object user can safely call Dispose() multiple times without error. Currently, our
Dispose() method has no such safeguards.

To address these design issues, Microsoft has defined a formal, prim-and-proper disposal pat-
tern that strikes a balance between robustness, maintainability, and performance. Here is the final
(and annotated) version of MyResourceWrapper, which makes use of this official pattern:

public class MyResourceWrapper : IDisposable
{
// Used to determine if Dispose()
// has already been called.
private bool disposed = false;

public void Dispose()
{
// Call our helper method.
// Specifying "true" signifies that
// the object user triggered the cleanup.
CleanUp(true);

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME 263

8849CH08.qxd 10/22/07 1:27 PM Page 263

// Now suppress finalization.
GC.SuppressFinalize(this);

}

private void CleanUp(bool disposing)
{
// Be sure we have not already been disposed!
if (!this.disposed)
{
// If disposing equals true, dispose all
// managed resources.
if (disposing)
{
// Dispose managed resources.

}
// Clean up unmanaged resources here.

}
disposed = true;

}

~MyResourceWrapper()
{
// Call our helper method.
// Specifying "false" signifies that
// the GC triggered the cleanup.
CleanUp(false);

}
}

Notice that MyResourceWrapper now defines a private helper method named CleanUp(). When
specifying true as an argument, we are signifying that the object user has initiated the cleanup,
therefore we should clean up all managed and unmanaged resources. However, when the garbage
collector initiates the cleanup, we specify false when calling CleanUp() to ensure that internal dis-
posable objects are not disposed (as we can’t assume they are still in memory!). Last but not least,
our bool member variable (disposed) is set to true before exiting CleanUp() to ensure that Dispose()
can be called numerous times without error.

To test our final iteration of MyResourceWrapper, add a call to Console.Beep() within the scope
of your finalizer:

~MyResourceWrapper()
{
Console.Beep();
// Call our helper method.
// Specifying "false" signifies that
// the GC triggered the cleanup.
CleanUp(false);

}

Next, update Main() as follows:

static void Main(string[] args)
{
Console.WriteLine("***** Dispose() / Destructor Combo Platter *****");

// Call Dispose() manually, this will not call the finalizer.
MyResourceWrapper rw = new MyResourceWrapper();
rw.Dispose();

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME264

8849CH08.qxd 10/22/07 1:27 PM Page 264

// Don't call Dispose(), this will trigger the finalizer
// and cause a beep.
MyResourceWrapper rw2 = new MyResourceWrapper();

}

Notice that we are explicitly calling Dispose() on the rw object, therefore the destructor call is
suppressed. However, we have “forgotten” to call Dispose() on the rw2 object, and therefore when
the application terminates, we hear a single beep. If you were to comment out the call to Dispose()
on the rw object, you would hear two beeps.

■Source Code The FinalizableDisposableClass project is included under the Chapter 8 subdirectory.

That wraps up our investigation of how the CLR is managing your objects via garbage collec-
tion. While there are additional (fairly esoteric) details regarding the collection process I have not
examined here (such as weak references and object resurrection), you are certainly in a perfect
position for further exploration on your own terms.

Summary
The point of this chapter was to demystify the garbage collection process. As you have seen, the
garbage collector will only run when it is unable to acquire the necessary memory from the man-
aged heap (or when a given AppDomain unloads from memory). When a collection does occur, you
can rest assured that Microsoft’s collection algorithm has been optimized by the use of object gen-
erations, secondary threads for the purpose of object finalization, and a managed heap dedicated to
host large objects.

This chapter also illustrated how to programmatically interact with the garbage collector using
the System.GC class type. As mentioned, the only time when you will really need to do so is when
you are building finalizable or disposable class types that operate upon unmanaged resources.

Recall that finalizable types are classes that have overridden the virtual System.Object.
Finalize() method to clean up unmanaged resources at the time of garbage collection. Disposable
objects, on the other hand, are classes (or structures) that implement the IDisposable interface,
which should be called by the object user when it is finished using said object. Finally, you learned
about an official “disposal” pattern that blends both approaches.

CHAPTER 8 ■ UNDERSTANDING OBJECT L IFETIME 265

8849CH08.qxd 10/22/07 1:27 PM Page 265

8849CH08.qxd 10/22/07 1:27 PM Page 266

Advanced C# Programming
Constructs

P A R T 3

8849CH09.qxd 10/1/07 10:41 AM Page 267

8849CH09.qxd 10/1/07 10:41 AM Page 268

Working with Interfaces

This chapter builds on your current understanding of object-oriented development by examining
the topic of interface-based programming. Here you learn how to define and implement interfaces,
and come to understand the benefits of building types that support “multiple behaviors.” Along the
way, a number of related topics are also discussed, such as obtaining interface references, explicit
interface implementation, and the construction of interface hierarchies.

The remainder of this chapter is spent examining a number of standard interfaces defined
within the .NET base class libraries. As you will see, your custom types are free to implement these
predefined interfaces to support a number of advanced behaviors such as object cloning, object
enumeration, and object sorting. We wrap up the chapter by examining how interface types can be
used to establish a callback mechanism, allowing two objects in memory to communicate in a
bidirectional manner.

Understanding Interface Types
To begin this chapter, allow me to provide a formal definition of the interface type. An interface is
nothing more than a named set of abstract members. Recall from Chapter 6 that abstract methods
are pure protocol in that they do not provide a default implementation. The specific members
defined by an interface depend on the exact behavior it is modeling. Yes, it’s true. An interface
expresses a behavior that a given class or structure may choose to implement. Furthermore, as you
will see in this chapter, a class (or structure) can support as many interfaces as necessary, thereby
supporting (in essence) multiple behaviors.

As you might guess, the .NET base class libraries ship with hundreds of predefined interface
types that are implemented by various classes and structures. For example, as you will see in Chap-
ter 22, ADO.NET ships with multiple data providers that allow you to communicate with a particular
database management system. Thus, unlike COM-based ADO, under ADO.NET we have numerous
connection objects we may choose between (SqlConnection, OracleConnection, OdbcConnection,
etc.).

Regardless of the fact that each connection object has a unique name, is defined within a dif-
ferent namespace, and (in some cases) is bundled within a different assembly, all connection
objects implement a common interface named IDbConnection:

// The IDbConnection interface defines a common
// set of members supported by all connection objects.
public interface IDbConnection : IDisposable
{
// Methods
IDbTransaction BeginTransaction();
IDbTransaction BeginTransaction(IsolationLevel il);
void ChangeDatabase(string databaseName);
void Close(); 269

C H A P T E R 9

8849CH09.qxd 10/1/07 10:41 AM Page 269

IDbCommand CreateCommand();
void Open();

// Properties
string ConnectionString { get; set;}
int ConnectionTimeout { get; }
string Database { get; }
ConnectionState State { get; }

}

■Note By convention, .NET interface types are prefixed with a capital letter “I.” When you are creating your own
custom interfaces, it is considered a best practice to do the same.

Don’t concern yourself with the details of what these members actually do at this point. Simply
understand that the IDbConnection interface defines a set of members that are common to all
ADO.NET connection objects. Given this, you are guaranteed that each and every connection object
supports members such as Open(), Close(), CreateCommand(), and so forth. Furthermore, given that
interface members are always abstract, each connection object is free to implement these methods
in its own unique manner.

Another example: the System.Windows.Forms namespace defines a class named Control, which
is a base class to a number of Windows Forms UI widgets (DataGridView, Label, StatusBar, TreeView,
etc.). The Control class implements an interface named IDropTarget, which defines basic drag-and-
drop functionality:

public interface IDropTarget
{
// Methods
void OnDragDrop(DragEventArgs e);
void OnDragEnter(DragEventArgs e);
void OnDragLeave(EventArgs e);
void OnDragOver(DragEventArgs e);

}

Based on this interface, we can now correctly assume that any class that extends System.
Windows.Forms.Control supports four subroutines named OnDragDrop(), OnDragEnter(),
OnDragLeave(), and OnDragOver().

As you work through the remainder of this text, you will be exposed to dozens of interfaces that
ship with the .NET base class libraries. As you will see, these interfaces can be implemented on your
own custom classes and structures to define types that integrate tightly within the framework.

Contrasting Interface Types to Abstract Base Classes
Given your work in Chapter 6, the interface type may seem very similar to an abstract base class.
Recall that when a class is marked as abstract, it may define any number of abstract members to
provide a polymorphic interface to all derived types. However, even when a class type does define a
set of abstract members, it is also free to define any number of constructors, field data, nonabstract
members (with implementation), and so on. Interfaces, on the other hand, only contain abstract
members.

The polymorphic interface established by an abstract parent class suffers from one major limi-
tation in that only derived types support the members defined by the abstract parent. However, in
larger software systems, it is very common to develop multiple class hierarchies that have no com-
mon parent beyond System.Object. Given that abstract members in an abstract base class only

CHAPTER 9 ■ WORKING WITH INTERFACES270

8849CH09.qxd 10/1/07 10:41 AM Page 270

apply to derived types, we have no way to configure types in different hierarchies to support the
same polymorphic interface. By way of an illustrative example, assume you have defined the follow-
ing abstract class:

abstract class CloneableType
{
// Only derived types can support this
// "polymorphic interface." Classes in other
// heirarchies have no access to this abstract
// member.
public abstract object Clone();

}

Given this definition, only members that extend CloneableType are able to support the Clone()
method. If you create a new collection of classes that do not extend this base class, you are unable
to gain this polymorphic interface. As you would guess, interface types come to the rescue. Once an
interface has been defined, it can be implemented by any type, in any hierarchy, within any name-
spaces or any assembly (written in any .NET programming language). Given this, interfaces are
highly polymorphic. Consider the standard .NET interface named ICloneable defined in the System
namespace. This interface defines a single method named Clone():

public interface ICloneable
{
object Clone();

}

If you were to examine the .NET Framework 3.5 SDK documentation, you would find that a
large number of seemingly unrelated types (System.Array, System.Data.SqlClient.SqlConnection,
System.OperatingSystem, System.String, etc.) all implement this interface. Although these types
have no common parent (other than System.Object), we can treat them polymorphically via the
ICloneable interface type.

For example, if we had a method named CloneMe() that took an ICloneable interface parame-
ter, we could pass this method any object that implements said interface. Consider the following
simple Program class defined within a Console Application named ICloneableExample:

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** A First Look at Interfaces *****\n");

// All of these types support the ICloneable interface.
string myStr = "Hello";
OperatingSystem unixOS = new OperatingSystem(PlatformID.Unix, new Version());
System.Data.SqlClient.SqlConnection sqlCnn =
new System.Data.SqlClient.SqlConnection();

// Therefore, they can all be passed into a method taking ICloneable.
CloneMe(myStr);
CloneMe(unixOS);
CloneMe(sqlCnn);
Console.ReadLine();

}

private static void CloneMe(ICloneable c)
{
// Clone whatever we get and print out the name.

CHAPTER 9 ■ WORKING WITH INTERFACES 271

8849CH09.qxd 10/1/07 10:41 AM Page 271

object theClone = c.Clone();
Console.WriteLine("Your clone is a: {0}",
theClone.GetType().Name);

}
}

When you run this application, you will find the full name of each class print out to the console,
via the GetType() method you inherit from System.Object (Chapter 16 will provide full coverage of
this method and .NET reflection services).

■Source Code The ICloneableExample project is located under the Chapter 9 subdirectory.

Another limitation of traditional abstract base classes is that each and every derived type must
contend with the set of abstract members and provide an implementation. To see this problem,
recall the shapes hierarchy we defined in Chapter 6. Assume we defined a new abstract method in
the Shape base class named GetNumberOfPoints(), which allows derived types to return the number
of points required to render the shape:

abstract class Shape
{
...
// Every derived class must now support this method!
public abstract byte GetNumberOfPoints();

}

Clearly, the only type that has any points in the first place is Hexagon. However, with this
update, every derived type (Circle, Hexagon, and ThreeDCircle) must now provide a concrete imple-
mentation of this function even if it makes no sense to do so.

Again, the interface type provides a solution. If we were to define an interface that represents
the behavior of “having points,” we could simply plug it into the Hexagon type, leaving Circle and
ThreeDCircle untouched.

Defining Custom Interfaces
Now that you better understand the overall role of interface types, let’s see an example of defining
custom interfaces. To begin, create a brand-new Console Application named CustomInterface.
Using the Project ➤ Add Existing Item menu option, insert the files containing your shape type defi-
nitions (MyShapes.cs and Shape.cs in the book’s solution code) created back in Chapter 6 during the
Shapes example. Once you have done so, rename the namespace that defines your shape-centric
types to CustomInterface (simply to avoid having to import namespace definitions within your new
project):

namespace CustomInterface
{
// Your previous shape types defined here...

}

Now, insert a new interface into your project named IPointy using the Project ➤ Add New Item
menu option, as shown in Figure 9-1.

CHAPTER 9 ■ WORKING WITH INTERFACES272

8849CH09.qxd 10/1/07 10:41 AM Page 272

Figure 9-1. Interfaces, like classes, can be defined in any *.cs file.

At a syntactic level, an interface is defined using the C# interface keyword. Unlike other .NET
types, interfaces never specify a base class (not even System.Object) and their members never spec-
ify an access modifier (as all interface members are implicitly public and abstract). To get the ball
rolling, here is a custom interface defined in C#:

// This interface defines the behavior of "having points."
public interface IPointy
{
// Implicitly public and abstract.
byte GetNumberOfPoints();

}

Notice that when you define interface members, you do not define an implementation scope
for the member in question. Interfaces are pure protocol, and therefore never define an implemen-
tation (that is up to the supporting class or structure). Therefore, the following version of IPointy
would result in various compiler errors:

// Ack! Errors abound!
public interface IPointy
{
// Error! Interfaces cannot have fields!
public int numbOfPoints;

// Error! Interfaces do not have constructors!
public IPointy() { numbOfPoints = 0;};

// Error! Interfaces don't provide an implementation!
byte GetNumberOfPoints() { return numbOfPoints; }

}

CHAPTER 9 ■ WORKING WITH INTERFACES 273

8849CH09.qxd 10/1/07 10:41 AM Page 273

In any case, this initial IPointy interface defines a single method. However, .NET interface
types are also able to define any number of property prototypes. For example, you could create the
IPointy interface to use a read-only property rather than a traditional accessor method:

// The pointy behavior as a read-only property.
public interface IPointy
{
// A read-write property in an interface would look like
// retVal PropName { get; set; }
// while a write-only property in an interface would be
// retVal PropName { set; }
byte Points{ get; }

}

■Note Interface types can also contain event (see Chapter 11) and indexer (see Chapter 12) definitions.

Do understand that interface types are quite useless on their own, as they are nothing more
than a named collection of abstract members. For example, you cannot allocate interface types as
you would a class or structure:

// Ack! Illegal to allocate interface types.
static void Main(string[] args)
{
IPointy p = new IPointy(); // Compiler error!

}

Interfaces do not bring much to the table until they are implemented by a class or structure.
Here, IPointy is an interface that expresses the behavior of “having points.” The idea is simple:
some classes in the shapes hierarchy have points (such as the Hexagon), while others (such as the
Circle) do not.

Implementing an Interface
When a class (or structure) chooses to extend its functionality by supporting interface types, it does
so using a comma-delimited list in the type definition. Be aware that the direct base class must be
the first item listed after the colon operator. When your class type derives directly from System.
Object, you are free to simply list the interface(s) supported by the class, as the C# compiler will
extend your types from System.Object if you do not say otherwise. On a related note, given that
structures always derive from System.ValueType (see Chapter 4 for full details), simply list each
interface directly after the structure definition. Ponder the following examples:

// This class derives from System.Object and
// implements a single interface.
public class Pencil : IPointy
{...}

// This class also derives from System.Object
// and implements a single interface.
public class SwitchBlade : object, IPointy
{...}

CHAPTER 9 ■ WORKING WITH INTERFACES274

8849CH09.qxd 10/1/07 10:41 AM Page 274

// This class derives from a custom base class
// and implements a single interface.
public class Fork : Utensil, IPointy
{...}

// This struct implicitly derives from System.ValueType and
// implements two interfaces.
public struct Arrow : IClonable, IPointy
{...}

Understand that implementing an interface is an all-or-nothing proposition. The supporting
type is not able to selectively choose which members it will implement. Given that the IPointy
interface defines a single read-only property, this is not too much of a burden.

However, if you are implementing an interface that defines ten members (such as the
IDbConnection interface seen earlier), the type is now responsible for fleshing out the details of
all ten abstract entities.

For this example, insert a new class type named Triangle which “is-a” Shape and supports
IPointy:

// New Shape derived class named Triangle.
public class Triangle : Shape, IPointy
{
public Triangle() { }
public Triangle(string name) : base(name) { }
public override void Draw()
{ Console.WriteLine("Drawing {0} the Triangle", PetName); }

// IPointy Implementation.
public byte Points
{
get { return 3; }

}
}

Now, update your existing Hexagon type to also support the IPointy interface type:

// Hexagon now implements IPointy.
public class Hexagon : Shape, IPointy
{
public Hexagon(){ }
public Hexagon(string name) : base(name){ }
public override void Draw()
{ Console.WriteLine("Drawing {0} the Hexagon", PetName); }

// IPointy Implementation.
public byte Points
{
get { return 6; }

}
}

To sum up the story so far, the Visual Studio 2008 class diagram shown in Figure 9-2 illustrates
IPointy-compatible classes using the popular “lollipop” notation. Notice again that Circle and
ThreeDCircle do not implement IPointy, as this behavior makes no sense for these particular types.

CHAPTER 9 ■ WORKING WITH INTERFACES 275

8849CH09.qxd 10/1/07 10:41 AM Page 275

Figure 9-2. The shapes hierarchy (now with interfaces)

■Note To display or hide interface names on the class designer, right-click on the interface icon and select
Collapse or Expand.

Invoking Interface Members at the Object Level
Now that you have a set of types that support the IPointy interface, the next question is how you
interact with the new functionality. The most straightforward way to interact with functionality
supplied by a given interface is to invoke the methods directly from the object level (provided the
interface members are not implemented explicitly; more details later in the section “Resolving
Name Clashes via Explicit Interface Implementation”). For example, consider the following Main()
method:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Interfaces *****\n");
// Call Points property defined by IPointy.
Hexagon hex = new Hexagon();
Console.WriteLine("Points: {0}", hex.Points);
Console.ReadLine();

}

This approach works fine in this particular case, given that you are well aware that the Hexagon
type has implemented the interface in question and therefore has a Points property. Other times,
however, you may not be able to determine which interfaces are supported by a given type. For
example, assume you have an array containing 50 Shape-compatible types, only some of which
support IPointy. Obviously, if you attempt to invoke the Points property on a type that has not
implemented IPointy, you receive an error. Next question: how can we dynamically determine the
set of interfaces supported by a type?

One way to determine at runtime whether a type supports a specific interface is to make
use of an explicit cast. If the type does not support the requested interface, you receive an
InvalidCastException. To handle this possibility gracefully, make use of structured exception
handling, for example:

CHAPTER 9 ■ WORKING WITH INTERFACES276

8849CH09.qxd 10/1/07 10:41 AM Page 276

static void Main(string[] args)
{
...
// Catch a possible InvalidCastException.
Circle c = new Circle("Lisa");
IPointy itfPt = null;
try
{
itfPt = (IPointy)c;
Console.WriteLine(itfPt.Points);

}
catch (InvalidCastException e)
{ Console.WriteLine(e.Message); }
Console.ReadLine();

}

While you could make use of try/catch logic and hope for the best, it would be ideal to deter-
mine which interfaces are supported before invoking the interface members in the first place. Let’s
see two ways of doing so.

Obtaining Interface References: The as Keyword
The second way you can determine whether a given type supports an interface is to make use of the
as keyword, which was first introduced in Chapter 6. If the object can be treated as the specified
interface, you are returned a reference to the interface in question. If not, you receive a null refer-
ence. Therefore, be sure to check against a null value before proceeding:

static void Main(string[] args)
{
...
// Can we treat hex2 as IPointy?
Hexagon hex2 = new Hexagon("Peter");
IPointy itfPt2 = hex2 as IPointy;

if(itfPt2 != null)
Console.WriteLine("Points: {0}", itfPt2.Points);

else
Console.WriteLine("OOPS! Not pointy...");

Console.ReadLine();
}

Notice that when you make use of the as keyword, you have no need to make use of try/catch
logic, given that if the reference is not null, you know you are calling on a valid interface reference.

Obtaining Interface References: The is Keyword
You may also check for an implemented interface using the is keyword (also first seen in Chapter 6).
If the object in question is not compatible with the specified interface, you are returned the value
false. On the other hand, if the type is compatible with the interface in question, you can safely call
the members without needing to make use of try/catch logic.

To illustrate, assume we have an array of Shape types containing some members that imple-
ment IPointy. Notice how we are able to determine which item in the array supports this interface
using the is keyword, as shown in this retrofitted Main() method:

CHAPTER 9 ■ WORKING WITH INTERFACES 277

8849CH09.qxd 10/1/07 10:41 AM Page 277

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Interfaces *****\n");

// Make an array of Shapes.
Shape[] s = { new Hexagon(), new Circle(), new Triangle("Joe"),
new Circle("JoJo")} ;

for(int i = 0; i < s.Length; i++)
{
// Recall the Shape base class defines an abstract Draw()
// member, so all shapes know how to draw themselves.
s[i].Draw();

// Who's pointy?
if(s[i] is IPointy)
Console.WriteLine("-> Points: {0}", ((IPointy)s[i]).Points);

else
Console.WriteLine("-> {0}\'s not pointy!", s[i].PetName);

Console.WriteLine();
}
Console.ReadLine();

}

The output follows in Figure 9-3.

Figure 9-3. Dynamically determining implemented interfaces

Interfaces As Parameters
Given that interfaces are valid .NET types, you may construct methods that take interfaces as
parameters as illustrated by the CloneMe() method earlier in this chapter. For the current example,
assume you have defined another interface named IDraw3D:

// Models the ability to render a type in stunning 3D.
public interface IDraw3D
{
void Draw3D();

}

CHAPTER 9 ■ WORKING WITH INTERFACES278

8849CH09.qxd 10/1/07 10:41 AM Page 278

Next, assume that two of your three shapes (Circle and Hexagon) have been configured to sup-
port this new behavior:

// Circle supports IDraw3D.
public class Circle : Shape, IDraw3D
{
...
public void Draw3D()
{ Console.WriteLine("Drawing Circle in 3D!"); }

}

// Hexagon supports IPointy and IDraw3D.
public class Hexagon : Shape, IPointy, IDraw3D
{
...
public void Draw3D()
{ Console.WriteLine("Drawing Hexagon in 3D!"); }

}

Figure 9-4 presents the updated Visual Studio 2008 class diagram.

Figure 9-4. The updated shapes hierarchy

If you now define a method taking an IDraw3D interface as a parameter, you are able to effec-
tively send in any object implementing IDraw3D (if you attempt to pass in a type not supporting the
necessary interface, you receive a compile-time error). Consider the following method defined
within your Program type:

// I'll draw anyone supporting IDraw3D.
static void DrawIn3D(IDraw3D itf3d)
{
Console.WriteLine("-> Drawing IDraw3D compatible type");
itf3d.Draw3D();

}

We could now test whether an item in the Shape array supports this new interface, and if so,
pass it into the DrawIn3D() method for processing:

CHAPTER 9 ■ WORKING WITH INTERFACES 279

8849CH09.qxd 10/1/07 10:41 AM Page 279

static void Main()
{
Console.WriteLine("***** Fun with Interfaces *****\n");
Shape[] s = { new Hexagon(), new Circle(),
new Triangle(), new Circle("JoJo") } ;

for(int i = 0; i < s.Length; i++)
{
...
// Can I draw you in 3D?
if(s[i] is IDraw3D)
DrawIn3D((IDraw3D)s[i]);

}
}

Notice that the Triangle type is never drawn in 3D, as it is not IDraw3D-compatible (see
Figure 9-5).

Figure 9-5. Interfaces as parameters

Interfaces As Return Values
Interfaces can also be used as method return values. For example, you could write a method that
takes any System.Object, checks for IPointy compatibility, and returns a reference to the extracted
interface (if supported):

// This method tests for IPointy compatibility and,
// if able, returns an interface reference.
static IPointy ExtractPointyness(object o)
{
if (o is IPointy)
return (IPointy)o;

else
return null;

}

We could interact with this method as follows:

CHAPTER 9 ■ WORKING WITH INTERFACES280

8849CH09.qxd 10/1/07 10:41 AM Page 280

static void Main(string[] args)
{
...
// Attempt to get IPointy from array of ints.
int[] myInts = {10, 20, 30};
IPointy itfPt = ExtractPointyness(myInts);
if(itfPt != null)
Console.WriteLine("Object has {0} points.", itfPt.Points);

else
Console.WriteLine("This object does not implement IPointy");

Console.ReadLine();
}

Arrays of Interface Types
Recall that the same interface can be implemented by numerous types, even if they are not within
the same class hierarchy and do not have a common parent class beyond System.Object. This can
yield some very powerful programming constructs. For example, assume that you have developed
three new class types within your current project modeling kitchen utensils (via Knife and Fork
classes) and another modeling gardening equipment (à la PitchFork). Consider Figure 9-6.

Figure 9-6. Recall that interfaces can be “plugged into” any type in any part of a class hierarchy.

If you did define the PitchFork, Fork, and Knife types, you could now define an array of
IPointy-compatible objects. Given that these members all support the same interface, you are able
to iterate through the array and treat each item as an IPointy-compatible object, regardless of the
overall diversity of the class hierarchies:

static void Main(string[] args)
{
...
// This array can only contain types that
// implement the IPointy interface.
IPointy[] myPointyObjects = {new Hexagon(), new Knife(),
new Triangle(), new Fork(), new PitchFork()};

CHAPTER 9 ■ WORKING WITH INTERFACES 281

8849CH09.qxd 10/1/07 10:41 AM Page 281

foreach(IPointy i in myPointyObjects)
Console.WriteLine("Object has {0} points.", i.Points);

Console.ReadLine();
}

■Source Code The CustomInterface project is located under the Chapter 9 subdirectory.

Implementing Interfaces Using Visual Studio 2008
Although interface-based programming is a very powerful programming technique, implementing
interfaces may entail a healthy amount of typing. Given that interfaces are a named set of abstract
members, you will be required to type in the definition and implementation for each interface
method on each type that supports the behavior.

As you would hope, Visual Studio 2008 does support various tools that make the task of imple-
menting interfaces less burdensome. By way of a simple test, insert a final class into your current
project named PointyTestClass. When you implement IPointy (or any interface for that matter) on
a type, you might have noticed that when you complete typing the interface’s name (or when you
position the mouse cursor on the interface name in the code window), the first letter is underlined
(formally termed a “smart tag”). When you click the smart tag, you will be presented a drop-down
list that allows you to implement the interface (see Figure 9-7).

Figure 9-7. Implementing interfaces using Visual Studio 2008

Notice you are presented with two options, the second of which (explicit interface implemen-
tation) will be examined in the next section. For the time being, once you select the first option, you
will see that Visual Studio 2008 has built generated stub code (within a named code region) for you
to update (note that the default implementation throws a System.Exception, which can obviously
be deleted).

namespace CustomInterface
{
class PointyTestClass : IPointy
{
#region IPointy Members
public byte Points
{

CHAPTER 9 ■ WORKING WITH INTERFACES282

8849CH09.qxd 10/1/07 10:41 AM Page 282

get { throw new Exception("The method or operation is not implemented."); }
}
#endregion

}
}

■Note Visual Studio 2008 also supports an extract interface refactoring, available from the Refactoring menu.
This allows you to pull out a new interface definition from an existing class definition. See my MSDN article
“Refactoring C# Code Using Visual Studio 2005” (the same holds true for Visual Studio 2008) for further details.

Resolving Name Clashes via Explicit Interface
Implementation
As shown earlier in this chapter, a single class or structure can implement any number of interfaces.
Given this, there is always a possibility that you may implement interfaces that contain identically
named members, and therefore have a name clash to contend with. To illustrate various manners in
which you can resolve this issue, create a new Console Application named InterfaceNameClash.
Now design three custom interfaces that represent various locations to which an implementing
type could render its output:

// Draw image to a Form.
public interface IDrawToForm
{
void Draw();

}

// Draw to buffer in memory.
public interface IDrawToMemory
{
void Draw();

}

// Render to the printer.
public interface IDrawToPrinter
{
void Draw();

}

Notice that each interface defines a method named Draw(). If you now wish to support each of
these interfaces on a single class type named Octagon, the compiler would allow the following defi-
nition:

class Octagon : IDrawToForm, IDrawToMemory, IDrawToPrinter
{
public void Draw()
{
// Shared drawing logic.
Console.WriteLine("Drawing the Octagon...");

}
}

CHAPTER 9 ■ WORKING WITH INTERFACES 283

8849CH09.qxd 10/1/07 10:41 AM Page 283

Although the code compiles cleanly, you may agree we do have a possible problem. Simply put,
providing a single implementation of the Draw() method does not allow us to take unique courses of
action based on which interface is obtained from an Octagon object. For example, the following
code will invoke the same Draw() method, regardless of which interface we obtain:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Interface Name Clashes *****\n");
// All of these invocations call the
// same Draw() method!
Octagon oct = new Octagon();
oct.Draw();
IDrawToForm itfForm = (IDrawToForm)oct;
itfForm.Draw();
IDrawToPrinter itfPriner = (IDrawToPrinter)oct;
itfPriner.Draw();
IDrawToMemory itfMemory = (IDrawToMemory)oct;
itfMemory.Draw();
Console.ReadLine();

}

Clearly, the sort of code required to render the image to a window is quite different from the
code needed to render the image to a networked printer or a region of memory. When you imple-
ment a collection of interfaces that have identical members, you can resolve this sort of name clash
using explicit interface implementation syntax. Consider the following update to the Octagon type:

class Octagon : IDrawToForm, IDrawToMemory, IDrawToPrinter
{
// Explicitly bind Draw() implementations
// to a given interface.
void IDrawToForm.Draw()
{
Console.WriteLine("Drawing to form...");

}
void IDrawToMemory.Draw()
{
Console.WriteLine("Drawing to memory...");

}
void IDrawToPrinter.Draw()
{
Console.WriteLine("Drawing to a printer...");

}
}

As you can see, when explicitly implementing an interface member, the general pattern breaks
down to

returnValue InterfaceName.MethodName(args)

Note that when using this syntax, you do not supply an access modifier; explicitly imple-
mented members are automatically private. For example, the following is illegal syntax:

// Error! No access modifer!
public void IDrawToForm.Draw()
{
Console.WriteLine("Drawing to form...");

}

CHAPTER 9 ■ WORKING WITH INTERFACES284

8849CH09.qxd 10/1/07 10:41 AM Page 284

Because explicitly implemented members are always implicitly private, these members are no
longer available from the object level. In fact, if you were to apply the dot operator to an Octagon
type, you will find that IntelliSense will not show you any of the Draw() members (see Figure 9-8).

Figure 9-8. Explicitly implemented interface members are not exposed from the object level.

As expected, you must make use of explicit casting to access the required functionality. For
example:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Interface Name Clashes *****\n");
Octagon oct = new Octagon();

// We now must use casting to access the Draw()
// members.
IDrawToForm itfForm = (IDrawToForm)oct;
itfForm.Draw();

// Shorthand notation if you don't need
// the interface variable for later use.
((IDrawToPrinter)oct).Draw();

// Could also use the "as" keyword.
if(oct is IDrawToMemory)
((IDrawToMemory)oct).Draw();

Console.ReadLine();
}

While this syntax is quite helpful when you need to resolve name clashes, you are able to use
explicit interface implementation simply to hide more “advanced” members from the object level.
In this way, when the object user applies the dot operator, he or she will only see a subset of the
type’s overall functionality. However, those who require the more advanced behaviors can extract
out the desired interface via an explicit cast.

CHAPTER 9 ■ WORKING WITH INTERFACES 285

8849CH09.qxd 10/1/07 10:41 AM Page 285

■Source Code The InterfaceNameClash project is located under the Chapter 9 subdirectory.

Designing Interface Hierarchies
Interfaces can be arranged into an interface hierarchy. Like a class hierarchy, when an interface
extends an existing interface, it inherits the abstract members defined by the parent type(s). Of
course, unlike class-based inheritance, derived interfaces never inherit true implementation.
Rather, a derived interface simply extends its own definition with additional abstract members.

Interface hierarchies can be useful when you wish to extend the functionality of an existing
interface without breaking existing code bases. To illustrate, create a new Console Application
named InterfaceHierarchy. Now, let’s redesign the previous set of rendering-centric interfaces
(from the InterfaceNameClash example) such that IDrawable is the root of the family tree:

public interface IDrawable
{
void Draw();

}

Given that IDrawable defines a basic drawing behavior, we could now create a derived interface
that extends this type with the ability to render its output to the printer. Assume this method is
called Print():

public interface IPrintable : IDrawable
{
void Print();

}

And just for good measure, we could define a final interface named IRenderToMemory, which
extends IPrintable with a new member named Render():

public interface IRenderToMemory : IPrintable
{
void Render();

}

Given this design, if a type were to implement IRenderToMemory, we would now be required to
implement each and every member defined up the chain of inheritance (specifically, the Render(),
Print(), and Draw() methods). On the other hand, if a type were to only implement IPrintable, we
would only need to contend with Print() and Draw(). For example:

public class SuperShape : IRenderToMemory
{
public void Draw()
{
Console.WriteLine("Drawing...");

}

public void Print()
{
Console.WriteLine("Printing...");

}

public void Render()
{

CHAPTER 9 ■ WORKING WITH INTERFACES286

8849CH09.qxd 10/1/07 10:41 AM Page 286

Console.WriteLine("Rendering...");
}

}

Now, when we make use of the SuperShape, we are able to invoke each method at the object
level (as they are all public) as well as extract out a reference to each supported interface explicitly
via casting:

static void Main(string[] args)
{
Console.WriteLine("***** The SuperShape *****");
// Call from object level.
SuperShape myShape = new SuperShape();
myShape.Draw();

// Get IPrintable explicitly.
// (and IDrawable implicitly!)
IPrintable iPrint;
iPrint = (IPrintable)myShape;
iPrint.Draw();
iPrint.Print();
Console.ReadLine();

}

■Source Code The InterfaceHierarchy project is located under the Chapter 9 subdirectory.

Multiple Inheritance with Interface Types
Unlike class types, it is possible for a single interface to extend multiple base interfaces. This allows
us to design some very powerful and flexible abstractions. Create a new Console Application project
named MIInterfaceHierarchy. Here is a brand-new collection of interfaces that model various ren-
dering and shape-centric abstractions. Notice that the IShape interface is extending both IDrawable
and IPrintable:

// Multiple inheritance for interface types is a-okay.
public interface IDrawable
{

void Draw();
}

public interface IPrintable
{

void Print();
void Draw(); // <-- Note possible name clash here!

}

// Multiple interface inheritance. OK!
public interface IShape : IDrawable, IPrintable
{

int GetNumberOfSides();
}

Figure 9-9 illustrates the current interface hierarchy.

CHAPTER 9 ■ WORKING WITH INTERFACES 287

8849CH09.qxd 10/1/07 10:41 AM Page 287

Figure 9-9. Unlike classes, interfaces can extend multiple interface types.

Now, the million dollar question is, if we have a class supporting IShape, how many methods
will it be required to implement? The answer: it depends. If we wish to provide a simple implemen-
tation of the Draw() method, we only need to provide three members, as shown in the following
Rectangle type:

class Rectangle : IShape
{
public int GetNumberOfSides()
{ return 4; }

public void Draw()
{ Console.WriteLine("Drawing..."); }

public void Print()
{ Console.WriteLine("Prining..."); }

}

If you would rather have specific implementations for each Draw() method (which in this case
would make the most sense), you can resolve the name clash using explicit interface implementa-
tion, as shown in the following Square type:

class Square : IShape
{
// Using explicit implementation to handle member name clash.
void IPrintable.Draw()
{ // Draw to printer ...
}
void IDrawable.Draw()
{ // Draw to screen ...
}
public void Print()
{ // Print ...
}
public int GetNumberOfSides()
{ return 4; }

}

CHAPTER 9 ■ WORKING WITH INTERFACES288

8849CH09.qxd 10/1/07 10:41 AM Page 288

So at this point, you hopefully feel more comfortable with the process of defining and imple-
menting custom interfaces using the syntax of C#. To be honest, interface-based programming can
take awhile to get comfortable with, so if you are in fact still scratching your head just a bit, this is a
perfectly normal reaction.

Do be aware, however, that interfaces are a fundamental aspect of the .NET Framework.
Regardless of the type of application you are developing (web-based, desktop GUIs, data access
libraries, etc.), working with interfaces will be part of the process. To summarize the story thus far,
remember that interfaces can be extremely useful when

• You have a single hierarchy where only a subset of the derived types support a common
behavior.

• You need to model a common behavior that is found across multiple hierarchies with no
common parent class beyond System.Object.

Now that you have drilled into the specifics of building and implementing custom interfaces,
the remainder of the chapter examines a number of predefined interfaces contained within the
.NET base class libraries.

■Source Code The MIInterfaceHierarchy project is located under the Chapter 9 subdirectory.

Building Enumerable Types (IEnumerable and
IEnumerator)
To begin examining the process of implementing existing .NET interfaces, let’s first look at the role
of IEnumerable and IEnumerator. Recall that C# supports a keyword named foreach, which allows
you to iterate over the contents of any array type:

// Iterate over an array of items.
int[] myArrayOfInts = {10, 20, 30, 40};
foreach(int i in myArrayOfInts)
{
Console.WriteLine(i);

}

While it may seem that only array types can make use of this construct, the truth of the matter
is any type supporting a method named GetEnumerator() can be evaluated by the foreach con-
struct. To illustrate, begin by creating a new Console Application project named CustomEnumerator.
Next, add the Car.cs and Radio.cs files defined in the SimpleException example of Chapter 7 (via
the Project ➤ Add Existing Item menu option) and update the current class definition with two
new properties (named PetName and Speed) that wrap the existing currSpeed and petName member
variables:

public class Car
{
private int currSpeed;
private string petName;

public int Speed
{
get { return currSpeed; }

CHAPTER 9 ■ WORKING WITH INTERFACES 289

8849CH09.qxd 10/1/07 10:41 AM Page 289

set { currSpeed = value; }
}
public string PetName
{
get { return petName; }
set { petName = value; }

}
...
}

■Note You may wish to rename the namespace containing the Car and Radio types to CustomEnumerator,
simply to avoid having to import the CustomException namespace within this new project.

Now, insert a new class named Garage that stores a set of Car types within a System.Array:

// Garage contains a set of Car objects.
public class Garage
{
private Car[] carArray = new Car[4];

// Fill with some Car objects upon startup.
public Garage()
{
carArray[0] = new Car("Rusty", 30);
carArray[1] = new Car("Clunker", 55);
carArray[2] = new Car("Zippy", 30);
carArray[3] = new Car("Fred", 30);

}
}

Ideally, it would be convenient to iterate over the Garage object’s subitems using the C# foreach
construct, just like an array of data values:

// This seems reasonable...
public class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Fun with IEnumerable / IEnumerator *****\n");
Garage carLot = new Garage();

// Hand over each car in the collection?
foreach (Car c in carLot)
{
Console.WriteLine("{0} is going {1} MPH",
c.PetName, c.Speed);

}
Console.ReadLine();

}
}

Sadly, the compiler informs you that the Garage class does not implement a method named
GetEnumerator(). This method is formalized by the IEnumerable interface, which is found lurking
within the System.Collections namespace. Types that support this behavior advertise that they are
able to expose contained subitems to the caller (in this example, the foreach keyword itself):

CHAPTER 9 ■ WORKING WITH INTERFACES290

8849CH09.qxd 10/1/07 10:41 AM Page 290

// This interface informs the caller
// that the object's subitems can be enumerated.
public interface IEnumerable
{
IEnumerator GetEnumerator();

}

As you can see, the GetEnumerator() method returns a reference to yet another interface
named System.Collections.IEnumerator. This interface provides the infrastructure to allow the
caller to traverse the internal objects contained by the IEnumerable-compatible container:

// This interface allows the caller to
// obtain a container's subitems.
public interface IEnumerator
{
bool MoveNext (); // Advance the internal position of the cursor.
object Current { get;} // Get the current item (read-only property).
void Reset (); // Reset the cursor before the first member.

}

If you wish to update the Garage type to support these interfaces, you could take the long road
and implement each method manually. While you are certainly free to provide customized versions
of GetEnumerator(), MoveNext(), Current, and Reset(), there is a simpler way. As the System.Array
type (as well as many other types) already implements IEnumerable and IEnumerator, you can sim-
ply delegate the request to the System.Array as follows:

using System.Collections;
...
public class Garage : IEnumerable
{
// System.Array already implements IEnumerator!
private Car[] carArray = new Car[4];

public Garage()
{
carArray[0] = new Car("FeeFee", 200, 0);
carArray[1] = new Car("Clunker", 90, 0);
carArray[2] = new Car("Zippy", 30, 0);
carArray[3] = new Car("Fred", 30, 0);

}

public IEnumerator GetEnumerator()
{
// Return the array object's IEnumerator.
return carArray.GetEnumerator();

}
}

Once you have updated your Garage type, you can now safely use the type within the C#
foreach construct. Furthermore, given that the GetEnumerator() method has been defined publicly,
the object user could also interact with the IEnumerator type:

// Manually work with IEnumerator.
IEnumerator i = carLot.GetEnumerator();
i.MoveNext();
Car myCar = (Car)i.Current;
Console.WriteLine("{0} is going {1} MPH", myCar.PetName, myCar.Speed);

CHAPTER 9 ■ WORKING WITH INTERFACES 291

8849CH09.qxd 10/1/07 10:41 AM Page 291

However, if you would prefer to hide the functionality of IEnumerable from the object level,
simply make use of explicit interface implementation:

IEnumerator IEnumerable.GetEnumerator()
{
// Return the array object's IEnumerator.
return carArray.GetEnumerator();

}

By doing so, the causal object user will not find the Garage’s GetEnumerator() method, while the
foreach construct will obtain the interface in the background when necessary.

■Source Code The CustomEnumerator project is located under the Chapter 9 subdirectory.

Building Iterator Methods with the yield Keyword
Historically, when you wished to build a custom collection (such as Garage) that supported foreach
enumeration, implementing the IEnumerable interface (and possibly the IEnumerator interface) was
your only option. However, since the release of .NET 2.0, we are provided with an alternative way to
build types that work with the foreach loop via iterators.

Simply put, an iterator is a member that specifies how a container’s internal items should be
returned when processed by foreach. While the iterator method must still be named GetEnumerator(),
and the return value must still be of type IEnumerator, your custom class does not need to imple-
ment any of the expected interfaces.

To illustrate, create a new Console Application project named CustomEnumeratorWithYield
and insert the Car, Radio, and Garage types from the previous example (again, renaming your name-
space definitions to the current project if you so choose). Now, retrofit the current Garage type as
follows:

public class Garage
{
private Car[] carArray = new Car[4];
...
// Iterator method.
public IEnumerator GetEnumerator()
{
foreach (Car c in carArray)
{
yield return c;

}
}

}

Notice that this implementation of GetEnumerator() iterates over the subitems using internal
foreach logic and returns each Car to the caller using the yield return syntax. The yield keyword is
used to specify the value (or values) to be returned to the caller’s foreach construct. When the yield
return statement is reached, the current location is stored, and execution is restarted from this
location the next time the iterator is called.

Iterator methods are not required to make use of the foreach keyword to return its contents.
It is also permissible to define this iterator method as follows:

public IEnumerator GetEnumerator()
{
yield return carArray[0];

CHAPTER 9 ■ WORKING WITH INTERFACES292

8849CH09.qxd 10/1/07 10:41 AM Page 292

yield return carArray[1];
yield return carArray[2];
yield return carArray[3];

}

In this implementation, notice that the GetEnumerator() method is explicitly returning a new
value to the caller with each pass through. Doing so for this example makes little sense, given that if
we were to add more objects to the carArray member variable, our GetEnumerator() method would
now be out of sync. Nevertheless, this syntax can be useful when you wish to return local data from
a method for processing by the foreach syntax.

Building a Named Iterator
It is also interesting to note that the yield keyword can technically be used within any method,
regardless of its name. These methods (which are technically called named iterators) are also
unique in that they can take any number of arguments. When building a named iterator, be very
aware that the method will return the IEnumerable interface, rather than the expected IEnumerator-
compatible type. To illustrate, we could add the following method to the Garage type:

public IEnumerable GetTheCars(bool ReturnRevesed)
{
// Return the items in reverse.
if (ReturnRevesed)
{
for (int i = carArray.Length; i != 0; i--)
{
yield return carArray[i-1];

}
}
else
{
// Return the items as placed in the array.
foreach (Car c in carArray)
{
yield return c;

}
}

}

Notice that our new method allows the caller to obtain the subitems in a sequential order, as
well as in reverse order, if the incoming parameter has the value true. We could now interact with
our new method as follows:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with the Yield Keyword *****\n");
Garage carLot = new Garage();

// Get items using GetEnumerator().
foreach (Car c in carLot)
{
Console.WriteLine("{0} is going {1} MPH",
c.PetName, c.Speed);

}

Console.WriteLine();

CHAPTER 9 ■ WORKING WITH INTERFACES 293

8849CH09.qxd 10/1/07 10:41 AM Page 293

// Get items (in reverse!) using named iterator.
foreach (Car c in carLot.GetTheCars(true))
{
Console.WriteLine("{0} is going {1} MPH",
c.PetName, c.Speed);

}
Console.ReadLine();

}

Named iterators are helpful constructs, in that a single custom container can define multiple
ways to request the returned set.

Internal Representation of an Iterator Method
When the C# compiler encounters an iterator method, it will dynamically generate a nested class
definition within the scope of the defining type (Garage in this case). The autogenerated nested
class implements the GetEnumerator(), MoveNext(), and Current members on your behalf (oddly,
the Reset() method is not, and you will receive a runtime exception if you attempt to call it). If you
were to load the current application into ildasm.exe, you would find two nested types, each of
which accounts for the logic required by a specific iterator method. Notice in Figure 9-10 that these
compiler-generated types have been named <GetEnumerator>d__0 and <GetTheCars>d__5.

Figure 9-10. Iterator methods are internally implemented with the help of an autogenerated
nested class.

If you used ildasm.exe to view the implementation of the GetEnumerator() method of the
Garage type, you’d find that it has been implemented to make use of the <GetEnumerator>d__0 type
behind the scenes (the nested <GetTheCars>d__5 type is used by the GetTheCars() method in a simi-
lar manner).

.method public hidebysig instance class
[mscorlib]System.Collections.IEnumerator
GetEnumerator() cil managed

{
...
newobj instance void
CustomEnumeratorWithYield.Garage/'<GetEnumerator>d__0'::.ctor(int32)

...
} // end of method Garage::GetEnumerator

CHAPTER 9 ■ WORKING WITH INTERFACES294

8849CH09.qxd 10/1/07 10:41 AM Page 294

So, to wrap up our look at building enumerable objects, remember that in order for your
custom types to work with the C# foreach keyword, the container must define a method named
GetEnumerator(), which has been formalized by the IEnumerable interface type. The implementa-
tion of this method is typically achieved by simply delegating it to the internal member that is
holding onto the subobjects; however, it is also possible to make use of the yield return syntax to
provide multiple “named iterator” methods.

■Source Code The CustomEnumeratorWithYield project is located under the Chapter 9 subdirectory.

Building Cloneable Objects (ICloneable)
As you recall from Chapter 6, System.Object defines a member named MemberwiseClone(). This
method is used to obtain a shallow copy of the current object. Object users do not call this method
directly (as it is protected); however, a given object may call this method itself during the cloning
process. To illustrate, create a new Console Application named CloneablePoint that defines a class
named Point:

// A class named Point.
public class Point
{
// Public for easy access.
public int x, y;
public Point(int x, int y) { this.x = x; this.y = y;}
public Point(){}

// Override Object.ToString().
public override string ToString()
{ return string.Format("X = {0}; Y = {1}", x, y); }

}

Given what you already know about reference types and value types (Chapter 4), you are aware
that if you assign one reference variable to another, you have two references pointing to the same
object in memory. Thus, the following assignment operation results in two references to the same
Point object on the heap; modifications using either reference affect the same object on the heap:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Object Cloning *****\n");
// Two references to same object!
Point p1 = new Point(50, 50);
Point p2 = p1;
p2.x = 0;
Console.WriteLine(p1);
Console.WriteLine(p2);
Console.ReadLine();

}

When you wish to equip your custom types to support the ability to return an identical copy of
itself to the caller, you may implement the standard ICloneable interface. As shown at the start of
this chapter, this type defines a single method named Clone():

CHAPTER 9 ■ WORKING WITH INTERFACES 295

8849CH09.qxd 10/1/07 10:41 AM Page 295

public interface ICloneable
{
object Clone();

}

■Note The usefulness of the ICloneable interface is currently under debate within the .NET community. The
problem has to do with the fact that the official specification does not explicitly say that objects implementing this
interface must return a deep copy of the object (i.e., internal reference types of an object result in brand-new
objects with identical state). Thus, it is technically possible that objects implementing ICloneable actually return
a shallow copy of the interface (i.e., internal references point to the same object on the heap), which clearly gener-
ates a good deal of confusion. In our example, I am assuming we are implementing Clone() to return a full, deep
copy of the object.

Obviously, the implementation of the Clone() method varies between objects. However, the
basic functionality tends to be the same: copy the values of your member variables into a new
object instance of the same type, and return it to the user. To illustrate, ponder the following update
to the Point class:

// The Point now supports "clone-ability."
public class Point : ICloneable
{
public int x, y;
public Point(){ }
public Point(int x, int y) { this.x = x; this.y = y;}

// Return a copy of the current object.
public object Clone()
{ return new Point(this.x, this.y); }

public override string ToString()
{ return string.Format("X = {0}; Y = {1}", x, y); }

}

In this way, you can create exact stand-alone copies of the Point type, as illustrated by the fol-
lowing code:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Object Cloning *****\n");
// Notice Clone() returns a generic object type.
// You must perform an explicit cast to obtain the derived type.
Point p3 = new Point(100, 100);
Point p4 = (Point)p3.Clone();

// Change p4.x (which will not change p3.x).
p4.x = 0;

// Print each object.
Console.WriteLine(p3);
Console.WriteLine(p4);
Console.ReadLine();

}

CHAPTER 9 ■ WORKING WITH INTERFACES296

8849CH09.qxd 10/1/07 10:41 AM Page 296

While the current implementation of Point fits the bill, you can streamline things just a bit.
Because the Point type does not contain any internal reference type variables, you could simplify
the implementation of the Clone() method as follows:

public object Clone()
{
// Copy each field of the Point member by member.
return this.MemberwiseClone();

}

Be aware, however, that if the Point did contain any reference type member variables,
MemberwiseClone() will copy the references to those objects (aka a shallow copy). If you wish to
support a true deep copy, you will need to create a new instance of any reference type variables
during the cloning process. Let’s see an example.

A More Elaborate Cloning Example
Now assume the Point class contains a reference type member variable of type PointDescription.
This class maintains a point’s friendly name as well as an identification number expressed as a
System.Guid (if you don’t come from a COM background, know that a globally unique identifier
[GUID] is a statistically unique 128-bit number). Here is the implementation:

// This class describes a point.
public class PointDescription
{
// Exposed publicly for simplicity.
public string petName;
public Guid pointID;

public PointDescription()
{
this.petName = "No-name";
pointID = Guid.NewGuid();

}
}

The initial updates to the Point class itself included modifying ToString() to account for these
new bits of state data, as well as defining and creating the PointDescription reference type. To allow
the outside world to establish a pet name for the Point, you also update the arguments passed into
the overloaded constructor:

public class Point : ICloneable
{
public int x, y;
public PointDescription desc = new PointDescription();

public Point(){}
public Point(int x, int y)
{
this.x = x; this.y = y;

}
public Point(int x, int y, string petname)
{
this.x = x;
this.y = y;
desc.petName = petname;

}

CHAPTER 9 ■ WORKING WITH INTERFACES 297

8849CH09.qxd 10/1/07 10:41 AM Page 297

public object Clone()
{ return this.MemberwiseClone(); }

public override string ToString()
{
return string.Format("X = {0}; Y = {1}; Name = {2};\nID = {3}\n",
x, y, desc.petName, desc.pointID);

}
}

Notice that you did not yet update your Clone() method. Therefore, when the object user asks
for a clone using the current implementation, a shallow (member-by-member) copy is achieved. To
illustrate, assume you have updated Main() as follows:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Object Cloning *****\n");
Console.WriteLine("Cloned p3 and stored new Point in p4");
Point p3 = new Point(100, 100, "Jane");
Point p4 = (Point)p3.Clone();

Console.WriteLine("Before modification:");
Console.WriteLine("p3: {0}", p3);
Console.WriteLine("p4: {0}", p4);
p4.desc.petName = "My new Point";
p4.x = 9;

Console.WriteLine("\nChanged p4.desc.petName and p4.x");
Console.WriteLine("After modification:");
Console.WriteLine("p3: {0}", p3);
Console.WriteLine("p4: {0}", p4);
Console.ReadLine();

}

Figure 9-11 shows the output. Notice that while the value types have indeed been changed, the
internal reference types maintain the same values, as they are “pointing” to the same objects in
memory.

Figure 9-11. MemberwiseClone() returns a shallow copy of the current object.

CHAPTER 9 ■ WORKING WITH INTERFACES298

8849CH09.qxd 10/1/07 10:41 AM Page 298

In order for your Clone() method to make a complete deep copy of the internal reference
types, you need to configure the object returned by MemberwiseClone() to account for the current
point’s name (the System.Guid type is in fact a structure, so the numerical data is indeed copied).
Here is one possible implementation:

// Now we need to adjust for the PointDescription member.
public object Clone()
{
// First get a shallow copy.
Point newPoint = (Point)this.MemberwiseClone();

// Then fill in the gaps.
PointDescription currentDesc = new PointDescription();
currentDesc.petName = this.desc.petName;
newPoint.desc = currentDesc;
return newPoint;

}

If you rerun the application once again as shown in Figure 9-12, you see that the Point
returned from Clone() does copy its internal reference type member variables (note the pet name
is now unique for both p3 and p4).

Figure 9-12. Now you have a true deep copy of the object.

To summarize the cloning process, if you have a class or structure that contains nothing but
value types, implement your Clone() method using MemberwiseClone(). However, if you have a cus-
tom type that maintains other reference types, you need to establish a new type that takes into
account each reference type member variable.

■Source Code The CloneablePoint project is located under the Chapter 9 subdirectory.

Building Comparable Objects (IComparable)
The System.IComparable interface specifies a behavior that allows an object to be sorted based on
some specified key. Here is the formal definition:

CHAPTER 9 ■ WORKING WITH INTERFACES 299

8849CH09.qxd 10/1/07 10:41 AM Page 299

// This interface allows an object to specify its
// relationship between other like objects.
public interface IComparable
{
int CompareTo(object o);

}

Let’s assume you have a new Console Application named ComparableCar that defines the
following updated Car type (notice that we have basically just added a new member variable to
represent a unique ID for each car as well as ways to get and set the value):

public class Car
{
...
private int carID;
public int ID
{
get { return carID; }
set { carID = value; }

}
public Car(string name, int currSp, int id)
{
currSpeed = currSp;
petName = name;
carID = id;

}
...
}

Now assume you have an array of Car types as follows:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Object Sorting *****\n");
// Make an array of Car types.
Car[] myAutos = new Car[5];
myAutos[0] = new Car("Rusty", 80, 1);
myAutos[1] = new Car("Mary", 40, 234);
myAutos[2] = new Car("Viper", 40, 34);
myAutos[3] = new Car("Mel", 40, 4);
myAutos[4] = new Car("Chucky", 40, 5);
Console.ReadLine();

}

The System.Array class defines a static method named Sort(). When you invoke this method
on an array of intrinsic types (int, short, string, etc.), you are able to sort the items in the array in
numeric/alphabetic order as these intrinsic data types implement IComparable. However, what if
you were to send an array of Car types into the Sort() method as follows?

// Sort my cars?
Array.Sort(myAutos);

If you run this test, you would find that an ArgumentException exception is thrown by the run-
time, with the following message:

"At least one object must implement IComparable."

CHAPTER 9 ■ WORKING WITH INTERFACES300

8849CH09.qxd 10/1/07 10:41 AM Page 300

When you build custom types, you can implement IComparable to allow arrays of your types to
be sorted. When you flesh out the details of CompareTo(), it will be up to you to decide what the
baseline of the ordering operation will be. For the Car type, the internal carID seems to be the logi-
cal candidate:

// The iteration of the Car can be ordered
// based on the CarID.
public class Car : IComparable
{
...
// IComparable implementation.
int IComparable.CompareTo(object obj)
{
Car temp = (Car)obj;
if(this.carID > temp.carID)
return 1;

if(this.carID < temp.carID)
return -1;

else
return 0;

}
}

As you can see, the logic behind CompareTo() is to test the incoming type against the current
instance based on a specific point of data. The return value of CompareTo() is used to discover
whether this type is less than, greater than, or equal to the object it is being compared with (see
Table 9-1).

Table 9-1. CompareTo() Return Values

CompareTo() Return Value Meaning in Life

Any number less than zero This instance comes before the specified object in the sort
order.

Zero This instance is equal to the specified object.

Any number greater than zero This instance comes after the specified object in the sort order.

We can streamline the previous implementation of CompareTo() given the fact that the C# int
data type (which is just a shorthand notation for the CLR System.Int32) implements IComparable;
you could implement the Car’s CompareTo() as follows:

int IComparable.CompareTo(object obj)
{
Car temp = (Car)obj;
return this.carID.CompareTo(temp.carID);

}

In either case, so that your Car type understands how to compare itself to like objects, you can
write the following user code:

// Exercise the IComparable interface.
static void Main(string[] args)
{
// Make an array of Car types.

...
// Display current array.
Console.WriteLine("Here is the unordered set of cars:");

CHAPTER 9 ■ WORKING WITH INTERFACES 301

8849CH09.qxd 10/1/07 10:41 AM Page 301

foreach(Car c in myAutos)
Console.WriteLine("{0} {1}", c.ID, c.PetName);

// Now, sort them using IComparable!
Array.Sort(myAutos);
Console.WriteLine();

// Display sorted array.
Console.WriteLine("Here is the ordered set of cars:");
foreach(Car c in myAutos)
Console.WriteLine("{0} {1}", c.ID, c.PetName);

Console.ReadLine();
}

Figure 9-13 illustrates a test run.

Figure 9-13. Comparing automobiles based on car ID

Specifying Multiple Sort Orders (IComparer)
In this version of the Car type, you made use of the car’s ID to function as the baseline of the sort
order. Another design might have used the pet name of the car as the basis of the sorting algorithm
(to list cars alphabetically). Now, what if you wanted to build a Car that could be sorted by ID as well
as by pet name? If this is the behavior you are interested in, you need to make friends with another
standard interface named IComparer, defined within the System.Collections namespace as follows:

// A generic way to compare two objects.
interface IComparer
{
int Compare(object o1, object o2);

}

Unlike the IComparable interface, IComparer is typically not implemented on the type you are
trying to sort (i.e., the Car). Rather, you implement this interface on any number of helper classes,
one for each sort order (pet name, car ID, etc.). Currently, the Car type already knows how to com-
pare itself against other cars based on the internal car ID. Therefore, allowing the object user to sort
an array of Car types by pet name will require an additional helper class that implements IComparer.
Here’s the code:

CHAPTER 9 ■ WORKING WITH INTERFACES302

8849CH09.qxd 10/1/07 10:41 AM Page 302

// This helper class is used to sort an array of Cars by pet name.
using System.Collections;

public class PetNameComparer : IComparer
{
// Test the pet name of each object.
int IComparer.Compare(object o1, object o2)
{
Car t1 = (Car)o1;
Car t2 = (Car)o2;
return String.Compare(t1.PetName, t2.PetName);

}
}

The object user code is able to make use of this helper class. System.Array has a number of
overloaded Sort() methods, one that just happens to take an object implementing IComparer.
Figure 9-14 shows the output of sorting by a car’s pet name.

static void Main(string[] args)
{
...
// Now sort by pet name.
Array.Sort(myAutos, new PetNameComparer());

// Dump sorted array.
Console.WriteLine("Ordering by pet name:");
foreach(Car c in myAutos)
Console.WriteLine("{0} {1}", c.ID, c.PetName);

...
}

Figure 9-14. Sorting automobiles by pet name

CHAPTER 9 ■ WORKING WITH INTERFACES 303

8849CH09.qxd 10/1/07 10:41 AM Page 303

Custom Properties, Custom Sort Types
It is worth pointing out that you can make use of a custom static property in order to help the object
user along when sorting your Car types by a specific data point. Assume the Car class has added a
static read-only property named SortByPetName that returns an instance of an object implementing
the IComparer interface (PetNameComparer, in this case):

// We now support a custom property to return
// the correct IComparer interface.
public class Car : IComparable
{
...
// Property to return the SortByPetName comparer.
public static IComparer SortByPetName
{ get { return (IComparer)new PetNameComparer(); } }

}

The object user code can now sort by pet name using a strongly associated property, rather
than just “having to know” to use the stand-alone PetNameComparer class type:

// Sorting by pet name made a bit cleaner.
Array.Sort(myAutos, Car.SortByPetName);

■Source Code The ComparableCar project is located under the Chapter 9 subdirectory.

Hopefully at this point, you not only understand how to define and implement interface types,
but can understand their usefulness. To be sure, interfaces will be found within every major .NET
namespace. To wrap up this chapter, let’s check out the interfaces that can be used to enable call-
back mechanisms.

Understanding Callback Interfaces
Beyond using interfaces to establish polymorphism across diverse class hierarchies, namespaces,
and assemblies, interfaces may also be used as a callback mechanism. This technique enables
objects to engage in a two-way conversation using a common set of members.

■Note The .NET platform provides a formal fabric used to build events (which is quite different from the tech-
nique that will be shown here). As you will see in Chapter 11, delegates, events, and lambdas are the standard way
to enable objects to chit-chat back and forth.

To illustrate the use of callback interfaces, let’s update the now familiar Car type in such a way
that it is able to inform the caller when it is about to explode (the current speed is 10 miles below
the maximum speed) and has exploded (the current speed is at or above the maximum speed).

Begin by creating a new Console Application named CallbackInterface. The ability to send and
receive these events will be facilitated with a new custom interface named IEngineNotification:

// The callback interface.
public interface IEngineNotification
{

CHAPTER 9 ■ WORKING WITH INTERFACES304

8849CH09.qxd 10/1/07 10:41 AM Page 304

void AboutToBlow(string msg);
void Exploded(string msg);

}

Callback interfaces are often not implemented by the object directly interested in receiving the
events, but rather by a helper object called a sink object. The sender of the events (the Car type in
this case) will make calls on the sink under the appropriate circumstances. Assume the sink class is
called CarEventSink. When this object is notified of the various incoming events, it will simply print
out the incoming messages to the console. Furthermore, our sink will also maintain a string mem-
ber variable that represents its friendly name (you’ll see how this can be useful as you move through
the example):

// Car event sink.
public class CarEventSink : IEngineNotification
{
private string name;
public CarEventSink(){}
public CarEventSink(string sinkName)
{ name = sinkName; }

public void AboutToBlow(string msg)
{
Console.WriteLine("{0} reporting: {1}", name, msg);

}
public void Exploded(string msg)
{
Console.WriteLine("{0} reporting: {1}", name, msg);

}
}

Now that you have a sink object that implements the callback interface, your next task is to
pass a reference to this sink into the Car type. The Car holds onto the reference and makes calls back
on the sink when appropriate. In order to allow the Car to obtain a reference to the sink, we will
need to add a public helper member to the Car type that we will call Advise(). Likewise, if the caller
wishes to detach from the event source, it may call another helper method on the Car type named
Unadvise(). Finally, in order to allow the caller to register multiple event sinks (for the purposes of
multicasting), the Car now maintains an ArrayList to represent each outstanding connection.

■Note The ArrayList class is contained within the System.Collections namespace of the mscorlib.dll
assembly. Be sure to import this namespace within the file containing your Car definition. Collections (and gener-
ics for that matter) will be examined in detail in Chapter 10.

// This Car and caller can now communicate
// using the IEngineNotification interface.
public class Car
{
// The set of connected sinks.
ArrayList clientSinks = new ArrayList();

// Attach or disconnect from the source of events.
public void Advise(IEngineNotification sink)
{
clientSinks.Add(sink);

}

CHAPTER 9 ■ WORKING WITH INTERFACES 305

8849CH09.qxd 10/1/07 10:41 AM Page 305

public void Unadvise(IEngineNotification sink)
{
clientSinks.Remove(sink);

}
...
}

To actually send the events, let’s update the Car.Accelerate() method to iterate over the list of
connections maintained by the ArrayList and fire the correct notification when appropriate. First
of all, add a new Boolean member variable named carIsDead to represent the engine’s state:

class Car
{
// Is the car alive or dead?
bool carIsDead;

...
}

Next, update your current Accelerate() method to make use of this new member variable as
follows:

public void Accelerate(int delta)
{
// If the car is dead, send Exploded event.
if (carIsDead)
{
foreach (IEngineNotification sink in clientSinks)
sink.Exploded("Sorry, this car is dead...");

}
else
{
currSpeed += delta;

// Almost dead?
if (10 == (maxSpeed – currSpeed))
{
foreach (IEngineNotification sink in clientSinks)
sink.AboutToBlow("Careful buddy! Gonna blow!");

}

// Still OK!
if (currSpeed >= maxSpeed)
carIsDead = true;

else
Console.WriteLine("->CurrSpeed = " + currSpeed);

}
}

With our infrastructure in place, we can now implement our Main() method to receive the
events sent from the Car type as follows:

// Make a car and listen to the events.
static void Main(string[] args)
{
Console.WriteLine("***** Interfaces as event enablers *****\n");
Car c1 = new Car("SlugBug", 100, 10);

// Make sink object.
CarEventSink sink = new CarEventSink();

CHAPTER 9 ■ WORKING WITH INTERFACES306

8849CH09.qxd 10/1/07 10:41 AM Page 306

// Pass the Car a reference to the sink.
c1.Advise(sink);

// Speed up (this will trigger the events).
for(int i = 0; i < 10; i++)
c1.Accelerate(20);

// Detach from event source.
c1.Unadvise(sink);
Console.ReadLine();

}

Figure 9-15 shows the end result of this interface-based event protocol.

Figure 9-15. Receiving event notifications using callback interfaces

Do note that the Unadvise() method can be very helpful in that it allows the caller to selectively
detach from an event source at will. Here, you call Unadvise() before exiting Main(), although this is
not technically necessary. However, assume that the application now wishes to register two sinks,
dynamically remove a particular sink during the flow of execution, and continue processing the
program at large:

static void Main(string[] args)
{
Console.WriteLine("***** Interfaces as event enablers *****\n");
Car c1 = new Car("SlugBug", 100, 10);

// Make 2 sink objects.
Console.WriteLine("***** Creating sinks *****");
CarEventSink sink = new CarEventSink("First sink");
CarEventSink myOtherSink = new CarEventSink("Other sink");

// Hand sinks to Car.
Console.WriteLine("\n***** Sending 2 sinks into Car *****");
c1.Advise(sink);
c1.Advise(myOtherSink);

// Speed up (this will generate the events).
Console.WriteLine("\n***** Speeding up *****");
for(int i = 0; i < 10; i++)
c1.Accelerate(20);

CHAPTER 9 ■ WORKING WITH INTERFACES 307

8849CH09.qxd 10/1/07 10:41 AM Page 307

// Detach first sink from events.
Console.WriteLine("\n***** Removing first sink *****");
c1.Unadvise(sink);

// Speed up again (only myOtherSink will be called).
Console.WriteLine("\n***** Speeding up again *****");
for(int i = 0; i < 10; i++)
c1.Accelerate(20);

// Detach other sink from events.
Console.WriteLine("\n***** Removing second sink *****");
c1.Unadvise(myOtherSink);
Console.ReadLine();

}

Callback interfaces can be helpful in that they can be used under any language or platform
(.NET, J2EE, or otherwise) that supports interface-based programming. However, as mentioned,
Chapter 11 will examine a number of event-centric techniques that are specific to the .NET
platform.

■Source Code The CallbackInterface project is located under the Chapter 9 subdirectory.

Summary
An interface can be defined as a named collection of abstract members. Because an interface does
not provide any implementation details, it is common to regard an interface as a behavior that may
be supported by a given type. When two or more classes implement the same interface, you are able
to treat each type the same way (aka interface-based polymorphism) even if the types are defined
within unique class hierarchies.

C# provides the interface keyword to allow you to define a new interface. As you have seen, a
type can support as many interfaces as necessary using a comma-delimited list. Furthermore, it is
permissible to build interfaces that derive from multiple base interfaces.

In addition to building your custom interfaces, the .NET libraries define a number of standard
(i.e., framework-supplied) interfaces. As you have seen, you are free to build custom types that
implement these predefined interfaces to gain a number of desirable traits such as cloning, sorting,
and enumerating. Finally, you spent some time investigating how interface types can be used to
establish bidirectional communications between two objects in memory.

CHAPTER 9 ■ WORKING WITH INTERFACES308

8849CH09.qxd 10/1/07 10:41 AM Page 308

Collections and Generics

The most primitive container within the .NET platform is the System.Array type. As you have seen
over the course of the previous chapters, C# arrays allow you to define a set of identically typed
items (including an array of System.Objects, which essentially represents an array of any types) of
a fixed upper limit. While this will often fit the bill, there are many other times where you require
more flexible data structures, such as a dynamically growing and shrinking container, or a container
that can hold only items that meet a specific criteria (e.g., only items deriving from a given base
class, items implementing a particular interface, or whatnot). To begin understanding the task of
building flexible and type-safe containers, this chapter will first examine the System.Collections
namespace that has been part of the .NET base class libraries since the initial release.

However, since the release of .NET 2.0, the C# programming language was enhanced to sup-
port a new feature of the CTS termed generics. Many of the generics you will use on a daily basis are
found within the System.Collections.Generic namespace. As shown over this chapter, generic con-
tainers are in many ways far superior to their nongeneric counterparts in that they provide greater
type safety and performance benefits. Once you’ve seen generic support within the base class
libraries, in the remainder of this chapter you’ll examine how you can build your own generic
members, classes, structures, and interfaces.

■Note It is also possible to create generic delegate types, which will be addressed in the next chapter.

The Interfaces of the System.Collections
Namespace
The most primitive container construct would have to be our good friend System.Array. As you
have already seen in Chapter 4, this class provides a number of services (e.g., reversing, sorting,
clearing, and enumerating). However, the simple Array class has a number of limitations; most
notably, it does not automatically resize itself as you add or clear items. When you need to contain
types in a more flexible container, one option is to leverage the types defined within the
System.Collections namespace.

The System.Collections namespace defines a number of interfaces (some of which you have
already implemented during Chapter 9). A majority of the classes within System.Collections imple-
ment these interfaces to provide access to their contents. Table 10-1 gives a breakdown of the core
collection-centric interfaces.

309

C H A P T E R 1 0

8849CH10.qxd 9/25/07 4:17 PM Page 309

Table 10-1. Interfaces of System.Collections

System.Collections Interface Meaning in Life

ICollection Defines general characteristics (e.g., size, enumeration, thread
safety) for all nongeneric collection types.

IComparer Allows two objects to be compared.

IDictionary Allows a nongeneric collection object to represent its contents
using name/value pairs.

IDictionaryEnumerator Enumerates the contents of a type supporting IDictionary.

IEnumerable Returns the IEnumerator interface for a given object.

IEnumerator Enables foreach style iteration of subtypes.

IHashCodeProvider Returns the hash code for the implementing type using a
customized hash algorithm.

IList Provides behavior to add, remove, and index items in a list of
objects. Also, this interface defines members to determine
whether the implementing collection type is read-only and/or
a fixed-size container.

Many of these interfaces are related by an interface hierarchy, while others are stand-alone
entities. Figure 10-1 illustrates the relationship between each type (recall from Chapter 9 that it is
permissible for a single interface to derive from multiple interfaces).

Figure 10-1. The System.Collections interface hierarchy

The Role of ICollection
The ICollection interface is the most primitive interface of the System.Collections namespace in
that it defines a behavior supported by a collection type. In a nutshell, this interface provides a
small set of members that allow you to determine (a) the number of items in the container, (b) the
thread safety of the container, as well as (c) the ability to copy the contents into a System.Array type.
Formally, ICollection is defined as follows (note that ICollection extends IEnumerable):

public interface ICollection : IEnumerable
{
int Count { get; }
bool IsSynchronized { get; }
object SyncRoot { get; }
void CopyTo(Array array, int index);

}

CHAPTER 10 ■ COLLECTIONS AND GENERICS310

8849CH10.qxd 9/25/07 4:17 PM Page 310

The Role of IDictionary
A dictionary is simply a collection that maintains a set of name/value pairs. For example, you could
build a custom type that implements IDictionary such that you can store Car types (the values) that
may be retrieved by ID or pet name (e.g., names). Given this functionality, you can see that the
IDictionary interface defines a Keys and Values property as well as Add(), Remove(), and Contains()
methods. The individual items may be obtained by the type indexer, which is a construct that allows
you to interact with subitems using an arraylike syntax. Here is the formal definition:

public interface IDictionary :
ICollection, IEnumerable

{
bool IsFixedSize { get; }
bool IsReadOnly { get; }

// Type indexer; see Chapter 12 for full details.
object this[object key] { get; set; }

ICollection Keys { get; }
ICollection Values { get; }
void Add(object key, object value);
void Clear();
bool Contains(object key);
IDictionaryEnumerator GetEnumerator();
void Remove(object key);

}

The Role of IDictionaryEnumerator
If you were paying attention in the previous section, you may have noted that IDictionary.
GetEnumerator() returns an instance of the IDictionaryEnumerator type. IDictionaryEnumerator
is simply a strongly typed enumerator, given that it extends IEnumerator by adding the following
functionality:

public interface IDictionaryEnumerator : IEnumerator
{
DictionaryEntry Entry { get; }
object Key { get; }
object Value { get; }

}

Notice how IDictionaryEnumerator allows you to enumerate over items in the dictionary via
the generalized Entry property, which returns a System.Collections.DictionaryEntry class type.
In addition, you are also able to traverse the name/value pairs using the Key/Value properties.

The Role of IList
The final core interface of System.Collections is IList, which provides the ability to insert, remove,
and index items into (or out of) a container:

public interface IList :
ICollection, IEnumerable

{
bool IsFixedSize { get; }
bool IsReadOnly { get; }
object this[int index] { get; set; }

CHAPTER 10 ■ COLLECTIONS AND GENERICS 311

8849CH10.qxd 9/25/07 4:17 PM Page 311

int Add(object value);
void Clear();
bool Contains(object value);
int IndexOf(object value);
void Insert(int index, object value);
void Remove(object value);
void RemoveAt(int index);

}

The Class Types of System.Collections
As explained in the previous chapter, interfaces by themselves are not very useful until they are
implemented by a given class or structure. Table 10-2 provides a rundown of the core classes in the
System.Collections namespace and the key interfaces they support.

Table 10-2. Classes of System.Collections

System.Collections Class Meaning in Life Key Implemented Interfaces

ArrayList Represents a dynamically sized array IList, ICollection,
of objects. IEnumerable, and

ICloneable

Hashtable Represents a collection of objects IDictionary, ICollection,
identified by a numerical key. IEnumerable, and
Custom types stored in a Hashtable ICloneable
should always override System.
Object.GetHashCode().

Queue Represents a standard first-in, ICollection, ICloneable,
first-out (FIFO) queue. and IEnumerable

SortedList Like a dictionary; however, the IDictionary, ICollection,
elements can also be accessed IEnumerable, and
by ordinal position (e.g., index). ICloneable

Stack A last-in, first-out (LIFO) queue ICollection, ICloneable,
providing push and pop (and peek) and IEnumerable
functionality.

In addition to these key types, System.Collections defines some minor players (at least in
terms of their day-to-day usefulness) such as BitArray, CaseInsensitiveComparer, and
CaseInsensitiveHashCodeProvider. Furthermore, this namespace also defines a small set of abstract
base classes (CollectionBase, ReadOnlyCollectionBase, and DictionaryBase) that can be used to
build strongly typed containers.

As you begin to experiment with the System.Collections types, you will find they all tend to
share common functionality (that’s the point of interface-based programming). Thus, rather than
listing out the members of each and every collection class, the next task of this chapter is to illus-
trate how to interact with three common collection types: ArrayList, Queue, and Stack.

Once you understand the functionality of these types, gaining an understanding of the remain-
ing collection classes (such as the Hashtable) should naturally follow; especially since each of the
types is fully documented within the .NET Framework 3.5 documentation.

CHAPTER 10 ■ COLLECTIONS AND GENERICS312

8849CH10.qxd 9/25/07 4:17 PM Page 312

Working with the ArrayList Type
To illustrate working with these collection types, create a new Console Application project named
CollectionTypes. Our ArrayList will maintain a set of simple Car objects, defined as follows:

class Car
{
// Public fields for simplicity.
public string PetName;
public int Speed;

// Constructors.
public Car(){}
public Car(string name, int currentSpeed)
{ PetName = name; Speed = currentSpeed;}

}

Next, update your project’s initial C# file to specify you are using the System.Collections
namespace:

using System.Collections;

The ArrayList type is bound to be your most frequently used type in the System.Collections
namespace in that it allows you to dynamically resize the contents at your whim. To illustrate the
basics of this type, ponder the following method to your Program class, which leverages the
ArrayList to manipulate a set of Car objects:

static void ArrayListTest()
{
Console.WriteLine("\n=> ArrayList Test:\n");
// Create ArrayList and fill with some initial values.
ArrayList carArList = new ArrayList();
carArList.AddRange(new Car[] { new Car("Fred", 90, 10),
new Car("Mary", 100, 50), new Car("MB", 190, 11)});

// Print out # of items in ArrayList.
Console.WriteLine("Items in carArList: {0}", carArList.Count);

// Print out current values.
foreach(Car c in carArList)
Console.WriteLine("Car pet name: {0}", c.PetName);

// Insert a new item.
Console.WriteLine("->Inserting new Car.");
carArList.Insert(2, new Car("TheNewCar", 0, 12));
Console.WriteLine("Items in carArList: {0}", carArList.Count);

// Get object array from ArrayList and print again.
object[] arrayOfCars = carArList.ToArray();
for(int i = 0; i < arrayOfCars.Length; i++)
{
Console.WriteLine("Car pet name: {0}",
((Car)arrayOfCars[i]).PetName);

}
}

CHAPTER 10 ■ COLLECTIONS AND GENERICS 313

8849CH10.qxd 9/25/07 4:17 PM Page 313

Here you are making use of the AddRange() method to populate your ArrayList with an array of
Car types (which is basically a shorthand notation for calling Add() n number of times). Once you
print out the number of items in the collection (as well as enumerate over each item to obtain the
pet name), you invoke Insert(). As you can see, Insert() allows you to plug a new item into the
ArrayList at a specified index.

Finally, notice the call to the ToArray() method, which returns an array of System.Object types
based on the contents of the original ArrayList. From this array, we loop over the items once again
using the array’s indexer syntax. If you call this method from within Main(), you will find the
ArrayList has indeed grown by one item to account for the new Car object.

Working with the Queue Type
Queues are containers that ensure items are accessed using a first-in, first-out manner. Sadly, we
humans are subject to queues all day long: lines at the bank, lines at the movie theater, and lines at
the morning coffeehouse. When you are modeling a scenario in which items are handled on a first-
come, first-served basis, System.Collections.Queue fits the bill. In addition to the functionality
provided by the supported interfaces, Queue defines the key members shown in Table 10-3.

Table 10-3. Members of the Queue Type

Member of System.Collection.Queue Meaning in Life

Dequeue() Removes and returns the object at the beginning of the
Queue

Enqueue() Adds an object to the end of the Queue

Peek() Returns the object at the beginning of the Queue without
removing it

To illustrate these methods, we will leverage our automobile theme once again and build a
Queue object that simulates a line of cars waiting to enter a car wash. First, assume the following
static helper method:

static void WashCar(Car c)
{
Console.WriteLine("Cleaning {0}", c.PetName);

}

Now assume this additional helper method, which calls WashCar() internally:

static void QueueTest()
{
Console.WriteLine("\n=> Queue Test:\n");
// Make a Q with three items.
Queue carWashQ = new Queue();
carWashQ.Enqueue(new Car("FirstCar", 10));
carWashQ.Enqueue(new Car("SecondCar", 20));
carWashQ.Enqueue(new Car("ThirdCar", 30));

// Peek at first car in Q.
Console.WriteLine("First in Q is {0}",
((Car)carWashQ.Peek()).PetName);

// Remove each item from Q.
WashCar((Car)carWashQ.Dequeue());

CHAPTER 10 ■ COLLECTIONS AND GENERICS314

8849CH10.qxd 9/25/07 4:17 PM Page 314

WashCar((Car)carWashQ.Dequeue());
WashCar((Car)carWashQ.Dequeue());

// Try to de-Q again?
try
{ WashCar((Car)carWashQ.Dequeue()); }
catch(Exception e)
{ Console.WriteLine("Error!! {0}", e.Message);}

}

Here, you insert three items into the Queue type via its Enqueue() method. The call to Peek()
allows you to view (but not remove) the first item currently in the Queue, which in this case is the
object named FirstCar. Finally, the call to Dequeue() removes the item from the line and sends it
into the WashCar() helper function for processing. Do note that if you attempt to remove items from
an empty queue, a runtime exception is thrown.

Working with the Stack Type
The System.Collections.Stack type represents a collection that maintains items using a last-in,
first-out manner. As you would expect, Stack defines a member named Push() and Pop() (to place
items onto or remove items from the stack). The following stack example makes use of the standard
System.String:

static void StackTest()
{
Console.WriteLine("\n=> Stack Test:\n");
Stack stringStack = new Stack();
stringStack.Push("One");
stringStack.Push("Two");
stringStack.Push("Three");

// Now look at the top item, pop it, and look again.
Console.WriteLine("Top item is: {0}", stringStack.Peek());
Console.WriteLine("Popped off {0}", stringStack.Pop());
Console.WriteLine("Top item is: {0}", stringStack.Peek());
Console.WriteLine("Popped off {0}", stringStack.Pop());
Console.WriteLine("Top item is: {0}", stringStack.Peek());
Console.WriteLine("Popped off {0}", stringStack.Pop());

try
{
Console.WriteLine("Top item is: {0}", stringStack.Peek());
Console.WriteLine("Popped off {0}", stringStack.Pop());

}
catch(Exception e)
{ Console.WriteLine("Error!! {0}", e.Message);}

}

Here, you build a stack that contains three string types (named according to their order of
insertion). As you peek into the stack, you will always see the item at the very top, and therefore the
first call to Peek() reveals the third string. After a series of Pop() and Peek() calls, the stack is eventu-
ally empty, at which time additional Peek()/Pop() calls raise a system exception.

■Source Code The CollectionTypes project can be found under the Chapter 10 subdirectory.

CHAPTER 10 ■ COLLECTIONS AND GENERICS 315

8849CH10.qxd 9/25/07 4:17 PM Page 315

System.Collections.Specialized Namespace
In addition to the types defined within the System.Collections namespace, you should also be
aware that the .NET base class libraries provide the System.Collections.Specialized namespace
defined in the System.dll assembly, which defines another set of types that are more (pardon the
redundancy) specialized. For example, the StringDictionary and ListDictionary types each pro-
vide a stylized implementation of the IDictionary interface. Table 10-4 documents the key class
types.

Table 10-4. Types of the System.Collections.Specialized Namespace

Member of System.Collections.Specialized Meaning in Life

BitVector32 A simple structure that stores Boolean values and
small integers in 32 bits of memory.

CollectionsUtil Creates collections that ignore the case in strings.

HybridDictionary Implements IDictionary by using a
ListDictionary while the collection is small, and
then switching to a Hashtable when the collection
gets large.

ListDictionary Implements IDictionary using a singly linked list.
Recommended for collections that typically
contain ten items or fewer.

NameValueCollection Represents a sorted collection of associated
String keys and String values that can be
accessed either with the key or with the index.

StringCollection Represents a collection of strings.

StringDictionary Implements a hashtable with the key strongly
typed to be a string rather than an object.

StringEnumerator Supports a simple iteration over a
StringCollection.

Now that you have had a chance to examine some of the basic collection types within the
System.Collections (and System.Collections.Specialized) namespace, you might be surprised
when I tell you that these types are basically regarded as legacy types that should not be used for
new project developments for .NET 2.0 or higher. The reason is not because these types are some-
how dangerous, but due to the fact that they suffer from performance issues and a lack of type
safety.

New projects should ignore these legacy container types in favor of related types in the
System.Collections.Generic namespace. However, before we examine how to make use of generic
types, it is very helpful to understand exactly what problems generics intend to solve in the first
place. To begin, we must examine the role of boxing and unboxing.

The Boxing, Unboxing, and System.Object
Relationship
As you recall from Chapter 4, the .NET platform supports two broad groups of data types, termed
value types and reference types. Given that .NET defines two major categories of types, you may
occasionally need to represent a variable of one category as a variable of the other category. To do

CHAPTER 10 ■ COLLECTIONS AND GENERICS316

8849CH10.qxd 9/25/07 4:17 PM Page 316

so, C# provides a very simple mechanism, termed boxing, to convert a value type to a reference
type. Assume that you have created a variable of type short:

// Make a short value type.
short s = 25;

If during the course of your application you wish to represent this value type as a reference
type, you would box the value as follows:

// Box the value into an object reference.
object objShort = s;

Boxing can be formally defined as the process of explicitly converting a value type into a corre-
sponding reference type by storing the variable in a System.Object. When you box a value, the CLR
allocates a new object on the heap and copies the value type’s value (in this case, 25) into that
instance. What is returned to you is a reference to the newly allocated object. Using this technique,
.NET developers have no need to make use of a set of wrapper classes used to temporarily treat
stack data as heap-allocated objects.

The opposite operation is also permitted through unboxing. Unboxing is the process of con-
verting the value held in the object reference back into a corresponding value type on the stack.
The unboxing operation begins by verifying that the receiving data type is equivalent to the boxed
type, and if so, it copies the value back into a local stack-based variable. For example, the following
unboxing operations work successfully, given that the underlying type of the objShort is indeed a
short:

// Unbox the reference back into a corresponding short.
short anotherShort = (short)objShort;

Again, it is mandatory that you unbox into an appropriate data type. Thus, the following
unboxing logic generates an InvalidCastException exception:

// Illegal unboxing.
static void Main(string[] args)
{
short s = 25;
object objShort = s;

try
{
// The type contained in the box is NOT an int, but a short!
int i = (int)objShort;

}
catch(InvalidCastException e)
{
Console.WriteLine("OOPS!\n{0} ", e.ToString());

}
}

At first glance, boxing/unboxing may seem like a rather uneventful language feature that is
more academic than practical. In reality, the (un)boxing process is very helpful in that it allows us to
assume everything can be treated as a System.Object, while the CLR takes care of the memory-
related details on our behalf.

To see a practical use of this technique, assume you have created a System.Collections.
ArrayList to hold numeric (stack-allocated) data. If you were to examine the members of
ArrayList, you would find they are typically prototyped to receive and return System.Object types:

public class System.Collections.ArrayList : object,
System.Collections.IList,
System.Collections.ICollection,

CHAPTER 10 ■ COLLECTIONS AND GENERICS 317

8849CH10.qxd 9/25/07 4:17 PM Page 317

System.Collections.IEnumerable,
ICloneable

{
...
public virtual int Add(object value);
public virtual void Insert(int index, object value);
public virtual void Remove(object obj);
public virtual object this[int index] {get; set; }

}

However, rather than forcing programmers to manually wrap the stack-based integer in a
related object wrapper, the runtime will automatically do so via a boxing operation:

static void Main(string[] args)
{
// Value types are automatically boxed when
// passed to a member requesting an object.
ArrayList myInts = new ArrayList();
myInts.Add(10);
Console.ReadLine();

}

If you wish to retrieve this value from the ArrayList object using the type indexer, you must
unbox the heap-allocated object into a stack-allocated integer using a casting operation:

static void Main(string[] args)
{
...
// Value is now unboxed.
int i = (int)myInts[0];

// Now it is reboxed, as WriteLine() requires object types!
Console.WriteLine("Value of your int: {0}", i);
Console.ReadLine();

}

When the C# compiler transforms a boxing operation into terms of CIL code, you find the box
opcode is used internally. Likewise, the unboxing operation is transformed into a CIL unbox opera-
tion. Here is the relevant CIL code for the previous Main() method (which can be viewed using
ildasm.exe):

.method private hidebysig static void Main(string[] args) cil managed
{
...
box [mscorlib]System.Int32
callvirt instance int32 [mscorlib]System.Collections.ArrayList::Add(object)
pop
ldstr "Value of your int: {0}"
ldloc.0
ldc.i4.0
callvirt instance object [mscorlib]
System.Collections.ArrayList::get_Item(int32)

unbox [mscorlib]System.Int32
ldind.i4
box [mscorlib]System.Int32
call void [mscorlib]System.Console::WriteLine(string, object)

...
}

CHAPTER 10 ■ COLLECTIONS AND GENERICS318

8849CH10.qxd 9/25/07 4:17 PM Page 318

Note that the stack-allocated System.Int32 is boxed prior to the call to ArrayList.Add() in
order to pass in the required System.Object. Also note that the System.Object is unboxed back into a
System.Int32 once retrieved from the ArrayList using the type indexer (which maps to the hidden
get_Item() method), only to be boxed again when it is passed to the Console.WriteLine() method,
as this method is operating on System.Object types.

The Problem with (Un)Boxing Operations
Although boxing and unboxing are very convenient from a programmer’s point of view, this simpli-
fied approach to stack/heap memory transfer comes with the baggage of performance issues (in
both speed of execution and code size) and a lack of type safety. To understand the performance
issues, ponder the steps that must occur to box and unbox a simple integer:

1. A new object must be allocated on the managed heap.

2. The value of the stack-based data must be transferred into that memory location.

3. When unboxed, the value stored on the heap-based object must be transferred back to the
stack.

4. The now unused object on the heap will (eventually) be garbage collected.

Although the current Main() method won’t cause a major bottleneck in terms of performance,
you could certainly feel the impact if an ArrayList contained thousands of integers that are manip-
ulated by your program on a somewhat regular basis.

Now consider the lack of type safety regarding unboxing operations. As previously explained, to
unbox a value using the syntax of C#, you make use of the casting operator. However, the success or
failure of a cast is not known until runtime. Therefore, if you attempt to unbox a value into the
wrong data type, you receive an InvalidCastException:

static void Main(string[] args)
{
ArrayList myInts = new ArrayList();
myInts.Add(10);

// Runtime exception!
short i = (int)myInts[0];

// Now it is reboxed as WriteLine() requires object types!
Console.WriteLine("Value of your int: {0}", i);
Console.ReadLine();

}

In an ideal world, the C# compiler would be able to resolve these illegal unboxing operations at
compile time, rather than at runtime. On a related note, in a really ideal world, we could store sets
of value types in a container that did not require boxing in the first place. Generics are the solution
to each of these issues.

The Issue of Type Safety and Strongly Typed
Collections
The final major collection-centric issue we have in a generic-free programming world is the fact
that a majority of the types of System.Collections can typically hold anything whatsoever, as their
members are prototyped to operate on System.Objects:

CHAPTER 10 ■ COLLECTIONS AND GENERICS 319

8849CH10.qxd 9/25/07 4:17 PM Page 319

static void Main(string[] args)
{
// The ArrayList can hold anything at all.
ArrayList allMyObject = new ArrayList();
allMyObjects.Add(true);
allMyObjects.Add(new Car());
allMyObjects.Add(66);
allMyObjects.Add(3.14);

}

In some cases, you will require an extremely flexible container that can hold literally anything.
However, most of the time you desire a type-safe container that can only operate on a particular
type of data point. For example, you might need a container that can only hold database connec-
tions, bitmaps, IPointy-compatible objects, or what have you.

Building a Custom Collection
Prior to the introduction of generics in .NET 2.0, programmers attempted to address type safety by
manually building custom strongly typed collections. To illustrate why this can be problematic, cre-
ate a new Console Application project named CustomNonGenericCollection. Once you have done
so, be sure you import the System.Collections namespace. Now, assume you wish to create a cus-
tom collection that can only contain objects of type Person:

public class Person
{
// Made public for simplicity.
public int Age;
public string FirstName, LastName;

public Person(){}
public Person(string firstName, string lastName, int age)
{
Age = age;
FirstName = firstName;
LastName = lastName;

}

public override string ToString()
{
return string.Format("Name: {0} {1}, Age: {2}",
FirstName, LastName, Age);

}
}

To build a person collection, you could define a System.Collections.ArrayList member vari-
able within a class named PeopleCollection and configure all members to operate on strongly
typed Person objects, rather than on System.Object types:

public class PeopleCollection : IEnumerable
{
private ArrayList arPeople = new ArrayList();
public PeopleCollection(){}

// Cast for caller.
public Person GetPerson(int pos)
{ return (Person)arPeople[pos]; }

CHAPTER 10 ■ COLLECTIONS AND GENERICS320

8849CH10.qxd 9/25/07 4:17 PM Page 320

// Only insert Person types.
public void AddPerson(Person p)
{ arPeople.Add(p); }

public void ClearPeople()
{ arPeople.Clear(); }

public int Count
{ get { return arPeople.Count; } }

// Foreach enumeration support.
IEnumerator IEnumerable.GetEnumerator()
{ return arPeople.GetEnumerator(); }

}

Notice that the PeopleCollection type implements the IEnumerable interface, to allow foreach-
like iteration over each contained item. Also notice that our GetPerson() and AddPerson() method
has been prototyped to only operate on Person objects (not bitmaps, strings, database connections,
or other items). With these types defined, you are now assured of type safety, given that the C# com-
piler will be able to determine any attempt to insert an incompatible type:

static void Main(string[] args)
{
Console.WriteLine("***** Custom Person Collection *****\n");
PeopleCollection myPeople = new PeopleCollection();
myPeople.AddPerson(new Person("Homer", "Simpson", 40));
myPeople.AddPerson(new Person("Marge", "Simpson", 38));
myPeople.AddPerson(new Person("Lisa", "Simpson", 9));
myPeople.AddPerson(new Person("Bart", "Simpson", 7));
myPeople.AddPerson(new Person("Maggie", "Simpson", 2));

// This would be a compile-time error!
// myPeople.AddPerson(new Car());

foreach (Person p in myPeople)
Console.WriteLine(p);

Console.ReadLine();
}

While custom collections do ensure type safety, this approach leaves you in a position where
you must create an (almost identical) custom collection for each type you wish to contain. Thus, if
you need a custom collection that will be able to operate only on classes deriving from the Car base
class, you need to build a very similar type:

public class CarCollection : IEnumerable
{
private ArrayList arCars = new ArrayList();
public CarCollection(){}

// Cast for caller.
public Car GetCar(int pos)
{ return (Car) arCars[pos]; }

// Only insert Car types.
public void AddCar(Car c)
{ arCars.Add(c); }

CHAPTER 10 ■ COLLECTIONS AND GENERICS 321

8849CH10.qxd 9/25/07 4:17 PM Page 321

public void ClearCars()
{ arCars.Clear(); }

public int Count
{ get { return arCars.Count; } }

// Foreach enumeration support.
IEnumerator IEnumerable.GetEnumerator()
{ return arCars.GetEnumerator(); }

}

As you may know from firsthand experience, the process of creating multiple strongly typed
collections to account for various types is not only labor intensive, but also a nightmare to main-
tain. Generic collections allow us to delay the specification of the contained type until the time of
creation. Don’t fret about the syntactic details just yet, however. Consider the following code, which
makes use of a generic class named System.Collections.Generic.List<T> to create two type-safe
container objects:

static void Main(string[] args)
{
// Use the generic List type to hold only people.
List<Person> morePeople = new List<Person>();
morePeople.Add(new Person());

// Use the generic List type to hold only cars.
List<Car> moreCars = new List<Car>();

// Compile-time error!
moreCars.Add(new Person());

}

Boxing Issues and Strongly Typed Collections
Strongly typed collections are found throughout the .NET base class libraries and are very useful
programming constructs. However, these custom containers do little to solve the issue of boxing
penalties. Even if you were to create a custom collection named IntCollection that was constructed
to operate only on System.Int32 data types, you would have to allocate some type of object to hold
the data (System.Array, System.Collections.ArrayList, etc.):

public class IntCollection : IEnumerable
{
private ArrayList arInts = new ArrayList();
public IntCollection() { }

// Unbox for caller.
public int GetInt(int pos)
{ return (int)arInts[pos]; }

// Boxing operation!
public void AddInt(int i)
{ arInts.Add(i); }

public void ClearInts()
{ arInts.Clear(); }

CHAPTER 10 ■ COLLECTIONS AND GENERICS322

8849CH10.qxd 9/25/07 4:17 PM Page 322

public int Count
{ get { return arInts.Count; } }

IEnumerator IEnumerable.GetEnumerator()
{ return arInts.GetEnumerator(); }

}

Regardless of which type you may choose to hold the integers (System.Array, System.
Collections.ArrayList, etc.), you cannot escape the boxing dilemma using nongeneric containers.
As you might guess, generics come to the rescue again. The following code leverages the System.
Collections.Generic.List<T> type to create a container of integers that does not incur any boxing
or unboxing penalties when inserting or obtaining the value type:

static void Main(string[] args)
{
// No boxing!
List<int> myInts = new List<int>();
myInts.Add(5);

// No unboxing!
int i = myInts[0];

}

Just to prove the point, the previous Main() method results in the following CIL code (note the
lack of any box or unbox opcodes):

.method private hidebysig static void Main(string[] args) cil managed
{
.entrypoint
.maxstack 2
.locals init ([0] class [mscorlib]System.Collections.Generic.'List`1'<int32>
myInts, [1] int32 i)

newobj instance void class
[mscorlib]System.Collections.Generic.'List`1'<int32>::.ctor()

stloc.0
ldloc.0
ldc.i4.5
callvirt instance void class [mscorlib]
System.Collections.Generic.'List`1'<int32>::Add(!0)

nop
ldloc.0
ldc.i4.0
callvirt instance !0 class [mscorlib]
System.Collections.Generic.'List`1'<int32>::get_Item(int32)

stloc.1
ret

}

In summary, generic containers provide the following benefits over their nongeneric counter-
parts:

• Generics provide better performance, as they do not result in boxing or unboxing penalties.

• Generics are more type safe, as they can only contain the “type of type” you specify.

• Generics greatly reduce the need to build custom collection types, as the base class library
provides several prefabricated containers.

CHAPTER 10 ■ COLLECTIONS AND GENERICS 323

8849CH10.qxd 9/25/07 4:17 PM Page 323

■Source Code The CustomNonGenericCollection project is located under the Chapter 10 directory.

The System.Collections.Generic Namespace
Generic types are found sprinkled throughout the .NET base class libraries; however, the
System.Collections.Generic namespace is chock-full of them (as its name implies). Like its non-
generic counterpart (System.Collections), the System.Collections.Generic namespace contains
numerous class and interface types that allow you to contain subitems in a variety of containers.
Not surprisingly, the generic interfaces mimic the corresponding nongeneric types in the
System.Collections namespace:

• ICollection<T>

• IComparer<T>

• IDictionary<TKey, TValue>

• IEnumerable<T>

• IEnumerator<T>

• IList<T>

■Note By convention, generic types specify their placeholders using common names. Although any letter (or
word) will do, typically T is used to represent types, TKey is used for keys, and TValue is used for values.

The System.Collections.Generic namespace also defines a number of classes that implement
many of these key interfaces. Table 10-5 describes the core class types of this namespace, the inter-
faces they implement, and any corresponding type in the System.Collections namespace.

Table 10-5. Classes of System.Collections.Generic

Generic Class in
Nongeneric Counterpart System.Collections Meaning in Life

Collection<T> CollectionBase The basis for a generic collection

Comparer<T> Comparer Compares two generic objects for
equality

Dictionary<TKey, TValue> Hashtable A generic collection of
name/value pairs

List<T> ArrayList A dynamically resizable list of
items

Queue<T> Queue A generic implementation of a
first-in, first-out (FIFO) list

SortedDictionary<TKey, TValue> SortedList A generic implementation of a
sorted set of name/value pairs

Stack<T> Stack A generic implementation of a
last-in, first-out (LIFO) list

CHAPTER 10 ■ COLLECTIONS AND GENERICS324

8849CH10.qxd 9/25/07 4:17 PM Page 324

Generic Class in
Nongeneric Counterpart System.Collections Meaning in Life

LinkedList<T> N/A A generic implementation of a
doubly linked list

ReadOnlyCollection<T> ReadOnlyCollectionBase A generic implementation of a set
of read-only items

The System.Collections.Generic namespace also defines a number of auxiliary classes and
structures that work in conjunction with a specific container. For example, the LinkedListNode<T>
type represents a node within a generic LinkedList<T>, the KeyNotFoundException exception is
raised when attempting to grab an item from a container using a nonexistent key, and so forth.

As you can see from Table 10-5, many of the generic collection classes have a nongeneric coun-
terpart in the System.Collections namespace (some of which are identically named). Because the
generic classes mimic their nongeneric types so closely, I will not provide a detailed examination of
each generic item (once you understand how to work with a given container, the remaining items
are quite straightforward). Instead, I’ll make use of List<T> to illustrate the process of working with
generics. If you require details regarding other members of the System.Collections.Generic name-
space, consult the .NET Framework 3.5 documentation.

Examining the List<T> Type
Like nongeneric classes, generic classes are created with the new keyword and any required con-
structor arguments. In addition, you are required to specify the type(s) to be substituted for the type
parameter(s) defined by the generic type. For example, System.Collections.Generic.List<T>
requires you to specify a single value that describes the type of item the List<T> will operate upon.
Therefore, if you wish to create three List<T> objects to contain integers and SportsCar and Person
objects, you would write the following:

static void Main(string[] args)
{
// Create a List containing integers.
List<int> myInts = new List<int>();

// Create a List containing SportsCar objects.
List<SportsCar> myCars = new List<SportsCar>();

// Create a List containing Person objects.
List<Person> myPeople = new List<Person>();

}

At this point, you might wonder what exactly becomes of the specified placeholder value. If you
were to make use of the Visual Studio 2008 Code Definition window (see Chapter 2), you will find
that the placeholder T is used throughout the definition of the List<T> type. Here is a partial listing
(note the items in bold):

// A partial listing of the List<T> type.
namespace System.Collections.Generic
{
public class List<T> :
IList<T>, ICollection<T>, IEnumerable<T>,
IList, ICollection, IEnumerable

{
...

public void Add(T item);

CHAPTER 10 ■ COLLECTIONS AND GENERICS 325

8849CH10.qxd 9/25/07 4:17 PM Page 325

public IList<T> AsReadOnly();
public int BinarySearch(T item);
public bool Contains(T item);
public void CopyTo(T[] array);
public int FindIndex(System.Predicate<T> match);
public T FindLast(System.Predicate<T> match);
public bool Remove(T item);
public int RemoveAll(System.Predicate<T> match);
public T[] ToArray();
public bool TrueForAll(System.Predicate<T> match);
public T this[int index] { get; set; }

}
}

When you create a List<T> specifying SportsCar types, it is as if the List<T> type were really
defined as follows:

namespace System.Collections.Generic
{
public class List<SportsCar> :
IList<SportsCar>, ICollection<SportsCar>, IEnumerable<SportsCar>,
IList, ICollection, IEnumerable

{
...

public void Add(SportsCar item);
public IList<SportsCar> AsReadOnly();
public int BinarySearch(SportsCar item);
public bool Contains(SportsCar item);
public void CopyTo(SportsCar[] array);
public int FindIndex(System.Predicate<SportsCar> match);
public SportsCar FindLast(System.Predicate<SportsCar> match);
public bool Remove(SportsCar item);
public int RemoveAll(System.Predicate<SportsCar> match);
public SportsCar [] ToArray();
public bool TrueForAll(System.Predicate<SportsCar> match);
public SportsCar this[int index] { get; set; }

}
}

Of course, when you create a generic List<T>, the compiler does not literally create a brand-
new implementation of the List<T> type. Rather, it will address only the members of the generic
type you actually invoke. To solidify this point, assume you exercise a List<T> of SportsCar objects
as follows:

static void Main(string[] args)
{
// Exercise a List containing SportsCars
List<SportsCar> myCars = new List<SportsCar>();
myCars.Add(new SportsCar());
Console.WriteLine("Your List contains {0} item(s).", myCars.Count);

}

If you examine the generated CIL code using ildasm.exe, you will find the following substitu-
tions:

.method private hidebysig static void Main(string[] args) cil managed
{
.entrypoint
.maxstack 2

CHAPTER 10 ■ COLLECTIONS AND GENERICS326

8849CH10.qxd 9/25/07 4:17 PM Page 326

.locals init ([0] class [mscorlib]System.Collections.Generic.'List`1'
<class SportsCar> myCars)

newobj instance void class [mscorlib]System.Collections.Generic.'List`1'
<class SportsCar>::.ctor()

stloc.0
ldloc.0
newobj instance void CollectionGenerics.SportsCar::.ctor()
callvirt instance void class [mscorlib]System.Collections.Generic.'List`1'
<class SportsCar>::Add(!0)
nop
ldstr "Your List contains {0} item(s)."
ldloc.0
callvirt instance int32 class [mscorlib]System.Collections.Generic.'List`1'
<class SportsCar>::get_Count()

box [mscorlib]System.Int32
call void [mscorlib]System.Console::WriteLine(string, object)
nop
ret

}

Now that you’ve looked at the process of working with generic types provided by the base class
libraries, in the remainder of this chapter you’ll examine how to create your own generic methods,
types, and collections.

Creating Custom Generic Methods
While most developers will typically make use of the existing generic types within the base class
libraries, it is certainly possible to build your own generic members and custom generic types. To
learn how to incorporate generics into your own projects, the first task is to build a generic swap
method. Begin by creating a new Console Application named GenericMethod.

The goal of this example is to build a swap method that can operate on any possible data type
(value-based or reference-based) using a single type parameter. Due to the nature of swapping algo-
rithms, the incoming parameters will be sent by reference (via the C# ref keyword). Here is the full
implementation of our generic swap method, contained within the initial Program class:

// This method will swap any two items.
// as specified by the type parameter <T>.
static void Swap<T>(ref T a, ref T b)
{
Console.WriteLine("You sent the Swap() method a {0}",
typeof(T));

T temp;
temp = a;
a = b;
b = temp;

}

Notice how a generic method is defined by specifying the type parameter after the method
name but before the parameter list. Here, you’re stating that the Swap() method can operate on any
two parameters of type <T>. Just to spice things up a bit, you’re printing out the type name of the
supplied placeholder to the console using the C# typeof() operator. Now consider the following
Main() method that swaps integer and string types:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Custom Generic Methods *****\n");

CHAPTER 10 ■ COLLECTIONS AND GENERICS 327

8849CH10.qxd 9/25/07 4:17 PM Page 327

// Swap 2 ints.
int a = 10, b = 90;
Console.WriteLine("Before swap: {0}, {1}", a, b);
Swap<int>(ref a, ref b);
Console.WriteLine("After swap: {0}, {1}", a, b);
Console.WriteLine();

// Swap 2 strings.
string s1 = "Hello", s2 = "There";
Console.WriteLine("Before swap: {0} {1}!", s1, s2);
Swap<string>(ref s1, ref s2);
Console.WriteLine("After swap: {0} {1}!", s1, s2);
Console.ReadLine();

}

Inference of Type Parameters
When you invoke generic methods such as Swap<T>, you can optionally omit the type parameter if
(and only if) the generic method requires arguments, as the compiler can infer the type parameter
based on the member parameters. For example, you could swap two System.Boolean types by
adding the following code to Main():

// Compiler will infer System.Boolean.
bool b1 = true, b2 = false;
Console.WriteLine("Before swap: {0}, {1}", b1, b2);
Swap(ref b1, ref b2);
Console.WriteLine("After swap: {0}, {1}", b1, b2);

However, if you had another generic method named DisplayBaseClass<T> that did not take any
incoming parameters, as follows:

static void DisplayBaseClass<T>()
{
Console.WriteLine("Base class of {0} is: {1}.",
typeof(T), typeof(T).BaseType);

}

you are required to supply the type parameter upon invocation:

static void Main(string[] args)
{
...
// Must supply type parameter if
// the method does not take params.
DisplayBaseClass<int>();
DisplayBaseClass<string>();

// Compiler error! No params? Must supply placeholder!
// DisplayBaseClass();
Console.ReadLine();

}

Figure 10-2 shows the current output of this application.

CHAPTER 10 ■ COLLECTIONS AND GENERICS328

8849CH10.qxd 9/25/07 4:17 PM Page 328

Figure 10-2. Generic methods in action

Currently, the generic Swap<T> and DisplayBaseClass<T> methods have been defined within
the application object (i.e., the type defining the Main() method). Of course, like any method, if
you would rather define these members in a separate class type (MyGenericMethods), you are free
to do so:

public static class MyGenericMethods
{
public static void Swap<T>(ref T a, ref T b)
{
Console.WriteLine("You sent the Swap() method a {0}",
typeof(T));

T temp;
temp = a;
a = b;
b = temp;

}

public static void DisplayBaseClass<T>()
{
Console.WriteLine("Base class of {0} is: {1}.",
typeof(T), typeof(T).BaseType);

}
}

Because the static Swap<T> and DisplayBaseClass<T> methods have been scoped within a
new static class type, you will need to specify the type’s name when invoking either member, for
example:

MyGenericMethods.Swap<int>(ref a, ref b);

Of course, generic methods do not need to be static. If Swap<T> and DisplayBaseClass<T>
were instance level (and defined in a nonstatic class), you would simply make an instance of
MyGenericMethods and invoke them off the object variable:

MyGenericMethods c = new MyGenericMethods();
c.Swap<int>(ref a, ref b);

CHAPTER 10 ■ COLLECTIONS AND GENERICS 329

8849CH10.qxd 9/25/07 4:17 PM Page 329

■Source Code The GenericMethod project is located under the Chapter 10 directory.

Creating Generic Structures and Classes
Now that you understand how to define and invoke generic methods, let’s turn our attention to the
construction of a generic structure (the process of building a generic class is identical) within a new
Console Application project named GenericPoint. Assume you have built a generic Point structure
that supports a single type parameter representing the underlying storage for the (x, y) coordinates.
The caller would then be able to create Point<T> types as follows:

// Point using ints.
Point<int> p = new Point<int>(10, 10);

// Point using double.
Point<double> p2 = new Point<double>(5.4, 3.3);

Here is the complete definition of Point<T>, with analysis to follow:

// A generic Point structure.
public struct Point<T>
{
// Generic state date.
private T xPos;
private T yPos;

// Generic constructor.
public Point(T xVal, T yVal)
{
xPos = xVal;
yPos = yVal;

}

// Generic properties.
public T X
{
get { return xPos; }
set { xPos = value; }

}

public T Y
{
get { return yPos; }
set { yPos = value; }

}

public override string ToString()
{
return string.Format("[{0}, {1}]", xPos, yPos);

}

// Reset fields to the default value of the
// type parameter.
public void ResetPoint()
{

CHAPTER 10 ■ COLLECTIONS AND GENERICS330

8849CH10.qxd 9/25/07 4:17 PM Page 330

xPos = default(T);
yPos = default(T);

}
}

The default Keyword in Generic Code
As you can see, Point<T> leverages its type parameter in the definition of the field data, constructor
arguments, and property definitions. Notice that in addition to overriding ToString(), Point<T>
defines a method named ResetPoint() that makes use of some new syntax:

// The "default" keyword is overloaded in C#.
// When used with generics, it represents the default
// value of a type parameter.
public void ResetPoint()
{
xPos = default(T);
yPos = default(T);

}

With the introduction of generics, the C# default keyword has been given a dual identity. In
addition to its use within a switch construct, it can be used to set a type parameter to its default
value. This is clearly helpful given that a generic type does not know the actual placeholders up
front and therefore cannot safely assume what the default value will be. The defaults for a type
parameter are as follows:

• Numeric values have a default value of 0.

• Reference types have a default value of null.

• Fields of a structure are set to 0 (for value types) or null (for reference types).

For Point<T>, you could simply set xPos and yPos to 0 directly, given that it is safe to assume the
caller will supply only numerical data. However, by using the default(T) syntax, you increase the
overall flexibility of the generic type. In any case, you can now exercise the methods of Point<T> as
follows:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Generic Structures *****\n");

// Point using ints.
Point<int> p = new Point<int>(10, 10);
Console.WriteLine("p.ToString()={0}", p.ToString());
p.ResetPoint();
Console.WriteLine("p.ToString()={0}", p.ToString());
Console.WriteLine();

// Point using double.
Point<double> p2 = new Point<double>(5.4, 3.3);
Console.WriteLine("p2.ToString()={0}", p2.ToString());
p2.ResetPoint();
Console.WriteLine("p2.ToString()={0}", p2.ToString());

Console.ReadLine();
}

Figure 10-3 shows the output.

CHAPTER 10 ■ COLLECTIONS AND GENERICS 331

8849CH10.qxd 9/25/07 4:17 PM Page 331

Figure 10-3. Using the generic Point type

■Source Code The GenericPoint project is located under the Chapter 10 subdirectory.

Creating a Custom Generic Collection
As you have seen, the System.Collections.Generic namespace provides numerous types that allow
you to create type-safe and efficient containers. Given the set of available choices, the chances are
quite good that you will not need to build custom collection types when programming with the
.NET platform. Nevertheless, to illustrate how you could build a stylized generic container, the next
task is to build a generic collection class named CarCollection<T> (and see exactly what, if any-
thing, this buys us). Begin by creating a new Console Application named CustomGenericCollection.

Like the nongeneric CarCollection created earlier in this chapter, this iteration will leverage
an existing collection type to hold the subitems (a List<T> in this case). As well, you will support
foreach iteration by implementing the generic IEnumerable<T> interface. Do note that
IEnumerable<T> extends the nongeneric IEnumerable interface; therefore, the compiler expects
you to implement two versions of the GetEnumerator() method. Here is the update:

public class CarCollection<T> : IEnumerable<T>
{
private List<T> arCars = new List<T>();

public T GetCar(int pos)
{ return arCars[pos]; }

public void AddCar(T c)
{ arCars.Add(c); }

public void ClearCars()
{ arCars.Clear(); }

public int Count
{ get { return arCars.Count; } }

// IEnumerable<T> extends IEnumerable, therefore
// we need to implement both versions of GetEnumerator().
IEnumerator<T> IEnumerable<T>.GetEnumerator()
{ return arCars.GetEnumerator(); }

CHAPTER 10 ■ COLLECTIONS AND GENERICS332

8849CH10.qxd 9/25/07 4:17 PM Page 332

System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
{ return arCars.GetEnumerator(); }

}

You could now make use of this updated CarCollection<T> as follows (assuming you had a
simple Car definition within your current project):

static void Main(string[] args)
{
Console.WriteLine("***** Custom Generic Collection *****\n");

// Make a collection of Cars.
CarCollection<Car> myCars = new CarCollection<Car>();
myCars.AddCar(new Car("Rusty", 20));
myCars.AddCar(new Car("Zippy", 90));

foreach (Car c in myCars)
{
Console.WriteLine("PetName: {0}, Speed: {1}",
c.PetName, c.Speed);

}
Console.ReadLine();

}

Here you are creating a CarCollection<T> type that contains only Car types. Again, you could
achieve a similar end result if you make use of the List<T> type directly. The major benefit at this
point is the fact that you are free to add uniquely named methods (AddCar(), GetCar(), etc.) to the
CarCollection that delegate the request to the internal List<T>.

Limitations of Custom Generic Collections
Currently, the CarCollection<T> class does not buy you much beyond uniquely named public
methods. Furthermore, an object user could create an instance of CarCollection<T> and specify a
completely unrelated type parameter:

// This is syntactically correct, but confusing at best!
CarCollection<int> myInts = new CarCollection<int>();
myInts.AddCar(5);
myInts.AddCar(11);

foreach (int i in myInts)
{
Console.WriteLine("Int value: {0}", i);

}

So, why does the compiler allow such code? Well, remember that generics are, in fact, generic. A
type parameter can be anything whatsoever, even if it completely makes no sense within the con-
text of the generic type (e.g., a car collection holding integers).

To illustrate another form of generics abuse, assume that you have now created two new
classes (SportsCar and MiniVan) that derive from the Car type:

public class SportsCar : Car
{
public SportsCar(string p, int s)
: base(p, s){}

// Assume additional SportsCar methods.
}

CHAPTER 10 ■ COLLECTIONS AND GENERICS 333

8849CH10.qxd 9/25/07 4:17 PM Page 333

public class MiniVan : Car
{
public MiniVan(string p, int s)
: base(p, s){}

// Assume additional MiniVan methods.
}

Given the laws of inheritance, it is permissible to add a MiniVan or SportsCar type directly into a
CarCollection<T> created with a type parameter of Car:

// CarCollection<Car> can hold any type deriving from Car.
CarCollection<Car> myAutos = new CarCollection<Car>();
myAutos.AddCar(new MiniVan("Family Truckster", 55));
myAutos.AddCar(new SportsCar("Crusher", 40));

Although this is syntactically valid code, what if you wished to update CarCollection<T> with a
new public method named PrintPetName()? This seems simple enough—just access the correct
item in the List<T> and pluck out the PetName value:

// Error! System.Object does not have a
// property named PetName.
public void PrintPetName(int pos)
{
Console.WriteLine(arCars[pos].PetName);

}

However, this will not compile, given that the true identity of T is not yet known, and you can-
not say for certain whether the item contained within the List<T> type has a PetName property.
When a type parameter is not constrained in any way (as is the case here), the generic type is said
to be unbound. By design, unbound type parameters are assumed to have only the members of
System.Object (which clearly does not provide a PetName property).

You may try to trick the compiler by casting the item returned from the List<T>’s indexer
method into a strongly typed Car and invoking PetName from the returned object:

// Error!
// Cannot convert type "T" to "Car"
public void PrintPetName(int pos)
{
Console.WriteLine(((Car)arCars[pos]).PetName);

}

This again does not compile, given that the compiler does not yet know the value of the type
parameter <T> and cannot guarantee the cast would be legal. Given the issues we have just exam-
ined, you might rightly wonder when (if ever) would you need to create a custom generic container?
Glad you asked!

Constraining Type Parameters Using the where Keyword
The major reason developers would author a custom generic collection type is to enforce con-
straints upon type parameters in order to build extremely type-safe containers. In C#, constraints
are applied using the where keyword, which can control the various characteristics of a type param-
eter (see Table 10-6).

CHAPTER 10 ■ COLLECTIONS AND GENERICS334

8849CH10.qxd 9/25/07 4:17 PM Page 334

Table 10-6. Possible Constraints for Generic Type Parameters

Generic Constraint Meaning in Life

where T : struct The type parameter <T> must have System.ValueType in its chain of
inheritance.

where T : class The type parameter <T> must not have System.ValueType in its
chain of inheritance (e.g., <T> must be a reference type).

where T : new() The type parameter <T> must have a default constructor. This is
very helpful if your generic type must create an instance of the
type parameter, as you cannot assume the format of custom
constructors. Note that this constraint must be listed last on a
multiconstrained type.

where T : NameOfBaseClass The type parameter <T> must be derived from the class specified
by NameOfBaseClass.

where T : NameOfInterface The type parameter <T> must implement the interface specified
by NameOfInterface. Multiple interfaces can be separated as a
comma-delimited list.

When constraints are applied using the where keyword, the constraint list is placed after the
generic type’s base class and interface list. By way of a few concrete examples, consider the follow-
ing constraints of a generic class named MyGenericClass:

// MyGenericClass derives from Object, while
// contained items must have a default ctor.
public class MyGenericClass<T> where T : new()
{...}

// MyGenericClass derives from Object, while
// contained items must be a class implementing IDrawable
// and support a default ctor.
public class MyGenericClass<T> where T : class, IDrawable, new()
{...}

// MyGenericClass derives from MyBase and implements ISomeInterface,
// while the contained items must be structures.
public class MyGenericClass<T> : MyBase, ISomeInterface where T : struct
{...}

On a related note, if you are building a generic type that specifies multiple type parameters,
you can specify a unique set of constraints for each:

// <K> must have a default ctor, while <T> must
// implement the generic IComparable interface.
public class MyGenericClass<K, T> where K : new()

where T : IComparable<T>
{...}

To see the usefulness of applying constraints, if you wish to update CarCollection<T> to ensure
that only Car-derived types can be placed within it, you could write the following:

public class CarCollection<T> : IEnumerable<T> where T : Car
{
...
public void PrintPetName(int pos)
{
// Because all subitems must be in the Car family,
// we can now directly call the PetName property.

CHAPTER 10 ■ COLLECTIONS AND GENERICS 335

8849CH10.qxd 9/25/07 4:17 PM Page 335

Console.WriteLine(arCars[pos].PetName);
}

}

Notice that once you constrain CarCollection<T> such that it can contain only Car-derived
types, the implementation of PrintPetName() is straightforward, given that the compiler now
assumes <T> is a Car-derived type. Furthermore, if the specified type parameter is not Car-
compatible, you are issued a compiler error:

// Compiler error!
CarCollection<int> myInts = new CarCollection<int>();

Do be aware that generic methods can also leverage the where keyword. For example, if you
wish to ensure that only System.ValueType-derived types are passed into the Swap() method created
previously in this chapter, update the code accordingly:

// This method will swap any value type, but not classes.
static void Swap<T>(ref T a, ref T b) where T : struct
{
...

}

Understand that if you were to constrain the Swap() method in this manner, you would no
longer be able to swap string types (as done in the sample code) as they are reference types.

The Lack of Operator Constraints
When you are creating generic methods, it may come as a surprise to you that it is a compiler error
to apply any C# operators (+, -, *, ==, etc.) on the type parameters. As an example, I am sure you
could imagine the usefulness of a class that can Add(), Subtract(), Multiply(), and Divide()
generic types:

// Compiler error! Cannot apply
// operators to type parameters!
public class BasicMath<T>
{
public T Add(T arg1, T arg2)
{ return arg1 + arg2; }
public T Subtract(T arg1, T arg2)
{ return arg1 - arg2; }
public T Multiply(T arg1, T arg2)
{ return arg1 * arg2; }
public T Divide(T arg1, T arg2)
{ return arg1 / arg2; }

}

Sadly, the preceding BasicMath<T> class will not compile. While this may seem like a major
restriction, you need to again remember that generics are generic. Of course, the System.Int32 type
can work just fine with the binary operators of C#. However, for the sake of argument, if <T> were a
custom class or structure type, the compiler cannot assume it has overloaded the +, -, *, and / oper-
ators. Ideally, C# would allow a generic type to be constrained by supported operators, for example:

// Illustrative code only!
// This is not legal code under C# 2008.
public class BasicMath<T> where T : operator +, operator -,
operator *, operator /

{
public T Add(T arg1, T arg2)

CHAPTER 10 ■ COLLECTIONS AND GENERICS336

8849CH10.qxd 9/25/07 4:17 PM Page 336

{ return arg1 + arg2; }
public T Subtract(T arg1, T arg2)
{ return arg1 - arg2; }
public T Multiply(T arg1, T arg2)
{ return arg1 * arg2; }
public T Divide(T arg1, T arg2)
{ return arg1 / arg2; }

}

Alas, operator constraints are not supported under the current version of C#. If you were to
make use of generic interface types, you could simulate the notion of applying operators on type
parameters. You’ll see this approach in just a moment.

■Source Code The CustomGenericCollection project is located under the Chapter 10 subdirectory.

Creating Generic Base Classes
Before we examine generic interfaces, it is worth pointing out that generic classes can be the base
class to other classes, and can therefore define any number of virtual or abstract methods. However,
the derived types must abide by a few rules to ensure that the nature of the generic abstraction
flows through. First of all, if a nongeneric class extends a generic class, the derived class must spec-
ify a type parameter:

// Assume you have created a custom
// generic list class.
public class MyList<T>
{
private List<T> listOfData = new List<T>();

}

// Concrete types must specify the type
// parameter when deriving from a
// generic base class.
public class MyStringList : MyList<string>
{}

Furthermore, if the generic base class defines generic virtual or abstract methods, the derived
type must override the generic methods using the specified type parameter:

// A generic class with a virtual method.
public class MyList<T>
{
private List<T> listOfData = new List<T>();
public virtual void PrintList(T data) { }

}

public class MyStringList : MyList<string>
{
// Must substitute the type parameter used in the
// parent class in derived methods.
public override void PrintList(string data) { }

}

CHAPTER 10 ■ COLLECTIONS AND GENERICS 337

8849CH10.qxd 9/25/07 4:17 PM Page 337

If the derived type is generic as well, the child class can (optionally) reuse the type placeholder
in its definition. Be aware, however, that any constraints placed on the base class must be honored
by the derived type, for example:

// Note that we now have a default constructor constraint.
public class MyList<T> where T : new()
{
private List<T> listOfData = new List<T>();

public virtual void PrintList(T data) { }
}

// Derived type must honor constraints.
public class MyReadOnlyList<T> : MyList<T> where T : new()
{

public override void PrintList(T data) { }
}

Again, in your day-to-day programming tasks, creating custom generic class hierarchies will
most likely not be a very common task. Nevertheless, doing so is completely possible (as long as you
abide by the rules).

Creating Generic Interfaces
As you saw earlier in the chapter during the examination of the System.Collections.Generic name-
space, generic interfaces are also permissible (e.g., IEnumerable<T>). You are, of course, free to
define your own generic interfaces (with or without constraints). Assume you wish to define an
interface that can perform binary operations on a generic type parameter:

public interface IBinaryOperations<T> where T : struct
{
T Add(T arg1, T arg2);
T Subtract(T arg1, T arg2);
T Multiply(T arg1, T arg2);
T Divide(T arg1, T arg2);

}

Of course, interfaces are more or less useless until they are implemented by a class or structure.
When you implement a generic interface, the supporting type specifies the placeholder type:

public class BasicMath : IBinaryOperations<int>
{
public int Add(int arg1, int arg2)
{ return arg1 + arg2; }

public int Subtract(int arg1, int arg2)
{ return arg1 - arg2; }

public int Multiply(int arg1, int arg2)
{ return arg1 * arg2; }

public int Divide(int arg1, int arg2)
{ return arg1 / arg2; }

}

CHAPTER 10 ■ COLLECTIONS AND GENERICS338

8849CH10.qxd 9/25/07 4:17 PM Page 338

At this point, you make use of BasicMath as you would expect:

static void Main(string[] args)
{
Console.WriteLine("***** Generic Interfaces *****\n");
BasicMath m = new BasicMath();
Console.WriteLine("1 + 1 = {0}", m.Add(1, 1));
Console.ReadLine();

}

If you would rather create a BasicMath class that operates on floating-point numbers, you could
specify the type parameter as follows:

public class BasicMath : IBinaryOperations<float>
{
public float Add(float arg1, float arg2)
{ return arg1 + arg2; }

...
}

In this case, the compiler will ensure that we pass in a float to each method of the BasicMath
class. You may recall from Chapter 3 that floating-point literal values default to a double, therefore
we must add the suffix F to inform the compiler we do indeed require a float:

static void Main(string[] args)
{
Console.WriteLine("***** Generic Interfaces *****\n");
BasicMath m = new BasicMath();
Console.WriteLine("1.98 + 1.3 = {0}", m.Add(1.98F, 1.3F));
Console.ReadLine();

}

■Source Code The GenericInterface project is located under the Chapter 10 subdirectory.

This wraps up our initial look at building custom generic types. In the next chapter, we will pick
up the topic of generics once again, when we examine the .NET delegate type.

Summary
This chapter began by examining the use of the “classic” containers found within the System.
Collections namespace. While these types will still be supported for purposes of backward compat-
ibility, new .NET applications will benefit from instead making use of the generic counterparts
within the System.Collections.Generic namespace.

As you have seen, a generic item allows you to specify “placeholders” (i.e., type parameters)
that are specified at the time of creation (or invocation, in the case of generic methods). Essentially,
generics provide a solution to the boxing and type-safety issues that plagued .NET 1.1 software
development. In addition, generic types by and large remove the need to build custom collection
types.

While you will most often simply make use of the generic types provided in the .NET base class
libraries, you are also able to create your own generic types. When you do so, you have the option of
specifying any number of constraints (via the where keyword) to increase the level of type safety and
ensure that you are performing operations on types of a “known quantity.”

CHAPTER 10 ■ COLLECTIONS AND GENERICS 339

8849CH10.qxd 9/25/07 4:17 PM Page 339

8849CH10.qxd 9/25/07 4:17 PM Page 340

Delegates, Events, and Lambdas

Up to this point in the text, most of the applications you have developed added various bits of
code to Main(), which, in some way or another, sent requests to a given object. In Chapter 9, you
examined how the interface type can be used to build objects that can “talk back” to the entity that
created it. While callback interfaces can be used to configure objects that engage in two-way con-
versations, the .NET delegate type is the preferred manner to define and respond to callbacks under
the .NET platform.

Essentially, the .NET delegate type is a type-safe object that “points to” a method, or if you
wish, a list of methods, that can be invoked at a later time. Unlike a traditional C++ function pointer,
however, .NET delegates are classes that have built-in support for multicasting and asynchronous
method invocation.

Once you learn how to create and manipulate delegate types, you then investigate the C# event
keyword, which streamlines the process of working with delegate types. Along the way you will also
examine several delegate-and-event-centric language features of C#, including anonymous meth-
ods and method group conversions.

I wrap up this chapter by investigating a new C# 2008 language feature termed lambda expres-
sions. Using the new lambda operator (=>), it is now possible to specify a block of code statements
(and the parameters to pass to said code statements) wherever a strongly typed delegate is required.
As you will see, a lambda expression is little more than an anonymous method in disguise.

Understanding the .NET Delegate Type
Before formally defining .NET delegates, let’s gain a bit of perspective. Historically speaking, the
Windows API made frequent use of C-style function pointers to create entities termed callback
functions or simply callbacks. Using callbacks, programmers were able to configure one function to
report back to (call back) another function in the application. Using this approach, Win32 develop-
ers were able to handle button clicking, mouse moving, menu selecting, and general bidirectional
communications between two programming entities.

The problem with standard C-style callback functions is that they represent little more than a
raw address in memory. Ideally, callbacks could be configured to include additional type-safe infor-
mation such as the number of (and types of) parameters and the return value (if any) of the method
pointed to. Sadly, this is not the case in traditional callback functions, and, as you may suspect, can
therefore be a frequent source of bugs, hard crashes, and other runtime disasters. Nevertheless, call-
backs are useful entities.

In the .NET Framework, callbacks are still possible, and their functionality is accomplished in a
much safer and more object-oriented manner using delegates. In essence, a delegate is a type-safe
object that points to another method (or possibly a list of methods) in the application, which can be
invoked at a later time. Specifically speaking, a delegate object maintains three important pieces of
information:

341

C H A P T E R 1 1

8849CH11.qxd 10/1/07 10:43 AM Page 341

• The address of the method on which it makes calls

• The arguments (if any) of this method

• The return value (if any) of this method

■Note Unlike C(++) function pointers, .NET delegates can point to either static or instance methods.

Once a delegate has been created and provided the necessary information, it may dynamically
invoke the method(s) it points to at runtime. As you will see, every delegate in the .NET Framework
(including your custom delegates) is automatically endowed with the ability to call its methods
synchronously or asynchronously. This fact greatly simplifies programming tasks, given that we
can call a method on a secondary thread of execution without manually creating and managing a
Thread object.

■Note We will examine the asynchronous behavior of delegate types during our investigation of the
System.Threading namespace in Chapter 18.

Defining a Delegate in C#
When you want to create a delegate in C#, you make use of the delegate keyword. The name of your
delegate can be whatever you desire. However, you must define the delegate to match the signature
of the method it will point to. For example, assume you wish to build a delegate named BinaryOp
that can point to any method that returns an integer and takes two integers as input parameters:

// This delegate can point to any method,
// taking two integers and returning an integer.
public delegate int BinaryOp(int x, int y);

When the C# compiler processes delegate types, it automatically generates a sealed class deriv-
ing from System.MulticastDelegate. This class (in conjunction with its base class, System.Delegate)
provides the necessary infrastructure for the delegate to hold onto a list of methods to be invoked at
a later time. For example, if you examine the BinaryOp delegate using ildasm.exe, you would find
the class shown in Figure 11-1.

As you can see, the compiler-generated BinaryOp class defines three public methods. Invoke()
is perhaps the core method, as it is used to invoke each method maintained by the delegate type in
a synchronous manner, meaning the caller must wait for the call to complete before continuing on
its way. Strangely enough, the synchronous Invoke() method need not be called explicitly from your
C# code. As you will see in just a bit, Invoke() is called behind the scenes when you make use of the
appropriate C# syntax.

BeginInvoke() and EndInvoke() provide the ability to call the current method asynchronously
on a separate thread of execution. If you have a background in multithreading, you are aware that
one of the most common reasons developers create secondary threads of execution is to invoke
methods that require time to complete. Although the .NET base class libraries provide an entire
namespace devoted to multithreaded programming (System.Threading), delegates provide this
functionality out of the box.

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS342

8849CH11.qxd 10/1/07 10:43 AM Page 342

Figure 11-1. The C# delegate keyword represents a sealed class deriving from
System.MulticastDelegate.

Now, how exactly does the compiler know how to define the Invoke(), BeginInvoke(), and
EndInvoke() methods? To understand the process, here is the crux of the compiler-generated
BinaryOp class type (bold marks the items specified by the defined delegate type):

sealed class BinaryOp : System.MulticastDelegate
{
public BinaryOp(object target, uint functionAddress);
public int Invoke(int x, int y);
public IAsyncResult BeginInvoke(int x, int y,
AsyncCallback cb, object state);

public int EndInvoke(IAsyncResult result);
}

First, notice that the parameters and return value defined for the Invoke() method exactly
match the definition of the BinaryOp delegate. The initial parameters to BeginInvoke() members
(two integers in our case) are also based on the BinaryOp delegate; however, BeginInvoke() will
always provide two final parameters (of type AsyncCallback and object) that are used to facilitate
asynchronous method invocations. Finally, the return value of EndInvoke() is identical to the origi-
nal delegate declaration and will always take as a sole parameter an object implementing the
IAsyncResult interface.

Let’s see another example. Assume you have defined a delegate type that can point to any
method returning a string and receiving three System.Boolean input parameters:

public delegate string MyDelegate(bool a, bool b, bool c);

This time, the compiler-generated class breaks down as follows:

sealed class MyDelegate : System.MulticastDelegate
{
public MyDelegate(object target, uint functionAddress);
public string Invoke(bool a, bool b, bool c);
public IAsyncResult BeginInvoke(bool a, bool b, bool c,
AsyncCallback cb, object state);

public string EndInvoke(IAsyncResult result);
}

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS 343

8849CH11.qxd 10/1/07 10:43 AM Page 343

Delegates can also “point to” methods that contain any number of out or ref parameters (as
well as array parameters marked with the params keyword). For example, assume the following
delegate type:

public delegate string MyOtherDelegate(out bool a, ref bool b, int c);

The signatures of the Invoke() and BeginInvoke() methods look as you would expect; however,
check out the EndInvoke() method, which now includes the set of all out/ref arguments defined by
the delegate type:

sealed class MyOtherDelegate : System.MulticastDelegate
{
public MyOtherDelegate (object target, uint functionAddress);
public string Invoke(out bool a, ref bool b, int c);
public IAsyncResult BeginInvoke(out bool a, ref bool b, int c,
AsyncCallback cb, object state);

public string EndInvoke(out bool a, ref bool b, IAsyncResult result);
}

To summarize, a C# delegate definition results in a sealed class with three compiler-generated
methods whose parameter and return types are based on the delegate’s declaration. The following
pseudo-code approximates the basic pattern:

// This is only pseudo-code!
public sealed class DelegateName : System.MulticastDelegate
{
public DelegateName (object target, uint functionAddress);

public delegateReturnValue Invoke(allDelegateInputRefAndOutParams);

public IAsyncResult BeginInvoke(allDelegateInputRefAndOutParams,
AsyncCallback cb, object state);

public delegateReturnValue EndInvoke(allDelegateRefAndOutParams,
IAsyncResult result);

}

The System.MulticastDelegate and
System.Delegate Base Classes
So, when you build a type using the C# delegate keyword, you indirectly declare a class type that
derives from System.MulticastDelegate. This class provides descendents with access to a list that
contains the addresses of the methods maintained by the delegate type, as well as several additional
methods (and a few overloaded operators) to interact with the invocation list. Here are some select
members of System.MulticastDelegate:

public abstract class MulticastDelegate : Delegate
{
// Returns the list of methods "pointed to."
public sealed override Delegate[] GetInvocationList();

// Overloaded operators.
public static bool operator ==(MulticastDelegate d1, MulticastDelegate d2);
public static bool operator !=(MulticastDelegate d1, MulticastDelegate d2);

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS344

8849CH11.qxd 10/1/07 10:43 AM Page 344

// Used internally to manage the list of methods maintained by the delegate.
private IntPtr _invocationCount;
private object _invocationList;

}

System.MulticastDelegate obtains additional functionality from its parent class,
System.Delegate. Here is a partial snapshot of the class definition:

public abstract class Delegate : ICloneable, ISerializable
{
// Methods to interact with the list of functions.
public static Delegate Combine(params Delegate[] delegates);
public static Delegate Combine(Delegate a, Delegate b);
public static Delegate Remove(Delegate source, Delegate value);
public static Delegate RemoveAll(Delegate source, Delegate value);

// Overloaded operators.
public static bool operator ==(Delegate d1, Delegate d2);
public static bool operator !=(Delegate d1, Delegate d2);

// Properties that expose the delegate target.
public MethodInfo Method { get; }
public object Target { get; }

}

Now, understand that you can never directly derive from these base classes in your code (it is a
compiler error to do so). Nevertheless, when you use the delegate keyword, you have indirectly cre-
ated a class that “is-a” MulticastDelegate. Table 11-1 documents the core members commonplace
to all delegate types.

Table 11-1. Select Members of System.MultcastDelegate/System.Delegate

Inherited Member Meaning in Life

Method This property returns a System.Reflection.MethodInfo type that
represents details of a static method maintained by the delegate.

Target If the method to be called is defined at the object level (rather than a
static method), Target returns an object that represents the method
maintained by the delegate. If the value returned from Target
equals null, the method to be called is a static member.

Combine() This static method adds a method to the list maintained by the
delegate. In C#, you trigger this method using the overloaded +=
operator as a shorthand notation.

GetInvocationList() This method returns an array of System.Delegate types, each
representing a particular method that may be invoked.

Remove() These static methods remove a method (or all methods) from the
RemoveAll() delegate’s invocation list. In C#, the Remove() method can be called

indirectly using the overloaded -= operator.

The Simplest Possible Delegate Example
Delegates can tend to cause a great deal of confusion when encountered for the first time. Thus,
to get the ball rolling, let’s take a look at a very simple Console Application program (named

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS 345

8849CH11.qxd 10/1/07 10:43 AM Page 345

SimpleDelegate) that makes use of the BinaryOp delegate type you’ve seen previously. Here is the
complete code, with analysis to follow:

namespace SimpleDelegate
{
// This delegate can point to any method,
// taking two integers and returning an integer.
public delegate int BinaryOp(int x, int y);

// This class contains methods BinaryOp will
// point to.
public class SimpleMath
{
public static int Add(int x, int y)
{ return x + y; }
public static int Subtract(int x, int y)
{ return x - y; }

}

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Simple Delegate Example *****\n");

// Create a BinaryOp object that
// "points to" SimpleMath.Add().
BinaryOp b = new BinaryOp(SimpleMath.Add);

// Invoke Add() method indirectly using delegate object.
Console.WriteLine("10 + 10 is {0}", b(10, 10));
Console.ReadLine();

}
}

}

Again, notice the format of the BinaryOp delegate, which can point to any method taking two
integers and returning an integer (the actual name of the method pointed to is irrelevant). Here, we
have created a class named SimpleMath, which defines two static methods that (surprise, surprise)
match the pattern defined by the BinaryOp delegate.

When you want to insert the target method to a given delegate, simply pass in the name of the
method to the delegate’s constructor. At this point, you are able to invoke the member pointed to
using a syntax that looks like a direct function invocation:

// Invoke() is really called here!
Console.WriteLine("10 + 10 is {0}", b(10, 10));

Under the hood, the runtime actually calls the compiler-generated Invoke() method. You can
verify this fact for yourself if you open your assembly in ildasm.exe and investigate the CIL code
within the Main() method:

.method private hidebysig static void Main(string[] args) cil managed
{
...
callvirt instance int32 SimpleDelegate.BinaryOp::Invoke(int32, int32)

}

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS346

8849CH11.qxd 10/1/07 10:43 AM Page 346

Although C# does not require you to explicitly call Invoke() within your code base, you are free
to do so. Thus, the following code statement is permissible:

Console.WriteLine("10 + 10 is {0}", b.Invoke(10, 10));

Recall that .NET delegates are type safe. Therefore, if you attempt to pass a delegate a method
that does not “match the pattern,” you receive a compile-time error. To illustrate, assume the
SimpleMath class now defines an additional method named SquareNumber(), which takes a single
integer as input:

public class SimpleMath
{
...
public static int SquareNumber(int a)
{ return a * a; }

}

Given that the BinaryOp delegate can only point to methods that take two integers and return
an integer, the following code is illegal and will not compile:

// Error! Method does not match delegate pattern!
BinaryOp b2 = new BinaryOp(SimpleMath.SquareNumber);

Investigating a Delegate Object
Let’s spice up the current example by creating a static method (named DisplayDelegateInfo())
within the Program type. This method will print out names of the methods maintained by the
incoming delegate type as well as the name of the class defining the method. To do so, we will iter-
ate over the System.Delegate array returned by GetInvocationList(), invoking each object’s Target
and Method properties:

static void DisplayDelegateInfo(Delegate delObj)
{
// Print the names of each member in the
// delegate's invocation list.
foreach (Delegate d in delObj.GetInvocationList())
{
Console.WriteLine("Method Name: {0}", d.Method);
Console.WriteLine("Type Name: {0}", d.Target);

}
}

Assuming you have updated your Main() method to actually call this new helper method, you
would find the output shown in Figure 11-2.

Figure 11-2. Examining a delegate’s invocation list

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS 347

8849CH11.qxd 10/1/07 10:43 AM Page 347

Notice that the name of the type (SimpleMath) is currently not displayed by the Target property.
The reason has to do with the fact that our BinaryOp delegate is pointing to a static method and
therefore there is no object to reference! However, if we update the Add() and Subtract() methods
to be nonstatic (simply by deleting the static keywords), we could create an instance of the
SimpleMath type and specify the methods to invoke using the object reference:

static void Main(string[] args)
{
Console.WriteLine("***** Simple Delegate Example *****\n");

// .NET delegates can also point to instance methods as well.
SimpleMath m = new SimpleMath();
BinaryOp b = new BinaryOp(m.Add);

// Show information about this object.
DisplayDelegateInfo(b);

Console.WriteLine("10 + 10 is {0}", b(10, 10));
Console.ReadLine();

}

In this case, we would find the output shown in Figure 11-3.

Figure 11-3. Examining a delegate’s invocation list (once again)

■Source Code The SimpleDelegate project is located under the Chapter 11 subdirectory.

Retrofitting the Car Type with Delegates
Clearly, the previous SimpleDelegate example was intended to be purely illustrative in nature, given
that there would be no reason to build a delegate simply to add two numbers. To provide a more
realistic use of delegate types, let’s retrofit the Car type created in Chapter 9 to send notifications
using .NET delegates rather than a custom callback interface. Beyond no longer implementing
IEngineNotification, here are the basic steps we will need to take:

• Define new delegate types that will send notifications to the caller.

• Declare a member variable of these delegate types in the Car class.

• Create helper functions on the Car that allow the caller to set the methods maintained by the
delegate member variables.

• Update the Accelerate() method to invoke the delegate’s invocation list under the correct
circumstances.

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS348

8849CH11.qxd 10/1/07 10:43 AM Page 348

To begin, create a new Console Application project named CarDelegate and insert your
previous Car and Radio definitions from the CallbackInterface example of Chapter 9 (you may
wish to change the namespace containing these types to the current project name or import the
CallbackInterface namespace as an alternative). Consider the following updates to the Car class,
which address the first three points:

public class Car
{
// Define the delegate types.
public delegate void AboutToBlow(string msg);
public delegate void Exploded (string msg);

// Define member variables of each delegate type.
private AboutToBlow almostDeadList;
private Exploded explodedList;

// Add members to the invocation lists using helper methods.
public void OnAboutToBlow(AboutToBlow clientMethod)
{ almostDeadList = clientMethod; }

public void OnExploded(Exploded clientMethod)
{ explodedList = clientMethod; }

...
}

Notice in this example that we define the delegate types directly within the scope of the Car
type. As you explore the base class libraries, you will find it is quite common to define a delegate
within the scope of the type it naturally works with. On a related note, given that the compiler trans-
forms a delegate into a full class definition, what we have actually done is create two nested classes
(AboutToBlow and Exploded) within the Car class.

Next, note that we declare two private member variables (one for each delegate type) and two
helper functions (OnAboutToBlow() and OnExploded()) that allow the client to add a method to the
delegate’s invocation list. In concept, these methods are similar to the Advise() and Unadvise()
methods we created during the CallbackInterface example. Of course, in this case, the incoming
parameter is a client-allocated delegate object rather than a class implementing a custom interface.

■Note Strictly speaking, we could have defined our delegate member variables as public, therefore avoiding the
need to create additional registration methods. However, by defining the members as private, we are enforcing
encapsulation services and providing a more type-safe solution. You’ll revisit the risk of public delegate member
variables later in this chapter when examining the C# event keyword.

At this point, we need to update the Accelerate() method to invoke each delegate, rather than
iterate over an ArrayList of client-side sinks (as we did in the CallbackInterface example). Here is
the update:

public void Accelerate(int delta)
{
// If the car is dead, fire Exploded event.
if (carIsDead)
{
if (explodedList != null)
explodedList("Sorry, this car is dead...");

}
else

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS 349

8849CH11.qxd 10/1/07 10:43 AM Page 349

{
currSpeed += delta;

// Almost dead?
if (10 == maxSpeed - currSpeed
&& almostDeadList != null)

{
almostDeadList("Careful buddy! Gonna blow!");

}

// Still OK!
if (currSpeed >= maxSpeed)
carIsDead = true;

else
Console.WriteLine("->CurrSpeed = {0}", currSpeed);

}
}

Notice that before we invoke the methods maintained by the almostDeadList and explodedList
member variables, we are checking them against a null value. The reason is that it will be the job of
the caller to allocate these objects by calling the OnAboutToBlow() and OnExploded() helper methods.
If the caller does not call these methods, and we attempt to invoke the delegate’s invocation list,
we will trigger a NullReferenceException and bomb at runtime (which would obviously be a bad
thing!). Now that we have the delegate infrastructure in place, observe the updates to the Program
class:

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Delegates as event enablers *****\n");

// Make a car as usual.
Car c1 = new Car("SlugBug", 100, 10);

// Register event handlers with Car type.
c1.OnAboutToBlow(new Car.AboutToBlow(CarAboutToBlow));
c1.OnExploded(new Car.Exploded(CarExploded));

// Speed up (this will trigger the events).
Console.WriteLine("***** Speeding up *****");
for (int i = 0; i < 6; i++)
c1.Accelerate(20);

Console.ReadLine();
}

// The Car will call these methods.
public static void CarAboutToBlow(string msg)
{ Console.WriteLine(msg); }

public static void CarExploded(string msg)
{ Console.WriteLine(msg); }

}

The only major point to be made here is the fact that the caller is the entity that assigns the del-
egate member variables via the helper registration methods. Also, because the AboutToBlow and
Exploded delegates are nested within the Car class, we must allocate them using their full name

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS350

8849CH11.qxd 10/1/07 10:43 AM Page 350

(e.g., Car.AboutToBlow). Like any delegate constructor, we pass in the name of the method to add to
the invocation list, which in this case are two static members on the Program class (if you wanted
to wrap these methods in a new class, it would look very similar to the CarEventSink type of the
CallbackInterface example).

Enabling Multicasting
Recall that .NET delegates have the intrinsic ability to multicast. In other words, a delegate object
can maintain a list of methods to call, rather than a single method. When you wish to add multiple
methods to a delegate object, you simply make use of the overloaded += operator, rather than a
direct assignment. To enable multicasting on the Car type, we could update the OnAboutToBlow()
and OnExploded() methods as follows:

public class Car
{
// Add member to the invocation lists.
public void OnAboutToBlow(AboutToBlow clientMethod)
{ almostDeadList += clientMethod; }

public void OnExploded(Exploded clientMethod)
{ explodedList += clientMethod; }

...
}

With this, the caller can now register multiple targets for the same callback:

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Delegates as event enablers *****\n");
Car c1 = new Car("SlugBug", 100, 10);

// Register multiple event handlers!
c1.OnAboutToBlow(new Car.AboutToBlow(CarAboutToBlow));
c1.OnAboutToBlow(new Car.AboutToBlow(CarIsAlmostDoomed));

c1.OnExploded(new Car.Exploded(CarExploded));
...
}

// Car will call these.
public static void CarAboutToBlow(string msg)
{ Console.WriteLine(msg); }
public static void CarIsAlmostDoomed(string msg)
{ Console.WriteLine("Critical Message from Car: {0}", msg); }
public static void CarExploded(string msg)
{ Console.WriteLine(msg); }

}

In terms of CIL code, the += operator resolves to a call to the static Delegate.Combine() method
(in fact, you could call Delegate.Combine() directly, but the += operator offers a simpler alternative).
Ponder the following CIL implementation of OnAboutToBlow():

.method public hidebysig instance void OnAboutToBlow
(class CarDelegate.Car/AboutToBlow clientMethod) cil managed

{
.maxstack 8

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS 351

8849CH11.qxd 10/1/07 10:43 AM Page 351

ldarg.0
dup
ldfld class CarDelegate.Car/AboutToBlow CarDelegate.Car::almostDeadList
ldarg.1
call class [mscorlib]System.Delegate
[mscorlib]System.Delegate::Combine(
class [mscorlib]System.Delegate,
class [mscorlib]System.Delegate)

castclass CarDelegate.Car/AboutToBlow
stfld class CarDelegate.Car/AboutToBlow CarDelegate.Car::almostDeadList
ret

}

The Delegate class also defines a static Remove() method that allows a caller to dynamically
remove a member from the invocation list. C# developers can leverage the overloaded -= operator
as a shorthand notation.

■Note Be aware that the object passed into Remove() must match the associated signature, but not necessarily
the actual delegate instance you wish to remove. In other words, you are not actually required to hold on to the
exact delegate object you added to the collection in order to precisely remove that instance; you can create a new
delegate object pointing to the same function on the same instance and pass it to Remove(). The delegate will
match the previous delegate referencing the same objects.

If you wish to allow the caller the option to detach from the AboutToBlow and Exploded notifica-
tions, you could add the following additional helper methods to the Car type (note the -= operators
at work):

public class Car
{
// Remove member from the invocation lists.
public void RemoveAboutToBlow(AboutToBlow clientMethod)
{ almostDeadList -= clientMethod; }

public void RemoveExploded(Exploded clientMethod)
{ explodedList -= clientMethod; }

...
}

Again, the -= syntax is simply a shorthand notation for manually calling the static Delegate.
Remove() method, as illustrated by the following CIL code for the RemoveAboutToBlow() member of
the Car type:

.method public hidebysig instance void RemoveAboutToBlow(class
CarDelegate.Car/AboutToBlow clientMethod) cil managed
{
.maxstack 8
ldarg.0
dup
ldfld class CarDelegate.Car/AboutToBlow CarDelegate.Car::almostDeadList
ldarg.1
call class [mscorlib]System.Delegate
[mscorlib]System.Delegate::Remove(
class [mscorlib]System.Delegate,
class [mscorlib]System.Delegate)

castclass CarDelegate.Car/AboutToBlow

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS352

8849CH11.qxd 10/1/07 10:43 AM Page 352

stfld class CarDelegate.Car/AboutToBlow CarDelegate.Car::almostDeadList
ret

}

Removing a Target from a Delegate’s Invocation List
With the current updates to the Car class, we could stop receiving the Exploded notification by
updating Main() as follows:

static void Main(string[] args)
{
Console.WriteLine("***** Delegates as event enablers *****\n");
Car c1 = new Car("SlugBug", 100, 10);

// Hold onto Car.Exploded delegate object for later use.
Car.Exploded d = new Car.Exploded(CarExploded);
c1.OnExploded(d);

...
// Remove CarExploded method
// from invocation list.
c1.RemoveExploded(d);

...
}

The output of our CarDelegate application can be seen in Figure 11-4.

Figure 11-4. The CarDelegate application at work

■Source Code The CarDelegate project is located under the Chapter 11 subdirectory.

A More Elaborate Delegate Example
To illustrate a more advanced use of delegates, create a new Console Application named CarGarage
(be sure to include your Car/Radio type definitions into this new project). Let’s begin by updating
the Car class to include two new Boolean member variables. The first is used to determine whether
the automobile is due for a wash (isDirty); the other represents whether the car in question is in
need of a tire rotation (shouldRotate). To enable the object user to interact with this new state data,
Car also defines some additional properties and an updated constructor. Here is the story so far:

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS 353

8849CH11.qxd 10/1/07 10:43 AM Page 353

// Updated Car class.
public class Car
{
...
// Are we in need of a wash? Need to rotate tires?
private bool isDirty;
private bool shouldRotate;

// Extra params to set bools.
public Car(string name, int max, int curr,
bool washCar, bool rotateTires)

{
...
isDirty = washCar;
shouldRotate = rotateTires;

}
public bool Dirty
{
get{ return isDirty; }
set{ isDirty = value; }

}
public bool Rotate
{
get{ return shouldRotate; }
set{ shouldRotate = value; }

}
}

Now, also assume the Car type nests a new delegate type named CarMaintenanceDelegate:

// Car defines yet another delegate.
public class Car
{
// Can call any method taking a Car as
// a parameter and returning nothing.
public delegate void CarMaintenanceDelegate (Car c);

...
}

Notice that the CarMaintenanceDelegate type can point to any function taking a Car as a param-
eter and returns nothing.

Delegates As Parameters
Now that you have a new delegate type that points to methods taking a Car parameter and returning
nothing, you can create other functions that take this delegate as a parameter. To illustrate, assume
you have a new class named Garage. This type maintains a collection of Car types contained in a
List<T>. Upon creation, the List<T> is filled with some initial Car types (be sure to import the
System.Collections.Generic namespace into your new code file):

// The Garage class maintains a list of Car types.
public class Garage
{
// A list of all cars in the garage.
private List<Car> theCars = new List<Car>();

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS354

8849CH11.qxd 10/1/07 10:43 AM Page 354

// Create the cars in the garage.
public Garage()
{
// Recall, we updated the ctor to set isDirty and shouldRotate.
theCars.Add(new Car("Viper", 100, 0, true, false));
theCars.Add(new Car("Fred", 100, 0, false, false));
theCars.Add(new Car("BillyBob", 100, 0, false, true));

}
}

The Garage class also defines a public ProcessCars() method, which takes a single argument
of our new delegate type (Car.CarMaintenanceDelegate). In the implementation of ProcessCars(),
you pass each Car in your collection as a parameter to the “function pointed to” by the delegate.
ProcessCars() also makes use of the Target and Method members of System.MulticastDelegate to
determine exactly which function the delegate is currently pointing to:

// The Garage class has a method that makes use of the CarMaintenanceDelegate.
public class Garage
{
...
public void ProcessCars(Car.CarMaintenanceDelegate proc)
{
// Where are we forwarding the call?
Console.WriteLine("***** Calling: {0} *****",
proc.Method);

// Are we calling an instance method or a static method?
if(proc.Target != null)
Console.WriteLine("-->Target: {0} ", proc.Target);

else
Console.WriteLine("-->Target is a static method");

// Call the method "pointed to," passing in each car.
foreach (Car c in theCars)
{
Console.WriteLine("\n-> Processing a Car");
proc(c);

}
}

}

Like any delegate operation, when calling ProcessCars(), we send in the address of the method
that should handle this request (via a delegate type). Recall that a delegate may point to either static
or instance-level methods. For the sake of argument, assume these are instance members named
WashCar() and RotateTires() that are defined by a new class named ServiceDepartment. Notice that
these two methods are making use of the new Rotate and Dirty properties of the Car type.

// This class defines method to be invoked by
// the Car.CarMaintenanceDelegate type.
public class ServiceDepartment
{
public void WashCar(Car c)
{
if(c.Dirty)
Console.WriteLine("Cleaning a car");

else
Console.WriteLine("This car is already clean...");

}

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS 355

8849CH11.qxd 10/1/07 10:43 AM Page 355

public void RotateTires(Car c)
{
if(c.Rotate)
Console.WriteLine("Tires have been rotated");

else
Console.WriteLine("Don't need to be rotated...");

}
}

Now, to illustrate the interplay between the new Car.CarMaintenanceDelegate, Garage, and
ServiceDepartment types, consider the following usage:

// The Garage delegates all work orders to the ServiceDepartment
// (finding a good mechanic is always a problem...)
static void Main(string[] args)
{
Console.WriteLine("*****Delegates as Parameters *****\n");

// Make the garage.
Garage g = new Garage();

// Make the service department.
ServiceDepartment sd = new ServiceDepartment();

// Wash all dirty cars.
g.ProcessCars(new Car.CarMaintenanceDelegate(sd.WashCar));

// Rotate the tires.
g.ProcessCars(new Car.CarMaintenanceDelegate(sd.RotateTires));
Console.ReadLine();

}

Figure 11-5 shows the current output.

Figure 11-5. Passing the buck

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS356

8849CH11.qxd 10/1/07 10:43 AM Page 356

Analyzing the Delegation Code
The Main() method begins by creating an instance of the Garage and ServiceDepartment types. Now,
when you write the following:

// Wash all dirty cars.
g.ProcessCars(new Car.CarMaintenanceDelegate(sd.WashCar));

what you are effectively saying is, “Insert the address of the ServiceDepartment.WashCar() method
to a Car.CarMaintenanceDelegate object, and pass this object to Garage.ProcessCars().” Like most
real-world garages, the real work is delegated to the service department (which explains why a
30-minute oil change takes 2 hours). Given this, ProcessCars() can be understood as

// CarDelegate points to the ServiceDepartment.WashCar function.
public void ProcessCars(Car.CarMaintenanceDelegate proc)
{
...
foreach(Car c in theCars)
proc(c); // proc(c) => ServiceDepartment.WashCar(c)

}

Likewise, if you say the following:

// Rotate the tires.
g.ProcessCars(new Car.CarMaintenanceDelegate(sd.RotateTires));

then ProcessCars() can be understood as

// CarDelegate points to the ServiceDepartment.RotateTires function:
public void ProcessCars(Car.CarMaintenanceDelegate proc)
{
foreach(Car c in theCars)
proc(c); // proc(c) => ServiceDepartment.RotateTires(c)

...
}

■Source Code The CarGarage project is located under the Chapter 11 subdirectory.

So at this point in the chapter, you have seen three examples of delegates at work. The first
example (SimpleDelegate) illustrated the basics of defining and manipulating delegate types. As
shown, a delegate simply maintains a list of methods to call at a later time when you call (implicitly
or explicitly) the Invoke() method. Our second example (CarDelegate) illustrated how delegates can
be used to establish an event architecture (in place of .NET interface types). Finally, the example we
just completed pointed out that delegates can be used as method parameters just like any other
.NET type.

■Note As you explore the .NET collection types, you will notice that delegates are commonly used as parameters
to provide sorting and filtering of subitems.

Collectively, these examples have illustrated the core nuts and bolts of the delegate type. To
deepen your understanding of this programming construct, let’s now address the role of covariance.

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS 357

8849CH11.qxd 10/1/07 10:43 AM Page 357

Understanding Delegate Covariance
As you may have noticed, each of the delegates created thus far point to methods returning simple
numerical data types (or void). However, assume you have a new Console Application named
DelegateCovariance that defines a delegate that can point to methods returning a custom class type
(be sure to include your Car/Radio type definitions into this new project):

// Define a delegate pointing to methods that return Car types.
public delegate Car ObtainCarDelegate();

Of course, you would be able to define a target for the delegate as expected:

class Program
{
public delegate Car ObtainCarDelegate();

public static Car GetBasicCar()
{ return new Car("Zippy", 150, 50, false, false); }

static void Main(string[] args)
{
ObtainCarDelegate targetA = new ObtainCarDelegate(GetBasicCar);
Car c = targetA();
Console.WriteLine("Obtained a {0}", c);
Console.ReadLine();

}
}

Now, what if you were to derive a new class from the Car type named SportsCar and wish to
create a delegate type that can point to methods returning this class type? Prior to .NET 2.0, you
would be required to define an entirely new delegate to do so, given that delegates were so type
safe that they did not honor the basic laws of inheritance:

// A new delegate pointing to targets returning SportsCar types.
public delegate SportsCar ObtainSportsCarDelegate();

As we now have two delegate types, we now must create an instance of each to obtain Car and
SportsCar types:

class Program
{
public delegate Car ObtainCarDelegate();
public delegate SportsCar ObtainSportsCarDelegate();

public static Car GetBasicCar()
{ return new Car(); }

public static SportsCar GetSportsCar()
{ return new SportsCar(); }

static void Main(string[] args)
{
ObtainCarDelegate targetA = new ObtainCarDelegate(GetBasicCar);
Car c = targetA();
Console.WriteLine("Obtained a {0}", c);

ObtainSportsCarDelegate targetB =
new ObtainSportsCarDelegate(GetSportsCar);

SportsCar sc = targetB();

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS358

8849CH11.qxd 10/1/07 10:43 AM Page 358

Console.WriteLine("Obtained a {0}", sc);
Console.ReadLine();

}
}

Given the laws of classic inheritance, it would be ideal to build a single delegate type that can
point to methods returning either Car or SportsCar objects (after all, a SportsCar “is-a” Car).
Covariance (which also goes by the term relaxed delegates) allows for this very possibility. Simply
put, covariance allows you to build a single delegate that can point to methods returning class
types related by classical inheritance:

class Program
{
// Define a single delegate that may return a Car
// or SportsCar.
public delegate Car ObtainVehicalDelegate();

public static Car GetBasicCar()
{ return new Car(); }

public static SportsCar GetSportsCar()
{ return new SportsCar(); }

static void Main(string[] args)
{
Console.WriteLine("***** Delegate Covariance *****\n");
ObtainVehicalDelegate targetA = new ObtainVehicalDelegate(GetBasicCar);
Car c = targetA();
Console.WriteLine("Obtained a {0}", c);

// Covariance allows this target assignment.
ObtainVehicalDelegate targetB = new ObtainVehicalDelegate(GetSportsCar);
SportsCar sc = (SportsCar)targetB();
Console.WriteLine("Obtained a {0}", sc);
Console.ReadLine();

}
}

Notice that the ObtainVehicalDelegate delegate type has been defined to point to methods
returning a strongly typed Car type. Given covariance, however, we can point to methods returning
derived types as well. To obtain access to the members of the derived type, simply perform an
explicit cast.

■Note In a similar vein, contravariance allows you to create a single delegate that can point to numerous
methods that receive objects related by classical inheritance. Consult the .NET Framework 3.5 SDK documentation
for further details.

■Source Code The DelegateCovariance project is located under the Chapter 11 subdirectory.

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS 359

8849CH11.qxd 10/1/07 10:43 AM Page 359

Creating Generic Delegates
Recall from the previous chapter that C# does allow you to define generic delegate types. For exam-
ple, assume you wish to define a delegate that can call any method returning void and receiving a
single argument. If the argument in question may differ, you could model this using a type para-
meter. To illustrate, consider the following code within a new Console Application named
GenericDelegate:

namespace GenericDelegate
{
// This generic delegate can call any method
// returning void and taking a single parameter.
public delegate void MyGenericDelegate<T>(T arg);

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Generic Delegates *****\n");

// Register targets.
MyGenericDelegate<string> strTarget =
new MyGenericDelegate<string>(StringTarget);

strTarget("Some string data");

MyGenericDelegate<int> intTarget =
new MyGenericDelegate<int>(IntTarget);

intTarget(9);
Console.ReadLine();

}

static void StringTarget(string arg)
{
Console.WriteLine("arg in uppercase is: {0}", arg.ToUpper());

}

static void IntTarget(int arg)
{
Console.WriteLine("++arg is: {0}", ++arg);

}
}

}

Notice that MyGenericDelegate<T> defines a single type parameter that represents the argu-
ment to pass to the delegate target. When creating an instance of this type, you are required to
specify the value of the type parameter as well as the name of the method the delegate will invoke.
Thus, if you specified a string type, you send a string value to the target method:

// Create an instance of MyGenericDelegate<T>
// with string as the type parameter.
MyGenericDelegate<string> strTarget =
new MyGenericDelegate<string>(StringTarget);

strTarget("Some string data");

Given the format of the strTarget object, the StringTarget() method must now take a single
string as a parameter:

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS360

8849CH11.qxd 10/1/07 10:43 AM Page 360

static void StringTarget(string arg)
{
Console.WriteLine("arg in uppercase is: {0}", arg.ToUpper());

}

Simulating Generic Delegates Without Generics
Generic delegates offer a more flexible way to specify the method to be invoked in a type-safe man-
ner. Prior to the introduction to generics (with the release of .NET 2.0), you could achieve a similar
end result using a generic System.Object:

public delegate void MyDelegate(object arg);

Although this allows you to send any type of data to a delegate target, you do so without type
safety and with possible boxing penalties. For instance, assume you have created two instances of
MyDelegate, both of which point to the same method, MyTarget. Note the boxing/unboxing penalties
as well as the inherent lack of type safety:

class Program
{
static void Main(string[] args)
{

...
// Register target with "traditional" delegate syntax.
MyDelegate d = new MyDelegate(MyTarget);
d("More string data");

// Method group conversion syntax (explained later in this chapter)
MyDelegate d2 = MyTarget;
d2(9); // Boxing penalty.
Console.ReadLine();

}

// Due to a lack of type safety, we must
// determine the underlying type before casting.
static void MyTarget(object arg)
{
if(arg is int)
{
int i = (int)arg; // Unboxing penalty.
Console.WriteLine("++arg is: {0}", ++i);

}
if(arg is string)
{
string s = (string)arg;
Console.WriteLine("arg in uppercase is: {0}", s.ToUpper());

}
}

}

When you send out a value type to the target site, the value is boxed and unboxed once it is
received by the target method. As well, given that the incoming parameter could be anything at all,
you must dynamically check the underlying type before casting. Using generic delegates, you can
still obtain the desired flexibility without the “issues.”

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS 361

8849CH11.qxd 10/1/07 10:43 AM Page 361

■Source Code The GenericDelegate project is located under the Chapter 11 directory.

That wraps up our initial look at the .NET delegate type. We will revisit some additional details
of working with delegates at the conclusion of this chapter and once again in Chapter 18 during
our examination of multithreading. Until then, let’s move on to the related topic of the C# event
keyword.

Understanding C# Events
Delegates are fairly interesting constructs in that they enable objects in memory to engage in a two-
way conversation. As you may agree, however, working with delegates in the raw can entail some
boilerplate code (defining the delegate, declaring necessary member variables, and creating custom
registration/unregistration methods to preserve encapsulation, etc.).

Typing time aside, another issue with using delegates in the raw as your application’s callback
mechanism is the fact that if you do not define a class’s delegate member variables as private, the
caller will have direct access to the delegate objects. If this were the case, the caller would be able to
reassign the variable to a new delegate object (effectively deleting the current list of functions to
call) and worse yet, the caller would be able to directly invoke the delegate’s invocation list. To
illustrate this problem, consider the following reworking (and simplification) of the previous
CarDelegate example:

public class Car
{
// A single delegate
public delegate void Exploded(string msg);

// Now public! No more helper functions!
public Exploded explodedList;

// Just fire out the Exploded notification.
public void Accelerate(int delta)
{
if (explodedList != null)
explodedList("Sorry, this car is dead...");

}
}

Notice that we no longer have private delegate member variables encapsulated with custom
registration methods. Because these members are indeed public, the caller can directly access the
explodedList member and resign this type to new Exploded objects and invoke the delegate when-
ever it so chooses:

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Agh! No Encapsulation! *****\n");
// Make a Car.
Car myCar = new Car();

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS362

8849CH11.qxd 10/1/07 10:43 AM Page 362

// We have direct access to the delegate!
myCar.explodedList = new Car.Exploded(CallWhenExploded);
myCar.Accelerate(10);

// We can now assign to a whole new object...
// confusing at best.
myCar.explodedList = new Car.Exploded(CallHereToo);
myCar.Accelerate(10);

// The caller can also directly invoke the delegate!
myCar.explodedList.Invoke("hee, hee, hee...");

}

static void CallWhenExploded(string msg)
{ Console.WriteLine(msg); }
static void CallHereToo(string msg)
{ Console.WriteLine(msg); }

}

Exposing public delegate members breaks encapsulation, which not only can lead to code that
is hard to maintain (and debug), but could also open your application to possible security risks!
Obviously, you would not want to give other applications the power to change what a delegate is
pointing to or the power to invoke the members without your permission.

■Source Code The PublicDelegateProblem project is located under the Chapter 11 subdirectory.

The Event Keyword
As a shortcut to having to build custom methods to add or remove methods to a delegate’s invoca-
tion list, C# provides the event keyword. When the compiler processes the event keyword, you are
automatically provided with registration and unregistration methods as well as any necessary mem-
ber variables for your delegate types. These delegate member variables are always declared private,
and therefore they are not directly exposed from the object firing the event. To be sure, the event
keyword is little more than syntactic sugar in that it simply saves you some typing time.

Defining an event is a two-step process. First, you need to define a delegate that will hold the
list of methods to be called when the event is fired. Next, you declare an event (using the C# event
keyword) in terms of the related delegate.

To illustrate the event keyword, this iteration of the Car type will define two events (named
identically to the previous AboutToBlow and Exploded delegates). These events are associated to a
single delegate type named CarEventHandler. Here are the initial updates to the Car type:

public class Car
{
// This delegate works in conjunction with the
// Car's events.
public delegate void CarEventHandler(string msg);

// This car can send these events.
public event CarEventHandler Exploded;
public event CarEventHandler AboutToBlow;
...
}

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS 363

8849CH11.qxd 10/1/07 10:43 AM Page 363

Sending an event to the caller is as simple as specifying the event by name as well as any
required parameters as defined by the associated delegate. To ensure that the caller has indeed reg-
istered with the event, you will want to check the event against a null value before invoking the
delegate’s method set. These things being said, here is the new iteration of the Car’s Accelerate()
method:

public void Accelerate(int delta)
{
// If the car is dead, fire Exploded event.
if (carIsDead)
{
if (Exploded != null)
Exploded("Sorry, this car is dead...");

}
else
{
currSpeed += delta;

// Almost dead?
if (10 == maxSpeed - currSpeed
&& AboutToBlow != null)

{
AboutToBlow("Careful buddy! Gonna blow!");

}

// Still OK!
if (currSpeed >= maxSpeed)
carIsDead = true;

else
Console.WriteLine("->CurrSpeed = {0}", currSpeed);

}
}

With this, you have configured the car to send two custom events without the need to define
custom registration functions or declare delegate member variables. You will see the usage of this
new automobile in just a moment, but first, let’s check the event architecture in a bit more detail.

Events Under the Hood
A C# event actually expands into two hidden public methods, one having an add_ prefix, the other
having a remove_ prefix. This prefix is followed by the name of the C# event. For example, the
Exploded event results in two CIL methods named add_Exploded() and remove_Exploded(). In addi-
tion to the add_XXX() and remove_XXX() methods, the CIL-level event definition associates the
correct delegate to a given event.

If you were to check out the CIL instructions behind add_AboutToBlow(), you would find code
that looks just about identical to the OnAboutToBlow() helper method you wrote previously in the
CarDelegate example (note the call to Delegate.Combine()):

.method public hidebysig specialname instance void
add_AboutToBlow(class CarEvents.Car/CarEventHandler 'value')
cil managed synchronized

{
.maxstack 8
ldarg.0
ldarg.0

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS364

8849CH11.qxd 10/1/07 10:43 AM Page 364

ldfld class CarEvents.Car/CarEventHandler CarEvents.Car::AboutToBlow
ldarg.1
call class [mscorlib]System.Delegate
[mscorlib]System.Delegate::Combine(
class [mscorlib]System.Delegate, class [mscorlib]System.Delegate)

castclass CarEvents.Car/CarEventHandler
stfld class CarEvents.Car/CarEventHandler CarEvents.Car::AboutToBlow
ret

}

As you would expect, remove_AboutToBlow() will indirectly call Delegate.Remove() and is more
or less identical to the previous RemoveAboutToBlow() helper method:

.method public hidebysig specialname instance void
remove_AboutToBlow(class CarEvents.Car/CarEventHandler 'value')
cil managed synchronized

{
.maxstack 8
ldarg.0
ldarg.0
ldfld class CarEvents.Car/CarEventHandler CarEvents.Car::AboutToBlow
ldarg.1
call class [mscorlib]System.Delegate
[mscorlib]System.Delegate::Remove(
class [mscorlib]System.Delegate, class [mscorlib]System.Delegate)

castclass CarEvents.Car/CarEventHandler
stfld class CarEvents.Car/CarEventHandler CarEvents.Car::AboutToBlow
ret

}

Finally, the CIL code representing the event itself makes use of the .addon and .removeon direc-
tives to map the names of the correct add_XXX() and remove_XXX() methods to invoke:

.event CarEvents.Car/EngineHandler AboutToBlow
{
.addon void CarEvents.Car::add_AboutToBlow
(class CarEvents.Car/CarEngineHandler)

.removeon void CarEvents.Car::remove_AboutToBlow
(class CarEvents.Car/CarEngineHandler)

}

Now that you understand how to build a class that can send C# events (and are aware that
events are little more than a typing time-saver), the next big question is how to “listen to” the
incoming events on the caller’s side.

Listening to Incoming Events
C# events also simplify the act of registering the caller-side event handlers. Rather than having to
specify custom helper methods, the caller simply makes use of the += and -= operators directly
(which triggers the correct add_XXX() or remove_XXX() method in the background). When you wish
to register with an event, follow the pattern shown here:

// ObjectVariable.EventName +=
// new AssociatedDelegate(functionToCall);
Car.EngineHandler d = new Car.CarEventHandler(CarExplodedEventHandler)
myCar.Exploded += d;

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS 365

8849CH11.qxd 10/1/07 10:43 AM Page 365

When you wish to detach from a source of events, use the -= operator:

// ObjectVariable.EventName -= delegateObject;
myCar.Exploded -= d;

Given these very predictable patterns, here is the refactored Main() method, now using the C#
event registration syntax:

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Fun with Events *****\n");
Car c1 = new Car("SlugBug", 100, 10);

// Register event handlers.
c1.AboutToBlow += new Car.CarEventHandler(CarIsAlmostDoomed);
c1.AboutToBlow += new Car.CarEventHandler(CarAboutToBlow);

Car.CarEventHandler d = new Car.CarEventHandler(CarExploded);
c1.Exploded += d;

Console.WriteLine("***** Speeding up *****");
for (int i = 0; i < 6; i++)
c1.Accelerate(20);

// Remove CarExploded method
// from invocation list.
c1.Exploded -= d;

Console.WriteLine("\n***** Speeding up *****");
for (int i = 0; i < 6; i++)
c1.Accelerate(20);

Console.ReadLine();
}

public static void CarAboutToBlow(string msg)
{ Console.WriteLine(msg); }
public static void CarIsAlmostDoomed(string msg)
{ Console.WriteLine("Critical Message from Car: {0}", msg); }
public static void CarExploded(string msg)
{ Console.WriteLine(msg); }

}

Simplifying Event Registration Using Visual Studio 2008
Visual Studio 2008 offers assistance with the process of registering event handlers. When you apply
the += syntax during the act of event registration, you will find an IntelliSense window is displayed
inviting you to hit the Tab key to autofill the associated delegate instance (see Figure 11-6).

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS366

8849CH11.qxd 10/1/07 10:43 AM Page 366

Figure 11-6. Delegate selection IntelliSense

Once you do hit the Tab key, you are then invited to enter the name of the event handler to be
generated (or simply accept the default name) as shown in Figure 11-7.

Figure 11-7. Delegate target format IntelliSense

Once you hit the Tab key again, you will be provided with stub code in the correct format of the
delegate target (note that this method has been declared static due to the fact that the event was
registered within the static Main() method):

static void c1_AboutToBlow(string msg)
{
// Add your code!

}

This IntelliSense feature is available to all .NET events in the base class libraries. This IDE fea-
ture is a massive time-saver, given that this removes you from the act of needing to search the .NET
help system to figure out the correct delegate to use with a particular event as well as the format of
the delegate target.

■Source Code The CarEvents project is located under the Chapter 11 subdirectory.

A “Prim-and-Proper” Event
Truth be told, there is one final enhancement we could make to the current iteration of the Car type
that mirrors Microsoft’s recommended event pattern. As you begin to explore the events sent by a
given type in the base class libraries, you will find that the first parameter of the underlying delegate
is a System.Object, while the second parameter is a type deriving from System.EventArgs.

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS 367

8849CH11.qxd 10/1/07 10:43 AM Page 367

The System.Object argument represents a reference to the object that sent the event (such as
the Car), while the second parameter represents information regarding the event at hand. The
System.EventArgs base class represents an event that is not sending any custom information:

public class EventArgs
{
public static readonly System.EventArgs Empty;
public EventArgs();

}

For simple events, you can pass an instance of EventArgs directly. However, when you wish to
pass along custom data, you should build a suitable class deriving from EventArgs. For our example,
assume we have a class named CarEventArgs, which maintains a string representing the message
sent to the receiver:

public class CarEventArgs : EventArgs
{
public readonly string msg;
public CarEventArgs(string message)
{
msg = message;

}
}

With this, we would now update the CarEventHandler delegate as follows (the events would be
unchanged):

public class Car
{
public delegate void CarEventHandler(object sender, CarEventArgs e);

...
}

Here, when firing our events from within the Accelerate() method, we would now need to
supply a reference to the current Car (via the this keyword) and an instance of our CarEventArgs
type. For example, consider the following update:

public void Accelerate(int delta)
{
// If the car is dead, fire Exploded event.
if (carIsDead)
{
if (Exploded != null)
Exploded(this, new CarEventArgs("Sorry, this car is dead..."));

}
...
}

On the caller’s side, all we would need to do is update our event handlers to receive the incom-
ing parameters and obtain the message via our read-only field. For example:

public static void CarAboutToBlow(object sender, CarEventArgs e)
{
Console.WriteLine("{0} says: {1}", sender, e.msg);

}

If the receiver wishes to interact with the object that sent the event, we can explicitly cast the
System.Object. Thus, if we wish to power down the radio when the Car object is about to meet its
maker, we could author an event handler looking something like the following:

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS368

8849CH11.qxd 10/1/07 10:43 AM Page 368

public static void CarIsAlmostDoomed(object sender, CarEventArgs e)
{
// Just to be safe, perform a
// runtime check before casting.
if (sender is Car)
{
Car c = (Car)sender;
c.CrankTunes(false);

}
Console.WriteLine("Critical Message from {0}: {1}", sender, e.msg);

}

■Source Code The PrimAndProperCarEvents project is located under the Chapter 11 subdirectory.

The Generic EventHandler<T> Delegate
Given that so many custom delegates take an object as the first parameter and an EventArgs
descendent as the second, you could further streamline the previous example by using the generic
EventHandler<T> type, where T is your custom EventArgs type. Consider the following update to the
Car type (notice how we no longer need to build a custom delegate type at all):

public class Car
{
public event EventHandler<CarEventArgs> Exploded;
public event EventHandler<CarEventArgs> AboutToBlow;

...
}

The Main() method could then make use of EventHandler<CarEventArgs> anywhere we previ-
ously specified CarEventHandler:

static void Main(string[] args)
{
Console.WriteLine("***** Prim and Proper Events *****\n");

// Make a car as usual.
Car c1 = new Car("SlugBug", 100, 10);

// Register event handlers.
c1.AboutToBlow += new EventHandler<CarEventArgs>(CarIsAlmostDoomed);
c1.AboutToBlow += new EventHandler<CarEventArgs>(CarAboutToBlow);

EventHandler<CarEventArgs> d = new EventHandler<CarEventArgs>(CarExploded);
c1.Exploded += d;

...
}

■Source Code The PrimAndProperCarEvents (Generic) project is located under the Chapter 11 subdirectory.

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS 369

8849CH11.qxd 10/1/07 10:43 AM Page 369

Understanding C# Anonymous Methods
Traditionally speaking, when a caller wishes to listen to incoming events, it must define a unique
method that matches the signature of the associated delegate, for example:

class Program
{
static void Main(string[] args)
{
SomeType t = new SomeType();

// Assume "SomeDeletage" can point to methods taking no
// args and returning void.
t.SomeEvent += new SomeDelegate(MyEventHandler);

}

// Typically only called by the SomeDelegate object.
public static void MyEventHandler()
{
// Do something when event is fired.

}
}

When you think about it, however, methods such as MyEventHandler() are seldom intended to
be called by any part of the program other than the invoking delegate. As far as productivity is con-
cerned, it is a bit of a bother (though in no way a showstopper) to manually define a separate
method to be called by the delegate object.

To address this point, it is possible to associate a delegate directly to a block of code statements
at the time of event registration. Formally, such code is termed an anonymous method. To illustrate
the syntax, check out the following Main() method, which handles the events sent from the Car type
using anonymous methods, rather than specifically named event handlers:

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Anonymous Methods *****\n");
Car c1 = new Car("SlugBug", 100, 10);

// Register event handlers as anonymous methods.
c1.AboutToBlow += delegate {
Console.WriteLine("Eek! Going too fast!");

};

c1.AboutToBlow += delegate(object sender, CarEventArgs e) {
Console.WriteLine("Message from Car: {0}", e.msg);

};

c1.Exploded += delegate(object sender, CarEventArgs e) {
Console.WriteLine("Fatal Message from Car: {0}", e.msg);

};
...

}
}

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS370

8849CH11.qxd 10/1/07 10:43 AM Page 370

■Note The final curly bracket of an anonymous method must be terminated by a semicolon. If you fail to do so,
you are issued a compilation error.

Again, notice that the Program type no longer defines specific static event handlers such as
CarAboutToBlow() or CarExploded(). Rather, the unnamed (aka anonymous) methods are defined
inline at the time the caller is handling the event using the += syntax. The basic syntax of an anony-
mous method matches the following pseudo-code:

class Program
{
static void Main(string[] args)
{
SomeType t = new SomeType();
t.SomeEvent += delegate (optionallySpecifiedDelegateArgs)
{ /* statements */ };

}
}

When handling the first AboutToBlow event within the previous Main() method, notice that you
are not specifying the arguments passed from the delegate:

c1.AboutToBlow += delegate {
Console.WriteLine("Eek! Going too fast!");

};

Strictly speaking, you are not required to receive the incoming arguments sent by a specific
event. However, if you wish to make use of the possible incoming arguments, you will need to spec-
ify the parameters prototyped by the delegate type (as shown in the second handling of the
AboutToBlow and Exploded events). For example:

c1.AboutToBlow += delegate(object sender, CarEventArgs e) {
Console.WriteLine("Critical Message from Car: {0}", e.msg);

};

Accessing “Outer”Variables
Anonymous methods are interesting in that they are able to access the local variables of the method
that defines them. Formally speaking, such variables are termed outer variables of the anonymous
method.

■Note An anonymous method cannot access ref or out parameters of the defining method.

Assume our Main() method defined a local integer named aboutToBlowCounter. Within the
anonymous methods that handle the AboutToBlow event, we will increment this counter by 1 and
print out the tally before Main() completes:

static void Main(string[] args)
{
...
int aboutToBlowCounter = 0;

// Make a car as usual.
Car c1 = new Car("SlugBug", 100, 10);

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS 371

8849CH11.qxd 10/1/07 10:43 AM Page 371

// Register event handlers as anonymous methods.
c1.AboutToBlow += delegate
{
aboutToBlowCounter++;
Console.WriteLine("Eek! Going too fast!");

};

c1.AboutToBlow += delegate(string msg)
{
aboutToBlowCounter++;
Console.WriteLine("Critical Message from Car: {0}", msg);

};
...
Console.WriteLine("AboutToBlow event was fired {0} times.",
aboutToBlowCounter);

Console.ReadLine();
}

Once you run this updated Main() method, you will find the final Console.WriteLine() reports
the AboutToBlow event was fired twice.

■Source Code The AnonymousMethods project is located under the Chapter 11 subdirectory.

Understanding Method Group Conversions
Another delegate-and-event-centric feature of C# is termed method group conversion. This feature
allows you to register the “simple” name of an event handler (in fact, you may have noticed that this
syntax was actually used earlier in this chapter during the GenericDelegate example). To illustrate,
let’s revisit the SimpleMath type examined earlier in this chapter, which is now updated with a new
event named ComputationFinished:

public class SimpleMath
{
// Not bothering to create a System.EventArgs
// derived type here.
public delegate void MathMessage(string msg);
public event MathMessage ComputationFinished;

public int Add(int x, int y)
{
ComputationFinished("Adding complete.");
return x + y;

}

public int Subtract(int x, int y)
{
ComputationFinished("Subtracting complete.");
return x - y;

}
}

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS372

8849CH11.qxd 10/1/07 10:43 AM Page 372

If we are not using anonymous method syntax, you know that the way we would handle the
ComputationComplete event is as follows:

class Program
{
static void Main(string[] args)
{
SimpleMath m = new SimpleMath();
m.ComputationFinished +=
new SimpleMath.MathMessage(ComputationFinishedHandler);

Console.WriteLine("10 + 10 is {0}", m.Add(10, 10));
Console.ReadLine();

}

static void ComputationFinishedHandler(string msg)
{ Console.WriteLine(msg); }

}

However, we can register the event handler with a specific event like this (the remainder of the
code is identical):

m.ComputationFinished += ComputationFinishedHandler;

Notice that we are not directly allocating the associated delegate object, but rather simply
specifying a method that matches the delegate’s expected signature (a method returning void and
taking a single System.String in this case). Understand that the C# compiler is still ensuring type
safety. Thus, if the ComputationFinishedHandler() method did not take a System.String and return
void, we would be issued a compiler error.

It is also possible to explicitly convert an event handler into an instance of the delegate it
relates to. This can be helpful if you need to obtain the underlying delegate to interact with the
inherited members of System.MulticastDelegate. For example:

// Event handlers to be converted into
// their underlying delegate.
SimpleMath.MathMessage mmDelegate =

(SimpleMath.MathMessage)ComputationFinishedHandler;
Console.WriteLine(mmDelegate.Method);

If you executed this code, the final Console.WriteLine() prints out the signature of
ComputationFinishedHandler, as shown in Figure 11-8.

Figure 11-8. You can extract a delegate from the related event handler.

■Source Code The MethodGroupConversion project is located under the Chapter 11 subdirectory.

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS 373

8849CH11.qxd 10/1/07 10:43 AM Page 373

The C# 2008 Lambda Operator
To conclude our look at the .NET event architecture, we will close with an examination of C# 2008
lambda expressions. As explained earlier in this chapter, C# supports the ability to handle events
“inline” by assigning a block of code statements directly to an event (using anonymous methods),
rather than building a stand-alone method to be called by the underlying delegate. Lambda expres-
sions are nothing more than a more concise way to author anonymous methods and ultimately
simplify how we work with the .NET delegate type.

■Note C# 2008 also allows you to represent lambda expressions as an in-memory object using expression
trees. This can be very useful for third parties who are building software that needs to extend the functionality of
existing lambdas, as well as when programming with Language Integrated Query (LINQ). Consult the .NET Frame-
work 3.5 SDK documentation.

To set the stage for our examination of lambda expressions, create a new Console Application
named SimpleLambdaExpressions. Now, consider the FindAll() method of the generic List<T>
type. This method is expecting a generic delegate of type System.Predicate<T>, used to wrap any
method returning a Boolean and taking a specified T as the only input parameter. Add a method
(named TraditionalDelegateSyntax()) within your Program type that interacts with the System.
Predicate<T> type to discover the even numbers in a List<T> of integers:

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Fun with Lambdas *****\n");
TraditionalDelegateSyntax();

Console.ReadLine();
}

static void TraditionalDelegateSyntax()
{
// Make a list of integers.
List<int> list = new List<int>();
list.AddRange(new int[] { 20, 1, 4, 8, 9, 44 });

// Call FindAll() using traditional delegate syntax.
Predicate<int> callback = new Predicate<int>(IsEvenNumber);
List<int> evenNumbers = list.FindAll(callback);

Console.WriteLine("Here are your even numbers:");
foreach (int evenNumber in evenNumbers)
{
Console.Write("{0}\t", evenNumber);

}
Console.WriteLine();

}

// Target for the Predicate<> delegate.
static bool IsEvenNumber(int i)
{
// Is it an even number?

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS374

8849CH11.qxd 10/1/07 10:43 AM Page 374

return (i % 2) == 0;
}

}

Here, we have a method (IsEvenNumber()) that is in charge of testing the incoming integer
parameter to see whether it is even or odd via the C# modulo operator, %. If you execute your appli-
cation, you will find the numbers 20, 4, 8, and 44 print out to the console.

While this traditional approach to working with delegates works as expected, the
IsEvenNumber() method, however, is only invoked under very limited circumstances; specifically,
when we call FindAll(), which leaves us with the baggage of a full method definition. If we were to
instead use an anonymous method, our code would clean up considerably. Consider the following
new method of the Program type:

static void AnonymousMethodSyntax()
{
// Make a list of integers.
List<int> list = new List<int>();
list.AddRange(new int[] { 20, 1, 4, 8, 9, 44 });

// Now, use an anonymous method.
List<int> evenNumbers = list.FindAll(delegate(int i)
{ return (i % 2) == 0; });

Console.WriteLine("Here are your even numbers:");
foreach (int evenNumber in evenNumbers)
{
Console.Write("{0}\t", evenNumber);

}
Console.WriteLine();

}

In this case, rather than directly creating a Predicate<T> delegate type, and then authoring a
stand-alone method, we are able to inline a method anonymously. While this is a step in the right
direction, we are still required to use the delegate keyword (or a strongly typed Predicate<T>), and
must ensure that the parameter list is a dead-on match. As well, as you may agree, the syntax used
to define an anonymous method can be viewed as being a bit hard on the eyes, which is even more
apparent here:

List<int> evenNumbers = list.FindAll(
delegate(int i)
{
return (i % 2) == 0;

}
);

Lambda expressions can be used to simplify our call to FindAll() even more. When we make
use of this new syntax, there is no trace of the underlying delegate whatsoever. Consider the follow-
ing update to our code base:

static void LambdaExpressionSyntax()
{
// Make a list of integers.
List<int> list = new List<int>();
list.AddRange(new int[] { 20, 1, 4, 8, 9, 44 });

// Now, use a C# 2008 lambda expression.
List<int> evenNumbers = list.FindAll(i => (i % 2) == 0);

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS 375

8849CH11.qxd 10/1/07 10:43 AM Page 375

Console.WriteLine("Here are your even numbers:");
foreach (int evenNumber in evenNumbers)
{
Console.Write("{0}\t", evenNumber);

}
Console.WriteLine();

}

In this case, notice the rather strange statement of code passed into the FindAll() method,
which is in fact a lambda expression. Notice that in this iteration of the example, there is no trace
whatsoever of the Predicate<T> delegate (or the delegate keyword for that matter). All we have
specified is the lambda expression: i => (i % 2) == 0.

Before we break this syntax down, at this level simply understand that lambda expressions can
be used anywhere you would have used an anonymous method or a strongly typed delegate (typi-
cally with far fewer keystrokes). Under the hood, the C# compiler translates our expression into a
standard anonymous method making use of the Predicate<T> delegate type (which can be verified
using ildasm.exe or reflector.exe). Specifically, the following code statement:

// This lambda expression...
List<int> evenNumbers = list.FindAll(i => (i % 2) == 0);

is compiled into the following approximate C# code:

// ...becomes this anonymous method.
List<int> evenNumbers = list.FindAll(delegate (int i)
{
return (i % 2) == 0;

});

Dissecting a Lambda Expression
A lambda expression is written by first defining a parameter list, followed by the => token (C#’s
token for the lambda operator found in the lambda calculus), followed by a set of statements (or a
single statement) that will process these arguments. From a very high level, a lambda expression
can be understood as follows:

ArgumentsToProcess => StatementsToProcessThem

Within our LambdaExpressionSyntax() method, things break down like so:

// "i" is our parameter list.
// "(i % 2) == 0" is our statement set to process "i".
List<int> evenNumbers = list.FindAll(i => (i % 2) == 0);

The parameters of a lambda expression can be explicitly or implicitly typed. Currently, the
underlying data type representing the i parameter (an integer) is determined implicitly. The com-
piler is able to figure out that i is an integer based on the context of the overall lambda expression
and the underlying delegate. However, it is also possible to explicitly define the type of each param-
eter in the expression, by wrapping the data type and variable name in a pair of parentheses as
follows:

// Now, explicitly state what the parameter type.
List<int> evenNumbers = list.FindAll((int i) => (i % 2) == 0);

As you have seen, if a lambda expression has a single, implicitly typed parameter, the parenthe-
ses may be omitted from the parameter list. If you wish to be consistent regarding your use of
lambda parameters, you are free to always wrap the parameter list within parentheses, leaving us
with this expression:

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS376

8849CH11.qxd 10/1/07 10:43 AM Page 376

List<int> evenNumbers = list.FindAll((i) => (i % 2) == 0);

Finally, notice that currently our expression has not been wrapped in parentheses (we have of
course wrapped the modulo statement to ensure it is executed first before the test for equality).
Lambda expressions do allow for the statement to be wrapped as follows:

// Now, wrap the expression as well.
List<int> evenNumbers = list.FindAll((i) => ((i % 2) == 0));

Now that you have seen the various ways to build a lambda expression, how can we read this
lambda statement in human-friendly terms? Leaving the raw mathematics behind, the following
explanation fits the bill:

// My list of parameters (in this case a single integer named i)
// will be processed by the expression (i % 2) == 0.
List<int> evenNumbers = list.FindAll((i) => ((i % 2) == 0));

Processing Arguments Within Multiple Statements
Our first lambda expression was a single statement that ultimately evaluated to a Boolean. However,
as you know full well, many delegate targets must perform a number of code statements. For this
reason, C# 2008 allows you to build lambda expressions using multiple statement blocks. When
your expression must process the parameters using multiple lines of code, you can do so by denot-
ing a scope for these statements using the expected curly brackets. Consider the following example
update to our LambdaExpressionSyntax() method:

static void LambdaExpressionSyntax()
{
// Make a list of integers.
List<int> list = new List<int>();
list.AddRange(new int[] { 20, 1, 4, 8, 9, 44 });

// Now process each argument within a group of
// code statements.
List<int> evenNumbers = list.FindAll((i) =>
{
Console.WriteLine("value of i is currently: {0}", i);
bool isEven = ((i % 2) == 0);
return isEven;

});

Console.WriteLine("Here are your even numbers:");
foreach (int evenNumber in evenNumbers)
{
Console.Write("{0}\t", evenNumber);

}
Console.WriteLine();

}

In this case, our parameter list (again, a single integer named i) is being processed by a set of
code statements. Beyond the calls to Console.WriteLine(), our modulo statement has been broken
into two code statements for increased readability. Assuming each of these three methods are called
from within Main():

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Lambdas *****\n");
TraditionalDelegateSyntax();

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS 377

8849CH11.qxd 10/1/07 10:43 AM Page 377

AnonymousMethodSyntax();
Console.WriteLine();
LambdaExpressionSyntax();
Console.ReadLine();

}

we will find the output in Figure 11-9.

Figure 11-9. The output of your first lambda expression

■Source Code The SimpleLambdaExpressions project can be found under the Chapter 11 subdirectory.

Retrofitting the CarDelegate Example Using Lambda
Expressions
Given that the whole reason for lambda expressions is to provide a clean, concise manner to define
an anonymous method (and therefore indirectly a manner to simplify working with delegates), let’s
retrofit the CarDelegate project we created earlier in this chapter. Here is a simplified version of that
project’s Program class, which makes use of “normal” delegate syntax to respond to each callback:

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** More Fun with Lambdas *****\n");

// Make a car as usual.
Car c1 = new Car("SlugBug", 100, 10);

// Normal delegate syntax.
c1.OnAboutToBlow(new Car.AboutToBlow(CarAboutToBlow));
c1.OnExploded(new Car.Exploded(CarExploded));

// Speed up (this will generate the events).
Console.WriteLine("\n***** Speeding up *****");
for (int i = 0; i < 6; i++)
c1.SpeedUp(20);

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS378

8849CH11.qxd 10/1/07 10:43 AM Page 378

Console.ReadLine();
}

// Delegate targets.
public static void CarAboutToBlow(string msg)
{ Console.WriteLine(msg); }

public static void CarExploded(string msg)
{ Console.WriteLine(msg); }

}

Here again is the Main() method now making use of anonymous methods:

static void Main(string[] args)
{
Console.WriteLine("***** More Fun with Lambdas *****\n");

// Make a car as usual.
Car c1 = new Car("SlugBug", 100, 10);

// Now use anonymous methods.
c1.OnAboutToBlow(delegate(string msg) { Console.WriteLine(msg); });
c1.OnExploded(delegate(string msg) { Console.WriteLine(msg); });

// Speed up (this will generate the events.)
Console.WriteLine("\n***** Speeding up *****");
for (int i = 0; i < 6; i++)
c1.SpeedUp(20);

Console.ReadLine();
}

And finally, here is the Main() method now using lambda expressions:

static void Main(string[] args)
{
Console.WriteLine("***** More Fun with Lambdas *****\n");

// Make a car as usual.
Car c1 = new Car("SlugBug", 100, 10);

// Now with lambdas!
c1.OnAboutToBlow(msg => { Console.WriteLine(msg); });
c1.OnExploded(msg => { Console.WriteLine(msg); });

// Speed up (this will generate the events).
Console.WriteLine("\n***** Speeding up *****");
for (int i = 0; i < 6; i++)
c1.SpeedUp(20);

Console.ReadLine();
}

■Source Code The CarDelegateWithLambdas project can be found under the Chapter 11 subdirectory.

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS 379

8849CH11.qxd 10/1/07 10:43 AM Page 379

Lambda Expressions with Multiple (or Zero) Parameters
Each of the lambda expressions you have seen here processed a single parameter. This is not a
requirement, however, as a lambda expression may process multiple arguments or provide no
arguments whatsoever. To illustrate the first scenario, create a final Console Application named
LambdaExpressionsMultipleParams. Next, assume the following incarnation of the SimpleMath type:

public class SimpleMath
{
public delegate void MathMessage(string msg, int result);
private MathMessage mmDelegate;

public void SetMathHandler(MathMessage target)
{mmDelegate = target; }

public void Add(int x, int y)
{
if (mmDelegate != null)
mmDelegate.Invoke("Adding has completed!", x + y);

}
}

Notice that the MathMessage delegate is expecting two parameters. To represent them as a
lambda expression, our Main() method might be written as follows:

static void Main(string[] args)
{
// Register w/ delegate as a lambda expression.
SimpleMath m = new SimpleMath();
m.SetMathHandler((msg, result) =>
{Console.WriteLine("Message: {0}, Result: {1}", msg, result);});

// This will execute the lambda expression.
m.Add(10, 10);
Console.ReadLine();

}

Here, we are leveraging type inference, as our two parameters have not been strongly typed for
simplicity. However, we could call SetMathHandler() as follows:

m.SetMathHandler((string msg, int result) =>
{Console.WriteLine("Message: {0}, Result: {1}", msg, result);});

Finally, if you are using a lambda expression to interact with a delegate taking no parameters at
all, you may do so by supplying a pair of empty parentheses as the parameter. Thus, assuming you
have defined the following delegate type:

public delegate string VerySimpleDelegate();

you could handle the result of the invocation as follows:

// Prints "Enjoy your string!" to the console.
VerySimpleDelegate d = new VerySimpleDelegate(() => {return "Enjoy your string!";});
Console.WriteLine(d.Invoke());

So hopefully at this point you can see the overall role of lambda expressions and understand
how they provide a “functional manner” to work with anonymous methods and delegate types.
Although the new lambda operator (=>) might take a bit to get used to, always remember a lambda
expression can be broken down to the following simple equation:

ArgumentsToProcess => StatementsToProcessThem

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS380

8849CH11.qxd 10/1/07 10:43 AM Page 380

It is worth pointing out that the LINQ programming model also makes substantial use of
lambda expressions to help simplify your coding efforts. You will examine LINQ beginning in
Chapter 14.

■Source Code The LambdaExpressionsMultipleParams project can be found under the Chapter 11
subdirectory.

Summary
In this chapter, you have examined a number of ways in which multiple objects can partake in a
bidirectional conversation. First, you examined the C# delegate keyword, which is used to indi-
rectly construct a class derived from System.MulticastDelegate. As you have seen, a delegate is
simply an object that maintains a list of methods to call when told to do so. These invocations may
be made synchronously (using the Invoke() method) or asynchronously (via the BeginInvoke() and
EndInvoke() methods). Again, the asynchronous nature of .NET delegate types will be examined in
Chapter 18.

You then examined the C# event keyword which, when used in conjunction with a delegate
type, can simplify the process of sending your event notifications to awaiting callers. As shown via
the resulting CIL, the .NET event model maps to hidden calls on the System.Delegate/System.
MulticastDelegate types. In this light, the C# event keyword is purely optional in that it simply
saves you some typing time.

This chapter also examined a C# language feature termed anonymous methods. Using this syn-
tactic construct, you are able to directly associate a block of code statements to a given event. As
you have seen, anonymous methods are free to ignore the parameters sent by the event and have
access to the “outer variables” of the defining method. You also examined a simplified way to regis-
ter events using method group conversion.

Finally, we wrapped things up by examining the C# 2008 lambda operator, =>. As shown, this
syntax is a great shorthand notation for authoring anonymous methods, where a stack of argu-
ments can be passed into a group of statements for processing.

CHAPTER 11 ■ DELEGATES, EVENTS, AND LAMBDAS 381

8849CH11.qxd 10/1/07 10:43 AM Page 381

8849CH11.qxd 10/1/07 10:43 AM Page 382

Indexers, Operators, and Pointers

In this chapter, you’ll deepen your understanding of the C# programming language by examining
a handful of advanced syntactic constructs. To begin, you’ll learn how to construct and use an
indexer method. This C# mechanism enables you to build custom types that provide access to inter-
nal subtypes using an array-like syntax. Once you learn how to build an indexer method, you’ll then
examine how to overload various operators (+, -, <, >, and so forth), and how to create custom
explicit and implicit conversion routines for your types (and you’ll learn why you may wish to
do so).

The remainder of this chapter examines a small set of lesser used (but nonetheless interesting)
C# keywords. For example, you’ll learn how to create an “unsafe” code context in order to directly
manipulate pointer types using C# and make use of various preprocessor directives.

Understanding Indexer Methods
As programmers, we are very familiar with the process of accessing individual items contained
within a standard array using the index operator ([]), for example:

static void Main(string[] args)
{
// Loop over incoming start up params.
for(int i = 0; i < args.Length; i++)
Console.WriteLine("Args: {0}", args[i]);

// Declare an array of local integers.
int[] myInts = { 10, 9, 100, 432, 9874};

// Use the [] operator to access each element.
for(int j = 0; j < myInts.Length; j++)
Console.WriteLine("Index {0} = {1} ", j, myInts[j]);

Console.ReadLine();
}

The previous code is by no means a major newsflash. However, the C# language provides the
capability to design custom classes and structures that may be indexed just like a standard array, by
defining an indexer method. This particular language feature is most useful when you are creating
custom collection types (generic or nongeneric).

Before examining how to create such a construct, let’s begin by seeing one in action. Assume
you have added support for an indexer method to the custom PeopleCollection type developed in
Chapter 10 (specifically, the CustomNonGenericCollection project). Observe the following usage
within a new Console Application named SimpleIndexer:

383

C H A P T E R 1 2

8849CH12.qxd 9/26/07 11:31 AM Page 383

// Indexers allow you to access items in an array-like fashion.
class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Fun with Indexers *****\n");

PeopleCollection myPeople = new PeopleCollection();

// Add objects with indexer syntax.
myPeople[0] = new Person("Homer", "Simpson", 40);
myPeople[1] = new Person("Marge", "Simpson", 38);
myPeople[2] = new Person("Lisa", "Simpson", 9);
myPeople[3] = new Person("Bart", "Simpson", 7);
myPeople[4] = new Person("Maggie", "Simpson", 2);

// Now obtain and display each item using indexer.
for (int i = 0; i < myPeople.Count; i++)
{
Console.WriteLine("Person number: {0}", i);
Console.WriteLine("Name: {0} {1}",
myPeople[i].FirstName, myPeople[i].LastName);

Console.WriteLine("Age: {0}", myPeople[i].Age);
Console.WriteLine();

}
}

}

As you can see, indexers behave much like a custom collection supporting the IEnumerator and
IEnumerable interfaces in that they provide access to a container’s subitems. The major difference
of course is that rather than accessing the contents using the foreach construct, you are able to
manipulate the internal collection of sub-objects just like a standard array.

Now for the big question: How do you configure the PeopleCollection class (or any class/
structure) to support this functionality? An indexer is represented as a slightly mangled C# property.
In its simplest form, an indexer is created using the this[] syntax. Here is the required update for
the PeopleCollection class:

// Add the indexer to the existing class definition.
public class PeopleCollection : IEnumerable
{
private ArrayList arPeople = new ArrayList();

// Custom indexer for this class.
public Person this[int index]
{
get { return (Person)arPeople[index]; }
set { arPeople.Insert(index, value); }

}
...
}

Beyond the use of the this keyword, the indexer looks just like any other C# property declara-
tion. For example, the role of the get scope is to return the correct object to the caller. Here, we are
in fact doing so by using the indexer of the ArrayList object! The set scope is in charge of placing
the incoming object into the container at the specified index; in this example, this is achieved by
calling the Insert() method of the ArrayList.

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS384

8849CH12.qxd 9/26/07 11:31 AM Page 384

As you can see, indexers are yet another form of syntactic sugar, given that this functionality
can also be achieved using “normal” public methods such as AddPerson() or GetPerson(). Neverthe-
less, when you support indexer methods on your custom collection types, they integrate well into
the fabric of the .NET base class libraries.

While building indexer methods is quite commonplace when you are building custom collec-
tions, do remember that generic types give you this very functionality out of the box. Consider the
following method, which makes use of a generic List<T> of Person objects. Note we are able to sim-
ply use the indexer of List<T> directly, for example:

static void UseGenericListOfPeople()
{
List<Person> myPeople = new List<Person>();
myPeople.Add(new Person("Lisa", "Simpson", 9));
myPeople.Add(new Person("Bart", "Simpson", 7));

// Change first person with indexer.
myPeople[0] = new Person("Maggie", "Simpson", 2);

// Now obtain and display each item using indexer.
for (int i = 0; i < myPeople.Count; i++)
{
Console.WriteLine("Person number: {0}", i);
Console.WriteLine("Name: {0} {1}", myPeople[i].FirstName,
myPeople[i].LastName);

Console.WriteLine("Age: {0}", myPeople[i].Age);
Console.WriteLine();

}
}

■Source Code The SimpleIndexer project is located under the Chapter 12 subdirectory.

Indexing Objects Using String Values
The current PeopleCollection type defined an indexer that allowed the caller to identify subitems
using a numerical value. Understand, however, that this is not a requirement of an indexer method.
Assume you would rather contain the Person objects using a System.Collections.Generic.
Dictionary<TKey, TValue> rather than an ArrayList. Given that ListDictionary types allow access
to the contained types using a string token (such as a person’s first name), you could define an
indexer as follows:

public class PeopleCollection : IEnumerable
{
private Dictionary<string, Person> listPeople =
new Dictionary<string, Person>();

// This indexer returns a person based on a string index.
public Person this[string name]
{
get { return (Person)listPeople[name]; }
set { listPeople[name] = value; }

}

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS 385

8849CH12.qxd 9/26/07 11:31 AM Page 385

public void ClearPeople()
{ listPeople.Clear(); }

public int Count
{ get { return listPeople.Count; } }

IEnumerator IEnumerable.GetEnumerator()
{ return listPeople.GetEnumerator(); }

}

The caller would now be able to interact with the internal Person objects as shown here:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Indexers *****\n");

PeopleCollection myPeople = new PeopleCollection();

myPeople["Homer"] = new Person("Homer", "Simpson", 40);
myPeople["Marge"] = new Person("Marge", "Simpson", 38);

// Get "Homer" and print data.
Person homer = myPeople["Homer"];
Console.WriteLine(homer.ToString());
Console.ReadLine();

}

Again, if you were to make use of the generic Dictionary<TKey, TValue> type directly, you
could gain the indexer method functionality out of the box.

■Source Code The StringIndexer project is located under the Chapter 12 subdirectory.

Overloaded Indexer Methods
Understand that indexer methods may be overloaded. Thus, if it made sense to allow the caller to
access subitems using a numerical index or a string value, you might define multiple indexers for a
single type. By way of example, if you have ever programmed with ADO.NET (.NET’s native data-
base access API), you may recall that the DataSet type supports a property named Tables, which
returns to you a strongly typed DataTableCollection type. As it turns out, DataTableCollection
defines three indexers to get and set DataTable objects; one by ordinal position, and the others by a
friendly string moniker and optional containing namespace:

public sealed class DataTableCollection : InternalDataCollectionBase
{
...
// Overloaded indexers!
public DataTable this[string name] { get; }
public DataTable this[string name, string tableNamespace] { get; }
public DataTable this[int index] { get; }

}

To be sure, a number of types in the base class libraries support indexer methods. Therefore,
even if your current project does not require you to build custom indexers for your classes and
structures, be aware that many types already support this syntax.

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS386

8849CH12.qxd 9/26/07 11:31 AM Page 386

Internal Representation of Indexer Methods
Now that you have seen a few variations on the C# indexer method, you may be wondering how
indexers are represented in terms of CIL. If you were to open up the indexer of the current
PeopleCollection type, you would find that the C# compiler has created a property named Item,
which maps to the correct getter/setter methods:

.property instance class StringIndexer.Person Item(string)
{
.get instance class StringIndexer.Person
StringIndexer.PeopleCollection::get_Item(string)

.set instance void StringIndexer.PeopleCollection::set_Item(string,
class StringIndexer.Person)

} // end of property PeopleCollection::Item

The get_Item() and set_Item() methods are implemented like any other .NET property; for
example, consider the following set logic:

.method public hidebysig specialname instance void
set_Item(string name,
class StringIndexer.Person 'value') cil managed

{
// Code size 16 (0x10)
.maxstack 8
IL_0000: nop
IL_0001: ldarg.0
IL_0002: ldfld class [System]System.Collections.Specialized.ListDictionary
StringIndexer.PeopleCollection::listPeople

IL_0007: ldarg.1
IL_0008: ldarg.2
IL_0009: callvirt instance void
[System]System.Collections.Specialized.ListDictionary::Add(object, object)
IL_000e: nop
IL_000f: ret

} // end of method PeopleCollection::set_Item

■Note The .NET Framework SDK 3.5 documentation will list indexer methods of a class or structure as a prop-
erty named Item. However, the Visual Studio Object Browser will show indexers as properties defined using
expected this[] syntax.

Indexers with Multiple Dimensions
It is also permissible to create an indexer method that takes multiple parameters. Assume you have
a custom collection that stores subitems in a 2D array. If this is the case, you may configure an
indexer method as follows:

public class SomeContainer
{
private int[,] my2DintArray = new int[10, 10];

public int this[int row, int column]
{ /* get or set value from 2D array */ }

}

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS 387

8849CH12.qxd 9/26/07 11:31 AM Page 387

Indexer Definitions on Interface Types
Finally, understand that indexers can be defined on a given .NET interface type to allow supporting
types to provide a custom implementation. Such an interface is as follows:

public interface IStringContainer
{
// This interface defines an indexer that returns
// strings based on a numerical index.
string this[int index] { get; set; }

}

With this interface definition, any class or structure that implements this interface must now
support a read/write indexer that manipulates subitems using a numerical value. As well, you could
design a generic interface where the type indexer allows the implementer to determine what will be
used to get or set the subobjects:

public interface IStringContainer<Key>
{
string this[int Key] { get; set; }

}

Here would be an implementation using a numerical indexer:

class MyStrings : IStringContainer<int>
{
string[] strings = { "First", "Second" };

public string this[int Key]
{
get
{
return strings[Key];

}
set
{
strings[Key] = value;

}
}

}

Understanding Operator Overloading
C#, like any programming language, has a canned set of tokens that are used to perform basic oper-
ations on intrinsic types. For example, you know that the + operator can be applied to two integers
in order to yield a larger integer:

// The + operator with ints.
int a = 100;
int b = 240;
int c = a + b; // c is now 340

Again, this is no major newsflash, but have you ever stopped and noticed how the same + oper-
ator can be applied to most intrinsic C# data types? For example, consider this code:

// + operator with strings.
string s1 = "Hello";
string s2 = " world!";
string s3 = s1 + s2; // s3 is now "Hello world!"

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS388

8849CH12.qxd 9/26/07 11:31 AM Page 388

In essence, the + operator functions in unique ways based on the supplied data types (strings
or integers in this case). When the + operator is applied to numerical types, the result is the summa-
tion of the operands. However, when the + operator is applied to string types, the result is string
concatenation.

The C# language provides the capability for you to build custom classes and structures that
also respond uniquely to the same set of basic tokens (such as the + operator). Be aware that you
cannot overload each and every intrinsic C# operator. Table 12-1 outlines the “overloadability” of
the core operators.

Table 12-1. Overloadability of C# Operators

C# Operator Overloadability

+, -, !, ~, ++, --, true, false This set of unary operators can be overloaded.

+, -, *, /, %, &, |, ^, <<, >> These binary operators can be overloaded.

==, !=, <, >, <=, >= The comparison operators can be overloaded. C# will
demand that “like” operators (i.e., < and >, <= and >=, == and
!=) are overloaded together.

[] The [] operator cannot be overloaded. As you saw earlier in
this chapter, however, the indexer construct provides the
same functionality.

() The () operator cannot be overloaded. As you will see later
in this chapter, however, custom conversion methods
provide the same functionality.

+=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>= Shorthand assignment operators cannot be overloaded;
however, you receive them as a freebie when you overload
the related binary operator.

■Note In C#, true and false can be used as operators in addition to literals. This functionality can be useful
when building custom types that represent true, false, and null (meaning neither true nor false).

Overloading Binary Operators
To illustrate the process of overloading binary operators, assume the following simple Point struc-
ture defined in a new Console Application named OverloadedOps:

// Just a simple everyday C# struct.
public struct Point
{
private int x, y;
public Point(int xPos, int yPos)
{
x = xPos;
y = yPos;

}

public override string ToString()
{
return string.Format("[{0}, {1}]", this.x, this.y);

}
}

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS 389

8849CH12.qxd 9/26/07 11:31 AM Page 389

Now, logically speaking, it makes sense to add Points together. For example, if you added
together two Point variables, you should receive a new Point that is the summation of the x and y
values. On a related note, it may be helpful to subtract one Point from another. Ideally, you would
like to be able to author the following code:

// Adding and subtracting two points?
static void Main(string[] args)
{
Console.WriteLine("***** Fun with Overloaded Operators *****\n");

// Make two points.
Point ptOne = new Point(100, 100);
Point ptTwo = new Point(40, 40);
Console.WriteLine("ptOne = {0}", ptOne);
Console.WriteLine("ptTwo = {0}", ptTwo);

// Add the points to make a bigger point?
Console.WriteLine("ptOne + ptTwo: {0} ", ptOne + ptTwo);

// Subtract the points to make a smaller point?
Console.WriteLine("ptOne - ptTwo: {0} ", ptOne - ptTwo);
Console.ReadLine();

}

However, as our Point now stands, we will receive compile-time errors, as the Point type does
not know how to respond to the + or - operators (see Figure 12-1).

Figure 12-1. By default, custom classes/structures do not support custom operators.

To equip a custom type to respond uniquely to intrinsic operators, C# provides the operator
keyword, which you can use only in conjunction with static methods. When you are overloading a
binary operator (such as + and -), you will most often pass in two arguments that are the same type
as the defining class (a Point in this example), as illustrated in the following code update:

// A more intelligent Point type.
public struct Point
{
...
// overloaded operator +
public static Point operator + (Point p1, Point p2)
{ return new Point(p1.x + p2.x, p1.y + p2.y); }

// overloaded operator -
public static Point operator - (Point p1, Point p2)
{ return new Point(p1.x - p2.x, p1.y - p2.y); }

}

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS390

8849CH12.qxd 9/26/07 11:31 AM Page 390

The logic behind operator + is simply to return a brand new Point based on the summation of
the fields of the incoming Point parameters. Thus, when you write pt1 + pt2, under the hood you
can envision the following hidden call to the static operator + method:

// Point p3 = Point.operator+ (p1, p2)
Point p3 = p1 + p2;

Likewise, p1 – p2 maps to the following:

// Point p4 = Point.operator- (p1, p2)
Point p4 = p1 - p2;

With this update, our program now compiles, and we find we are able to add and subtract
Point objects (see Figure 12-2).

Figure 12-2. Redefining + and - for the Point type

Strictly speaking, when you are overloading a binary operator, you are not required to pass in
two parameters of the same type. If it makes sense to do so, one of the arguments can differ. For
example, here is an overloaded operator +, which allows the caller to obtain a new Point that is
based on a numerical adjustment:

public struct Point
{
...
public static Point operator +(Point p1, int change)
{
return new Point(p1.x + change, p1.y + change);

}
public static Point operator +(int change, Point p1)
{
return new Point(p1.x + change, p1.y + change);

}
}

We would now be able to use these new versions of operator + as follows:

// Prints [110, 110]
Point biggerPoint = ptOne + 10;
Console.WriteLine("ptOne + 10 = {0}", biggerPoint);

// Prints [120, 120]
Console.WriteLine("10 + biggerPoint = {0}", 10 + biggerPoint);
Console.WriteLine();

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS 391

8849CH12.qxd 9/26/07 11:31 AM Page 391

And What of the += and –+ Operators?
If you are coming to C# from a C++ background, you may lament the loss of overloading the
shorthand assignment operators (+=, -=, and so forth). Fear not. In terms of C#, the shorthand
assignment operators are automatically simulated if a type overloads the related binary operator.
Thus, given that the Point structure has already overloaded the + and - operators, you are able to
write the following:

// Overloading binary operators results in a freebie shorthand operator.
static void Main(string[] args)
{
...
// Freebie +=
Point ptThree = new Point(90, 5);
Console.WriteLine("ptThree = {0}", ptThree);
Console.WriteLine("ptThree += ptTwo: {0}", ptThree += ptTwo);

// Freebie -=
Point ptFour = new Point(0, 500);
Console.WriteLine("ptFour = {0}", ptFour);
Console.WriteLine("ptFour -= ptThree: {0}", ptFour -= ptThree);
Console.ReadLine();

}

Overloading Unary Operators
C# also allows you to overload various unary operators, such as ++ and --. When you overload a
unary operator, you will also define a static method via the operator keyword; however, in this case
you will simply pass in a single parameter that is the same type as the defining class/structure. For
example, if you were to update the Point with the following overloaded operators:

public struct Point
{
...
// Add 1 to the incoming Point.
public static Point operator ++(Point p1)
{ return new Point(p1.x+1, p1.y+1); }

// Subtract 1 from the incoming Point.
public static Point operator --(Point p1)
{ return new Point(p1.x-1, p1.y-1); }

}

you could increment and decrement Point’s x and y values as follows:

static void Main(string[] args)
{
...
// Applying the ++ and -- unary operators to a Point.
Point ptFive = new Point(1, 1);
Console.WriteLine("++ptFive = {0}", ++ptFive); // [2, 2]
Console.WriteLine("--ptFive = {0}", --ptFive); // [1, 1]

// Apply same operators as postincrement/decrement.
Point ptSix = new Point(20, 20);

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS392

8849CH12.qxd 9/26/07 11:31 AM Page 392

Console.WriteLine("ptSix++ = {0}", ptSix++); // [20, 20]
Console.WriteLine("ptSix-- = {0}", ptSix--); // [21, 21]
Console.ReadLine();

}

Notice in the previous code example we are applying our custom ++ and -- operators in two
unique manners. In C++, it is possible to overload pre- and postincrement/decrement operators
separately. This is not possible in C#; however, the return value of the increment/decrement is auto-
matically handled “correctly” free of charge (i.e., for an overloaded ++ operator, pt++ has the value
of the unmodified object as its value within an expression, while ++pt has the new value applied
before use in the expression).

Overloading Equality Operators
As you may recall from Chapter 6, System.Object.Equals() can be overridden to perform value-
based (rather than referenced-based) comparisons between types. If you choose to override
Equals() (and the often related System.Object.GetHashCode() method), it is trivial to overload
the equality operators (== and !=). To illustrate, here is the updated Point type:

// This incarnation of Point also overloads the == and != operators.
public struct Point
{
...
public override bool Equals(object o)
{
return o.ToString() == this.ToString();

}

public override int GetHashCode()
{ return this.ToString().GetHashCode(); }

// Now let's overload the == and != operators.
public static bool operator ==(Point p1, Point p2)
{ return p1.Equals(p2); }

public static bool operator !=(Point p1, Point p2)
{ return !p1.Equals(p2); }

}

Notice how the implementation of operator == and operator != simply makes a call to the over-
ridden Equals() method to get the bulk of the work done. Given this, you can now exercise your
Point class as follows:

// Make use of the overloaded equality operators.
static void Main(string[] args)
{
...
Console.WriteLine("ptOne == ptTwo : {0}", ptOne == ptTwo);
Console.WriteLine("ptOne != ptTwo : {0}", ptOne != ptTwo);
Console.ReadLine();

}

As you can see, it is quite intuitive to compare two objects using the well-known == and !=
operators rather than making a call to Object.Equals(). If you do overload the equality operators
for a given class, keep in mind that C# demands that if you override the == operator, you must also
override the != operator (if you forget, the compiler will let you know).

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS 393

8849CH12.qxd 9/26/07 11:31 AM Page 393

Overloading Comparison Operators
In Chapter 9, you learned how to implement the IComparable interface in order to compare the rela-
tive relationship between two like objects. Additionally, you may also overload the comparison
operators (<, >, <=, and >=) for the same class. Like the equality operators, C# demands that if you
overload <, you must also overload >. The same holds true for the <= and >= operators. If the Point
type overloaded these comparison operators, the object user could now compare Points as follows:

// Using the overloaded < and > operators.
static void Main(string[] args)
{
...
Console.WriteLine("ptOne < ptTwo : {0}", ptOne < ptTwo);
Console.WriteLine("ptOne > ptTwo : {0}", ptOne > ptTwo);
Console.ReadLine();

}

Assuming you have implemented the IComparable interface, overloading the comparison oper-
ators is trivial. Here is the updated class definition:

// Point is also comparable using the comparison operators.
public struct Point : IComparable
{
...
public int CompareTo(object obj)
{
if (obj is Point)
{
Point p = (Point)obj;
if (this.x > p.x && this.y > p.y)
return 1;

if (this.x < p.x && this.y < p.y)
return -1;

else
return 0;

}
else
throw new ArgumentException();

}

public static bool operator <(Point p1, Point p2)
{ return (p1.CompareTo(p2) < 0); }

public static bool operator >(Point p1, Point p2)
{ return (p1.CompareTo(p2) > 0); }

public static bool operator <=(Point p1, Point p2)
{ return (p1.CompareTo(p2) <= 0); }

public static bool operator >=(Point p1, Point p2)
{ return (p1.CompareTo(p2) >= 0); }

}

The Internal Representation of Overloaded Operators
Like any C# programming element, overloaded operators are represented using specific CIL syntax.
To begin examining what takes place behind the scenes, open the OverloadedOps.exe assembly

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS394

8849CH12.qxd 9/26/07 11:31 AM Page 394

using ildasm.exe. As you can see from Figure 12-3, the overloaded operators are internally
expressed via hidden methods (e.g., op_Addition(), op_Subtraction(), op_Equality(), and so on).

Figure 12-3. In terms of CIL, overloaded operators map to hidden methods.

Now, if you were to examine the specific CIL instructions for the op_Addition method, you
would find that the specialname method decoration has also been inserted by csc.exe:

.method public hidebysig specialname static
valuetype OverloadedOps.Point
op_Addition(valuetype OverloadedsOps.Point p1,

valuetype OverloadedOps.Point p2) cil managed
{
...

}

The truth of the matter is that any operator that you may overload equates to a specially named
method in terms of CIL. Table 12-2 documents the C# operator-to-CIL mapping for the most com-
mon C# operators.

Table 12-2. C# Operator-to-CIL Special Name Road Map

Intrinsic C# Operator CIL Representation

-- op_Decrement()

++ op_Increment()

+ op_Addition()

Continued

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS 395

8849CH12.qxd 9/26/07 11:31 AM Page 395

Table 12-2. Continued

Intrinsic C# Operator CIL Representation

- op_Subtraction()

* op_Multiply()

/ op_Division()

== op_Equality()

> op_GreaterThan()

< op_LessThan()

!= op_Inequality()

>= op_GreaterThanOrEqual()

<= op_LessThanOrEqual()

-= op_SubtractionAssignment()

+= op_AdditionAssignment()

■Note There is a practical reason to know the “special names” of an overloaded operator. Because many lan-
guages cannot use types with overloaded operators, programmers of said languages are able to call these internal
names statically from the defining type (e.g., Point.op_Addition(myPoint, yourPoint)).

Final Thoughts Regarding Operator Overloading
As you have seen, C# provides the capability to build types that can respond uniquely to various
intrinsic, well-known operators. Now, before you go and retrofit all your classes to support such
behavior, you must be sure that the operator(s) you are about to overload make some sort of logical
sense in the world at large.

For example, let’s say you overloaded the multiplication operator for the MiniVan class. What
exactly would it mean to multiply two MiniVan objects? Not much. In fact, it would be very confus-
ing for teammates to see the following use of MiniVan objects.

// Huh?! This is far from intuitive...
MiniVan newVan = myVan * yourVan;

Overloading operators is generally only useful when you’re building utility types. Strings,
points, rectangles, fractions, and hexagons make good candidates for operator overloading. People,
managers, cars, database connections, and web pages do not. As a rule of thumb, if an overloaded
operator makes it harder for the user to understand a type’s functionality, don’t do it. Use this fea-
ture wisely.

Also be aware that even if you do not tend to overload operators for your custom classes,
numerous types in the base class libraries have already done so. For example, the System.Drawing.
dll assembly provides an “official” Point definition that overloads numerous operators. Notice the
operator icon from the Visual Studio 2008 Object Browser (see Figure 12-4).

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS396

8849CH12.qxd 9/26/07 11:31 AM Page 396

Figure 12-4. Numerous types in the base class libraries have already-overloaded operators.

■Source Code The OverloadedOps project is located under the Chapter 12 subdirectory.

Understanding Custom Type Conversions
Let’s now examine a topic closely related to operator overloading: custom type conversions. To set
the stage for the discussion to follow, let’s quickly review the notion of explicit and implicit conver-
sions between numerical data and related class types.

Recall: Numerical Conversions
In terms of the intrinsic numerical types (sbyte, int, float, etc.), an explicit conversion is required
when you attempt to store a larger value in a smaller container, as this may result in a loss of data.
Basically, this is your way to tell the compiler, “Leave me alone, I know what I am trying to do.” Con-
versely, an implicit conversion happens automatically when you attempt to place a smaller type in a
destination type that will not result in a loss of data:

static void Main()
{
int a = 123;
long b = a; // Implicit conversion from int to long
int c = (int) b; // Explicit conversion from long to int

}

Recall: Conversions Among Related Class Types
As shown in Chapter 6, class types may be related by classical inheritance (the “is-a” relationship).
In this case, the C# conversion process allows you to cast up and down the class hierarchy. For
example, a derived class can always be implicitly cast to a base type. However, if you wish to store
a base class type in a derived variable, you must perform an explicit cast:

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS 397

8849CH12.qxd 9/26/07 11:31 AM Page 397

// Two related class types.
class Base{}
class Derived : Base{}

class Program
{
static void Main()
{
// Implicit cast between derived to base.
Base myBaseType;
myBaseType = new Derived();

// Must explicitly cast to store base reference
// in derived type.
Derived myDerivedType = (Derived)myBaseType;

}
}

This explicit cast works due to the fact that the Base and Derived classes are related by classical
inheritance. However, what if you have two class types in different hierarchies with no common
parent (other than System.Object) that requires conversions? Given that they are not related by
classical inheritance, explicit casting offers no help.

On a related note, consider value types (e.g., structures). Assume you have two .NET structures
named Square and Rectangle. Given that structures cannot leverage classic inheritance (as they are
always sealed), you have no natural way to cast between these seemingly related types.

While you could build helper methods in the structures (such as Rectangle.ToSquare()), C#
allows you to build custom conversion routines that allow your types to respond to the () casting
operator. Therefore, if you configured the structures correctly, you would be able to use the follow-
ing syntax to explicitly convert between them as follows:

// Convert a Rectangle to a Square!
Rectangle rect;
rect.Width = 3;
rect.Height = 10;
Square sq = (Square)rect;

Creating Custom Conversion Routines
Begin by creating a new Console Application named CustomConversions. C# provides two key-
words, explicit and implicit, that you can use to control how your types respond during an
attempted conversion. Assume you have the following structure definitions:

public struct Rectangle
{
// Public for ease of use;
// however, feel free to encapsulate with properties.
public int Width, Height;

public Rectangle(int w, int h)
{
Width = w; Height = h;

}

public void Draw()
{
for (int i = 0; i < Height; i++)

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS398

8849CH12.qxd 9/26/07 11:31 AM Page 398

{
for (int j = 0; j < Width; j++)
{
Console.Write("*");

}
Console.WriteLine();

}
}

public override string ToString()
{
return string.Format("[Width = {0}; Height = {1}]",
Width, Height);

}
}

public struct Square
{
public int Length;
public Square(int l)
{
Length = l;

}

public void Draw()
{
for (int i = 0; i < Length; i++)
{
for (int j = 0; j < Length; j++)
{
Console.Write("*");

}
Console.WriteLine();

}
}

public override string ToString()
{ return string.Format("[Length = {0}]", Length); }

// Rectangles can be explicitly converted
// into Squares.
public static explicit operator Square(Rectangle r)
{
Square s;
s.Length = r.Height;
return s;

}
}

Notice that this iteration of the Square type defines an explicit conversion operator. Like the
process of overloading an operator, conversion routines make use of the C# operator keyword (in
conjunction with the explicit or implicit keyword) and must be defined as static. The incoming
parameter is the entity you are converting from, while the operator type is the entity you are
converting to.

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS 399

8849CH12.qxd 9/26/07 11:31 AM Page 399

In this case, the assumption is that a square (being a geometric pattern in which all sides are
of equal length) can be obtained from the height of a rectangle. Thus, you are free to convert a
Rectangle into a Square as follows:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Conversions *****\n");

// Make a Rectangle.
Rectangle r = new Rectangle(15, 4);
Console.WriteLine(r.ToString());
r.Draw();

Console.WriteLine();

// Convert r into a Square,
// based on the height of the Rectangle.
Square s = (Square)r;
Console.WriteLine(s.ToString());
s.Draw();
Console.ReadLine();

}

The output can be seen in Figure 12-5.

Figure 12-5. Converting a Rectangle structure to a Square structure

While it may not be all that helpful to convert a Rectangle into a Square within the same scope,
assume you have a function that has been designed to take Square parameters.

// This method requires a Square type.
static void DrawSquare(Square sq)
{
Console.WriteLine(sq.ToString());
sq.Draw();

}

Using your explicit conversion operation on the Square type, you can now pass in Rectangle
types for processing using an explicit cast:

static void Main(string[] args)
{
...
// Convert Rectangle to Square to invoke method.

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS400

8849CH12.qxd 9/26/07 11:31 AM Page 400

Rectangle rect = new Rectangle(10, 5);
DrawSquare((Square)rect);
Console.ReadLine();

}

Additional Explicit Conversions for the Square Type
Now that you can explicitly convert Rectangles into Squares, let’s examine a few additional explicit
conversions. Given that a square is symmetrical on each side, it might be helpful to provide an
explicit conversion routine that allows the caller to cast from a System.Int32 type into a Square
(which, of course, will have a side length equal to the incoming integer). Likewise, what if you were
to update Square such that the caller can cast from a Square into a System.Int32? Here is the calling
logic:

static void Main(string[] args)
{
...
// Converting a System.Int32 to a Square.
Square sq2 = (Square)90;
Console.WriteLine("sq2 = {0}", sq2);

// Converting a Square to a System.Int32.
int side = (int)sq2;
Console.WriteLine("Side length of sq2 = {0}", side);
Console.ReadLine();

}

and here is the update to the Square type:

public struct Square
{
...
public static explicit operator Square(int sideLength)
{
Square newSq;
newSq.Length = sideLength;
return newSq;

}

public static explicit operator int (Square s)
{return s.Length;}

}

To be honest, converting from a Square into a System.Int32 may not be the most intuitive (or
useful) operation. However, this does point out a very important fact regarding custom conversion
routines: the compiler does not care what you convert to or from, as long as you have written syn-
tactically correct code. Thus, as with overloading operators, just because you can create an explicit
cast operation for a given type does not mean you should. Typically, this technique will be most
helpful when you’re creating .NET structure types, given that they are unable to participate in
classical inheritance (where casting comes for free).

Defining Implicit Conversion Routines
Thus far, you have created various custom explicit conversion operations. However, what about the
following implicit conversion?

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS 401

8849CH12.qxd 9/26/07 11:31 AM Page 401

static void Main(string[] args)
{
...
// Attempt to make an implicit cast?
Square s3;
s3.Length = 83;
Rectangle rect2 = s3;
Console.ReadLine();

}

This code will not compile, given that you have not provided an implicit conversion routine for
the Rectangle type. Now here is the catch: it is illegal to define explicit and implicit conversion func-
tions on the same type, if they do not differ by their return type or parameter set. This might seem
like a limitation; however, the second catch is that when a type defines an implicit conversion rou-
tine, it is legal for the caller to make use of the explicit cast syntax!

Confused? To clear things up, let’s add an implicit conversion routine to the Rectangle struc-
ture using the C# implicit keyword (note that the following code assumes the width of the resulting
Rectangle is computed by multiplying the side of the Square by 2):

public struct Rectangle
{
...
public static implicit operator Rectangle(Square s)
{
Rectangle r;
r.Height = s.Length;

// Assume the length of the new Rectangle with
// (Length x 2)
r.Width = s.Length * 2;
return r;

}
}

With this update, you are now able to convert between types as follows:

static void Main(string[] args)
{
...
// Implicit cast OK!
Square s3;
s3.Length= 7;
Rectangle rect2 = s3;
Console.WriteLine("rect2 = {0}", rect2);
DrawSquare(s3);

// Explicit cast syntax still OK!
Square s4;
s4.Length = 3;
Rectangle rect3 = (Rectangle)s4;
Console.WriteLine("rect3 = {0}", rect3);
Console.ReadLine();

}

Again, be aware that it is permissible to define explicit and implicit conversion routines for the
same type as long as their signatures differ. Thus, you could update the Square as follows:

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS402

8849CH12.qxd 9/26/07 11:31 AM Page 402

public struct Square
{
...
// Can call as:
// Square sq2 = (Square)90;
// or as:
// Square sq2 = 90;
public static implicit operator Square(int sideLength)
{
Square newSq;
newSq.Length = sideLength;
return newSq;

}

// Must call as:
// int side = (int)mySquare;
public static explicit operator int (Square s)
{ return s.Length; }

}

The Internal Representation of Custom Conversion Routines
Like overloaded operators, methods that are qualified with the implicit or explicit keywords have
“special” names in terms of CIL: op_Implicit and op_Explicit, respectively (see Figure 12-6).

Figure 12-6. CIL representation of user-defined conversion routines

■Note The Visual Studio 2008 Object Browser shows custom conversion operators using the “explicit operator”
and “implicit operator” icons.

That wraps up our examination of defining custom conversion routines. As with overloaded
operators, remember that this bit of syntax is simply a shorthand notation for “normal” member

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS 403

8849CH12.qxd 9/26/07 11:31 AM Page 403

functions, and in this light it is always optional. When used correctly, however, your custom struc-
tures can be used more naturally, as they can be treated as true class types related by inheritance.

■Source Code The CustomConversions project is located under the Chapter 12 subdirectory.

Working with Pointer Types
In Chapter 4, you learned that the .NET platform defines two major categories of data: value types
and reference types. Truth be told, however, there is a third category: pointer types. To work with
pointer types, we are provided with specific operators and keywords that allow us to bypass the
CLR’s memory management scheme and take matters into our own hands (see Table 12-3).

Table 12-3. Pointer-Centric C# Operators and Keywords

Operator/Keyword Meaning in Life

* This operator is used to create a pointer variable (i.e., a variable that
represents a direct location in memory). As in C(++), this same operator is
used for pointer indirection.

& This operator is used to obtain the address of a variable in memory.

-> This operator is used to access fields of a type that is represented by a pointer
(the unsafe version of the C# dot operator).

[] The [] operator (in an unsafe context) allows you to index the slot pointed to
by a pointer variable (recall the interplay between a pointer variable and the
[] operator in C(++)!).

++, -- In an unsafe context, the increment and decrement operators can be applied
to pointer types.

+, - In an unsafe context, the addition and subtraction operators can be applied
to pointer types.

==, !=, <, >, <=, => In an unsafe context, the comparison and equality operators can be applied
to pointer types.

stackalloc In an unsafe context, the stackalloc keyword can be used to allocate C#
arrays directly on the stack.

fixed In an unsafe context, the fixed keyword can be used to temporarily fix a
variable so that its address may be found.

Now, before we dig into the details, let me point out the fact that you will seldom if ever need to
make use of pointer types. Although C# does allow you to drop down to the level of pointer manipu-
lations, understand that the .NET runtime has absolutely no clue of your intentions. Thus, if you
mismanage a pointer, you are the one in charge of dealing with the consequences. Given these
warnings, when exactly would you need to work with pointer types? There are two common
situations:

• You are looking to optimize select parts of your application by directly manipulating mem-
ory outside the management of the CLR.

• You are calling methods of a C-based *.dll or COM server that demand pointer types as
parameters. Even in this case, you can often bypass the use of pointer types in favor of the
System.IntPtr type and members of the System.Runtime.InteropServices.Marshal type.

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS404

8849CH12.qxd 9/26/07 11:31 AM Page 404

In the event that you do decide to make use of this C# language feature, you will be required to
inform the C# compiler (csc.exe) of your intentions by enabling your project to support “unsafe
code.” To do so at the command line, simply supply the /unsafe flag as an argument:

csc /unsafe *.cs

From Visual Studio 2008, you will need to access your project’s Properties page and check the
Allow Unsafe Code check box from the Build tab (see Figure 12-7). To experiment with pointer
types, create a new Console Application project named UnsafeCode and enable unsafe code.

Figure 12-7. Enabling unsafe code using Visual Studio 2008

■Note In the examples that follow, I’m assuming that you have some background in C(++) pointer manipula-
tions. If this is not true in your case, feel free to skip this topic entirely. Again, writing unsafe code will not be a
common task for a vast majority of C# applications.

The unsafe Keyword
When you wish to work with pointers in C#, you must specifically declare a block of “unsafe code”
using the unsafe keyword (any code that is not marked with the unsafe keyword is considered “safe”
automatically). For example, the following Program class declares a scope of unsafe code within the
safe Main() method:

class Program
{
static void Main(string[] args)
{
unsafe
{
// Work with pointer types here!

}
// Can't work with pointers here!

}
}

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS 405

8849CH12.qxd 9/26/07 11:31 AM Page 405

In addition to declaring a scope of unsafe code within a method, you are able to build struc-
tures, classes, type members, and parameters that are “unsafe.” Here are a few examples to gnaw on
(no need to define these types in your current project):

// This entire structure is "unsafe" and can
// be used only in an unsafe context.
public unsafe struct Node
{
public int Value;
public Node* Left;
public Node* Right;

}

// This struct is safe, but the Node2* members
// are not. Technically, you may access "Value" from
// outside an unsafe context, but not "Left" and "Right".
public struct Node2
{
public int Value;

// These can be accessed only in an unsafe context!
public unsafe Node2* Left;
public unsafe Node2* Right;

}

Methods (static or instance level) may be marked as unsafe as well. For example, assume that
you know a particular static method will make use of pointer logic. To ensure that this method can
be called only from an unsafe context, you could define the method as follows:

unsafe static void SquareIntPointer(int* myIntPointer)
{
// Square the value just for a test.
*myIntPointer *= *myIntPointer;

}

The configuration of our method demands that the caller invoke SquareIntPointer() as
follows:

static void Main(string[] args)
{
unsafe
{
int myInt = 10;
// OK, because we are in an unsafe context.
SquareIntPointer(&myInt);
Console.WriteLine("myInt: {0}", myInt);

}

int myInt2 = 5;
// Compiler error! Must be in unsafe context!
SquareIntPointer(&myInt2);
Console.WriteLine("myInt: {0}", myInt2);

}

If you would rather not force the caller to wrap the invocation within an unsafe context, you
could update Main() with the unsafe keyword. In this case, the following code would compile:

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS406

8849CH12.qxd 9/26/07 11:31 AM Page 406

unsafe static void Main(string[] args)
{
int myInt2 = 5;
SquareIntPointer(&myInt2);
Console.WriteLine("myInt: {0}", myInt2);

}

Working with the * and & Operators
Once you have established an unsafe context, you are then free to build pointers to data types using
the * operator and obtain the address of said pointer using the & operator. Unlike in C or C++, using
C#, the * operator is applied to the underlying type only, not as a prefix to each pointer variable
name. For example, consider the following code, which illustrates the correct and incorrect way to
declare pointers to integer variables:

// No! This is incorrect under C#!
int *pi, *pj;

// Yes! This is the way of C#.
int* pi, pj;

Consider the following unsafe method:

unsafe static void PrintValueAndAddress()
{
int myInt;

// Define an int pointer, and
// assign it the address of myInt.
int* ptrToMyInt = &myInt;

// Assign value of myInt using pointer indirection.
*ptrToMyInt = 123;

// Print some stats.
Console.WriteLine("Value of myInt {0}", myInt);
Console.WriteLine("Address of myInt {0:X}", (int)&ptrToMyInt);

}

An Unsafe (and Safe) Swap Function
Of course, declaring pointers to local variables simply to assign their value (as shown in the previ-
ous example) is never required and not altogether useful. To illustrate a more practical example of
unsafe code, assume you wish to build a swap function using pointer arithmetic:

unsafe public static void UnsafeSwap(int* i, int* j)
{
int temp = *i;
*i = *j;
*j = temp;

}

Very C-like, don’t you think? However, given your work in Chapter 4 you should be aware that
you could write the following safe version of your swap algorithm using the C# ref keyword:

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS 407

8849CH12.qxd 9/26/07 11:31 AM Page 407

public static void SafeSwap(ref int i, ref int j)
{
int temp = i;
i = j;
j = temp;

}

The functionality of each method is identical, thus reinforcing the point that direct pointer
manipulation is not a mandatory task under C#. Here is the calling logic using a safe Main(), with
an unsafe context:

static void Main(string[] args)
{
Console.WriteLine("***** Calling method with unsafe code *****");

// Values for swap.
int i = 10, j = 20;

// Swap values "safely."
Console.WriteLine("\n***** Safe swap *****");
Console.WriteLine("Values before safe swap: i = {0}, j = {1}", i, j);
SafeSwap(ref i, ref j);
Console.WriteLine("Values after safe swap: i = {0}, j = {1}", i, j);

// Swap values "unsafely."
Console.WriteLine("\n***** Unsafe swap *****");
Console.WriteLine("Values before unsafe swap: i = {0}, j = {1}", i, j);
unsafe { UnsafeSwap(&i, &j); }
Console.WriteLine("Values after unsafe swap: i = {0}, j = {1}", i, j);
Console.ReadLine();

}

Field Access via Pointers (the -> Operator)
Now assume that you have defined a simple safe Point structure as follows:

struct Point
{
public int x;
public int y;
public override string ToString()
{ return string.Format("({0}, {1})", x, y);}

}

If you declare a pointer to a Point type, you will need to make use of the pointer-field access
operator (represented by ->) to access its public members. As shown in Table 12-3, this is the unsafe
version of the standard (safe) dot operator (.). In fact, using the pointer indirection operator (*), it is
possible to dereference a pointer to (once again) apply the dot operator notation. Check out the
unsafe method:

unsafe static void UsePointerToPoint()
{
// Access members via pointer.
Point point;
Point* p = &point;
p->x = 100;
p->y = 200;
Console.WriteLine(p->ToString());

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS408

8849CH12.qxd 9/26/07 11:31 AM Page 408

// Access members via pointer indirection.
Point point2;
Point* p2 = &point2;
(*p2).x = 100;
(*p2).y = 200;
Console.WriteLine((*p2).ToString());

}

The stackalloc Keyword
In an unsafe context, you may need to declare a local variable that allocates memory directly from
the call stack (and is therefore not subject to .NET garbage collection). To do so, C# provides the
stackalloc keyword, which is the C# equivalent to the _alloca function of the C runtime library.
Here is a simple example:

unsafe static void UnsafeStackAlloc()
{
char* p = stackalloc char[256];
for (int k = 0; k < 256; k++)
p[k] = (char)k;

}

Pinning a Type via the fixed Keyword
As you saw in the previous example, allocating a chunk of memory within an unsafe context may be
facilitated via the stackalloc keyword. By the very nature of this operation, the allocated memory
is cleaned up as soon as the allocating method has returned (as the memory is acquired from the
stack). However, assume a more complex example. During our examination of the -> operator, you
created a value type named Point. Like all value types, the allocated memory is popped off the stack
once the executing scope has terminated. For the sake of argument, assume Point was instead
defined as a reference type:

class PointRef // <= Renamed and retyped.
{
public int x;
public int y;
public override string ToString()
{ return string.Format("({0}, {1})", x, y);}

}

As you are well aware, if the caller declares a variable of type Point, the memory is allocated on
the garbage-collected heap. The burning question then becomes, “What if an unsafe context wishes
to interact with this object (or any object on the heap)?” Given that garbage collection can occur at
any moment, imagine the problems encountered when accessing the members of Point at the very
point in time at which a sweep of the heap is under way. Theoretically, it is possible that the unsafe
context is attempting to interact with a member that is no longer accessible or has been reposi-
tioned on the heap after surviving a generational sweep (which is an obvious problem).

To lock a reference type variable in memory from an unsafe context, C# provides the fixed key-
word. The fixed statement sets a pointer to a managed type and “pins” that variable during the
execution of statement. Without fixed, pointers to managed variables would be of little use, since
garbage collection could relocate the variables unpredictably. (In fact, the C# compiler will not
allow you to set a pointer to a managed variable except in a fixed statement.)

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS 409

8849CH12.qxd 9/26/07 11:31 AM Page 409

Thus, if you create a Point type (now redesigned as a class) and want to interact with its mem-
bers, you must write the following code (or receive a compiler error):

unsafe public static void UseAndPinPoint()
{
PointRef pt = new PointRef ();
pt.x = 5;
pt.y = 6;

// pin pt in place so it will not
// be moved or GC-ed.
fixed (int* p = &pt.x)
{
// Use int* variable here!

}

// pt is now unpinned, and ready to be GC-ed.
Console.WriteLine ("Point is: {0}", pt);

}

In a nutshell, the fixed keyword allows you to build a statement that locks a reference variable
in memory, such that its address remains constant for the duration of the statement. To be sure, any
time you interact with a reference type from within the context of unsafe code, pinning the refer-
ence is a must.

The sizeof Keyword
The final unsafe-centric C# keyword to consider is sizeof. As in C(++), the C# sizeof keyword is
used to obtain the size in bytes for a value type (never a reference type), and it may only be used
within an unsafe context. As you may imagine, this ability may prove helpful when you’re interact-
ing with unmanaged C-based APIs. Its usage is straightforward:

unsafe static void UseSizeOfOperator()
{
Console.WriteLine("The size of short is {0}.", sizeof(short));
Console.WriteLine("The size of int is {0}.", sizeof(int));
Console.WriteLine("The size of long is {0}.", sizeof(long));

}

As sizeof will evaluate the number of bytes for any System.ValueType-derived entity, you are
able to obtain the size of custom structures as well. For example, we could pass the Point structure
into sizeof as follows:

unsafe static void UseSizeOfOperator()
{
...
Console.WriteLine("The size of Point is {0}.", sizeof(Point));

}

■Source Code The UnsafeCode project can be found under the Chapter 12 subdirectory.

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS410

8849CH12.qxd 9/26/07 11:31 AM Page 410

C# Preprocessor Directives
Like many other languages in the C family, C# supports the use of various symbols that allow you to
interact with the compilation process. Before examining various C# preprocessor directives, let’s get
our terminology correct. The term “C# preprocessor directive” is not entirely accurate. In reality, this
term is used only for consistency with the C and C++ programming languages. In C#, there is no
separate preprocessing step. Rather, preprocessing directives are processed as part of the lexical
analysis phase of the compiler.

In any case, the syntax of the C# preprocessor directives is very similar to that of the other
members of the C family, in that the directives are always prefixed with the pound sign (#).
Table 12-4 defines some of the more commonly used directives (consult the .NET Framework 3.5
SDK documentation for complete details).

Table 12-4. Common C# Preprocessor Directives

Directives Meaning in Life

#region, #endregion Used to mark sections of collapsible source code

#define, #undef Used to define and undefine conditional compilation symbols

#if, #elif, #else, #endif Used to conditionally skip sections of source code (based on specified
compilation symbols)

Specifying Code Regions
Perhaps some of the most useful of all preprocessor directives are #region and #endregion. Using
these tags, you are able to specify a block of code that may be hidden from view and identified by a
friendly textual marker. Use of regions can help keep lengthy *.cs files more manageable. For exam-
ple, you could create one region for a type’s constructors, another for type properties, and so forth:

class Car
{
private string petName;
private int currSp;

#region Constructors
public Car()
{ ... }
public Car (int currSp, string petName)
{ ... }
#endregion

#region Properties
public int Speed
{ ... }
public string Name
{ ... }
#endregion

}

When you place your mouse cursor over a collapsed region, you are provided with a snapshot
of the code lurking behind (see Figure 12-8).

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS 411

8849CH12.qxd 9/26/07 11:31 AM Page 411

Figure 12-8. Regions at work

Conditional Code Compilation
The next batch of preprocessor directives (#if, #elif, #else, #endif) allows you to conditionally
compile a block of code, based on predefined symbols. The classic use of these directives is to
identify a block of code that is compiled only under a debug (rather than a release) build:

class Program
{
static void Main(string[] args)
{
#region Print machine info under DEBUG build
// This code will only execute if the project is
// compiled as a debug build.
#if DEBUG
Console.WriteLine("App directory: {0}",
Environment.CurrentDirectory);

Console.WriteLine("Box: {0}",
Environment.MachineName);

Console.WriteLine("OS: {0}",
Environment.OSVersion);

Console.WriteLine(".NET Version: {0}",
Environment.Version);

#endif
#endregion

}
}

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS412

8849CH12.qxd 9/26/07 11:31 AM Page 412

Here, you are checking for a symbol named DEBUG. If it is present, you dump out a number of
interesting statistics using some static members of the System.Environment class. If the DEBUG sym-
bol is not defined, the code placed between #if and #endif will not be compiled into the resulting
assembly, and it will be effectively ignored.

■Note The System.Diagnostics namespace provides the [Conditional] attribute, which can be applied to a
class or method. Chapter 16 will explain the role of attributes in detail; however, for now, simply know that if you
use [Conditional], you are not required to use the related preprocessor symbols.

By default, Visual Studio 2008 always defines a DEBUG symbol; however, this can be prevented by
deselecting the Define DEBUG constant check box option located under the Build tab of your pro-
ject’s Properties page. Assuming you did disable this autogenerated DEBUG symbol, you could now
define this symbol on a file-by-file basis using the #define preprocessor directive:

#define DEBUG
using System;

namespace PreprocessorDirectives
{
class Program
{
static void Main(string[] args)
{
// Same code as before...

}
}

}

■Note #define directives must be listed before anything else in a C# code file.

You are also able to define your own custom preprocessor symbols. For example, assume you
have authored a C# class that should be compiled a bit differently under the Mono distribution of
.NET (see Appendix B). Using #define, you can define a symbol named MONO_BUILD on a file-by-file
basis:

#define DEBUG
#define MONO_BUILD

using System;

namespace PreprocessorDirectives
{
class Program
{
static void Main(string[] args)
{
#if MONO_BUILD
Console.WriteLine("Compiling under Mono!");

#else
Console.WriteLine("Compiling under Microsoft .NET");

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS 413

8849CH12.qxd 9/26/07 11:31 AM Page 413

#endif
}

}
}

To create a project-wide symbol, make use of the Conditional compilation symbols text box
located on the Build tab of your project’s Properties page (see Figure 12-9).

Figure 12-9. Defining a projectwide preprocessor symbol

■Source Code The PreprocessorDirectives project can be found under the Chapter 12 subdirectory.

Summary
The purpose of this chapter is to deepen your understanding of the C# programming language. You
began by investigating various advanced type construction techniques (indexer methods, over-
loaded operators, and custom conversion routines). You spent the remainder of this chapter
examining a small set of lesser-known keywords (e.g., sizeof, checked, unsafe, and so forth), and
during the process came to learn how to work with raw pointer types. As stated throughout the
chapter’s examination of pointer types, a vast majority of your C# applications will never need to
make use of them.

We wrapped up with an examination of the core C# preprocessor directives, which allow you to
interact with the compiler (or in the case of #region/#endregion, Visual Studio 2008) regarding the
compilation of your code files.

CHAPTER 12 ■ INDEXERS, OPERATORS, AND POINTERS414

8849CH12.qxd 9/26/07 11:31 AM Page 414

C# 2008 Language Features

C# 2008, the current release of Microsoft’s flagship .NET programming language, introduces a
large number of new syntactic constructs, one of which (the lambda operator) you have already
explored in Chapter 11. This chapter will complete your investigation of the new language features
offered by C# 2008. Specifically, you will examine implicit data typing, automatic properties, exten-
sion methods, partial methods, object initializers, and the role of anonymous types.

While many of these new language features can be used directly out of the box to help build
robust and highly functional .NET software, it is also worth pointing out that many of these new
constructs are most helpful when interacting with the LINQ technology set, which you’ll begin to
examine in Chapter 14. Given this fact, don’t be too concerned if the usefulness of some of these
new constructs is not immediately obvious. Once you understand the role of LINQ, the role of many
of these new features will become crystal clear.

Understanding Implicitly Typed Local Variables
The first new language feature of C# 2008 we will examine is the implicit typing of local variables,
using a new Console Application aptly named ImplicitlyTypedLocalVars. As you have learned since
the very beginning of this text, local variables (such as variables declared in a method scope) are
declared in a very predictable (and explicit) manner:

static void DeclareExplicitVars()
{
// Explicitly typed local variables
// are declared as follows:
// dataType variableName = initialValue;
int myInt = 0;
bool myBool = true;
string myString = "Time, marches on...";

}

C# 2008 now provides a new keyword, var, which you can use in place of specifying a formal
data type (such as int, bool, or string). When you do so, the compiler will automatically infer the
underlying data type based on the initial value used to initialize the local data point. For example,
the previous variables can now be declared as follows:

static void DeclareImplicitVars()
{
// Implicitly typed local variables
// are declared as follows:
// var variableName = initialValue;

415

C H A P T E R 1 3

8849CH13.qxd 10/2/07 12:42 PM Page 415

var myInt = 0;
var myBool = true;
var myString = "Time, marches on...";

}

■Note Strictly speaking, var is not a C# keyword. It is permissible to declare variables, parameters, and fields
named “var” without compile-time errors. However, when the var token is used as a data type, it is contextually
treated as a keyword by the compiler. For simplicity, I will use the term “var keyword,” rather than the more cum-
bersome “contextual var token.”

In this case, the compiler is able to infer that myInt is in fact a System.Int32, myBool is a
System.Boolean, and myString is indeed of type System.String, given the initially assigned value.
You can verify this by printing out the type name via reflection:

static void DeclareImplicitVars()
{
// Implicitly typed local variables.
var myInt = 0;
var myBool = true;
var myString = "Time, marches on...";

// Print out the underlying type.
Console.WriteLine("myInt is a: {0}", myInt.GetType().Name);
Console.WriteLine("myBool is a: {0}", myBool.GetType().Name);
Console.WriteLine("myString is a: {0}", myString.GetType().Name);

}

Be aware that you can use this implicit typing for any type including arrays, generic types, and
your own custom types:

static void DeclareImplicitVars()
{
...
// More implicitly typed local variables.
var evenNumbers = new int[] { 2, 4, 6, 8 };
var myMinivans = new List<MiniVan>();
var myCar = new SportsCar();

Console.WriteLine("evenNumbers is a: {0}", evenNumbers.GetType().Name);
Console.WriteLine("myMinivans is a: {0}", myMinivans.GetType().Name);
Console.WriteLine("myCar is a: {0}", myCar.GetType().Name);

}

If you were to call the DeclareImplicitVars() method from within Main(), you’d find the out-
put shown in Figure 13-1.

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES416

8849CH13.qxd 10/2/07 12:42 PM Page 416

Figure 13-1. Reflecting over implicitly defined local variables

Use of var Within foreach Constructs
It is also possible to make use of implicit typing within a foreach looping construct. As you would
expect, the compiler will correctly infer the correct “type of type.” Consider the following method,
which iterates over an implicitly typed local array of integers:

static void VarInForeachLoop()
{
var evenNumbers = new int[] { 2, 4, 6, 8 };

// Use "var" in a standard foreach loop.
foreach (var item in evenNumbers)
{
Console.WriteLine("Item value: {0}", item);

}
}

Understand, however, that a foreach loop can make use of a strongly typed iterator when pro-
cessing an implicitly defined local array. Thus, the following code is also syntactically correct:

static void VarInForeachLoop()
{
var evenNumbers = new int[] { 2, 4, 6, 8 };

// Use a strongly typed System.Int32 to iterate over contents.
foreach (int item in evenNumbers)
{
Console.WriteLine("Item value: {0}", item);

}
}

Restrictions on Implicitly Typed Variables
There are, of course, various restrictions regarding the use of the var keyword. First and foremost,
implicit typing applies only to local variables in a method or property scope. It is illegal to use the
var keyword to define return values, parameters, or field data of a type:

class ThisWillNeverCompile
{
// Error! var cannot be used as field data!
private var myInt = 10;

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES 417

8849CH13.qxd 10/2/07 12:42 PM Page 417

// Error! var cannot be used as a return value
// or parameter type!
public var MyMethod(var x, var y){}

}

As well, local variables declared with the var keyword must be assigned an initial value at the
exact time of declaration and cannot be assigned the initial value of null. The first restriction makes
the act of defining an implicitly typed variable look and feel like the process of defining a constant
data point with the const keyword (see Chapter 5). This last restriction should make sense, given
that the compiler cannot infer what sort of type in memory the variable would be pointing to based
only on null:

// Error! Must assign a value!
var myData;

// Error! Must assign value at exact time of declaration!
var myInt;
myInt = 0;

// Error! Can't assign null as initial value!
var myObj = null;

It is permissible, however, to assign an inferred local variable to null after its initial assignment
(provided it is a reference type):

// OK, is SportsCar is a reference type!
var myCar = new SportsCar();
myCar = null;

Furthermore, it is permissible to assign the value of an implicitly typed local variable to the
value of other variables, implicitly typed or not:

// Also OK!
var myInt = 0;
var anotherInt = myInt;

string myString = "Wake up!";
var myData = myString;

As well, it is permissible to return an implicitly typed local variable to the caller, provided that
the method return type is the same underlying type as the var-defined data point:

static int GetAnInt()
{
var retVal = 9;
return retVal;

}

Last but not least, be aware that it is illegal to define a nullable implicitly typed local variable
using the C# ? token (see Chapter 4 for details on nullable data types):

// Nope, can't define nullable implicit variables,
// as implicit variables can never be initially assigned
// null to begin with!
var? nope = new SportsCar();
var? stillNo = 12;
var? noWay = null;

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES418

8849CH13.qxd 10/2/07 12:42 PM Page 418

Implicitly Typed Local Arrays
Closely related to the topic of implicitly typed local variables is the subject of implicitly typed local
arrays. Using this technique, you can allocate a new array type without specifying the type con-
tained within the array itself:

static void DeclareImplicitArrays()
{
// a is really int[].
var a = new[] { 1, 10, 100, 1000 };
Console.WriteLine("a is a: {0}", a.ToString());

// b is really double[].
var b = new[] { 1, 1.5, 2, 2.5 };
Console.WriteLine("b is a: {0}", b.ToString());

// c is really string[].
var c = new[] { "hello", null, "world" };
Console.WriteLine("c is a: {0}", c.ToString());

// myCars is really SportsCar[].
var myCars = new[] { new SportsCar(), new SportsCar() };
Console.WriteLine("myCars is a: {0}", myCars.ToString());
Console.WriteLine();

}

Of course, just as when you allocate an array using explicit C# syntax, the items in the array’s
initialization list must be of the same underlying type (all ints, all strings, all SportsCars, etc.).
Unlike what you might be expecting, an implicitly typed local array does not default to
System.Object; thus the following generates a compile-time error:

// Error! Mixed types!
var d = new[] { 1, "one", 2, "two", false };

Implicit Typed Data Is Strongly Typed Data
Be very aware that implicit typing of local variables results in strongly typed data. Therefore, use of
the var keyword is not the same technique used with scripting languages (such as VBScript or Perl)
or the COM Variant data type, where a variable can hold values of different types over its lifetime in
a program (often termed “dynamic typing”).

Rather, type inference keeps the strongly typed aspect of the C# language and affects only the
declaration of variables at compile time. After that point, the data point is treated as if it were
declared with that type; assigning a value of a different type into that variable will result in a com-
pile-time error:

static void ImplicitTypingIsStrongTyping()
{
// The compiler knows "s" is a System.String.
var s = "This variable can only hold string data!";
s = "This is fine...";

// Can invoke any member of the underlying type.
string upper = s.ToUpper();

// Error! Can't assign numerical data to a a string!
s = 44;

}

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES 419

8849CH13.qxd 10/2/07 12:42 PM Page 419

Usefulness of Implicitly Typed Local Variables
Now that you have seen the syntax used to declare implicitly typed local variables, I am sure you are
wondering when to make use of this construct? First and foremost, using var to declare local vari-
ables simply for the sake of doing so really brings little to the table. Doing so can be confusing to
others reading your code, as it becomes harder to quickly determine the underlying data type (and
therefore more difficult to understand the overall functionality of the variable). Therefore, if you
know you need an int, declare an int!

However, as you will see beginning in Chapter 14, the LINQ technology set makes use of query
expressions that can yield dynamically created result sets based on the format of the query itself. In
these cases, implicit typing is extremely helpful, as we do not need to explicitly define the type that
a query may return, which in some cases would be literally impossible to do. Don’t get hung up on
the following LINQ example code; however, see if you can figure out the underlying data type of
subset:

static void QueryOverInts()
{
int[] numbers = { 10, 20, 30, 40, 1, 2, 3, 8 };
var subset = from i in numbers where i < 10 select i;

Console.Write("Values in subset: ");
foreach (var i in subset)
{
Console.Write("{0} ", i);

}
Console.WriteLine();

// Hmm...what type is subset?
Console.WriteLine("subset is a: {0}", subset.GetType().Name);
Console.WriteLine("subset is defined in: {0}", subset.GetType().Namespace);

}

I’ll let the interested reader verify the type-of-type of subset by executing the preceding code
(and it is not an array of integers!). In any case, it should be clear that implicit typing does have its
place within the LINQ technology set. In fact, it could be argued that the only time one would make
use of the var keyword is when defining data returned from a LINQ query.

■Source Code The ImplicitlyTypedLocalVars project can be found under the Chapter 13 subdirectory.

Understanding Automatic Properties
As you learned in Chapter 5 during our examination of encapsulation services, .NET programming
languages prefer the use of type properties to safely obtain and assign private data fields of a type,
rather than using traditional GetXXX() and SetXXX() methods. Consider the following encapsulated
string type:

// A Car type using standard property
// syntax.
class Car
{
private string carName = string.Empty;
public int PetName

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES420

8849CH13.qxd 10/2/07 12:42 PM Page 420

{
get { return carName; }
set { carName = value; }

}
}

While defining a C# property is not too problematic, you may agree that when your properties
simply assign and return the value straightaway as you see here, it is rather verbose to define back-
ing fields and simple property definitions multiple times. By way of an example, if you are modeling
a type that requires 15 private points of field data, you end up authoring 15 related properties that
are little more than thin wrappers for encapsulation services.

To streamline the process of providing simple encapsulation of field data, C# 2008 now pro-
vides automatic property syntax. As the name implies, this feature will offload the work of defining a
private backing field and the related C# property member to the compiler using a new bit of syntax.
To illustrate, under C# 2008, the previous Car type could now be defined as follows:

class Car
{
// Automatic property syntax.
public string PetName { get; set; }

}

■Note The Visual Studio 2008 “Prop” code snippet has been rewritten to make use of automatic property syntax,
rather than the traditional C# property logic (see Chapter 2 for an explanation of code snippets).

At first glance, automatic property syntax might seem as if you were defining an abstract prop-
erty to be overridden by derived types, given the presence of unimplemented get and set scopes.
However, this is not the case. If you did intend to define an abstract property in the Car type, you
would need to make use of the C# abstract keyword as follows:

abstract class Car
{
// Abstract property in an abstract base class.
public abstract string PetName { get; set; }

}

When defining automatic properties, you simply specify the access modifier, underlying data
type, property name, and empty get/set scopes. At compile time, your type will be provided with an
autogenerated private backing field and a fitting implementation of the get/set logic.

■Note The name of the autogenerated private backing field is not visible within your C# code base. The only way
to see it is to make use of a tool such as ildasm.exe.

Unlike traditional C# properties, however, it is not possible to build read-only or write-only
automatic properties. While you might think you can just omit the get; or set; within your property
declaration as follows:

// Read-only property? Error!
public int MyReadOnlyProp { get; }

// Write only property? Error!
public int MyWriteOnlyProp { set; }

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES 421

8849CH13.qxd 10/2/07 12:42 PM Page 421

this will result in a compiler error. When you are defining an automatic property, it must support
both read and write functionality.

Interacting with Automatic Properties
Because the compiler will define the private backing field at compile time, the class defining auto-
matic properties will always need to use property syntax to get and set the underlying value. This
is important to note because many programmers make direct use of the private fields within a
class definition, which is not possible in this case. For example, if the Car type were to override
ToString(), you would need to implement this method using the property name:

class Car
{
public string PetName { get; set; }

public override string ToString()
{
// No access to the private member in the defining
// class. Must use properties!
return string.Format("PetName = {0}", PetName);

}
}

When you are using an object defined with automatic properties, you will be able to assign and
obtain the values using the expected property syntax:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Automatic Properties *****");
Car c = new Car();
c.PetName = "Frank";
Console.WriteLine("Your car is named {0}? That's odd...",
c.PetName);

Console.ReadLine();
}

Restricting Access on Automatic Properties
Recall that a “normal” .NET property can be constructed in such a way that the get and set logic is
assigned a unique access modifier. For example, it is possible to define a public get scope and a
more restrictive protected scope as follows:

// Anyone can get the PetName value, but
// only the defining type and the children can set it.
public int PetName
{
get { return carName; }
protected set { carName = value; }

}

This same possibility is allowed using automatic property syntax as follows:

public string PetName { get; protected set; }

Of course, with this update, the previous Main() method would now generate a compiler error
when attempting to assign the value of the PetName property:

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES422

8849CH13.qxd 10/2/07 12:42 PM Page 422

static void Main(string[] args)
{
...
// Error! Setting the PetName is only possible
// from within the Car type or by a child type!
c.PetName = "Frank";

// Getting the value is still OK.
Console.WriteLine("Your car is named {0}? That's odd...",
c.PetName);

Console.ReadLine();
}

Regarding Automatic Properties and Default Values
When you use automatic properties to encapsulate numerical or Boolean data, you are able to use
the autogenerated type properties straightaway within your code base, as the hidden backing fields
will be assigned a safe default value that can be used directly. However, be very aware that if you use
automatic property syntax to wrap a reference type, the hidden private reference type will also be
set to a default value of null:

class Garage
{
// The hidden int backing field is set to zero!
public int NumberOfCars { get; set; }

// The hidden Car backing field is set to null!
public Car MyAuto { get; set; }

}

Given C#’s default values for field data, you would be able to print out the value of
NumberOfCars as is (as it is automatically assigned the value of zero), but if you directly invoke
MyAuto, you will receive a null reference exception:

static void Main(string[] args)
{
...
Garage g = new Garage();

// OK, prints defualt value of zero.
Console.WriteLine("Number of Cars: {0}", g.NumberOfCars);

// Runtime error! Backing field is currently null!
Console.WriteLine(g.MyAuto.PetName);
Console.ReadLine();

}

Given that the private backing fields are created at compile time, you will be unable to make
use of C# field initialization syntax to allocate the reference type directly with the new keyword.
Therefore, this work will need to be done with type constructors to ensure the object comes to life
in a safe manner. For example:

class Garage
{
// The hidden backing field is set to zero!
public int NumberOfCars { get; set; }

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES 423

8849CH13.qxd 10/2/07 12:42 PM Page 423

// The hidden backing field is set to null!
public Car MyAuto { get; set; }

// Must use constructors to override default
// values assigned to hidden backing fields.
public Garage()
{
MyAuto = new Car();
NumberOfCars = 1;

}
public Garage(Car car, int number)
{
MyAuto = car;
NumberOfCars = number;

}
}

As you most likely agree, this is a very nice extension to the C# programming language, as you
can define a number of properties for a class using a streamlined syntax. Be aware of course that if
you are building a property that requires additional code beyond getting and setting the underlying
private field (such as data validation logic, writing to an event log, communicating with a database,
etc.), you will be required to define a “normal” .NET property type by hand. C# 2008 automatic
properties never do more than provide simple encapsulation for an underlying data type.

■Source Code The AutomaticProperties project can be found under the Chapter 13 subdirectory.

Understanding Extension Methods
The next C# 2008 language feature we will examine is the use of extension methods. As you know,
once a type is defined and compiled into a .NET assembly, its definition is, more or less, final. The
only way to add new members, update members, or remove members is to recode and recompile
the code base into an updated assembly (or take more drastic measures, such as using the
System.Reflection.Emit namespace to dynamically reshape a compiled type in memory).

Under C# 2008, it is now possible to define extension methods. In a nutshell, extension meth-
ods allow existing compiled types (specifically, classes, structures, or interface implementations) as
well as types currently being compiled (such as types in a project that contains extension methods)
to gain new functionality without needing to directly update the type being extended.

This technique can be quite helpful when you need to inject new functionality into types for
which you do not have an existing code base. It can also be quite helpful when you need to force a
type to support a set of members (in the interest of polymorphism), but cannot modify the original
type declaration. Using extension methods, you can add functionality to precompiled types while
providing the illusion these methods were there all along.

■Note Understand that extension methods do not literally change the compiled code base! This technique only
adds members to a type within the context of the current application.

When you define extension methods, the first restriction is that they must be defined within a
static class (see Chapter 5), and therefore each extension method must also be declared with the

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES424

8849CH13.qxd 10/2/07 12:42 PM Page 424

static keyword. The second point is that all extension methods are marked as such by using the
this keyword as a modifier on the first (and only the first) parameter of the method in question. The
third point is that every extension method can be called either from the correct instance in memory
or statically via the defining static class! Sound strange? Let’s look at a full example to clarify matters.

Defining Extension Methods
Create a new Console Application named ExtensionMethods. Now, assume you are authoring a
utility class named MyExtensions that defines two extension methods. The first method allows
any object in the .NET base class libraries to have a brand-new method named
DisplayDefiningAssembly() that makes use of types in the System.Reflection namespace to
display the assembly of the specified type.

The second extension method, named ReverseDigits(), allows any System.Int32 to obtain a
new version of itself where the value is reversed digit by digit. For example, if an integer with the
value 1234 called ReverseDigits(), the integer returned is set to the value 4321. Consider the follow-
ing class implementation:

static class MyExtensions
{
// This method allows any object to display the assembly
// it is defined in.
public static void DisplayDefiningAssembly(this object obj)
{
Console.WriteLine("{0} lives here:\n\t->{1}\n", obj.GetType().Name,
Assembly.GetAssembly(obj.GetType()));

}

// This method allows any integer to reverse its digits.
// For example, 56 would return 65.
public static int ReverseDigits(this int i)
{
// Translate int into a string, and then
// get all the characters.
char[] digits = i.ToString().ToCharArray();

// Now reverse items in the array.
Array.Reverse(digits);

// Put back into string.
string newDigits = new string(digits);

// Finally, return the modified string back as an int.
return int.Parse(newDigits);

}
}

Again, note how the first parameter of each extension method has been qualified with the this
keyword, before defining the parameter type. It is always the case that the first parameter of an
extension method represents the type being extended. Given that DisplayDefiningAssembly() has
been prototyped to extend System.Object, any type in any assembly now has this new member.
However, ReverseDigits() has been prototyped to only extend integer types, and therefore if any-
thing other than an integer attempts to invoke this method, you will receive a compile-time error.

Understand that a given extension method could have multiple parameters, but only the first
parameter can be qualified with this. For example, here is an overloaded extension method defined
in another utility class, named simply TesterUtilClass:

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES 425

8849CH13.qxd 10/2/07 12:42 PM Page 425

static class TesterUtilClass
{
// Every Int32 now has a Foo() method...
public static void Foo(this int i)
{ Console.WriteLine("{0} called the Foo() method.", i); }

// ...which has been overloaded to take a string!
public static void Foo(this int i, string msg)
{ Console.WriteLine("{0} called Foo() and told me: {1}", i, msg); }

}

Invoking Extension Methods on an Instance Level
Now that we have these extension methods, look at how all objects (which of course means every-
thing in the .NET base class libraries) have a new method named DisplayDefiningAssembly(), while
System.Int32 types (and only integers) have methods named ReverseDigits() and Foo():

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Extension Methods *****\n");

// The int has assumed a new identity!
int myInt = 12345678;
myInt.DisplayDefiningAssembly();

// So has the DataSet!
System.Data.DataSet d = new System.Data.DataSet();
d.DisplayDefiningAssembly();

// And the SoundPlayer!
System.Media.SoundPlayer sp = new System.Media.SoundPlayer();
sp.DisplayDefiningAssembly();

// Use new integer functionality.
Console.WriteLine("Value of myInt: {0}", myInt);
Console.WriteLine("Reversed digits of myInt: {0}", myInt.ReverseDigits());
myInt.Foo();
myInt.Foo("Ints that Foo? Who would have thought it!");

bool b2 = true;

// Error! Booleans don't have the Foo() method!
// b2.Foo();

Console.ReadLine();
}

Figure 13-2 shows the output.

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES426

8849CH13.qxd 10/2/07 12:42 PM Page 426

Figure 13-2. Extension methods in action

Invoking Extension Methods Statically
Recall that the first parameter of an extension method is marked with the this keyword, followed by
the type of item the method is applicable to. If we peek at what is happening behind the scenes (as
verified by a tool such as ildasm.exe), we will find that the compiler simply calls the “normal” static
method, passing in the variable calling the method as a parameter (e.g., it is the value of this). Con-
sider the following C# code, which approximates the code substitution that took place:

private static void Main(string[] args)
{
Console.WriteLine("***** Fun with Extension Methods *****\n");
int myInt = 12345678;
MyExtensions.DisplayDefiningAssembly(myInt);

DataSet d = new DataSet();
MyExtensions.DisplayDefiningAssembly(d);

SoundPlayer sp = new SoundPlayer();
MyExtensions.DisplayDefiningAssembly(sp);

Console.WriteLine("Value of myInt: {0}", myInt);
Console.WriteLine("Reversed digits of myInt: {0}",
MyExtensions.ReverseDigits(myInt));

TesterUtilClass.Foo(myInt);
TesterUtilClass.Foo(myInt, "Ints that Foo? Who would have thought it!");
Console.ReadLine();

}

Given that calling an extension method from an object (thereby making it seem that the
method is in fact an instance-level method) is just some smoke-and-mirrors effect provided by
the compiler, you are always free to call extension methods as normal static methods using the
expected C# syntax (as just shown).

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES 427

8849CH13.qxd 10/2/07 12:42 PM Page 427

The Scope of an Extension Method
As just explained, extension methods are essentially static methods that can be invoked from an
instance of the extended type. Given this flavor of syntactic sugar, it is really important to point out
that unlike a “normal” method, extension methods do not have direct access to the members of the
type they are extending; said another way, extending is not inheriting. Consider the following simple
Car type:

public class Car
{
public int Speed;
public int SpeedUp()
{
return ++Speed;

}
}

If you were to build an extension method for the Car type named SlowDown(), you do not have
direct access to the members of Car within the scope of the extension method as we are not per-
forming an act of classical inheritance. Therefore, the following would result in a compiler error:

public static class CarExtensions
{
public static int SlowDown(this Car c)
{
// Error! This method is not deriving from Car!
return --Speed;

}
}

The problem here is that the static SlowDown() extension method is attempting to access the
Speed field of the Car type; however, because SlowDown() is a static member of the CarExtensions
class, Speed does not exist in this context! What is permissible, however, is to make use of the this-
qualified parameter to access all public members (and only the public members) of the type being
extending. Thus, the following code compiles as expected:

public static class CarExtensions
{
public static int SlowDown(this Car c)
{
// OK!
return --c.Speed;

}
}

At this point, you could create a Car object and invoke the SpeedUp() and SlowDown() methods
as follows:

static void UseCar()
{
Car c = new Car();
Console.WriteLine("Speed: {0}", c.SpeedUp());
Console.WriteLine("Speed: {0}", c.SlowDown());

}

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES428

8849CH13.qxd 10/2/07 12:42 PM Page 428

Importing Types That Define Extension Methods
When you partition a set of static classes containing extension methods in a unique namespace,
other namespaces in that assembly will make use of the standard C# using keyword to import not
only the static classes themselves, but also each of the supported extension methods. This is impor-
tant to remember, because if you do not explicitly import the correct namespace, the extension
methods are not available for that C# code file.

In effect, although it can appear on the surface that extension methods are global in nature,
they are in fact limited to the namespaces that define them or the namespaces that import them.
Thus, if we wrap the definitions of our static classes (MyExtensions, TesterUtilClass, and
CarExtensions) into a namespace named MyExtensionMethods as follows:

namespace MyExtensionMethods
{
static class MyExtensions
{
...

}

static class TesterUtilClass
{
...

}

static class CarExtensions
{
...

}
}

other namespaces in the project would need to explicitly import the MyExtensionMethods name-
space to gain the extension methods defined by these types. Therefore, the following is a compiler
error:

// Here is our only using directive.
using System;

namespace MyNewApp
{
class JustATest
{
void SomeMethod()
{
// Error! Need to import MyExtensionMethods
// namespace to extend int with Foo()!
int i = 0;
i.Foo();

}
}

}

The IntelliSense of Extension Methods
Given the fact that extension methods are not literally defined on the type being extended, it is cer-
tainly possible to become confused when examining an existing code base. For example, assume
you have imported a namespace that defined some number of extension methods authored by a

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES 429

8849CH13.qxd 10/2/07 12:42 PM Page 429

teammate. As you are authoring your code, you might create a variable of the extended type, apply
the dot operator, and find dozens of new methods that are not members of the original class
definition!

Thankfully, Visual Studio’s IntelliSense mechanism marks all extension methods with a unique
“downward arrow” icon (see Figure 13-3), which appears blue on your screen.

Figure 13-3. The IntelliSense of extension methods

Any method marked with this visual icon is a friendly reminder that the method is defined out-
side of the original class definition via an extension method.

■Source Code The ExtensionMethods project can be found under the Chapter 13 subdirectory.

Building and Using Extension Libraries
The previous example extended the functionality of various types (such as the System.Int32 type)
for use by the current console application. However, I am sure you could imagine the usefulness of
building a.NET code library that defines numerous extensions that can be referenced by multiple
applications. As luck would have it, doing so is very straightforward.

To illustrate, create a new Class Library project (named MyExtensionsLibrary). Next, rename
your initial C# code file to MyExtensions.cs, and copy the MyExtensions class definition in your new
namespace:

namespace MyExtensionsLibrary
{
// Be sure to import System.Reflection.
public static class MyExtensions
{
// Same implementation as before.
public static void DisplayDefiningAssembly(this object obj)
{...}

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES430

8849CH13.qxd 10/2/07 12:42 PM Page 430

// Same implementation as before.
public static int ReverseDigits(this int i)
{...}

}
}

■Note If you wish to export extension methods from a .NET code library, the defining type must be declared pub-
lically (recall the default access modifier for a type is internal).

At this point, you can compile your library and reference the MyExtensionsLibrary.dll assem-
bly within new .NET projects. When you do so, the new functionality provided to System.Object and
System.Int32 can be used by any application that references the library.

To test this out, add a new Console Application project (named MyExtensionsLibraryClient).
Next, add a reference to the MyExtensionsLibrary.dll assembly. Within the initial code file, specify
that you are using the MyExtensionsLibrary namespace, and author some simple code that invokes
these new methods on a local integer:

using System;
// Import our custom namespace.
using MyExtensionsLibrary;

namespace MyExtnesionsLibraryClient
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Using Library with Extensions *****\n");
// This time, these extension methods
// have been defined within an external
// .NET class library.
int myInt = 987;
myInt.DisplayDefiningAssembly();
Console.WriteLine("{0} is reversed to {1}",
myInt, myInt.ReverseDigits());

Console.ReadLine();
}

}
}

Microsoft recommends placing types that have extension methods in a dedicated assembly
(within a dedicated namespace). The reason is simply to reduce cluttering of your programming
environment. By way of example, if you were to author a core library for your company that every
application was expected to make use of, and if the root namespace of that library defined 30 exten-
sion methods, the end result would be that all applications would now find these methods pop up
in IntelliSense (even if they are not required).

■Source Code The MyExtensionsLibrary and MyExtensionsLibraryClient projects can be found under the
Chapter 13 subdirectory.

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES 431

8849CH13.qxd 10/2/07 12:42 PM Page 431

Extending Interface Types via Extension Methods
At this point, you have seen how to extend classes (and, indirectly, structures that follow the same
syntax) with new functionality via extension methods. To wrap up our investigation of C# 2008
extension methods, allow me to point out that it is possible to extend an interface type with new
methods; however, the semantics of such an action are sure to be a bit different from what you
might expect.

Create a new Console Application named InterfaceExtensions and define a simple interface
type (IBasicMath) that contains a single method named Add(). Next, implement this interface on a
class type (MyCalc) in a fitting manner. For example:

// Define a normal CLR interface in C#.
interface IBasicMath
{
int Add(int x, int y);

}

// Implementation of IBasicMath.
class MyCalc : IBasicMath
{
public int Add(int x, int y)
{
return x + y;

}
}

Now, assume you do not have access to the code definition of IBasicMath, but wish to add a
new member (such as a subtraction method) to expand its behavior. You might attempt to author
the following extension class to do so:

static class MathExtensions
{
// Extend IBasicMath with subtraction method?
public static int Subtract(this IBasicMath itf,
int x, int y);

}

However, this will result in compile-time errors. When you extend an interface with new mem-
bers, you must also supply an implementation of these members! This seems to fly in the face of
the very nature of interface types, as interfaces do not provide implementations, only definitions.
Nevertheless, we are required to define our MathExtensions class as follows:

static class MathExtensions
{
// Extend IBasicMath this method and this
// implementation.
public static int Subtract(this IBasicMath itf,
int x, int y)

{
return x - y;

}
}

At this point, you might assume you could create a variable of type IBasicMath and directly
invoke Subtract(). Again, if this were possible (which it is not), this would destroy the nature of
.NET interface types. In reality, what we have actually said here is “Any class in my project imple-
menting IBasicMath now has a Subtract() method, implemented in this manner.” As before, all the

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES432

8849CH13.qxd 10/2/07 12:42 PM Page 432

basic rules apply, therefore the namespace defining MyCalc must have access to the namespace
defining MathExtensions. Consider the following Main() method:

static void Main(string[] args)
{
Console.WriteLine("***** Extending an interface *****\n");

// Call IBasicMath members from MyCalc object.
MyCalc c = new MyCalc();
Console.WriteLine("1 + 2 = {0}", c.Add(1, 2));
Console.WriteLine("1 - 2 = {0}", c.Subtract(1, 2));

// Can also cast into IBasicMath to invoke extension.
Console.WriteLine("30 - 9 = {0}",
((IBasicMath)c).Subtract(30, 9));

// This would NOT work!
// IBasicMath itfBM = new IBasicMath();
// itfBM.Subtract(10, 10);
Console.ReadLine();

}

That wraps up our examination of C# 2008 extension methods. Remember that this particular
language feature can be very useful whenever you wish to extend the functionality of a type, even if
you do not have access to the original source code, for the purposes of polymorphism. And, much
like implicitly typed local variables, extension methods are a key element of working with the LINQ
API. As you will see in the next chapter, numerous existing types in the base class libraries have
been extended with new functionality (via extension methods) to allow them to integrate with the
LINQ programming model.

■Source Code The InterfaceExtension project can be found under the Chapter 13 subdirectory.

Understanding Partial Methods
Since the release of .NET 2.0, we have been able to build partial class definitions using the partial
keyword (see Chapter 5). Recall that this bit of syntax allows us to partition the full implementation
of a type across multiple code files (or other locations, such as in memory). As long as each aspect
of the partial type has the same fully qualified name, the end result is a single “normal” compiled
class type in the assembly being constructed.

C# 2008 widens the scope of the partial keyword in that it can now be applied on the method
level. In a nutshell, this allows you to prototype a method in one file, yet implement it in another
file. If you have a C++ background, this might remind you of the concept of a C++ header/imple-
mentation file; however, C# partial methods have a number of important restrictions:

• Partial methods can only be defined within a partial class.

• Partial methods must return void.

• Partial methods can be static or instance level.

• Partial methods can have arguments (including parameters modified by this, ref, or
params—but not with the out modifier).

• Partial methods are always implicitly private.

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES 433

8849CH13.qxd 10/2/07 12:42 PM Page 433

Even stranger is the fact that a partial method may or may not be emitted into the compiled
assembly!

A First Look at Partial Methods
To see the implications of defining a partial method, create a new Console Application project
named PartialMethods. Now, define a new class named CarLocator within a C# file named
CarLocator.cs:

// CarLocator.cs
partial class CarLocator
{
// This member will always be part of the
// CarLocator class.
public bool CarAvailableInZipCode(string zipCode)
{
// This call *may* be part of this method
// implementation.
VerifyDuplicates(zipCode);

// Assume some interesting database logic
// here...
return true;

}

// This member *may* be part of the CarLocator class!
partial void VerifyDuplicates(string make);

}

Notice that the VerifyDuplicates() method has been defined with the partial modifier and
does not define a method body within this file. Also notice that the CarAvailableInZipCode()
method is making a call to VerifyDuplicates() within its implementation.

If you were to compile this application as it now stands and open the compiled assembly
into a tool such as ildasm.exe or reflector.exe, you will find no trace of the VerifyDuplicates()
method in the CarLocator class, and no trace of the call to VerifyDuplicates() within
CarAvailableInZipCode()! Given the project as it now stands, you really authored the following
definition of the CarLocator class as far as the compiler is concerned:

internal class CarLocator
{
public bool CarAvailableInZipCode(string zipCode)
{
return true;

}
}

The reason for this strange stripping away of code has to do with the fact that our partial
VerifyDuplicates() method was never given a true implementation. If we were to now add a new
file to our project (named perhaps CarLocatorImpl.cs) that defined the remainder of our partial
method:

// CarLocatorImpl.cs
partial class CarLocator
{
partial void VerifyDuplicates(string make)
{
// Assume some expensive data validation

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES434

8849CH13.qxd 10/2/07 12:42 PM Page 434

// takes place here...
}

}

We would now find that the full scope of the CarLocator class is taken into account at compile
time (as shown in the following approximate C# code):

internal class CarLocator
{
public bool CarAvailableInZipCode(string zipCode)
{
this.VerifyDuplicates(zipCode);
return true;

}

private void VerifyDuplicates(string make)
{
}

}

As you can see, when a method is defined with the partial keyword, the compiler will deter-
mine if it should be emitted into the assembly based on whether the method has a method body or
is simply an empty signature. If there is no method body, all traces of the method (invocations,
metadata descriptions, prototypes) are stripped out during the compilation cycle.

In some ways, C# partial methods are a strongly typed version of conditional code compilation
(via the #if, #elif, #else, and #endif preprocessor directives; see Chapter 12). The major difference,
however, is that a partial method will be completely ignored during the compilation cycle (regard-
less of build settings) if there is not a supporting implementation.

Uses of Partial Methods
Given the restrictions that come with a partial method, most notably the fact that they must be
implicitly private and always return void, it is hard to see many useful applications of this new lan-
guage feature. Truth be told, out of all of the language features found with C# 2008, partial methods
will more likely than not be the least used among them.

In the current example, the VerifyDuplicates() method was marked as partial for illustrative
purposes; however, imagine that this method, if implemented, had to perform some very intensive
calculations.

By marking this method with the partial modifier, other class builders have the option of pro-
viding implementation details if they so choose. In this case, partial methods provide a cleaner
solution than using preprocessor directives, supplying “dummy” implementations to virtual meth-
ods or throwing NotImplementedException objects.

The most common use of this syntax is to define what are termed lightweight events. This tech-
nique enables class designers to provide method hooks, similar to event handlers, that developers
may choose to implement or not. As a naming convention, such lightweight event-handling meth-
ods take an On prefix, for example:

// CarLocator.EventHandler.cs
partial class CarLocator
{
public bool CarAvailableInZipCode(string zipCode)
{
...
OnZipCodeLookup(zipCode);
return true;

}

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES 435

8849CH13.qxd 10/2/07 12:42 PM Page 435

...
// A "lightweight" event handler.
partial void OnZipCodeLookup(string make);

}

If a class builder wishes to be informed when the CarAvailableInZipCode() method has been
called, they can provide an implementation of the OnZipCodeLookup() method. If they do not care,
they simply do nothing.

■Source Code The PartialMethods project can be found under the Chapter 13 subdirectory.

Understanding Object Initializer Syntax
C# 2008 offers a new way to hydrate the state of a new class or structure variable termed object ini-
tializer syntax. Using this technique, it is possible to create a new type variable and assign a slew of
properties and/or public fields in a few lines of code. Syntactically, an object initializer consists of a
comma-delimited list of specified values, enclosed by the { and } tokens. Each member in the ini-
tialization list maps to the name of a public field or public property of the object being initialized.

To see this new syntax in action, create a new Console Application named ObjectInitializers.
Now, consider the various geometric types created over the course of this text (Point, Rectangle,
Hexagon, etc.). For example, recall our simple Point type (which did not make use of C# 2008 auto-
matic properties):

public class Point
{
private int xPos, yPos;

public Point(int x, int y)
{ xPos = x; yPos = y; }
public Point(){}

public int X
{
get { return xPos; }
set { xPos = value; }

}
public int Y
{
get { return yPos; }
set { yPos = value; }

}

public override string ToString()
{ return string.Format("[{0}, {1}]", xPos, yPos); }

}

Under C# 2008, we could now make Points using any of the following approaches:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Object Init Syntax *****\n");
// Make a Point by setting each property manually...
Point firstPoint = new Point();

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES436

8849CH13.qxd 10/2/07 12:42 PM Page 436

firstPoint.X = 10;
firstPoint.Y = 10;

// ...or make a Point via a custom constructor...
Point anotherPoint = new Point(20, 20);

// ...or make some Point types using the new object init syntax.
var yetAnotherPoint = new Point { X = 30, Y = 30 };
Point finalPoint = new Point { X = 30, Y = 30 };
Console.ReadLine();

}

The final two Point types (one of which is implicitly typed, just for the purpose of illustration)
are not making use of a custom type constructor (as one might do traditionally), but are rather set-
ting values to the public X and Y properties. Behind the scenes, the type’s default constructor is
invoked, followed by setting the values to the specified properties. To this end, yetAnotherPoint and
finalPoint are just shorthand notations for the syntax used to create the firstPoint variable (going
property by property).

Now recall that this same syntax can be used to set public fields of a type, which Point cur-
rently does not support. However, for the sake of argument, assume that the xPos and yPos member
variables have been declared publicly. We could now set values to these fields as follows:

var p = new Point {xPos = 2, yPos = 3};

Given that Point now has four public members, the following syntax is also legal. However, try
to figure out the actual final values of xPos and yPos:

var p = new Point {xPos = 2, yPos = 3, X = 900};

As you might guess, xPos is set to 900, while yPos is the value 3. From this, you can correctly
infer that object initialization is performed in a left-to-right manner. To clarify, the previous initial-
ization of p using standard object constructor syntax would appear as follows:

Point p = new Point();
p.xPos = 2;
p.yPos = 3;
p.X = 900;

Calling Custom Constructors with Initialization Syntax
The previous examples initialized Point types by implicitly calling the default constructor on the
type:

// Here, the default constructor is called implicitly.
Point finalPoint = new Point { X = 30, Y = 30 };

If you wish to be very clear about this, it is permissible to explicitly call the default constructor
as follows:

// Here, the default constructor is called explicitly.
Point finalPoint = new Point() { X = 30, Y = 30 };

Do be aware that when you are constructing a type using the new initialization syntax, you are
able to invoke any constructor defined by the class or structure. Our Point type currently defines a
two-argument constructor to set the (x, y) position. Therefore, the following Point declaration
results in an X value of 100 and a Y value of 100, regardless of the fact that our constructor arguments
specified the values 10 and 16:

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES 437

8849CH13.qxd 10/2/07 12:42 PM Page 437

// Calling a custom constructor.
Point pt = new Point(10, 16) { X = 100, Y = 100 };

Given the current definition of our Point type, calling the custom constructor while using ini-
tialization syntax is not terribly useful (and more than a bit verbose). However, if our Point type
provides a new constructor that allows the caller to establish a color (via a custom enumeration
named PointColor), the combination of custom constructors and object initialization syntax
becomes clear. Assume we have updated Point as follows:

public enum PointColor
{ LightBlue, BloodRed, Gold }

public class Point
{
public int xPos, yPos;
private PointColor c;

public Point(PointColor color)
{
xPos = 0; yPos = 0;
c = color;

}
public Point(){}
public Point(int x, int y)
{
xPos = x; yPos = y;
c = PointColor.Gold;

}
...
public override string ToString()
{ return string.Format("[{0}, {1}, Color = {2}]", xPos, yPos, c); }

}

With this new constructor, we can now create a golden point (positioned at 90, 20) as follows:

// Calling a more interesting custom constructor with init syntax.
Point goldPoint = new Point(PointColor.Gold){ X = 90, Y = 20 };
Console.WriteLine("Value of Point is: {0}", goldPoint);

Initializing Inner Types
Recall from Chapter 6 that the “has-a” relationship allows us to compose new types by defining
member variables of existing types. For example, assume we now have a Rectangle class, which
makes use of the Point type to represent its upper-left/bottom-right coordinates:

public class Rectangle
{
private Point topLeft = new Point();
private Point bottomRight = new Point();

public Point TopLeft
{
get { return topLeft; }
set { topLeft = value; }

}
public Point BottomRight
{

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES438

8849CH13.qxd 10/2/07 12:42 PM Page 438

get { return bottomRight; }
set { bottomRight = value; }

}

public override string ToString()
{
return string.Format("[TopLeft: {0}, {1}, BottomRight: {2}, {3}]", topLeft.X,
topLeft.Y, bottomRight.X, bottomRight.Y);

}
}

Using object initialization syntax, we could create a new Rectangle type and set the inner
Points as follows:

// Create and initialize a Rectangle.
Rectangle myRect = new Rectangle
{
TopLeft = new Point { X = 10, Y = 10 },
BottomRight = new Point { X = 200, Y = 200}

};

Again, the benefit of this new syntax is that it basically decreases the number of keystrokes
(assuming there is not a suitable constructor). Here is the traditional approach to establishing a
similar Rectangle:

// Old-school approach.
Rectangle r = new Rectangle();
Point p1 = new Point();
p1.X = 10;
p1.Y = 10;
r.TopLeft = p1;
Point p2 = new Point();
p2.X = 200;
p2.Y = 200;
r.BottomRight = p2;

Understanding Collection Initialization
Closely related to the concept of object initialization syntax is collection initialization. This syntax
makes it possible to populate a container (such as ArrayList or List<T>) with items using a syntax
that models that of a simple array. Consider the following examples:

// Init a standard array.
int[] myArrayOfInts = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

// Init a generic List<> of ints.
List<int> myGenericList = new List<int> { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

// Init an ArrayList with numerical data.
ArrayList myList = new ArrayList { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

If your container is managing a collection of object types, you can blend object initialization
syntax with collection initialization syntax to provide the following:

List<Point> myListOfPoints = new List<Point>
{
new Point { X = 2, Y = 2 },
new Point { X = 3, Y = 3 },

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES 439

8849CH13.qxd 10/2/07 12:42 PM Page 439

new Point(PointColor.BloodRed){ X = 4, Y = 4 }
};

foreach (var pt in myListOfPoints)
{
Console.WriteLine(pt);

}

Again, the benefit of this syntax is that you save yourself numerous keystrokes. While the
nested curly brackets can become difficult to read if you don’t mind your formatting, imagine the
amount of code that would be required to fill the following List<T> of Rectangles if we did not have
collection initialization syntax:

List<Rectangle> myListOfRects = new List<Rectangle>
{
new Rectangle {TopLeft = new Point { X = 10, Y = 10 },

BottomRight = new Point { X = 200, Y = 200}},
new Rectangle {TopLeft = new Point { X = 2, Y = 2 },

BottomRight = new Point { X = 100, Y = 100}},
new Rectangle {TopLeft = new Point { X = 5, Y = 5 },

BottomRight = new Point { X = 90, Y = 75}}
};

foreach (var r in myListOfRects)
{
Console.WriteLine(r);

}

■Source Code The ObjectInitializers project can be found under the Chapter 13 subdirectory.

Understanding Anonymous Types
As an OO programmer, you know the benefits of defining classes to represent the state and func-
tionality of a given programming entity. To be sure, whenever you need to define a class that is
intended to be reused across projects and provides numerous bits of functionality through a set of
methods, events, properties, and custom constructors, creating a new C# class is common practice
and often mandatory.

However, there are other times in programming when you would like to define a class simply to
model a set of encapsulated (and somehow related) data points without any associated methods,
events, or other custom functionality. Furthermore, what if this type is only used internally to your
current application and it’s not intended to be reused? If you need such a “temporary” type, earlier
versions of C# would require you to nevertheless build a new class definition by hand:

internal class SomeClass
{
// Define a set of private member variables...

// Make a property for each member variable...

// Override ToString() to account for each member variable...

// Override GetHashCode() and Equals() to work with value based equality...
}

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES440

8849CH13.qxd 10/2/07 12:42 PM Page 440

While building such a class is not rocket science, it can be rather labor intensive if you are
attempting to encapsulate more than a handful of members (although automatic properties do
help in this regard). As of C# 2008, we are now provided with a massive shortcut for this very situa-
tion termed anonymous types, which in many ways is a natural extension of C#’s anonymous
methods syntax (examined in Chapter 11).

When you define an anonymous type, you do so by making use of the new var keyword in con-
junction with the object initialization syntax you have just examined. To illustrate, create a new
Console Application named AnonymousTypes. Now, update Main() with the following anonymous
class, which models a simple car type:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Anonymous Types *****\n");

// Make an anonymous type representing a car.
var myCar = new { Color = "Bright Pink", Make = "Saab", CurrentSpeed = 55 };

// Now show the color and make.
Console.WriteLine("My car is a {0} {1}.", myCar.Color, myCar.Make);
Console.ReadLine();

}

Again note that the myCar variable must be implicitly typed, which makes good sense, as we are
not modeling the concept of an automobile using a strongly typed class definition. At compile time,
the C# compiler will autogenerate a uniquely named class on our behalf. Given the fact that this
class name is not visible from C#, the use of implicit typing using the var keyword is mandatory.

Also notice that we have to specify (using object initialization syntax) the set of properties that
model the data we are attempting to encapsulate. Once defined, these values can then be obtained
using standard C# property invocation syntax.

The Internal Representation of Anonymous Types
All anonymous types are automatically derived from System.Object, and therefore support each of
the members provided by this base class. Given this, we could invoke ToString(), GetHashCode(),
Equals(), or GetType() on the implicitly typed myCar object. Assume our Program class defines the
following static helper function:

static void ReflectOverAnonymousType(object obj)
{
Console.WriteLine("obj is an instance of: {0}", obj.GetType().Name);
Console.WriteLine("Base class of {0} is {1}",
obj.GetType().Name,
obj.GetType().BaseType);

Console.WriteLine("obj.ToString() = {0}", obj.ToString());
Console.WriteLine("obj.GetHashCode() = {0}", obj.GetHashCode());
Console.WriteLine();

}

Now assume we invoke this method from Main(), passing in the myCar object as the parameter:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Anonymous types *****\n");

// Make an anonymous type representing a car.
var myCar = new {Color = "Bright Pink", Make = "Saab", CurrentSpeed = 55};

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES 441

8849CH13.qxd 10/2/07 12:42 PM Page 441

// Reflect over what the compiler generated.
ReflectOverAnonymousType(myCar);
Console.ReadLine();

}

Check out the output shown in Figure 13-4.

Figure 13-4. Anonymous types are represented by a compiler-generated class type.

First of all, notice that in this example, the myCar object is of type <>f__AnonymousType0`3 (your
name may differ). Remember that the assigned type name is completely determined by the com-
piler and is not directly accessible in your C# code base.

Perhaps most important, notice that each name/value pair defined using the object initializa-
tion syntax is mapped to an identically named read-only property and a corresponding private
read-only backing field. The following C# code approximates the compiler-generated class used
to represent the myCar object (which again can be verified using tools such as reflector.exe or
ildasm.exe):

internal sealed class <>f__AnonymousType0<<Color>j__TPar,
<Make>j__TPar, <CurrentSpeed>j__TPar>

{
// Read-only fields
private readonly <Color>j__TPar <Color>i__Field;
private readonly <CurrentSpeed>j__TPar <CurrentSpeed>i__Field;
private readonly <Make>j__TPar <Make>i__Field;

// Default constructor
public <>f__AnonymousType0(<Color>j__TPar Color,
<Make>j__TPar Make, <CurrentSpeed>j__TPar CurrentSpeed);

// Overridden methods
public override bool Equals(object value);
public override int GetHashCode();
public override string ToString();

// Read-only properties
public <Color>j__TPar Color { get; }
public <CurrentSpeed>j__TPar CurrentSpeed { get; }
public <Make>j__TPar Make { get; }

}

The Implementation of ToString() and GetHashCode()
All anonymous types automatically derive from System.Object and are provided with an overridden
version of Equals(), GetHashCode(), and ToString(). The ToString() implementation simply builds
a string from each name/value pair, for example:

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES442

8849CH13.qxd 10/2/07 12:42 PM Page 442

public override string ToString()
{
StringBuilder builder = new StringBuilder();
builder.Append("{ Color = ");
builder.Append(this.<Color>i__Field);
builder.Append(", Make = ");
builder.Append(this.<Make>i__Field);
builder.Append(", CurrentSpeed = ");
builder.Append(this.<CurrentSpeed>i__Field);
builder.Append(" }");
return builder.ToString();

}

The GetHashCode() implementation computes a hash value using each anonymous type’s
member variables as input to the System.Collections.Generic.EqualityComparer<T> type. Using
this implementation of GetHashCode(), two anonymous types will yield the same hash value if (and
only if) they have the same set of properties that have been assigned the same values. Given this
implementation, anonymous types are well suited to be contained within a Hashtable container.

The Semantics of Equality for Anonymous Types
While the implementation of the overridden ToString() and GetHashCode() methods is fairly
straightforward, you may be wondering how the Equals() method has been implemented. For
example, if we were to define two “anonymous cars” variables that specify the same name/value
pairs, would these two variables be considered equal or not? To see the results firsthand, update
your Program type with the following new method:

static void EqualityTest()
{
// Make 2 anonymous classes with identical name/value pairs.
var firstCar = new { Color = "Bright Pink", Make = "Saab", CurrentSpeed = 55 };
var secondCar = new { Color = "Bright Pink", Make = "Saab", CurrentSpeed = 55 };

// Are they considered equal when using Equals()?
if (firstCar.Equals(secondCar))
Console.WriteLine("Same anonymous object!");

else
Console.WriteLine("Not the same anonymous object!");

// Are they considered equal when using ==?
if (firstCar == secondCar)
Console.WriteLine("Same anonymous object!");

else
Console.WriteLine("Not the same anonymous object!");

// Are these objects the same underlying type?
if (firstCar.GetType().Name == secondCar.GetType().Name)
Console.WriteLine("We are both the same type!");

else
Console.WriteLine("We are different types!");

// Show all the details.
Console.WriteLine();
ReflectOverAnonymousType(firstCar);
ReflectOverAnonymousType(secondCar);

}

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES 443

8849CH13.qxd 10/2/07 12:42 PM Page 443

Assuming you have called this method from within Main(), Figure 13-5 shows the (somewhat
surprising) output.

Figure 13-5. The equality of anonymous types

When you run this test code, you will see that the first conditional test where you are calling
Equals() returns true, and therefore the message “Same anonymous object!” prints out to the
screen. This is because the compiler-generated Equals() method makes use of value-based
semantics when testing for equality (e.g., checking the value of each field for the objects being
compared).

However, the second conditional test (which makes use of the C# equality operator, ==) prints
out “Not the same anonymous object!”, which may seem at first glance to be a bit counterintuitive.
This is due to the fact that anonymous types do not receive overloaded versions of the C# equality
operators (== and !=). Given this, when you test for equality of anonymous types using the C#
equality operators (rather than the Equals() method), the references, not the values maintained by
the objects, are being tested for equality. Recall from Chapter 12 that this is the default behavior for
all class types until you overload the operators directly in your code (something that is not possible
for anonymous types, as you don’t define the type!).

Last but not least, in our final conditional test (where we are examining the underlying type
name), we find that the anonymous types are instances of the same compiler-generated class type
(in this example, <>f__AnonymousType0`3), due to the fact that firstCar and secondCar have the
same properties (Color, Make, and CurrentSpeed).

This illustrates an important but subtle point: the compiler will only generate a new class defi-
nition when an anonymous type contains unique names of the anonymous type. Thus, if you were
to declare identical anonymous types (again, meaning the same names) within the same assembly,
the compiler only generates a single anonymous type definition.

Anonymous Types Containing Anonymous Types
It is possible to create an anonymous type that is composed of additional anonymous types. For
example, assume you wish to model a purchase order that consists of a timestamp, a price point,
and the automobile purchased. Here is a new (slightly more sophisticated) anonymous type repre-
senting such an entity:

// Make an anonymous type that is composed of another.
var purchaseItem = new {
TimeBought = DateTime.Now,

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES444

8849CH13.qxd 10/2/07 12:42 PM Page 444

ItemBought = new {Color = "Red", Make = "Saab", CurrentSpeed = 55},
Price = 34.000};

ReflectOverAnonymousType(purchaseItem);

At this point, you should understand the syntax used to define anonymous types, but you may
still be wondering exactly where (and when) to make use of this new language feature. To be blunt,
the use of anonymous type declarations should be used sparingly, typically only when making use
of the LINQ technology set (see Chapter 14). You would never want to abandon the use of strongly
typed classes/structures simply for the sake of doing so, given anonymous types’ numerous limita-
tions, which include the following:

• You don’t control the name of the anonymous type.

• Anonymous types always extend System.Object.

• The fields and properties of an anonymous type are always read-only.

• Anonymous types cannot support events, custom methods, custom operators, or custom
overrides.

• Anonymous types are always implicitly sealed.

• Anonymous types are always created using the default constructor.

However, when programming with the LINQ technology set, you will find that in many cases
this syntax can be very helpful when you wish to quickly model the overall shape of an entity rather
than its functionality.

■Source Code The AnonymousTypes project can be found under the Chapter 13 subdirectory.

Summary
C# 2008 provides a number of very interesting features that bring C# into the family of functional
languages. This chapter walked you through each of the core updates, beginning with the notion of
implicitly typed local variables. While the vast majority of your local variables will not need to be
declared with the var keyword, as you will see in the next chapter doing so can greatly simplify your
interactions with the LINQ family of technologies.

This chapter also described the role of automatic properties, partial methods, extension
methods (which allow you to add new functionality to a compiled type), and the syntax of object
initialization (which can be used to assign property values at the time of construction).

The chapter wrapped up by examining the use of anonymous types. This language feature
allows you to define the “shape” of a type rather than its functionality. This can be very helpful when
you need to model a type for limited usage within a program, given that a majority of the workload
is offloaded to the compiler.

CHAPTER 13 ■ C# 2008 LANGUAGE FEATURES 445

8849CH13.qxd 10/2/07 12:42 PM Page 445

8849CH13.qxd 10/2/07 12:42 PM Page 446

An Introduction to LINQ

The previous chapter introduced you to numerous C# 2008 programming constructs. As you have
seen, features such as implicitly typed local variables, anonymous types, object initialization syntax,
and lambda expressions (examined in Chapter 11) allow us to build very functional C# code. Recall
that while many of these features can be used directly as is, their benefits are much more apparent
when used within the context of the Language Integrated Query (LINQ) technology set.

This chapter will introduce you to the LINQ model and its role in the .NET platform. Here, you
will come to learn the role of query operators and query expressions, which allow you to define
statements that will interrogate a data source to yield the requested result set. Along the way, you
will build numerous LINQ examples that interact with data contained within arrays as well as vari-
ous collection types (both generic and nongeneric) and understand the assemblies and types that
enable LINQ.

■Note Chapter 24 will examine additional LINQ-centric APIs that allow you to interact with relational databases
and XML documents.

Understanding the Role of LINQ
As software developers, it is hard to deny that the vast majority of our programming time is spent
obtaining and manipulating data. When speaking of “data,” it is very easy to immediately envision
information contained within relational databases. However, another popular location in which
data exists is within XML documents (*.config files, locally persisted DataSets, in-memory data
returned from XML web services, etc.).

Data can be found in numerous places beyond these two common homes for information. For
instance, say you have a generic List<T> type containing 300 integers, and you want to obtain a
subset that meets a given criterion (e.g., only the odd or even members in the container, only prime
numbers, only nonrepeating numbers greater than 50, etc.). Or perhaps you are making use of the
reflection APIs and need to obtain only metadata descriptions for each class deriving from a partic-
ular parent class within an array of Types. Indeed, data is everywhere.

Prior to .NET 3.5, interacting with a particular flavor of data required programmers to make use
of diverse APIs. Consider, for example, Table 14-1, which illustrates several common APIs used to
access various types of data.

447

C H A P T E R 1 4

8849CH14.qxd 9/26/07 12:30 PM Page 447

Table 14-1. Ways to Manipulate Various Types of Data

The Data We Want How to Obtain It

Relational data System.Data.dll, System.Data.SqlClient.dll, etc.

XML document data System.Xml.dll

Metadata tables The System.Reflection namespace

Collections of objects System.Array and the System.Collections/System.Collections.
Generic namespaces

Of course, nothing is wrong with these approaches to data manipulation. In fact, when pro-
gramming with .NET 3.5/C# 2008, you can (and will) certainly make direct use of ADO.NET, the
XML namespaces, reflection services, and the various collection types. However, the basic problem
is that each of these APIs is an island unto itself, which offers very little in the way of integration.
True, it is possible (for example) to save an ADO.NET DataSet as XML, and then manipulate it via
the System.Xml namespaces, but nonetheless, data manipulation remains rather asymmetrical.

The LINQ API is an attempt to provide a consistent, symmetrical manner in which program-
mers can obtain and manipulate “data” in the broad sense of the term. Using LINQ, we are able to
create directly within the C# programming language entities called query expressions. These query
expressions are based on numerous query operators that have been intentionally designed to look
and feel very similar (but not quite identical) to a SQL expression.

The twist, however, is that a query expression can be used to interact with numerous types of
data—even data that has nothing to do with a relational database. Specifically, LINQ allows query
expressions to manipulate any object that implements the IEnumerable<T> interface (directly or
indirectly via extension methods), relational databases, DataSets, or XML documents in a consistent
manner.

■Note Strictly speaking, “LINQ” is the term used to describe this overall approach to data access. LINQ to
Objects is LINQ over objects implementing IEnumerable<T>, LINQ to SQL is LINQ over relational data, LINQ to
DataSet is a superset of LINQ to SQL, and LINQ to XML is LINQ over XML documents. In the future, you are sure
to find other APIs that have been injected with LINQ functionality (in fact, there are already other LINQ-centric
projects under development at Microsoft).

LINQ Expressions Are Strongly Typed and Extendable
It is also very important to point out that a LINQ query expression (unlike a traditional SQL state-
ment) is strongly typed. Therefore, the C# compiler will keep us honest and make sure that these
expressions are syntactically well formed. On a related note, query expressions have metadata rep-
resentation within the assembly that makes use of them. Tools such as Visual Studio 2008 can use
this metadata for useful features such as IntelliSense, autocompletion, and so forth.

Also, before we dig into the details of LINQ, one final point is that LINQ is designed to be an
extendable technology. While this initial release of LINQ is targeted for relational databases/
DataSets, XML documents, and objects implementing IEnumerable<T>, third parties can incorporate
new query operators (or redefine existing operators) using extension methods (see Chapter 13) to
account for addition forms of data.

CHAPTER 14 ■ AN INTRODUCTION TO L INQ448

8849CH14.qxd 9/26/07 12:30 PM Page 448

■Note Before you continue reading over this chapter, I wholeheartedly recommend that you first feel comfortable
with the material presented in Chapter 13 (which covered C# 2008 specific constructs). As you will see, LINQ pro-
gramming makes use of several of the new C# features to simplify coding tasks.

The Core LINQ Assemblies
As mentioned in Chapter 2, the New Project dialog of Visual Studio 2008 now has the option of
selecting which version of the .NET platform you wish to compile against, using the drop-down list
box mounted on the upper-right corner. When you opt to compile against the .NET Framework 3.5,
each of the project templates will automatically reference the key LINQ assemblies. For example, if
you were to create a new .NET 3.5 Console Application, you will find the assemblies shown in
Figure 14-1 visible within the Solution Explorer.

Figure 14-1. .NET 3.5 project types automatically reference key LINQ assemblies.

Table 14-2 documents the role of the core LINQ-specific assemblies.

Table 14-2. Core LINQ-centric Assemblies

Assembly Meaning in Life

System.Core.dll Defines the types that represent the core LINQ API. This
is the one assembly you must have access to.

System.Data.Linq.dll Provides functionality for using LINQ with relational
databases (LINQ to SQL).

System.Data.DataSetExtensions.dll Defines a handful of types to integrate ADO.NET types
into the LINQ programming paradigm (LINQ to DataSet).

System.Xml.Linq.dll Provides functionality for using LINQ with XML
document data (LINQ to XML).

When you wish to do any sort of LINQ programming, you will at the very least need to import
the System.Linq namespace (defined within System.Core.dll), which is typically accounted for by
new Visual Studio 2008 project files; for example, here is the starting code for a new .NET 3.5 Con-
sole Application project:

CHAPTER 14 ■ AN INTRODUCTION TO L INQ 449

8849CH14.qxd 9/26/07 12:30 PM Page 449

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace MyConsoleApp
{
class Program
{
static void Main(string[] args)
{
}

}
}

A First Look at LINQ Query Expressions
To begin examining the LINQ programming model, let’s build simple query expressions to
manipulate data contained within various arrays. Create a .NET 3.5 Console Application
named LinqOverArray, and define a static helper method within the Program class named
QueryOverStrings(). In this method, create a string array containing six or so items of your
liking (here, I listed out a batch of video games I am currently attempting to finish).

static void QueryOverStrings()
{
// Assume we have an array of strings.
string[] currentVideoGames = {"Morrowind", "BioShock",
"Half Life 2: Episode 1", "The Darkness",
"Daxter", "System Shock 2"};

Console.ReadLine();
}

Now, update Main() to invoke QueryOverStrings():

static void Main(string[] args)
{
Console.WriteLine("***** Fun with LINQ *****\n");
QueryOverStrings();
Console.ReadLine();

}

When you have any array of data, it is very common to extract a subset of items based on a
given requirement. Maybe you want to obtain only the items with names that contain a number
(e.g., System Shock 2 and Half Life 2: Episode 1), have more than some number of characters, or
don’t have embedded spaces (e.g., Morrowind). While you could certainly perform such tasks using
members of the System.Array type and a bit of elbow grease, LINQ query expressions can greatly
simplify the process.

Going on the assumption that we wish to obtain a subset from the array that contains items
with names consisting of more than six characters, we could build the following query expression:

static void QueryOverStrings()
{
// Assume we have an array of strings.
string[] currentVideoGames = {"Morrowind", "BioShock",
"Half Life 2: Episode 1", "The Darkness",
"Daxter", "System Shock 2"};

CHAPTER 14 ■ AN INTRODUCTION TO L INQ450

8849CH14.qxd 9/26/07 12:30 PM Page 450

// Build a query expression to represent the items in the array
// that have more than 6 letters.
IEnumerable<string> subset = from g in currentVideoGames

where g.Length > 6 orderby g select g;

// Print out the results.
foreach (string s in subset)
Console.WriteLine("Item: {0}", s);

}

Notice that the query expression created here makes use of the from, in, where, orderby,
and select LINQ query operators. We will dig into the formalities of query expression syntax in
just a bit, but even now you should be able to parse this statement as “Give me the items inside of
currentVideoGames that have more than six characters, ordered alphabetically.” Here, each item that
matches the search criteria has been given the name “g” (as in “game”); however, any valid C# vari-
able name would do:

IEnumerable<string> subset = from game in currentVideoGames
where game.Length > 6 orderby game select game;

Notice that the “result set” variable, subset, is represented by an object that implements the
generic version of IEnumerable<T>, where T is of type System.String (after all, we are querying an
array of strings). Once we obtain the result set, we then simply print out each item using a standard
foreach construct.

Before we see the results of our query, assume the Program class defines an additional helper
function named ReflectOverQueryResults() that will print out various details of the LINQ result set
(note the parameter is a System.Object, to account for multiple types of result sets):

static void ReflectOverQueryResults(object resultSet)
{
Console.WriteLine("***** Info about your query *****");
Console.WriteLine("resultSet is of type: {0}", resultSet.GetType().Name);
Console.WriteLine("resultSet location: {0}", resultSet.GetType().Assembly);

}

Assuming you have called this method within QueryOverStrings() directly after printing
out the obtained subset, if you run the application, you will see the subset is really an instance
of the generic OrderedEnumerable<TElement, TKey> type (represented in terms of CIL code as
OrderedEnumerable`2), which is an internal abstract type residing in the System.Core.dll assembly
(see Figure 14-2).

Figure 14-2. The result of our LINQ query

CHAPTER 14 ■ AN INTRODUCTION TO L INQ 451

8849CH14.qxd 9/26/07 12:30 PM Page 451

■Note Many of the types that represent a LINQ result are hidden by the Visual Studio 2008 object browser. Make
use of ildasm.exe or reflector.exe to see these internal, hidden types.

LINQ and Implicitly Typed Local Variables
While the current sample program makes it relatively easy to determine that the result set is enu-
merable as a string collection, I would guess that it is not clear that subset is really of type
OrderedEnumerable<TElement, TKey>. Given the fact that LINQ result sets can be represented using
a good number of types in various LINQ-centric namespaces, it would be tedious to define the
proper type to hold a result set, because in many cases the underlying type may not be obvious or
directly accessible from your code base (and as you will see, in some cases the type is generated at
compile time).

To further accentuate this point, consider the following additional helper method defined
within the Program class (which I assume you will invoke from within the Main() method):

static void QueryOverInts()
{
int[] numbers = {10, 20, 30, 40, 1, 2, 3, 8};

// Only print items less than 10.
IEnumerable<int> subset = from i in numbers where i < 10 select i;

foreach (int i in subset)
Console.WriteLine("Item: {0}", i);

ReflectOverQueryResults(subset);
}

In this case, the subset variable is obtained (under the covers) by calling the System.Linq.
Enumerable.Where<T> method, passing in a compiler-generated anonymous method as the second
parameter. Here is the crux of the internal definition of the subset variable generated by the com-
piler (assume the anonymous method has been named 9__CachedAnonymousMethodDelegate8):

// The following LINQ query expression:
//
// IEnumerable<int> subset = from i in numbers where i < 10 select i;
//
// Is transformed into a call to the Enumerable.Where<int>() method:
//
IEnumerable<int> subset = Enumerable.Where<int>(numbers,
Program.<>9__CachedAnonymousMethodDelegate8);

■Note I would recommend that you load LINQ-based applications into a decompiler such as ildasm.exe or
reflector.exe. These sorts of tools can greatly strengthen your understanding of LINQ internals.

Without diving too deeply into the use of Enumerable.Where<T> at this point, do note that in
Figure 14-3, the underlying type for each query expression is indeed unique, based on the format of
our LINQ query expression.

CHAPTER 14 ■ AN INTRODUCTION TO L INQ452

8849CH14.qxd 9/26/07 12:30 PM Page 452

Figure 14-3. LINQ query expressions can return numerous result sets.

Given the fact that the exact underlying type of a LINQ query is certainly not obvious, the
current example has represented the query results as local IEnumerable<T> variable. Given that
IEnumerable<T> extends the nongeneric IEnumerable interface, it would also be permissible to
capture the result of a LINQ query as follows:

System.Collections.IEnumerable subset =
from i in numbers where i < 10 select i;

While this is syntactically correct, implicit typing cleans things up considerably when working
with LINQ queries:

static void QueryOverInts()
{
int[] numbers = {10, 20, 30, 40, 1, 2, 3, 8};

// Use implicit typing here...
var subset = from i in numbers where i < 10 select i;

// ...and here.
foreach (var i in subset)
Console.WriteLine("Item: {0} ", i);

ReflectOverQueryResults(subset);
}

Recall that the var keyword should not be confused with the legacy COM Variant or loosely
typed variable declaration found in many scripting languages. The underlying type is determined
by the compiler based on the result of the initial assignment. After that point, it is a compiler error
to attempt to change the “type of type.” Furthermore, given the fact that in many cases the under-
lying type is the result of a dynamically generated anonymous type, it is commonplace to use
implicit typing whenever you wish to capture a LINQ result set.

LINQ and Extension Methods
Recall from the previous chapter that extension methods make it possible to add new members to a
previously compiled type within the scope of a given project. Although the current example does
not have you author any extension methods directly, you are in fact using them seamlessly in the

CHAPTER 14 ■ AN INTRODUCTION TO L INQ 453

8849CH14.qxd 9/26/07 12:30 PM Page 453

background. LINQ query expressions can be used to iterate over data containers that implement
the generic IEnumerable<T> interface. However, the .NET System.Array class type (used to represent
our array of strings and array of integers) does not implement this behavior:

// The System.Array type does not seem to implement the correct
// infrastructure for query expressions!
public abstract class Array : ICloneable, IList, ICollection, IEnumerable
{
...

}

While System.Array does not directly implement the IEnumerable<T> interface, it indirectly
gains the required functionality of this type (as well as many other LINQ-centric members) via the
static System.Linq.Enumerable class type. This type defined a good number of generic extension
methods (such as Aggregate<T>(), First<T>(), Max<T>(), etc.), which System.Array (and other
types) acquire in the background. Thus, if you apply the dot operator on the currentVideoGames
local variable, you will find a good number of members not found within the formal definition of
System.Array (see Figure 14-4).

Figure 14-4. The System.Array type has been extended with members of System.Linq.Enumerable.

The Role of Differed Execution
Another important point regarding LINQ query expressions is that they are not actually evaluated
until you iterate over their contents. Formally speaking, this is termed differed execution. The bene-
fit of this approach is that you are able to apply the same LINQ query multiple times to the same
container, and rest assured you are obtaining the latest and greatest results. Consider the following
update to the QueryOverInts() method:

static void QueryOverInts()
{
int[] numbers = { 10, 20, 30, 40, 1, 2, 3, 8 };

CHAPTER 14 ■ AN INTRODUCTION TO L INQ454

8849CH14.qxd 9/26/07 12:30 PM Page 454

// Get numbers less than ten.
var subset = from i in numbers where i < 10 select i;

// LINQ statement evaluated here!
foreach (var i in subset)
Console.WriteLine("{0} < 10", i);

Console.WriteLine();

// Change some data in the array.
numbers[0] = 4;

// Evaluate again.
foreach (var j in subset)
Console.WriteLine("{0} < 10", j);

ReflectOverQueryResults(subset);
}

If you were to execute the program yet again, you will find the output shown in Figure 14-5.

Figure 14-5. LINQ expressions are executed when evaluated.

One very useful aspect of Visual Studio 2008 is that if you set a breakpoint before the evaluation
of a LINQ query, you are able to view the contents during a debugging session. Simply locate your
mouse cursor above the LINQ result set variable (subset in Figure 14-6). When you do, you will be
given the option of evaluating the query at that time by expanding the Results View option.

Figure 14-6. Debugging LINQ expressions

CHAPTER 14 ■ AN INTRODUCTION TO L INQ 455

8849CH14.qxd 9/26/07 12:30 PM Page 455

The Role of Immediate Execution
When you wish to evaluate a LINQ expression from outside the confines of foreach logic, you are
able to call any number of extension methods defined by the Enumerable type to do so. Enumerable
defines a number of extension methods such as ToArray<T>(), ToDictionary<TSource,TKey>(), and
ToList<T>(), which allow you to capture a LINQ query result set in a strongly typed container. Once
you have done so, the container is no longer “connected” to the LINQ expression, and may be inde-
pendently manipulated:

static void ImmediateExecution()
{
int[] numbers = { 10, 20, 30, 40, 1, 2, 3, 8 };

// Get data RIGHT NOW as int[].
int[] subsetAsIntArray =
(from i in numbers where i < 10 select i).ToArray<int>();

// Get data RIGHT NOW as List<int>.
List<int> subsetAsListOfInts =
(from i in numbers where i < 10 select i).ToList<int>();

}

Notice that the entire LINQ expression is wrapped within parentheses to cast it into the correct
underlying type (whatever that may be) in order to call the extension methods of Enumerable.

Also recall from Chapter 10 that when the C# compiler can unambiguously determine the type
parameter of a generic item, you are not required to specify the type parameter. Thus, we could also
call ToArray<T>() (or ToList<T>() for that matter) as follows:

int[] subsetAsIntArray =
(from i in numbers where i < 10 select i).ToArray();

■Source Code The LinqOverArray project can be found under the Chapter 14 subdirectory.

LINQ and Generic Collections
Beyond pulling results from a simple array of data, LINQ query expressions can also manipulate
data within members of the System.Collections.Generic namespace, such as the List<T> type.
Create a new .NET 3.5 Console Application project named LinqOverCustomObjects, and define a
basic Car type that maintains a current speed, color, make, and pet name (public fields are used to
easily set the string fields to empty text. Feel free to make use of automatic properties and class
constructors if you wish):

class Car
{
public string PetName = string.Empty;
public string Color = string.Empty;
public int Speed;
public string Make = string.Empty;

}

Now, within your Main() method, define a local List<T> variable of type Car, and make use of
the new object initialization syntax (see Chapter 13) to fill the list with a handful of new Car objects:

CHAPTER 14 ■ AN INTRODUCTION TO L INQ456

8849CH14.qxd 9/26/07 12:30 PM Page 456

static void Main(string[] args)
{
Console.WriteLine("***** More fun with LINQ Expressions *****\n");

// Make a List<> of Car objects
// using object init syntax.
List<Car> myCars = new List<Car>() {
new Car{ PetName = "Henry", Color = "Silver", Speed = 100, Make = "BMW"},
new Car{ PetName = "Daisy", Color = "Tan", Speed = 90, Make = "BMW"},
new Car{ PetName = "Mary", Color = "Black", Speed = 55, Make = "VW"},
new Car{ PetName = "Clunker", Color = "Rust", Speed = 5, Make = "Yugo"},
new Car{ PetName = "Melvin", Color = "White", Speed = 43, Make = "Ford"}

};
}

Applying a LINQ Expression
Our goal is to build a query expression to select only the items within the myCars list, where the
speed is greater than 55. Once we get the subset, we will print out the name of each Car object.
Assume you have the following helper method (taking a List<Car> parameter), which is called from
within Main():

static void GetFastCars(List<Car> myCars)
{
// Create a query expression.
var fastCars = from c in myCars where c.Speed > 55 select c;

foreach (var car in fastCars)
{
Console.WriteLine("{0} is going too fast!", car.PetName);

}
}

Notice that our query expression is only grabbing items from the List<T> where the Speed
property is greater than 55. If we run the application, we will find that “Henry” and “Daisy” are the
only two items that match the search criteria.

If we want to build a more complex query, we might wish to only find the BMWs that have a
Speed value above 90. To do so, simply build a compound Boolean statement using the C# &&
operator:

// Create a query expression.
var fastCars = from c in myCars where
c.Speed > 90 && c.Make == "BMW" select c;

In this case, the only pet name printed out is “Henry”.

■Source Code The LinqOverCustomObjects project can be found under the Chapter 14 subdirectory.

LINQ and Nongeneric Collections
Recall that the query operators of LINQ are designed to work with any type implementing
IEnumerable<T> (either directly or via extension methods). Given that System.Array has been

CHAPTER 14 ■ AN INTRODUCTION TO L INQ 457

8849CH14.qxd 9/26/07 12:30 PM Page 457

provided with such necessary infrastructure, it may surprise you that the legacy (nongeneric) con-
tainers within System.Collections have not. Thankfully, it is still possible to iterate over data
contained within nongeneric collections using the generic Enumerable.OfType<T>() method.

The OfType<T>() method is one of the few members of Enumerable that does not extend generic
types. When calling this member off a nongeneric container implementing the IEnumerable
interface (such as the ArrayList), simply specify the type of item within the container to extract
a compatible IEnumerable<T> object. Assume we have a new Console Application named
LinqOverArrayList that defines the following Main() method (note that we are making use of the
previously defined Car type and be sure to import the System.Collections namespace).

static void Main(string[] args)
{
Console.WriteLine("***** LINQ over ArrayList *****\n");

// Here is a nongeneric collection of cars.
ArrayList myCars = new ArrayList() {
new Car{ PetName = "Henry", Color = "Silver", Speed = 100, Make = "BMW"},
new Car{ PetName = "Daisy", Color = "Tan", Speed = 90, Make = "BMW"},
new Car{ PetName = "Mary", Color = "Black", Speed = 55, Make = "VW"},
new Car{ PetName = "Clunker", Color = "Rust", Speed = 5, Make = "Yugo"},
new Car{ PetName = "Melvin", Color = "White", Speed = 43, Make = "Ford"}

};

// Transform ArrayList into an IEnumerable<T>-compatible type.
IEnumerable<Car> myCarsEnum = myCars.OfType<Car>();

// Create a query expression.
var fastCars = from c in myCarsEnum where c.Speed > 55 select c;

foreach (var car in fastCars)
{
Console.WriteLine("{0} is going too fast!", car.PetName);

}
}

Filtering Data Using OfType<T>()
As you know, nongeneric types are capable of containing any combination of items, as the mem-
bers of these containers (again, such as the ArrayList) are prototyped to receive System.Objects.
For example, assume an ArrayList contains a variety of items, only a subset of which are numerical.
If we want to obtain a subset that contains only numerical data, we can do so using OfType<T>(),
since it filters out each element whose type is different from the given type during the iterations:

// Extract the ints from the ArrayList.
ArrayList myStuff = new ArrayList();
myStuff.AddRange(new object[] { 10, 400, 8, false, new Car(), "string data" });
IEnumerable<int> myInts = myStuff.OfType<int>();

// Prints out 10, 400, and 8.
foreach (int i in myInts)
{
Console.WriteLine("Int value: {0}", i);

}

CHAPTER 14 ■ AN INTRODUCTION TO L INQ458

8849CH14.qxd 9/26/07 12:30 PM Page 458

■Source Code The LinqOverArrayList project can be found under the Chapter 14 subdirectory.

Now that you have seen how to use LINQ to manipulate data contained within various arrays
and collections, let’s dig in a bit deeper to see what is happening behind the scenes.

The Internal Representation of LINQ Query
Operators
So at this point you have been briefly introduced to the process of building query expressions using
various C# query operators (such as from, in, where, orderby, and select). When compiled, the C#
compiler actually translates these tokens into calls on various methods of the System.Linq.
Enumerable type (and possibly other types, based on your LINQ query).

As it turns out, a great many of the methods of Enumerable have been prototyped to take dele-
gates as arguments. In particular, many methods require a generic delegate of type Func<>, defined
within the System namespace of System.Core.dll. For example, consider the following members of
Enumerable that extend the IEnumerable<T> interface:

// Overloaded versions of the Enumerable.Where<T>() method.
// Note the second parameter is of type System.Func<>.
public static IEnumerable<TSource> Where<TSource>(this IEnumerable<TSource> source,
System.Func<TSource,int,bool> predicate)

public static IEnumerable<TSource> Where<TSource>(this IEnumerable<TSource> source,
System.Func<TSource,bool> predicate)

This delegate (as the name implies) represents a pattern for a given function with a set of argu-
ments and a return value. If you were to examine this type using the Visual Studio 2008 object
browser, you’ll notice that the Func<> delegate can take between zero and four input arguments
(here typed T0, T1, T2, and T3 and named arg0, arg1, arg2, and arg3), and a return type denoted by
TResult:

// The various formats of the Func<> delegate.
public delegate TResult Func<T0,T1,T2,T3,TResult>(
T0 arg0, T1 arg1, T2 arg2, T3 arg3)

public delegate TResult Func<T0,T1,T2,TResult>(T0 arg0, T1 arg1, T2 arg2)
public delegate TResult Func<T0,T1,TResult>(T0 arg0, T1 arg1)
public delegate TResult Func<T0,TResult>(T0 arg0)
public delegate TResult Func<TResult>()

Given that many members of System.Linq.Enumerable demand a delegate as input, when
invoking them, we can either manually create a new delegate type and author the necessary target
methods, make use of a C# anonymous method, or define a proper lambda expression. Regardless
of which approach you take, the end result is identical.

While it is true that making use of C# LINQ query operators is far and away the simplest way to
build a LINQ query expression, let’s walk through each of these possible approaches just so you can
see the connection between the C# query operators and the underlying Enumerable type.

Building Query Expressions with Query Operators (Revisited)
To begin, create a new Console Application named LinqUsingEnumerable. The Program class will
define a series of static helper methods (each of which is called within the Main() method) to

CHAPTER 14 ■ AN INTRODUCTION TO L INQ 459

8849CH14.qxd 9/26/07 12:30 PM Page 459

illustrate the various manners in which we can build LINQ query expressions. The first method,
QueryStringsWithOperators(), offers the most straightforward way to build a query expression and
is identical to the code seen in the previous LinqOverArray example:

static void QueryStringWithOperators()
{
Console.WriteLine("***** Using Query Operators *****");
string[] currentVideoGames = {"Morrowind", "BioShock",
"Half Life 2: Episode 1", "The Darkness",
"Daxter", "System Shock 2"};

// Build a query expression using query operators.
var subset = from g in currentVideoGames

where g.Length > 6 orderby g select g;

// Print out the results.
foreach (var s in subset)
Console.WriteLine("Item: {0}", s);

}

The obvious benefit of using C# query operators to build query expressions is the fact that the
Func<> delegates and calls on the Enumerable type are out of sight and out of mind, as it is the job of
the C# compiler to perform this translation. To be sure, building LINQ expressions using various
query operators (from, in, where, orderby, etc.) is the most common and most straightforward
approach.

Building Query Expressions Using the Enumerable Type
and Lambdas
Keep in mind that the LINQ query operators used here are simply shorthand versions for
calling various extension methods defined by the Enumerable type. Consider the following
QueryStringsWithEnumerableAndLambdas() method, which is processing the local string array
now making direct use of the Enumerable extension methods:

static void QueryStringsWithEnumerableAndLambdas()
{
Console.WriteLine("***** Using Enumerable / Lambda Expressions *****");

string[] currentVideoGames = {"Morrowind", "BioShock",
"Half Life 2: Episode 1", "The Darkness",
"Daxter", "System Shock 2"};

// Build a query expression using extension methods
// granted to the Array via the Enumerable type.
var subset = currentVideoGames.Where(game => game.Length > 6)
.OrderBy(game => game).Select(game => game);

// Print out the results.
foreach (var game in subset)
Console.WriteLine("Item: {0}", game);

Console.WriteLine();
}

Here, we are calling the generic Where() method off the string array object, granted to the Array
type as an extension method defined by Enumerable. The Enumerable.Where<T>() method makes use
of the System.Func<T0, TResult> delegate type. The first type parameter of this delegate represents

CHAPTER 14 ■ AN INTRODUCTION TO L INQ460

8849CH14.qxd 9/26/07 12:30 PM Page 460

the IEnumerable<T>-compatible data to process (an array of strings in this case), while the second
type parameter represents the method that will process said data.

Given that we have opted for a lambda expression (rather than directly creating an instance
of Func<T> or crafting an anonymous method), we are specifying that the “game” parameter is
processed by the statement game.Length > 6, which results in a Boolean return type.

The return value of the Where<T>() method has implicitly typed, but under the covers we are
operating on an OrderedEnumerable type. From this resulting object, we call the generic OrderBy<T,
K>() method, which also requires a Func<T, K> delegate parameter. Finally, from the result of the
specified lambda expression, we select each element, using once again a Func<T, K> under the
covers.

It is also worth remembering that extension methods are unique in that they can be called as
instance-level members upon the type they are extending (System.Array in this case) or as static
members using the type they were defined within. Given this, we could also author our query
expression as follows:

var subset = Enumerable.Where(currentVideoGames, game => game.Length > 6)
.OrderBy(game => game).Select(game => game);

As you may agree, building a LINQ query expression using the methods of the Enumerable type
directly is much more verbose than making use of the C# query operators. As well, given that the
methods of Enumerable require delegates as parameters, you will typically need to author lambda
expressions to allow the input data to be processed by the underlying delegate target.

Building Query Expressions Using the Enumerable Type and
Anonymous Methods
Given that C# 2008 lambda expressions are simply shorthand notations for working with
anonymous methods, consider the third query expression created within the
QueryStringsWithAnonymousMethods() helper function:

static void QueryStringsWithAnonymousMethods()
{
Console.WriteLine("***** Using Anonymous Methods *****");

string[] currentVideoGames = {"Morrowind", "BioShock",
"Half Life 2: Episode 1", "The Darkness",
"Daxter", "System Shock 2"};

// Build the necessary Func<> delegates using anonymous methods.
Func<string, bool> searchFilter =
delegate(string game) { return game.Length > 6; };

Func<string, string> itemToProcess = delegate(string s) { return s; };

// Pass the delegates into the methods of Enumerable.
var subset = currentVideoGames.Where(searchFilter)
.OrderBy(itemToProcess).Select(itemToProcess);

// Print out the results.
foreach (var game in subset)
Console.WriteLine("Item: {0}", game);

Console.WriteLine();
}

This iteration of the query expression is even more verbose, because we are manually creating
the Func<> delegates used by the Where(), OrderBy(), and Select() methods of the Enumerable type.

CHAPTER 14 ■ AN INTRODUCTION TO L INQ 461

8849CH14.qxd 9/26/07 12:30 PM Page 461

On the plus side, the anonymous method syntax does keep all the processing contained within
a single method definition. Nevertheless, this method is functionally equivalent to the
QueryStringsWithEnumerableAndLambdas() and QueryStringsWithOperators() methods created
in the previous sections.

Building Query Expressions Using the Enumerable Type and
Raw Delegates
Finally, if we want to build a query expression using the really verbose approach, we could avoid the
use of lambdas/anonymous method syntax and directly create delegate targets for each Func<>
type. Here is the final iteration of our query expression, modeled within a new class type named
VeryComplexQueryExpression:

class VeryComplexQueryExpression
{
public static void QueryStringsWithRawDelegates()
{
Console.WriteLine("***** Using Raw Delegates *****");

string[] currentVideoGames = {"Morrowind", "BioShock",
"Half Life 2: Episode 1", "The Darkness",
"Daxter", "System Shock 2"};

// Build the necessary Func<> delegates using anonymous methods.
Func<string, bool> searchFilter = new Func<string, bool>(Filter);
Func<string, string> itemToProcess = new Func<string,string>(ProcessItem);

// Pass the delegates into the methods of Enumerable.
var subset = currentVideoGames
.Where(searchFilter).OrderBy(itemToProcess).Select(itemToProcess);

// Print out the results.
foreach (var game in subset)
Console.WriteLine("Item: {0}", game);

Console.WriteLine();
}

// Delegate targets.
public static bool Filter(string s) {return s.Length > 6;}
public static string ProcessItem(string s) { return s; }

}

We can test this iteration of our string processing logic by calling this method within Main()
method of the Program class as follows:

VeryComplexQueryExpression.QueryStringsWithRawDelegates();

If you were to now run the application to test each possible approach, it should not be too sur-
prising that the output is identical regardless of the path taken. Keep the following points in mind
regarding how LINQ query expressions are represented under the covers:

• Query expressions are created using various C# query operators.

• Query operators are simply shorthand notations for invoking extension methods defined by
the System.Linq.Enumerable type.

• Many methods of Enumerable require delegates (Func<> in particular) as parameters.

CHAPTER 14 ■ AN INTRODUCTION TO L INQ462

8849CH14.qxd 9/26/07 12:30 PM Page 462

• Under C# 2008, any method requiring a delegate parameter can instead be passed a lambda
expression.

• Lambda expressions are simply anonymous methods in disguise (which greatly improve
readability).

• Anonymous methods are shorthand notations for allocating a raw delegate and manually
building a delegate target method.

Whew! That might have been a bit deeper under the hood than you wish to have gone, but I
hope this discussion has helped you understand what the user-friendly C# query operators are
actually doing behind the scenes. Let’s now turn our attention to the operators themselves.

■Source Code The LinqOverArrayUsingEnumerable project can be found under the Chapter 14 subdirectory.

Investigating the C# LINQ Query Operators
C# defines a good number of query operators out of the box. Table 14-3 documents some of the
more commonly used query operators.

■Note The .NET Framework 3.5 SDK documentation provides full details regarding each of the C# LINQ opera-
tors. Look up the topic “LINQ General Programming Guide” for more information.

Table 14-3. Various LINQ Query Operators

Query Operators Meaning in Life

from, in Used to define the backbone for any LINQ expression, which
allows you to extract a subset of data from a fitting container.

where Used to define a restriction for which items to extract from a
container.

select Used to select a sequence from the container.

join, on, equals, into Performs joins based on specified key. Remember, these “joins”
do not need to have anything to do with data in a relational
database.

orderby, ascending, descending Allows the resulting subset to be ordered in ascending or
descending order.

group, by Yields a subset with data grouped by a specified value.

In addition to the partial list of operators shown in Table 14-3, the Enumerable type provides a
set of methods that do not have a direct C# query operator shorthand notation, but are instead
exposed as extension methods. These generic methods can be called to transform a result set in var-
ious manners (Reverse<>(), ToArray<>(), ToList<>(), etc.). Some are used to extract singletons
from a result set, others perform various set operations (Distinct<>(), Union<>(), Intersect<>(),
etc.), and still others aggregate results (Count<>(), Sum<>(), Min<>(), Max<>(), etc.).

CHAPTER 14 ■ AN INTRODUCTION TO L INQ 463

8849CH14.qxd 9/26/07 12:30 PM Page 463

Obtaining Counts Using Enumerable
Using these query operators (and auxiliary members of the System.Linq.Enumerable type), you
are able to build very expressive query expressions in a strongly typed manner. To invoke the
Enumerable extension methods, you typically wrap the LINQ expression within parentheses to cast
the result to an IEnumerable<T>-compatible object to invoke the Enumerable extension method.

You have already done so during our examination of immediate execution; however, here is
another example that allows you to discover the number of items returned by a LINQ query:

static void GetCount()
{
string[] currentVideoGames = {"Morrowind", "BioShock",
"Half Life 2: Episode 1", "The Darkness",
"Daxter", "System Shock 2"};

// Get count from the query.
int numb = (from g in currentVideoGames

where g.Length > 6
orderby g
select g).Count<string>();

// numb is the value 5.
Console.WriteLine("{0} items honor the LINQ query.", numb);

}

Building a New Test Project
To begin digging into more intricate LINQ queries, create a new Console Application named
FunWithLinqExpressions. Next, define a trivial Car type, this time sporting a custom ToString()
implementation to quickly view the object’s state:

class Car
{
public string PetName = string.Empty;
public string Color = string.Empty;
public int Speed;
public string Make = string.Empty;

public override string ToString()
{
return string.Format("Make={0}, Color={1}, Speed={2}, PetName={3}",
Make, Color, Speed, PetName);

}
}

Now populate an array with the following Car objects within your Main() method:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Query Expressions *****\n");

// This array will be the basis of our testing...
Car[] myCars = new [] {
new Car{ PetName = "Henry", Color = "Silver", Speed = 100, Make = "BMW"},
new Car{ PetName = "Daisy", Color = "Tan", Speed = 90, Make = "BMW"},
new Car{ PetName = "Mary", Color = "Black", Speed = 55, Make = "VW"},
new Car{ PetName = "Clunker", Color = "Rust", Speed = 5, Make = "Yugo"},

CHAPTER 14 ■ AN INTRODUCTION TO L INQ464

8849CH14.qxd 9/26/07 12:30 PM Page 464

new Car{ PetName = "Hank", Color = "Tan", Speed = 0, Make = "Ford"},
new Car{ PetName = "Sven", Color = "White", Speed = 90, Make = "Ford"},
new Car{ PetName = "Mary", Color = "Black", Speed = 55, Make = "VW"},
new Car{ PetName = "Zippy", Color = "Yellow", Speed = 55, Make = "VW"},
new Car{ PetName = "Melvin", Color = "White", Speed = 43, Make = "Ford"}

};

// We will call various methods here!
Console.ReadLine();

}

Basic Selection Syntax
Because LINQ query expressions are validated at compile time, you need to remember that the
ordering of these operators is critical. In the simplest terms, every LINQ query expression is built
using the from, in, and select operators:

var result = from item in container select item;

In this case, our query expression is doing nothing more than selecting every item in the con-
tainer (similar to a Select * SQL statement). Consider the following:

static void BasicSelection(Car[] myCars)
{
// Get everything.
Console.WriteLine("All cars:");
var allCars = from c in myCars select c;
foreach (var c in allCars)
{
Console.WriteLine(c.ToString());

}
}

Again, this query expression is not entirely useful, given that our subset is identical to that of
the data in the incoming parameter. If we wish, we could use this incoming parameter to extract
only the PetName values of each car using the following selection syntax:

// Now get only the names of the cars.
Console.WriteLine("Only PetNames:");
var names = from c in myCars select c.PetName;

foreach (var n in names)
{
Console.WriteLine("Name: {0}", n);

}

In this case, names is really an internal type that implements IEnumerable<string>, given that
we are selecting only the values of the PetName property for each Car object. Again, using implicit
typing via the var keyword, our coding task is simplified.

Now consider the following task. What if you’d like to obtain and display the makes of each
vehicle? If you author the following query expression:

var makes = from c in myCars select c.Make;

you will end up with a number of redundant listings, as you will find BMW, Ford, and VW
accounted for multiple times. You can use the Enumerable.Distinct<T>() method to eliminate
such duplication:

CHAPTER 14 ■ AN INTRODUCTION TO L INQ 465

8849CH14.qxd 9/26/07 12:30 PM Page 465

var makes = (from c in myCars select c.Make).Distinct<string>();

When calling any extension method defined by Enumerable, you can do so either at the time
you build the query expression (as shown in the previous example) or via an extension method on a
compatible underlying array type. Thus, the following code yields identical output:

var makes = from c in myCars select c.Make;
Console.WriteLine("Distinct makes:");
foreach (var m in makes.Distinct<string>())
{
Console.WriteLine("Make: {0}", m);

}

Figure 14-7 shows the result of calling BasicSelections().

Figure 14-7. Selecting basic data from the Car[] parameter

Obtaining Subsets of Data
To obtain a specific subset from a container, you can make use of the where operator. When doing
so, the general template now becomes as follows:

var result = from item in container where Boolean expression select item;

Notice that the where operator expects an expression that resolves to a Boolean. For example,
to extract from the Car[] parameter only the items that have “BMW” as the value assigned to the
Make field, you could author the following code within a new method named GetSubsets():

static void GetSubsets(Car[] myCars)
{
// Now get only the BMWs.
var onlyBMWs = from c in myCars where c.Make == "BMW" select c;

CHAPTER 14 ■ AN INTRODUCTION TO L INQ466

8849CH14.qxd 9/26/07 12:30 PM Page 466

foreach (Car c in onlyBMWs)
{
Console.WriteLine(c.ToString());

}
}

As seen earlier in this chapter, when you are building a where clause, it is permissible to make
use of any valid C# operators to build complex expressions. For example, consider the following
query that only extracts out the BMWs going at least 100 mph:

// Get BMWs going at least 100 mph.
var onlyFastBMWs = from c in myCars

where c.Make == "BMW" && c.Speed >= 100
select c;

foreach (Car c in onlyFastBMWs)
{
Console.WriteLine("{0} is going {1} MPH", c.PetName, c.Speed);

}

Projecting New Data Types
It is also possible to project new forms of data from an existing data source. Let’s assume that you
wish to take the incoming Car[] parameter and obtain a result set that accounts only for the make
and color of each vehicle. To do so, you can define a select statement that dynamically yields new
types via C# 2008 anonymous types. Recall from Chapter 13 that the compiler defines a read-only
property and a read-only backing field for each specified name, and also is kind enough to override
ToString(), GetHashCode(), and Equals():

var makesColors = from c in myCars select new {c.Make, c.Color};
foreach (var o in makesColors)
{
// Could also use Make and Color properties directly.
Console.WriteLine(o.ToString());

}

Figure 14-8 shows the output of each of these new queries.

Figure 14-8. Enumerating over subsets

CHAPTER 14 ■ AN INTRODUCTION TO L INQ 467

8849CH14.qxd 9/26/07 12:30 PM Page 467

Reversing Result Sets
You can reverse the items within a result set quite simply using the generic Reverse<T>() method of
the Enumerable type. For example, the following method selects all items from the incoming Car[]
parameter in reverse:

static void ReversedSelection(Car[] myCars)
{
// Get everything in reverse.
Console.WriteLine("All cars in reverse:");
var subset = (from c in myCars select c).Reverse<Car>();
foreach (Car c in subset)
{
Console.WriteLine("{0} is going {1} MPH", c.PetName, c.Speed);

}
}

Here, we called the Reverse<T>() method at the time we constructed our query. Again, as an
alternative, we could invoke this method on the myCars array as follows:

static void ReversedSelection(Car[] myCars)
{
// Get everything in reverse.
Console.WriteLine("All cars in reverse:");
var subset = from c in myCars select c;
foreach (Car c in subset.Reverse<Car>())
{
Console.WriteLine(c.ToString());

}
}

Sorting Expressions
As you have seen over this chapter’s initial examples, a query expression can take an orderby
operator to sort items in the subset by a specific value. By default, the order will be ascending; thus,
ordering by a string would be alphabetical, ordering by numerical data would be lowest to highest,
and so forth. If you wish to view the results in a descending order, simply include the descending
operator. Ponder the following method:

static void OrderedResults(Car[] myCars)
{
// Order all the cars by PetName.
var subset = from c in myCars orderby c.PetName select c;

Console.WriteLine("Ordered by PetName:");
foreach (Car c in subset)
{
Console.WriteLine(c.ToString());

}

// Now find the cars that are going less than 55 mph,
// and order by descending PetName
subset = from c in myCars
where c.Speed > 55 orderby c.PetName descending select c;

Console.WriteLine("\nCars going faster than 55, ordered by PetName:");
foreach (Car c in subset)
{

CHAPTER 14 ■ AN INTRODUCTION TO L INQ468

8849CH14.qxd 9/26/07 12:30 PM Page 468

Console.WriteLine(c.ToString());
}

}

Although ascending order is the default, you are able to make your intentions very clear by
making use of the ascending operator:

var subset = from c in myCars
orderby c.PetName ascending select c;

Given these examples, you can now understand the format of a basic sorting query expression
as follows:

var result = from item in container orderby value
ascending/descending select item;

Finding Differences
The last LINQ query we will examine for the time being involves obtaining a result set that deter-
mines the differences between two IEnumerable<T> compatible containers. Consider the following
method, which makes use of the Enumerable.Except() method to yield (in this example) a Yugo:

static void GetDiff()
{
List<string> myCars = new List<String>
{ "Yugo", "Aztec", "BMW"};

List<string> yourCars = new List<String>
{ "BMW", "Saab", "Aztec" };

var carDiff =(from c in myCars select c)
.Except(from c2 in yourCars select c2);

Console.WriteLine("Here is what you don't have, but I do:");
foreach (string s in carDiff)
Console.WriteLine(s); // Prints Yugo.

}

These examples should give you enough knowledge to feel comfortable with the process of
building LINQ query expressions. Chapter 24 will explore the related topics of LINQ to ADO (which
is a catch-all term describing LINQ to SQL and LINQ to DataSet) and LINQ to XML. However, before
wrapping the current chapter, let’s examine the topic LINQ queries as method return values.

■Source Code The FunWithLinqExpressions project can be found under the Chapter 14 subdirectory.

LINQ Queries: An Island unto Themselves?
You may have noticed that each of the LINQ queries seen over the course of this chapter were all
defined within the scope of a local method. Moreover, to simplify our programming, the variable
used to hold the result set was stored in an implicitly typed local variable (in fact, in the case of pro-
jections, this is mandatory). Recall from Chapter 13 that implicitly typed local variables cannot be
used to define parameters, return values, or fields of a class type.

CHAPTER 14 ■ AN INTRODUCTION TO L INQ 469

8849CH14.qxd 9/26/07 12:30 PM Page 469

Given this point, you may wonder exactly how you could return a query result to an external
caller. The answer is it depends. If you have a result set consisting of strongly typed data (such as an
array of strings, a List<T> of Cars, or whatnot), you could abandon the use of the var keyword and
using a proper IEnumerable<T> or IEnumerable type (again, as IEnumerable<T> extends IEnumerable).
Consider the following example for a new .NET 3.5 Console Application named LinqRetValues:

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** LINQ Transformations *****\n");
IEnumerable<string> subset = GetStringSubset();
foreach (string item in subset)
{
Console.WriteLine(item);

}
Console.ReadLine();

}

static IEnumerable<string> GetStringSubset()
{
string[] currentVideoGames = {"Morrowind", "BioShock",
"Half Life 2: Episode 1", "The Darkness",
"Daxter", "System Shock 2"};

// Note subset is an IEnumerable<string> compatible object.
IEnumerable<string> subset = from g in currentVideoGames

where g.Length > 6
orderby g
select g;

return subset;
}

}

This example works as expected, only because the return value of the GetStringSubset() and
the LINQ query within this method has been strongly typed. If you used the var keyword to define
the subset variable, it would be permissible to return the value only if the method is still prototyped
to return IEnumerable<string> (and if the implicitly typed local variable is in fact compatible with
the specified return type).

However, always remember that when you have a LINQ query that makes use of a projection,
you have no way of knowing the underlying data type, as this is determined at compile time. In
these cases, the var keyword is mandatory; therefore, the following code method would not
compile:

// Error! Can't return a var data type!
static var GetProjectedSubset()
{
Car[] myCars = new Car[] {
new Car{ PetName = "Henry", Color = "Silver", Speed = 100, Make = "BMW"},
new Car{ PetName = "Daisy", Color = "Tan", Speed = 90, Make = "BMW"},
new Car{ PetName = "Mary", Color = "Black", Speed = 55, Make = "VW"},
new Car{ PetName = "Clunker", Color = "Rust", Speed = 5, Make = "Yugo"},
new Car{ PetName = "Melvin", Color = "White", Speed = 43, Make = "Ford"}

};

CHAPTER 14 ■ AN INTRODUCTION TO L INQ470

8849CH14.qxd 9/26/07 12:30 PM Page 470

var makesColors = from c in myCars select new { c.Make, c.Color };
return makesColors; // Nope!

}

Given that return values cannot be implicitly typed, how can we return the makesColors object
to an external caller?

Transforming Query Results to Array Types
When you wish to return projected data to a caller, one approach is to transform the query result
into a standard CLR Array object using the ToArray<T>() extension method. Thus, if we were to
update our query expression as follows:

// Return value is now an Array.
static Array GetProjectedSubset()
{
Car[] myCars = new Car[]{
new Car{ PetName = "Henry", Color = "Silver", Speed = 100, Make = "BMW"},
new Car{ PetName = "Daisy", Color = "Tan", Speed = 90, Make = "BMW"},
new Car{ PetName = "Mary", Color = "Black", Speed = 55, Make = "VW"},
new Car{ PetName = "Clunker", Color = "Rust", Speed = 5, Make = "Yugo"},
new Car{ PetName = "Melvin", Color = "White", Speed = 43, Make = "Ford"}

};

var makesColors = from c in myCars select new { c.Make, c.Color };

// Map set of anonymous objects to an Array object.
// Here were are relying on type inference of the generic
// type parameter, as we don't know the type of type!
return makesColors.ToArray();

}

we could invoke and process the data from Main() as follows:

Array objs = GetProjectedSubset();
foreach (object o in objs)
{
Console.WriteLine(o); // Calls ToString() on each anonymous object.

}

Note that we have to use a literal System.Array object and cannot make use of the C# array
declaration syntax, given that we don’t know the underlying type of type! Also note that we are not
specifying the type parameter to the generic ToArray<T>() method, as we (once again) don’t know
the underlying data type until compile time (which is too late for our purposes).

The obvious problem is that we lose any strong typing, as each item in the Array object is
assumed to be of type Object. Nevertheless, when you need to return a LINQ result set which is the
result of a projection operation, transforming the data into an Array type (or another suitable con-
tainer via other members of the Enumerable type) is mandatory.

■Source Code The LinqRetValues project can be found under the Chapter 14 subdirectory.

CHAPTER 14 ■ AN INTRODUCTION TO L INQ 471

8849CH14.qxd 9/26/07 12:30 PM Page 471

Summary
LINQ is a set of related technologies that attempts to provide a single, symmetrical manner to inter-
act with diverse forms of data. As explained over the course of this chapter, LINQ can interact with
any type implementing the IEnumerable<T> interface, including simple arrays as well as generic and
nongeneric collections of data.

As you have seen over the course of this chapter, working with LINQ technologies is accom-
plished using several new C# 2008 language features. For example, given the fact that LINQ query
expressions can return any number of result sets, it is common to make use of the var keyword to
represent the underlying data type. As well, lambda expressions, object initialization syntax, and
anonymous types can all be used to build very functional and compact LINQ queries.

More importantly, you have seen how the C# LINQ query operators are simply shorthand
notations for making calls on static members of the System.Linq.Enumerable type. As shown, most
members of Enumerable operate on Func<T> delegate types, which can take literal method addresses,
anonymous methods, or lambda expressions as input to evaluate the query.

CHAPTER 14 ■ AN INTRODUCTION TO L INQ472

8849CH14.qxd 9/26/07 12:30 PM Page 472

Programming with .NET
Assemblies

P A R T 4

8849CH15.qxd 10/22/07 1:46 PM Page 473

8849CH15.qxd 10/22/07 1:46 PM Page 474

Introducing .NET Assemblies

Each of the applications developed in this book’s first fourteen chapters were along the lines of
traditional “stand-alone” applications, given that all of your custom programming logic was con-
tained within a single executable file (*.exe). However, one major aspect of the .NET platform is the
notion of binary reuse, where applications make use of the types contained within various external
assemblies (aka code libraries). The point of this chapter is to examine the core details of creating,
deploying, and configuring .NET assemblies.

In this chapter, you’ll first learn the construction of .NET namespaces followed by the distinc-
tion between single-file and multifile assemblies, as well as “private” and “shared” assemblies. Next,
you’ll examine exactly how the .NET runtime resolves the location of an assembly and come to
understand the role of the global assembly cache (GAC), application configuration files (*.config
files), publisher policy assemblies, and the role of the System.Configuration namespace.

Defining Custom Namespaces
Before diving into the details of assembly deployment and configuration, it is very important to
examine the topic of creating custom .NET namespaces. Up to this point in the text, you have been
building small test programs leveraging existing namespaces in the .NET universe (System in partic-
ular). However, when you build your own custom applications, it can be very helpful to group your
related types into custom namespaces. In C#, this is accomplished using the namespace keyword.
This is even more important when creating .NET *.dll assemblies, as other developers will need to
import your custom namespaces to make use of your types.

Assume you are developing a collection of geometric classes named Square, Circle, and
Hexagon. Given their similarities, you would like to group them all together into a common custom
namespace. You have two basic approaches. First, you may choose to define each class within a
single file (ShapesLib.cs) as follows:

// shapeslib.cs
using System;

namespace MyShapes
{
// Circle class
class Circle{ /* Interesting methods... */ }
// Hexagon class
class Hexagon{ /* More interesting methods... */ }
// Square class
class Square{ /* Even more interesting methods... */ }

}

475

C H A P T E R 1 5

8849CH15.qxd 10/22/07 1:46 PM Page 475

Notice how the MyShapes namespace acts as the conceptual “container” of these types. Alterna-
tively, you can split a single namespace into multiple C# files. To do so, simply wrap the given class
definitions in the same namespace:

// circle.cs
using System;

namespace MyShapes
{
// Circle class
class Circle{ }

}

// hexagon.cs
using System;

namespace MyShapes
{
// Hexagon class
class Hexagon{ }

}

// square.cs
using System;

namespace MyShapes
{
// Square class
class Square{ }

}

When another namespace wishes to use objects within a distinct namespace, the using key-
word can be used as follows:

// Make use of types defined the MyShape namespace.
using System;
using MyShapes;

namespace MyApp
{
class ShapeTester
{
static void Main(string[] args)
{
Hexagon h = new Hexagon();
Circle c = new Circle();
Square s = new Square();

}
}

}

A Type’s Fully Qualified Name
Technically speaking, you are not required to make use of the C# using keyword when declaring a
type defined in an external namespace. You could make use of the fully qualified name of the type,
which as you recall from Chapter 1 is the type’s name prefixed with the defining namespace:

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES476

8849CH15.qxd 10/22/07 1:46 PM Page 476

// Note we are not "using" MyShapes anymore.
using System;

namespace MyApp
{
class ShapeTester
{
static void Main(string[] args)
{
MyShapes.Hexagon h = new MyShapes.Hexagon();
MyShapes.Circle c = new MyShapes.Circle();
MyShapes.Square s = new MyShapes.Square();

}
}

}

Typically there is no need to use a fully qualified name. Not only does it require a greater num-
ber of keystrokes, but also it makes no difference whatsoever in terms of code size or execution
speed. In fact, in CIL code, types are always defined with the fully qualified name. In this light, the
C# using keyword is simply a typing time-saver.

However, fully qualified names can be very helpful (and sometimes necessary) to avoid name
clashes that may occur when using multiple namespaces that contain identically named types.
Assume you have a new namespace termed My3DShapes, which defines three classes capable of ren-
dering a shape in stunning 3D:

// Another shapes namespace...
using System;

namespace My3DShapes
{
// 3D Circle class
class Circle{ }
// 3D Hexagon class
class Hexagon{ }
// 3D Square class
class Square{ }

}

If you update ShapeTester as was done here, you are issued a number of compile-time errors,
because both namespaces define identically named types:

// Ambiguities abound!
using System;
using MyShapes;
using My3DShapes;

namespace MyApp
{
class ShapeTester
{
static void Main(string[] args)
{
// Which namespace do I reference?
Hexagon h = new Hexagon(); // Compiler error!
Circle c = new Circle(); // Compiler error!
Square s = new Square(); // Compiler error!

}
}

}

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 477

8849CH15.qxd 10/22/07 1:46 PM Page 477

The ambiguity can be resolved using the type’s fully qualified name:

// We have now resolved the ambiguity.
static void Main(string[] args)
{
My3DShapes.Hexagon h = new My3DShapes.Hexagon();
My3DShapes.Circle c = new My3DShapes.Circle();
MyShapes.Square s = new MyShapes.Square();

}

Defining using Aliases
The C# using keyword can also be used to create an alias to a type’s fully qualified name. When you
do so, you are able to define a token that is substituted with the type’s full name at compile time, for
example:

using System;
using MyShapes;
using My3DShapes;

// Resolve the ambiguity using a custom alias.
using The3DHexagon = My3DShapes.Hexagon;

namespace MyApp
{
class ShapeTester
{
static void Main(string[] args)
{
// This is really creating a My3DShapes.Hexagon type.
The3DHexagon h2 = new The3DHexagon();

...
}

}
}

This alternative using syntax can also be used to create an alias to a lengthy namespace. One of
the longer namespaces in the base class library would have to be System.Runtime.Serialization.
Formatters.Binary, which contains a member named BinaryFormatter. If you wish, you could
create an instance of the BinaryFormatter as follows:

using MyAlias = System.Runtime.Serialization.Formatters.Binary;

namespace MyApp
{
class ShapeTester
{
static void Main(string[] args)
{
MyAlias.BinaryFormatter b = new MyAlias.BinaryFormatter();

}
}

}

as well as with a traditional using directive:

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES478

8849CH15.qxd 10/22/07 1:46 PM Page 478

using System.Runtime.Serialization.Formatters.Binary;

namespace MyApp
{
class ShapeTester
{
static void Main(string[] args)
{
BinaryFormatter b = new BinaryFormatter();

}
}

}

■Note C# also provides a mechanism that can be used to resolve name clashes between identically named
namespaces using the namespace alias qualifier (::) and global token. Thankfully, this type of name collision is
rare. If you require more information regarding this topic, look up my article “Working with the C# 2.0 Command
Line Compiler” from http://msdn.microsoft.com.

Creating Nested Namespaces
When organizing your types, you are free to define namespaces within other namespaces. The .NET
base class libraries do so in numerous places to provide an even deeper level of type organization.
For example, the Collections namespace is nested within System, to yield System.Collections. If
you wish to create a root namespace that contains the existing My3DShapes namespace, you can
update your code as follows:

// Nesting a namespace.
namespace Chapter15
{
namespace My3DShapes
{
// 3D Circle class
class Circle{ }
// 3D Hexagon class
class Hexagon{ }
// 3D Square class
class Square{ }

}
}

In many cases, the role of a root namespace is simply to provide a further level of scope, and
therefore may not define any types directly within its scope (as in the case of the Chapter15 name-
space). If this is the case, a nested namespace can be defined using the following compact form:

// Nesting a namespace (take two).
namespace Chapter15.My3DShapes
{
// 3D Circle class
class Circle{ }
// 3D Hexagon class
class Hexagon{ }
// 3D Square class
class Square{ }

}

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 479

8849CH15.qxd 10/22/07 1:46 PM Page 479

http://msdn.microsoft.com

Given that you have now nested the My3DShapes namespace within the Chapter15 root name-
space, you need to update any existing using directives and type aliases:

using Chapter15.My3DShapes;
using The3DHexagon = Chapter15.My3DShapes.Hexagon;

The “Default Namespace” of Visual Studio 2008
On a final namespace-related note, it is worth pointing out that by default, when you create a new
C# project using Visual Studio 2008, the name of your application’s default namespace will be iden-
tical to the project name. From this point on, when you insert new items using the Project ➤ Add
New Item menu selection, types will automatically be wrapped within the default namespace. If you
wish to change the name of the default namespace (e.g., to be your company name), simply access
the Default namespace option using the Application tab of the project’s Properties window (see
Figure 15-1).

Figure 15-1. Configuring the default namespace

With this update, any new item inserted into the project will be wrapped within the
IntertechTraining namespace (and, obviously, if another namespace wishes to use these types,
the correct using directive must be applied).

■Source Code The Namespaces project is located under the Chapter 15 subdirectory.

The Role of .NET Assemblies
.NET applications are constructed by piecing together any number of assemblies. Simply put, an
assembly is a versioned, self-describing binary file hosted by the CLR. Now, despite the fact that
.NET assemblies have exactly the same file extensions (*.exe or *.dll) as previous Win32 binaries
(including legacy COM servers), they have very little in common under the hood. Thus, to set the
stage for the information to come, let’s consider some of the benefits provided by the assembly
format.

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES480

8849CH15.qxd 10/22/07 1:46 PM Page 480

Assemblies Promote Code Reuse
As you have been building your Console Applications over the previous chapters, it may have
seemed that all of the applications’ functionality was contained within the executable assembly
you were constructing. In reality, your applications were leveraging numerous types contained
within the always accessible .NET code library, mscorlib.dll (recall that the C# compiler references
mscorlib.dll automatically), and in the case of some examples, System.Windows.Forms.dll.

As you may know, a code library (also termed a class library) is a *.dll that contains types
intended to be used by external applications. When you are creating executable assemblies, you will
no doubt be leveraging numerous system-supplied and custom code libraries as you create the
application at hand. Do be aware, however, that a code library need not take a *.dll file extension.
It is perfectly possible for an executable assembly to make use of types defined within an external
executable file. In this light, a referenced *.exe can also be considered a “code library.”

Regardless of how a code library is packaged, the .NET platform allows you to reuse types in a
language-independent manner. For example, you could create a code library in C# and reuse that
library in any other .NET programming language. It is possible to not only allocate types across lan-
guages, but also derive from them. A base class defined in C# could be extended by a class authored
in Visual Basic. Interfaces defined in Pascal .NET can be implemented by structures defined in C#,
and so forth. The point is that when you begin to break apart a single monolithic executable into
numerous .NET assemblies, you achieve a language-neutral form of code reuse.

Assemblies Establish a Type Boundary
To begin this chapter, you learned about the formalities behind .NET namespaces. Recall that a
type’s fully qualified name is composed by prefixing the type’s namespace (e.g., System) to its name
(e.g., Console). Strictly speaking however, the assembly in which a type resides further establishes
a type’s identity. For example, if you have two uniquely named assemblies (say, MyCars.dll and
YourCars.dll) that both define a namespace (CarLibrary) containing a class named SportsCar, they
are considered unique types in the .NET universe.

Assemblies Are Versionable Units
.NET assemblies are assigned a four-part numerical version number of the form <major>.<minor>.
<build>.<revision> (if you do not explicitly provide a version number, the assembly is automatically
assigned a version of 0.0.0.0). This number, in conjunction with an optional public key value, allows
multiple versions of the same assembly to coexist in harmony on a single machine. Formally speak-
ing, assemblies that provide public key information are termed strongly named. As you will see in
this chapter, using a strong name, the CLR is able to ensure that the correct version of an assembly
is loaded on behalf of the calling client.

Assemblies Are Self-Describing
Assemblies are regarded as self-describing in part because they record every external assembly it
must have access to in order to function correctly. Thus, if your assembly requires System.Windows.
Forms.dll and System.Drawing.dll, they will be documented in the assembly’s manifest. Recall
from Chapter 1 that a manifest is a blob of metadata that describes the assembly itself (name,
version, required external assemblies, etc.).

In addition to manifest data, an assembly contains metadata that describes the composition
(member names, implemented interfaces, base classes, constructors, and so forth) of every con-
tained type. Given that an assembly is documented in such vivid detail, the CLR does not consult

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 481

8849CH15.qxd 10/22/07 1:46 PM Page 481

the Win32 system registry to resolve its location (quite the radical departure from Microsoft’s legacy
COM programming model). As you will discover during this chapter, the CLR makes use of an
entirely new scheme to resolve the location of external code libraries.

Assemblies Are Configurable
Assemblies can be deployed as “private” or “shared.” Private assemblies reside in the same directory
(or possibly a subdirectory) as the client application making use of them. Shared assemblies, on the
other hand, are libraries intended to be consumed by numerous applications on a single machine
and are deployed to a specific directory termed the global assembly cache, or GAC.

Regardless of how you deploy your assemblies, you are free to author XML-based configuration
files. Using these configuration files, the CLR can be instructed to “probe” for assemblies under a
specific location, load a specific version of a referenced assembly for a particular client, or consult
an arbitrary directory on your local machine, your network location, or a web-based URL. You’ll
learn a good deal more about XML configuration files throughout this chapter.

Understanding the Format of a .NET Assembly
Now that you’ve learned about several benefits provided by the .NET assembly, let’s shift gears and
get a better idea of how an assembly is composed under the hood. Structurally speaking, a .NET
assembly (*.dll or *.exe) consists of the following elements:

• A Win32 file header

• A CLR file header

• CIL code

• Type metadata

• An assembly manifest

• Optional embedded resources

While the first two elements (the Win32 and CLR headers) are blocks of data that you can typi-
cally ignore, they do deserve some brief consideration. This being said, an overview of each element
follows.

The Win32 File Header
The Win32 file header establishes the fact that the assembly can be loaded and manipulated by the
Windows family of operating systems. This header data also identifies the kind of application (con-
sole-based, GUI-based, or *.dll code library) to be hosted by the Windows operating system. If you
open a .NET assembly using the dumpbin.exe utility (via a Visual Studio 2008 command prompt)
and specify the /headers flag, you can view an assembly’s Win32 header information. Figure 15-2
shows (partial) Win32 header information for the CarLibrary.dll assembly you will build a bit later
in this chapter.

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES482

8849CH15.qxd 10/22/07 1:46 PM Page 482

Figure 15-2. An assembly’s Win32 file header information

The CLR File Header
The CLR header is a block of data that all .NET files must support (and do support, courtesy of the
C# compiler) in order to be hosted by the CLR. In a nutshell, this header defines numerous flags
that enable the runtime to understand the layout of the managed file. For example, flags exist that
identify the location of the metadata and resources within the file, the version of the runtime the
assembly was built against, the value of the (optional) public key, and so forth. If you supply the
/clrheader flag to dumpbin.exe, you are presented with the internal CLR header information for a
given .NET assembly, as shown in Figure 15-3.

Figure 15-3. An assembly’s CLR file header information

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 483

8849CH15.qxd 10/22/07 1:46 PM Page 483

Again, as a .NET developer you will not need to concern yourself with the gory details of Win32
or CLR header information (unless perhaps you are building a compiler for a new managed lan-
guage!). Just understand that every .NET assembly contains this data, which is used behind the
scenes by the .NET runtime and Win32 operating system.

CIL Code, Type Metadata, and the Assembly Manifest
At its core, an assembly contains CIL code, which as you recall is a platform- and CPU-agnostic
intermediate language. At runtime, the internal CIL is compiled on the fly (using a just-in-time [JIT]
compiler) to platform- and CPU-specific instructions. Given this architecture, .NET assemblies can
indeed execute on a variety of architectures, devices, and operating systems. Although you can live
a happy and productive life without understanding the details of the CIL programming language,
Chapter 19 offers an introduction to the syntax and semantics of CIL.

An assembly also contains metadata that completely describes the format of the contained
types as well as the format of external types referenced by this assembly. The .NET runtime uses this
metadata to resolve the location of types (and their members) within the binary, lay out types in
memory, and facilitate remote method invocations. You’ll check out the details of the .NET meta-
data format in Chapter 16 during our examination of reflection services.

An assembly must also contain an associated manifest (also referred to as assembly metadata).
The manifest documents each module within the assembly, establishes the version of the assembly,
and also documents any external assemblies referenced by the current assembly (unlike legacy
COM type libraries, which did not provide a way to document external dependencies). As you will
see over the course of this chapter, the CLR makes extensive use of an assembly’s manifest during
the process of locating external assembly references.

■Note Needless to say by this point in the book, when you wish to view an assembly’s CIL code, type metadata,
or manifest, ildasm.exe or reflector.exe are the tools of choice. I will assume you will make extensive use of
these tools as you work through the code examples in this chapter.

Optional Assembly Resources
Finally, a .NET assembly may contain any number of embedded resources such as application
icons, image files, sound clips, or string tables. In fact, the .NET platform supports satellite assem-
blies that contain nothing but localized resources. This can be useful if you wish to partition your
resources based on a specific culture (English, German, etc.) for the purposes of building interna-
tional software. The topic of building satellite assemblies is outside the scope of this text; however,
you will learn how to embed application resources into an assembly during our examination of
Windows Presentation Foundation.

Single-File and Multifile Assemblies
Technically speaking, an assembly can be composed of multiple modules. A module is really noth-
ing more than a generic term for a valid .NET binary file. In most situations, an assembly is in fact
composed of a single module. In this case, there is a one-to-one correspondence between the (logi-
cal) assembly and the underlying (physical) binary (hence the term single-file assembly).

Single-file assemblies contain all of the necessary elements (header information, CIL code,
type metadata, manifest, and required resources) in a single *.exe or *.dll package. Figure 15-4
illustrates the composition of a single-file assembly.

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES484

8849CH15.qxd 10/22/07 1:46 PM Page 484

Figure 15-4. A single-file assembly

A multifile assembly, on the other hand, is a set of .NET *.dlls that are deployed and versioned
as a single logic unit. Formally speaking, one of these *.dlls is termed the primary module and con-
tains the assembly-level manifest (as well as any necessary CIL code, metadata, header information,
and optional resources). The manifest of the primary module records each of the related *.dll files
it is dependent upon.

As a naming convention, the secondary modules in a multifile assembly take a *.netmodule file
extension; however, this is not a requirement of the CLR. Secondary *.netmodules also contain CIL
code and type metadata, as well as a module-level manifest, which simply records the externally
required assemblies of that specific module.

The major benefit of constructing multifile assemblies is that they provide a very efficient way
to download content. For example, assume you have a machine that is referencing a remote multi-
file assembly composed of three modules, where the primary module is installed on the client.
If the client requires a type within a secondary remote *.netmodule, the CLR will download the
binary to the local machine on demand to a specific location termed the download cache. If each
*.netmodule is 5MB, I’m sure you can see the benefit (compared with downloading a single
15MB file).

Another benefit of multifile assemblies is that they enable modules to be authored using
multiple .NET programming languages (which is very helpful in larger corporations, where individ-
ual departments tend to favor a specific .NET language). Once each of the individual modules has
been compiled, the modules can be logically “connected” into a logical assembly using the C#
command-line compiler.

In any case, do understand that the modules that compose a multifile assembly are not literally
linked together into a single (larger) file. Rather, multifile assemblies are only logically related by
information contained in the primary module’s manifest. Figure 15-5 illustrates a multifile assembly
composed of three modules, each authored using a unique .NET programming language.

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 485

8849CH15.qxd 10/22/07 1:46 PM Page 485

Figure 15-5. The primary module records secondary modules in the assembly manifest.

At this point you (hopefully) have a better understanding about the internal composition of a
.NET binary file. With this necessary preamble out of the way, we are ready to dig into the details of
building and configuring a variety of code libraries.

Building and Consuming a Single-File Assembly
To begin exploring the world of .NET assemblies, you’ll first create a single-file *.dll assembly
(named CarLibrary) that contains a small set of public types. To build a code library using Visual
Studio 2008, simply select the Class Library project workspace (see Figure 15-6).

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES486

8849CH15.qxd 10/22/07 1:46 PM Page 486

Figure 15-6. Creating a C# code library

The design of your automobile library begins with an abstract base class named Car that
defines a number of protected data members exposed through custom properties (feel free to use
automatic property syntax if you wish; see Chapter 13). This class has a single abstract method
named TurboBoost(), which makes use of a custom enumeration (EngineState) representing the
current condition of the car’s engine:

using System;

namespace CarLibrary
{
// Represents the state of the engine.
public enum EngineState
{ engineAlive, engineDead }

// The abstract base class in the hierarchy.
public abstract class Car
{
protected string petName;
protected int currSpeed;
protected int maxSpeed;
protected EngineState egnState = EngineState.engineAlive;

public abstract void TurboBoost();

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 487

8849CH15.qxd 10/22/07 1:46 PM Page 487

public Car(){}
public Car(string name, int max, int curr)
{
petName = name; maxSpeed = max; currSpeed = curr;

}

public string PetName
{
get { return petName; }
set { petName = value; }

}
public int CurrSpeed
{
get { return currSpeed; }
set { currSpeed = value; }

}
public int MaxSpeed
{ get { return maxSpeed; } }
public EngineState EngineState
{ get { return egnState; } }

}
}

Now assume that you have two direct descendents of the Car type named MiniVan and
SportsCar. Each overrides the abstract TurboBoost() method by displaying an appropriate message.

using System;
using System.Windows.Forms;

namespace CarLibrary
{
public class SportsCar : Car
{
public SportsCar(){ }
public SportsCar(string name, int max, int curr)
: base (name, max, curr){ }

public override void TurboBoost()
{
MessageBox.Show("Ramming speed!", "Faster is better...");

}
}

public class MiniVan : Car
{
public MiniVan(){ }
public MiniVan(string name, int max, int curr)
: base (name, max, curr){ }

public override void TurboBoost()
{
// Minivans have poor turbo capabilities!
egnState = EngineState.engineDead;
MessageBox.Show("Time to call AAA", "Your car is dead");

}
}

}

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES488

8849CH15.qxd 10/22/07 1:46 PM Page 488

Notice how each subclass implements TurboBoost() using the Windows Form’s MessageBox
class, which is defined in the System.Windows.Forms.dll assembly. For your assembly to make use of
the types defined within this external assembly, the CarLibrary project must set a reference to this
binary via the Add Reference dialog box (see Figure 15-7), which you can access through the Visual
Studio Project ➤ Add Reference menu selection.

Figure 15-7. Referencing external .NET assemblies begins here.

It is really important to understand that the assemblies displayed in the .NET tab of the Add
Reference dialog box do not represent each and every assembly on your machine. The Add Refer-
ence dialog box will not display your custom assemblies, and it does not display all assemblies
located in the GAC. Rather, this dialog box simply presents a list of common assemblies that Visual
Studio 2008 is preprogrammed to display. When you are building applications that require the use
of an assembly not listed within the Add Reference dialog box, you need to click the Browse tab to
manually navigate to the *.dll or *.exe in question.

■Note Be aware that the Recent tab of the Add Reference dialog box keeps a running list of previously refer-
enced assemblies. This can be handy, as many .NET projects tend to use the same core set of external libraries.

Exploring the Manifest
Before making use of CarLibrary.dll from a client application, let’s check out how the code library
is composed under the hood. Assuming you have compiled this project, load CarLibrary.dll into
ildasm.exe (see Figure 15-8).

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 489

8849CH15.qxd 10/22/07 1:46 PM Page 489

Figure 15-8. CarLibrary.dll loaded into ildasm.exe

Now, open the manifest of CarLibrary.dll by double-clicking the MANIFEST icon. The first
code block encountered in a manifest is used to specify all external assemblies that are required by
the current assembly to function correctly. As you recall, CarLibrary.dll made use of types within
mscorlib.dll and System.Windows.Forms.dll, both of which are listed in the manifest using the
.assembly extern token:

.assembly extern mscorlib
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}
.assembly extern System.Windows.Forms
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}

Here, each .assembly extern block is qualified by the .publickeytoken and .ver directives. The
.publickeytoken instruction is present only if the assembly has been configured with a strong name
(more details on strong names in the section “Understanding Strong Names” later in this chapter).
The .ver token defines (of course) the numerical version identifier.

After cataloging each of the external references, you will find a number of .custom tokens that
identify assembly-level attributes. If you examine the AssemblyInfo.cs file created by Visual Studio
(which can be viewed by expanding the Properties icon of the Solution Explorer), you will find these
attributes represent basic characteristics about the assembly such as company name, trademark,
and so forth.

Chapter 16 examines attributes in detail, so don’t sweat the details at this point. Do be aware,
however, that the attributes defined in AssemblyInfo.cs update the manifest with various .custom
tokens, such as [AssemblyTitle]:

.assembly CarLibrary
{
...
.custom instance void [mscorlib]
System.Reflection.AssemblyTitleAttribute::.ctor(string) =

(01 00 0A 43 61 72 4C 69 62 72 61 72 79 00 00) // ...CarLibrary..
.hash algorithm 0x00008004
.ver 1:0:0:0

}
.module CarLibrary.dll

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES490

8849CH15.qxd 10/22/07 1:46 PM Page 490

Finally, you can also see that the .assembly token is used to mark the friendly name of
your assembly (CarLibrary), while the .module token specifies the name of the module itself
(CarLibrary.dll). The .ver token defines the version number assigned to this assembly, as
specified by the [AssemblyVersion] attribute within AssemblyInfo.cs.

Exploring the CIL
Recall that an assembly does not contain platform-specific instructions; rather, it contains plat-
form-agnostic common intermediate language (CIL) instructions. When the .NET runtime loads an
assembly into memory, the underlying CIL is compiled (using the JIT compiler) into instructions
that can be understood by the target platform. If you double-click the TurboBoost() method of the
SportsCar class, ildasm.exe will open a new window showing the CIL tokens that implement this
method:

.method public hidebysig virtual instance void
TurboBoost() cil managed

{
// Code size 18 (0x12)
.maxstack 8
IL_0000: nop
IL_0001: ldstr "Ramming speed!"
IL_0006: ldstr "Faster is better..."
IL_000b: call valuetype [System.Windows.Forms]System.Windows.Forms.DialogResult
[System.Windows.Forms]System.Windows.Forms.MessageBox::Show(string, string)

IL_0010: pop
IL_0011: ret

} // end of method SportsCar::TurboBoost

Notice that the .method tag is used to identify a method defined by the SportsCar type. Member
variables defined by a type are marked with the .field tag. Recall that the Car class defined a set of
protected data, such as currSpeed:

.field family int32 currSpeed

Properties are marked with the .property tag. Here is the CIL describing the public CurrSpeed
property (note that the read/write nature of a property is marked by .get and .set tags):

.property instance int32 CurrSpeed()
{
.get instance int32 CarLibrary.Car::get_CurrSpeed()
.set instance void CarLibrary.Car::set_CurrSpeed(int32)

} // end of property Car::CurrSpeed

As you can see, the get/set scopes of a property simply delegate to normal (and hidden)
methods within the assembly (get_CurrSpeed() and set_currSpeed() in this case). Again, while
most .NET developers do not need to be deeply concerned with the details of CIL, Chapter 19
will provide more details on the syntax and semantics of the common intermediate language.

Exploring the Type Metadata
Finally, if you now press Ctrl+M, ildasm.exe displays the metadata for each type within the
CarLibrary.dll assembly (see Figure 15-9).

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 491

8849CH15.qxd 10/22/07 1:46 PM Page 491

Figure 15-9. Type metadata for the types within CarLibrary.dll

As explained in the next chapter, an assembly’s metadata is a very important trait of the .NET
platform, and serves as the backbone for numerous technologies (object serialization, late binding,
extendable applications, etc.). In any case, now that you have looked inside the CarLibrary.dll
assembly, you can build some client applications that make use of your types.

■Source Code The CarLibrary project is located under the Chapter 15 subdirectory.

Building a C# Client Application
Because each of the CarLibrary types has been declared using the public keyword, other assemblies
are able to make use of them. Recall that you may also define types using the C# internal keyword
(in fact, this is the default C# access mode). Internal types can be used only by the assembly in
which they are defined. External clients can neither see nor create types marked with the internal
keyword.

■Note .NET does provides a way to specify “friend assemblies” that allow internal types to be consumed by a
set of specified assemblies. Look up the InternalsVisibleToAttribute class in the .NET Framework 3.5 SDK
documentation for details.

To consume these types, create a new C# Console Application project (CSharpCarClient). Once
you have done so, set a reference to CarLibrary.dll using the Browse tab of the Add Reference dia-
log box (if you compiled CarLibrary.dll using Visual Studio, your assembly is located under the
\bin\Debug subdirectory of the CarLibrary project folder). At this point you can build your client
application to make use of the external types. Update your initial C# file as follows:

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES492

8849CH15.qxd 10/22/07 1:46 PM Page 492

using System;

// Don't forget to import the CarLibrary namespace!
using CarLibrary;

namespace CSharpCarClient
{
public class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** C# CarLibrary Client App *****");
// Make a sports car.
SportsCar viper = new SportsCar("Viper", 240, 40);
viper.TurboBoost();

// Make a minivan.
MiniVan mv = new MiniVan();
mv.TurboBoost();
Console.ReadLine();

}
}

}

This code looks just like the code of the other applications developed thus far in the text. The
only point of interest is that the C# client application is now making use of types defined within a
separate custom assembly. Go ahead and run your program. As you would expect, the execution of
this program results in the display of various message boxes.

It is also important to point out that Visual Studio 2008 has also placed a copy of CarLibrary.
dll into the \bin\Debug folder of the CSharpCarClient project folder. This can be verified by click-
ing the Show All Files button of the Solution Explorer (see Figure 15-10).

Figure 15-10. Visual Studio 2008 copies private assemblies to the client’s directory.

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 493

8849CH15.qxd 10/22/07 1:46 PM Page 493

As explained later in this chapter, CarLibrary.dll has been deployed as a “private” assembly.
Therefore the CLR loads the local copy of the .NET binary on behalf of the current client
(CSharpCarClient.exe).

■Source Code The CSharpCarClient project is located under the Chapter 15 subdirectory.

Building a Visual Basic Client Application
To illustrate the language-agnostic attitude of the .NET platform, let’s create another Console Appli-
cation (VbNetCarClient), this time using Visual Basic (see Figure 15-11). Once you have created the
project, set a reference to CarLibrary.dll using the Add Reference dialog box, which can be acti-
vated by the Project ➤ Add Reference menu option.

Figure 15-11. Creating a Visual Basic Console Application

Like C#, Visual Basic requires you to list each namespace used within the current file. However,
Visual Basic offers the Imports keyword rather than the C# using keyword. Given this, add the fol-
lowing Imports statement within the Module1.vb code file:

Imports CarLibrary

Module Module1
Sub Main()
End Sub

End Module

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES494

8849CH15.qxd 10/22/07 1:46 PM Page 494

Notice that the Main() method is defined within a Visual Basic module type (which has nothing
to do with a *.netmodule file for a multifile assembly). In a nutshell, modules are a Visual Basic nota-
tion for defining a sealed class that can contain only static methods. In any case, to exercise the
MiniVan and SportsCar types using the syntax of Visual Basic, update your Main() method as follows:

Sub Main()
Console.WriteLine("***** VB CarLibrary Client App *****")

' Local variables are declared using the Dim keyword.
Dim myMiniVan As New MiniVan()
myMiniVan.TurboBoost()

Dim mySportsCar As New SportsCar()
mySportsCar.TurboBoost()
Console.ReadLine()

End Sub

When you compile and run your application, you will once again find a series of message boxes
displayed. Furthermore, this new client application has its own local copy of CarLibrary.dll
located under the bin\Debug folder.

Cross-Language Inheritance in Action
A very enticing aspect of .NET development is the notion of cross-language inheritance. To illustrate,
let’s create a new Visual Basic class that derives from SportsCar (which was authored using C#).
First, add a new class file to your current Visual Basic application (by selecting the Project ➤ Add
Class menu option) named PerformanceCar.vb. Update the initial class definition by deriving from
the SportsCar type using the Inherits keyword. Furthermore, override the abstract TurboBoost()
method using the Overrides keyword:

Imports CarLibrary

' This VB type is deriving from the C# SportsCar.
Public Class PerformanceCar
Inherits SportsCar
Public Overrides Sub TurboBoost()
Console.WriteLine("Zero to 60 in a cool 4.8 seconds...")

End Sub
End Class

To test this new class type, update the module’s Main() method as follows:

Sub Main()
...
Dim dreamCar As New PerformanceCar()

' Use Inherited property.
dreamCar.PetName = "Hank"
dreamCar.TurboBoost()
Console.ReadLine()

End Sub

Notice that the dreamCar object is able to invoke any public member (such as the PetName prop-
erty) found up the chain of inheritance, regardless of the fact that the base class has been defined in
a completely different language and is defined in a completely different assembly.

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 495

8849CH15.qxd 10/22/07 1:46 PM Page 495

■Source Code The VbNetCarClient project is located under the Chapter 15 subdirectory.

Building and Consuming a Multifile Assembly
Now that you have constructed and consumed a single-file assembly, let’s examine the process of
building a multifile assembly. Recall that a multifile assembly is simply a collection of related mod-
ules that is deployed and versioned as a single logical unit. At the time of this writing, the Visual
Studio IDE does not support a C# multifile assembly project template. Therefore, you will need to
make use of the command-line compiler (csc.exe) if you wish to build such a beast.

To illustrate the process, you will build a multifile assembly named AirVehicles. The primary
module (airvehicles.dll) will contain a single class type named Helicopter. The related manifest
(also contained in airvehicles.dll) catalogs an additional *.netmodule file named ufo.netmodule,
which contains another class type named (of course) Ufo. Although both class types are physically
contained in separate binaries, you will group them into a single namespace named AirVehicles.
Finally, both classes are created using C# (although you could certainly mix and match languages if
you desire).

To begin, open a simple text editor (such as Notepad) and create the following Ufo class defini-
tion saved to a file named ufo.cs:

using System;

namespace AirVehicles
{
public class Ufo
{
public void AbductHuman()
{
Console.WriteLine("Resistance is futile");

}
}

}

To compile this class into a .NET module, navigate to the folder containing ufo.cs and issue
the following command to the C# compiler (the module option of the /target flag instructs csc.exe
to produce a *.netmodule as opposed to a *.dll or an *.exe file):

csc.exe /t:module ufo.cs

If you now look in the folder that contains the ufo.cs file, you should see a new file named
ufo.netmodule (take a peek). Next, create a new file named helicopter.cs that contains the follow-
ing class definition:

using System;

namespace AirVehicles
{
public class Helicopter
{
public void TakeOff()
{
Console.WriteLine("Helicopter taking off!");

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES496

8849CH15.qxd 10/22/07 1:46 PM Page 496

}
}

}

Given that airvehicles.dll is the intended name of the primary module of this multifile
assembly, you will need to compile helicopter.cs using the /t:library and /out: options. To enlist
the ufo.netmodule binary into the assembly manifest, you must also specify the /addmodule flag. The
following command does the trick:

csc /t:library /addmodule:ufo.netmodule /out:airvehicles.dll helicopter.cs

At this point, your directory should contain the primary airvehicles.dll module as well as the
secondary ufo.netmodule binaries.

Exploring the ufo.netmodule File
Now, using ildasm.exe, open ufo.netmodule. As you can see, *.netmodules contain a module-level
manifest; however, its sole purpose is to list each external assembly referenced by the code base.
Given that the Ufo class did little more than make a call to Console.WriteLine(), you find the
following:

.assembly extern mscorlib
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}
.module ufo.netmodule

Exploring the airvehicles.dll File
Next, using ildasm.exe, open the primary airvehicles.dll module and investigate the assembly-
level manifest. Notice that the .file token documents the associated modules in the multifile
assembly (ufo.netmodule in this case). The .class extern tokens are used to document the names
of the external types referenced for use from the secondary module (Ufo):

.assembly extern mscorlib
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}
.assembly airvehicles
{
...
.hash algorithm 0x00008004
.ver 0:0:0:0

}
.file ufo.netmodule
...
.class extern public AirVehicles.Ufo
{
.file ufo.netmodule
.class 0x02000002

}
.module airvehicles.dll

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 497

8849CH15.qxd 10/22/07 1:46 PM Page 497

Again, realize that the only entity that links together airvehicles.dll and ufo.netmodule is the
assembly manifest. These two binary files have not been merged into a single, larger *.dll.

Consuming a Multifile Assembly
The consumers of a multifile assembly couldn’t care less that the assembly they are referencing is
composed of numerous modules. To keep things simple, let’s create a new C# client application at
the command line. Create a new file named Client.cs with the following module definition. When
you are done, save it in the same location as your multifile assembly.

using System;
using AirVehicles;

class Program
{
static void Main()
{
Console.WriteLine("***** Multifile Assembly Client *****");
Helicopter h = new Helicopter();
h.TakeOff();

// This will load the *.netmodule on demand.
Ufo u = new Ufo();
u.AbductHuman();
Console.ReadLine();

}
}

To compile this executable assembly at the command line, you will make use of the Visual
Basic .NET command-line compiler, csc.exe, with the following command set:

csc /r:airvehicles.dll Client.cs

Notice that when you are referencing a multifile assembly, the compiler needs to be supplied
only with the name of the primary module (the *.netmodules are loaded on demand by the CLR
when used by the client’s code base). In and of themselves, *.netmodules do not have an individual
version number and cannot be directly loaded by the CLR. Individual *.netmodules can be loaded
only by the primary module (e.g., the file that contains the assembly manifest).

■Note Visual Studio 2008 also allows you to reference a multifile assembly. Simply use the Add References
dialog box and select the primary module. Any related *.netmodules are copied during the process.

At this point, you should feel comfortable with the process of building both single-file and
multifile assemblies. To be completely honest, chances are that 99.99 percent of your assemblies
will be single-file entities. Nevertheless, multifile assemblies can prove helpful when you wish to
break a large physical binary into more modular units (and they are quite useful for remote down-
load scenarios). Next up, let’s formalize the concept of a private assembly.

■Source Code The MultifileAssembly project is included under the Chapter 15 subdirectory.

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES498

8849CH15.qxd 10/22/07 1:46 PM Page 498

Understanding Private Assemblies
Technically speaking, the assemblies you’ve created thus far in this chapter have been deployed as
private assemblies. Private assemblies are required to be located within the same directory as the
client application (termed the application directory) or a subdirectory thereof. Recall that when you
set a reference to CarLibrary.dll while building the CSharpCarClient.exe and VbNetCarClient.exe
applications, Visual Studio 2008 responded by placing a copy of CarLibrary.dll within the client’s
application directory (at least, after the first compilation).

When a client program uses the types defined within this external assembly, the CLR simply
loads the local copy of CarLibrary.dll. Because the .NET runtime does not consult the system reg-
istry when searching for referenced assemblies, you can relocate the CSharpCarClient.exe (or
VbNetCarClient.exe) and CarLibrary.dll assemblies to a new location on your machine and run
the application (this is often termed Xcopy deployment).

Uninstalling (or replicating) an application that makes exclusive use of private assemblies is a
no-brainer: simply delete (or copy) the application folder. Unlike with COM applications, you do
not need to worry about dozens of orphaned registry settings. More important, you do not need to
worry that the removal of private assemblies will break any other applications on the machine.

The Identity of a Private Assembly
The full identity of a private assembly consists of the friendly name and numerical version, both of
which are recorded in the assembly manifest. The friendly name simply is the name of the module
that contains the assembly’s manifest minus the file extension. For example, if you examine the
manifest of the CarLibrary.dll assembly, you find the following:

.assembly CarLibrary
{
...
.ver 1:0:0:0

}

Given the isolated nature of a private assembly, it should make sense that the CLR does not
bother to make use of the version number when resolving its location. The assumption is that pri-
vate assemblies do not need to have any elaborate version checking, as the client application is the
only entity that “knows” of its existence. Given this, it is (very) possible for a single machine to have
multiple copies of the same private assembly in various application directories.

Understanding the Probing Process
The .NET runtime resolves the location of a private assembly using a technique termed probing,
which is much less invasive than it sounds. Probing is the process of mapping an external assembly
request to the location of the requested binary file. Strictly speaking, a request to load an assembly
may be either implicit or explicit. An implicit load request occurs when the CLR consults the mani-
fest in order to resolve the location of an assembly defined using the .assembly extern tokens:

// An implicit load request.
.assembly extern CarLibrary
{ ... }

An explicit load request occurs programmatically using the Load() or LoadFrom() method of the
System.Reflection.Assembly class type, typically for the purposes of late binding and dynamic
invocation of type members. You’ll examine these topics further in Chapter 16, but for now you can
see an example of an explicit load request in the following code:

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 499

8849CH15.qxd 10/22/07 1:46 PM Page 499

// An explicit load request based on a friendly name.
Assembly asm = Assembly.Load("CarLibrary");

In either case, the CLR extracts the friendly name of the assembly and begins probing the
client’s application directory for a file named CarLibrary.dll. If this file cannot be located, an
attempt is made to locate an executable assembly based on the same friendly name (CarLibrary.
exe). If neither of these files can be located in the application directory, the runtime gives up and
throws a FileNotFoundException exception at runtime.

■Note Technically speaking, if a copy of the requested assembly cannot be found within the client’s application
directory, the CLR will also attempt to locate a client subdirectory with the exact same name as the assembly’s
friendly name (e.g., C:\MyClient\CarLibrary). If the requested assembly resides within this subdirectory, the CLR
will load the assembly into memory.

Configuring Private Assemblies
While it is possible to deploy a .NET application by simply copying all required assemblies to a sin-
gle folder on the user’s hard drive, you will most likely wish to define a number of subdirectories to
group related content. For example, assume you have an application directory named C:\MyApp
that contains CSharpCarClient.exe. Under this folder might be a subfolder named MyLibraries that
contains CarLibrary.dll.

Regardless of the intended relationship between these two directories, the CLR will not probe
the MyLibraries subdirectory unless you supply a configuration file. Configuration files contain var-
ious XML elements that allow you to influence the probing process. Configuration files must have
the same name as the launching application and take a *.config file extension, and they must be
deployed in the client’s application directory. Thus, if you wish to create a configuration file for
CSharpCarClient.exe, it must be named CSharpCarClient.exe.config and located (for this example)
under the C:\MyApp directory.

To illustrate the process, create a new directory on your C drive named MyApp using Windows
Explorer. Next, copy CSharpCarClient.exe and CarLibrary.dll to this new folder, and run the
program by double-clicking the executable. Your program should run successfully at this point
(remember, the assemblies are not registered!). Next, create a new subdirectory under C:\MyApp
named MyLibraries (see Figure 15-12), and move CarLibrary.dll to this location.

Try to run your client program again. Because the CLR could not locate an assembly named
“CarLibrary” directly within the application directory, you are presented with a rather nasty unhan-
dled FileNotFoundException exception.

To instruct the CLR to probe under the MyLibraries subdirectory, create a new configuration
file named CSharpCarClient.exe.config and save it in the same folder containing the
CSharpCarClient.exe application, which in this example would be C:\MyApp. Open this file
and enter the following content exactly as shown (be aware that XML is case sensitive!):

<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<probing privatePath="MyLibraries"/>

</assemblyBinding>
</runtime>

</configuration>

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES500

8849CH15.qxd 10/22/07 1:46 PM Page 500

Figure 15-12. CarLibrary.dll now resides under the MyLibraries subdirectory.

.NET *.config files always open with a root element named <configuration>. The nested
<runtime> element may specify an <assemblyBinding> element, which nests a further element
named <probing>. The privatePath attribute is the key point in this example, as it is used to specify
the subdirectories relative to the application directory where the CLR should probe.

Do note that the <probing> element does not specify which assembly is located under a given
subdirectory. In other words, you cannot say, “CarLibrary is located under the MyLibraries subdirec-
tory, but MathUtils is located under the Bin subdirectory.” The <probing> element simply instructs
the CLR to investigate all specified subdirectories for the requested assembly until the first match is
encountered.

■Note Be very aware that the privatePath attribute cannot be used to specify an absolute (C:\SomeFolder\
SomeSubFolder) or relative (..\\SomeFolder\\AnotherFolder) path! If you wish to specify a directory outside the
client’s application directory, you will need to make use of a completely different XML element named <codeBase>
(more details on this element later in the chapter).

Multiple subdirectories can be assigned to the privatePath attribute using a semicolon-
delimited list. You have no need to do so at this time, but here is an example that informs the CLR
to consult the MyLibraries and MyLibraries\Tests client subdirectories:

<probing privatePath="MyLibraries; MyLibraries\Tests"/>

Once you’ve finished creating CSharpCarClient.exe.config, run the client by double-clicking
the executable in Windows Explorer. You should find that CSharpCarClient.exe executes without a
hitch (if this is not the case, double-check your *.config file for typos).

Next, for testing purposes, change the name of your configuration file (in one way or another)
and attempt to run the program once again. The client application should now fail. Remember that
*.config files must be prefixed with the same name as the related client application. By way of a
final test, open your configuration file for editing and capitalize any of the XML elements. Once the
file is saved, your client should fail to run once again (as XML is case sensitive).

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 501

8849CH15.qxd 10/22/07 1:46 PM Page 501

■Note Understand that the CLR will load the very first assembly it finds during the probing process. For example,
if the C:\MyApp folder did contain a copy of CarLibrary.dll, it will be loaded into memory, while the copy under
MyLibraries is effectively ignored.

Configuration Files and Visual Studio 2008
While you are always able to create XML configuration files by hand using your text editor of choice,
Visual Studio 2008 allows you create a configuration file during the development of the client pro-
gram. To illustrate, load the CSharpCarClient solution into Visual Studio 2008 and insert a new
Application Configuration File item using the Project ➤ Add New Item menu selection. Before you
click the OK button, take note that the file is named App.config (don’t rename it!). If you look in the
Solution Explorer window, you will now find App.config has been inserted into your current project
(see Figure 15-13).

Figure 15-13. The Visual Studio 2008 App.config file

At this point, you are free to enter the necessary XML elements for the client you happen to be
creating. Now, here is the cool thing. Each time you compile your project, Visual Studio 2008 will
automatically copy the data in App.config to the \bin\Debug directory using the proper naming
convention (such as CSharpCarClient.exe.config). However, this behavior will happen only if your
configuration file is indeed named App.config.

Using this approach, all you need to do is maintain App.config, and Visual Studio 2008 will
ensure your application directory contains the latest and greatest configuration data (even if you
happen to rename your project).

■Note Using App.config files within Visual Studio 2008 is always recommended. If you were to manually add a
*config file to your bin\Debug folder via the Windows Explorer, Visual Studio 2008 may delete your file upon the
next compilation!

Introducing the .NET Framework Configuration Utility
Although authoring a *.config file by hand is not too traumatic, the .NET Framework 3.5 SDK does
ship with a tool that allows you to build XML configuration files using a friendly GUI. You can find
the .NET Framework Configuration utility under the Administrative Tools folder of your Control
Panel (if you are running Vista, click the Classic View link in the left-hand pane to quickly find the
Administrative Tools folder). Once you launch this tool, you will find a number of configuration
options (see Figure 15-14).

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES502

8849CH15.qxd 10/22/07 1:46 PM Page 502

Figure 15-14. The .NET Framework Configuration utility

To generate a client *.config file using this utility, your first step is to add the application to
configure by right-clicking the Applications node and selecting Add. In the resulting dialog box,
click the Other button and navigate to the location of the client program you wish to configure. For
this example, select the VbNetCarClient.exe application created earlier in this chapter (look under
the bin\Debug folder of that project). Once you have done so, you will now find a new subnode, as
shown in Figure 15-15.

Figure 15-15. Preparing to configure VbNetCarClient.exe

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 503

8849CH15.qxd 10/22/07 1:46 PM Page 503

If you right-click the VbNetCarClient node and activate the Properties page, you will notice a
text field located at the bottom of the dialog box where you can enter the values to be assigned to
the privatePath attribute. Just for testing purposes, enter a subdirectory named TestDir (see
Figure 15-16).

Figure 15-16. Configuring a private probing path graphically

Once you click the OK button, you can examine the VbNetCarClient\bin\Debug directory and
find that the *.config file has been updated with the correct <probing> element.

■Note As you may guess, you can copy the XML content generated by the .NET Framework Configuration utility
into a Visual Studio App.config file for further editing. Using this approach, you can certainly decrease your
typing burden by allowing the tool to generate the initial content.

Understanding Shared Assemblies
Now that you understand how to deploy and configure a private assembly, you can begin to exam-
ine the role of a shared assembly. Like a private assembly, a shared assembly is a collection of types
and (optional) resources. The most obvious difference between shared and private assemblies is the
fact that a single copy of a shared assembly can be used by several applications on a single machine.

Consider all the applications created in this text that required you to set a reference to System.
Windows.Forms.dll. If you were to look in the application directory of each of these clients, you
would not find a private copy of this .NET assembly. The reason is that System.Windows.Forms.dll
has been deployed as a shared assembly. Clearly, if you need to create a machinewide class library,
this is the way to go.

As suggested in the previous paragraph, a shared assembly is not deployed within the same
directory as the application making use of it. Rather, shared assemblies are installed into the GAC.

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES504

8849CH15.qxd 10/22/07 1:46 PM Page 504

The GAC is located under a subdirectory of your Windows directory named Assembly (e.g.,
C:\Windows\Assembly), as shown in Figure 15-17.

Figure 15-17. The global assembly cache

■Note You cannot install executable assemblies (*.exe) into the GAC. Only assemblies that take the *.dll file
extension can be deployed as a shared assembly.

Understanding Strong Names
Before you can deploy an assembly to the GAC, you must assign it a strong name, which is used to
uniquely identify the publisher of a given .NET binary. Understand that a “publisher” could be an
individual programmer, a department within a given company, or an entire company at large.

In some ways, a strong name is the modern day .NET equivalent of the COM globally unique
identifier (GUID) identification scheme. If you have a COM background, you may recall that AppIDs
are GUIDs that identify a particular COM application. Unlike COM GUID values (which are nothing
more than 128-bit numbers), strong names are based (in part) on two cryptographically related keys
(termed the public key and the private key), which are much more unique and resistant to tamper-
ing than a simple GUID.

Formally, a strong name is composed of a set of related data, much of which is specified using
assembly-level attributes:

• The friendly name of the assembly (which you recall is the name of the assembly minus the
file extension)

• The version number of the assembly (assigned using the [AssemblyVersion] attribute)

• The public key value (assigned using the [AssemblyKeyFile] attribute)

• An optional culture identity value for localization purposes (assigned using the
[AssemblyCulture] attribute)

• An embedded digital signature created using a hash of the assembly’s contents and the
private key value

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 505

8849CH15.qxd 10/22/07 1:46 PM Page 505

To provide a strong name for an assembly, your first step is to generate public/private key data
using the .NET Framework 3.5 SDK’s sn.exe utility (which you’ll do momentarily). The sn.exe utility
responds by generating a file (typically ending with the *.snk [Strong Name Key] file extension) that
contains data for two distinct but mathematically related keys, the “public” key and the “private”
key. Once the C# compiler is made aware of the location for your *.snk file, it will record the full
public key value in the assembly manifest using the .publickey token at the time of compilation.

The C# compiler will also generate a hash code based on the contents of the entire assembly
(CIL code, metadata, and so forth). As you recall from Chapter 6, a hash code is a numerical value
that is statistically unique for a fixed input. Thus, if you modify any aspect of a .NET assembly (even
a single character in a string literal) the compiler yields a different hash code. This hash code is
combined with the private key data within the *.snk file to yield a digital signature embedded
within the assembly’s CLR header data. The process of strongly naming an assembly is illustrated
in Figure 15-18.

Figure 15-18. At compile time, a digital signature is generated and embedded into the assembly based
in part on public and private key data.

Understand that the actual private key data is not listed anywhere within the manifest, but is
used only to digitally sign the contents of the assembly (in conjunction with the generated hash
code). Again, the whole idea of making use of public/private key data is to ensure that no two com-
panies, departments, or individuals have the same identity in the .NET universe. In any case, once
the process of assigning a strong name is complete, the assembly may be installed into the GAC.

■Note Strong names also provide a level of protection against potential evildoers tampering with your assem-
bly’s contents. Given this point, it is considered a .NET best practice to strongly name every assembly (including
*.exe assemblies) regardless of whether it is deployed to the GAC.

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES506

8849CH15.qxd 10/22/07 1:46 PM Page 506

Strongly Naming CarLibrary.dll
Let’s walk through the process of assigning a strong name to the CarLibrary assembly created ear-
lier in this chapter. The first order of business is to generate the required key data using the sn.exe
utility. Although this tool has numerous command-line options, all you need to concern yourself
with for the moment is the -k flag, which instructs the tool to generate a new file containing the
public/private key information. Create a new folder on your C drive named MyTestKeyPair and
change to that directory using the Visual Studio 2008 command prompt. Next, issue the following
command to generate a file named MyTestKeyPair.snk:

sn -k MyTestKeyPair.snk

Now that you have your key data, you need to inform the C# compiler exactly where
MyTestKeyPair.snk is located. When you create any new C# project workspace using Visual Studio
2008, you will notice that one of your initial project files (located under the Properties node of Solu-
tion Explorer) is named AssemblyInfo.cs. This file contains a number of attributes that describe the
assembly itself. The [AssemblyKeyFile] assembly-level attribute can be used to inform the compiler
of the location of a valid *.snk file. Simply specify the path as a string parameter, for example:

[assembly: AssemblyKeyFile(@"C:\MyTestKeyPair\MyTestKeyPair.snk")]

■Note When you manually specify the [AssemblyKeyFile] attribute, Visual Studio 2008 will generate a warn-
ing informing you to make use of the /keyfile option of csc.exe or establish the key file via the Visual Studio 2008
Properties window. You’ll use the IDE to do so in just a moment (so feel free to ignore the generated warning).

Given that the version of a shared assembly is one aspect of a strong name, selecting a version
number for CarLibrary.dll is a necessary detail. In the AssemblyInfo.cs file, you will find another
attribute named [AssemblyVersion]. Initially the value is set to 1.0.0.0:

[assembly: AssemblyVersion("1.0.0.0")]

A .NET version number is composed of the four parts (<major>.<minor>.<build>.<revision>).
While specifying a version number is entirely up to you, you can instruct Visual Studio 2008 to auto-
matically increment the build and revision numbers as part of each compilation using the wildcard
token, rather than with a specific build and revision value. We have no need to do so for this exam-
ple; however, consider the following:

// Format: <Major number>.<Minor number>.<Build number>.<Revision number>
// Valid values for each part of the version number are between 0 and 65535.
[assembly: AssemblyVersion("1.0.*")]

At this point, the C# compiler has all the information needed to generate strong name data (as
you are not specifying a unique culture value via the [AssemblyCulture] attribute, you “inherit” the
culture of your current machine, which in my case would be US English). Compile your CarLibrary
code library and open the manifest using ildasm.exe. You will now see a new .publickey tag is used
to document the full public key information, while the .ver token records the version specified via
the [AssemblyVersion] attribute (see Figure 15-19).

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 507

8849CH15.qxd 10/22/07 1:46 PM Page 507

Figure 15-19. A strongly named assembly records the public key in the manifest.

Assigning Strong Names Using Visual Studio 2008
Before you deploy CarLibrary.dll to the GAC, let me point out that Visual Studio 2008 allows you to
specify the location of your *.snk file using the project’s Properties page (as well as generate a new
*.snk file rather than running sn.exe manually). We have no need to do so for the CarLibrary proj-
ect; however, to illustrate, select the Signing node, supply the path to the *.snk file, and select the
Sign the assembly check box (see Figure 15-20).

Figure 15-20. Specifying a *.snk file via the Properties page

■Note The Application tab of the Properties editor provides a button named Assembly Information. When clicked,
you will see a dialog box that allows you to establish numerous assembly-level attributes including the version
number, copyright information, and so forth.

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES508

8849CH15.qxd 10/22/07 1:46 PM Page 508

Installing/Removing Shared Assemblies to/from the GAC
The final step is to install the (now strongly named) CarLibrary.dll into the GAC. The simplest way
to install a shared assembly into the GAC is to drag and drop the assembly to C:\Windows\Assembly
using Windows Explorer (which is ideal for a quick test). Do be aware that copying/pasting the
assembly into the GAC window will not work. You must literally drag and drop the *.dll from one
window into the GAC window.

While dragging and dropping an assembly is just fine for local testing, the .NET Framework 3.5
SDK provides a command-line utility named gacutil.exe that allows you to administer the con-
tents of the GAC. Table 15-1 documents some relevant options of gacutil.exe (specify the /? flag to
see each option).

Table 15-1. Various Options of gacutil.exe

Option Meaning in Life

/i Installs a strongly named assembly into the GAC

/u Uninstalls an assembly from the GAC

/l Displays the assemblies (or a specific assembly) in the GAC

Using either technique, deploy CarLibrary.dll to the GAC. Once you’ve finished, you should
see your library present and accounted for (see Figure 15-21).

Figure 15-21. The strongly named, shared CarLibrary (version 1.0.0.0)

■Note You may right-click any assembly icon to pull up its Properties page, and you may also uninstall a specific
version of an assembly altogether from the right-click context menu (the GUI equivalent of supplying the /u flag to
gacutil.exe).

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 509

8849CH15.qxd 10/22/07 1:46 PM Page 509

Consuming a Shared Assembly
When you are building applications that make use of a shared assembly, the only difference from
consuming a private assembly is in how you reference the library using Visual Studio 2008. In real-
ity, there is no difference as far as the tool is concerned (you still make use of the Add Reference
dialog box). What you must understand is that this dialog box will not allow you to reference the
assembly by browsing to the C:\Windows\Assembly folder. Any efforts to do so will be in vain, as
you cannot reference the assembly you have highlighted.

When you need to reference an assembly that has been deployed to the GAC, you will need to
browse to the \bin\Debug directory of the original project via the Browse tab (see Figure 15-22).

Figure 15-22. You must reference shared assemblies by navigating to the project’s \bin\Debug directory.

This (somewhat annoying) fact aside, create a new C# Console Application named
SharedCarLibClient and exercise your types as you wish:

using CarLibrary;

namespace SharedCarLibClient
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Shared Assembly Client *****");
SportsCar c = new SportsCar();
c.TurboBoost();
Console.ReadLine();

}
}

}

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES510

8849CH15.qxd 10/22/07 1:46 PM Page 510

Once you have compiled your client application, navigate to the directory that contains
SharedCarLibClient.exe using Windows Explorer and notice that Visual Studio 2008 has not copied
CarLibrary.dll to the client’s application directory. When you reference an assembly whose
manifest contains a .publickey value, Visual Studio 2008 assumes the strongly named assembly will
most likely be deployed to the GAC, and therefore does not bother to copy the binary.

As a quick side note, if you wish to have Visual Studio 2008 copy a shared assembly to the client
directory, you can select an assembly from the References node of Solution Explorer and set the
Copy Local property to True using the Properties window (see Figure 15-23). Once you do, the *.dll
will be copied to the client folder upon the next compilation.

Figure 15-23. The Copy Local property can force a copy of a strongly named code library.

Exploring the Manifest of SharedCarLibClient
Recall that when you generate a strong name for an assembly, the entire public key is recorded in
the assembly manifest. On a related note, when a client references a strongly named assembly, its
manifest records a condensed hash value of the full public key, denoted by the .publickeytoken tag.
If you were to open the manifest of SharedCarLibClient.exe using ildasm.exe, you would find the
following (your public key token value will of course differ, as it is computed based on the public
key value):

.assembly extern CarLibrary
{
.publickeytoken = (21 9E F3 80 C9 34 8A 38)
.ver 1:0:0:0

}

If you compare the value of the public key token recorded in the client manifest with the
public key token value shown in the GAC, you will find a dead-on match. Recall that a public key
represents one aspect of the strongly named assembly’s identity. Given this, the CLR will only load
version 1.0.0.0 of an assembly named CarLibrary that has a public key that can be hashed down
to the value 219EF380C9348A38. If the CLR does not find an assembly meeting this description in
the GAC (and did not find a private assembly named CarLibrary in the client’s directory), a
FileNotFoundException exception is thrown.

■Source Code The SharedCarLibClient application can be found under the Chapter 15 subdirectory.

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 511

8849CH15.qxd 10/22/07 1:46 PM Page 511

Configuring Shared Assemblies
Like a private assembly, shared assemblies can be configured using a client *.config file. Of course,
because shared assemblies are deployed to a well-known location (the GAC), you will not use the
<privatePath> element as you did for private assemblies (although if the client is using both shared
and private assemblies, the <privatePath> element may still exist in the *.config file).

You can use application configuration files in conjunction with shared assemblies whenever
you wish to instruct the CLR to bind to a different version of a specific assembly, effectively bypass-
ing the value recorded in the client’s manifest. This can be useful for a number of reasons. For
example, imagine that you have shipped version 1.0.0.0 of an assembly and discover a major bug
some time after the fact. One corrective action would be to rebuild the client application to refer-
ence the correct version of the bug-free assembly (say, 1.1.0.0) and redistribute the updated client
and new library to each and every target machine.

Another option is to ship the new code library and a *.config file that automatically instructs
the runtime to bind to the new (bug-free) version. As long as the new version has been installed into
the GAC, the original client runs without recompilation, redistribution, or fear of having to update
your resume.

Here’s another example: you have shipped the first version of a bug-free assembly (1.0.0.0), and
after a month or two, you add new functionality to the assembly in question to yield version 2.0.0.0.
Obviously, existing client applications that were compiled against version 1.0.0.0 have no clue about
these new types, given that their code base makes no reference to them.

New client applications, however, wish to make reference to the new functionality found in
version 2.0.0.0. Under .NET, you are free to ship version 2.0.0.0 to the target machines, and have ver-
sion 2.0.0.0 run alongside the older version 1.0.0.0. If necessary, existing clients can be dynamically
redirected to load version 2.0.0.0 (to gain access to the implementation refinements), using an
application configuration file without needing to recompile and redeploy the client application.

Freezing the Current Shared Assembly
To illustrate how to dynamically bind to a specific version of a shared assembly, open Windows
Explorer and copy the current version of the compiled CarLibrary project (1.0.0.0) into a distinct
subdirectory (I called mine “CarLibrary Version 1.0.0.0”) to symbolize the freezing of this version
(see Figure 15-24).

Figure 15-24. Freezing the current version of CarLibrary.dll

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES512

8849CH15.qxd 10/22/07 1:46 PM Page 512

Building Shared Assembly Version 2.0.0.0
Now, open your existing CarLibrary project and update your code base with a new enum named
MusicMedia that defines four possible musical devices:

// Holds source of music.
public enum MusicMedia
{
musicCd,
musicTape,
musicRadio,
musicMp3

}

As well, add a new public method to the Car type that allows the caller to turn on one of the
given media players (be sure to import the System.Windows.Forms namespace within Car.cs if
necessary):

public abstract class Car
{
...
public void TurnOnRadio(bool musicOn, MusicMedia mm)
{
if(musicOn)
MessageBox.Show(string.Format("Jamming {0}", mm));

else
MessageBox.Show("Quiet time...");

}
...
}

Update the constructors of the Car class to display a MessageBox that verifies you are indeed
using CarLibrary 2.0.0.0:

public abstract class Car
{
...
public Car()
{
MessageBox.Show("CarLibrary Version 2.0!");

}
public Car(string name, short max, short curr)
{
MessageBox.Show("CarLibrary Version 2.0!");
petName = name; maxSpeed = max; currSpeed = curr;

}
...
}

Finally, before you recompile, be sure to update this version of this assembly to 2.0.0.0 by
updating the value passed to the [AssemblyVersion] attribute:

// CarLibrary version 2.0.0.0 (now with music!)
[assembly: AssemblyVersion("2.0.0.0")]

If you look in your project’s \bin\Debug folder, you’ll see that you have a new version of this
assembly (2.0.0.0), while version 1.0.0.0 is safe in storage under the CarLibrary Version 1.0.0.0 direc-
tory. Install this new assembly into the GAC as described earlier in this chapter. Notice that you now
have two versions of the same assembly (see Figure 15-25).

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 513

8849CH15.qxd 10/22/07 1:46 PM Page 513

Figure 15-25. Side-by-side execution of a shared assembly

If you were to run the current SharedCarLibClient.exe program by double-clicking the icon
using Windows Explorer, you should not see the “CarLibrary Version 2.0!” message box appear, as
the manifest is specifically requesting version 1.0.0.0. How then can you instruct the CLR to bind to
version 2.0.0.0? Glad you asked!

■Note Visual Studio 2008 will automatically reset references when you compile your applications! Therefore, if
you were to run your SharedCarLibClient.exe application within Visual Studio 2008, it will grab CarLibrary.dll
version 2.0.0.0! If you accidentally ran your application in this way, simply delete the current CarLibrary.dll
reference and select version 1.0.0.0 (which I suggested you place in a folder named CarLibrary Version 1.0.0.0).

Dynamically Redirecting to Specific Versions of a
Shared Assembly
When you wish to inform the CLR to load a version of a shared assembly other than the version
listed in its manifest, you may build a *.config file that contains a <dependentAssembly> element.
When doing so, you will need to create an <assemblyIdentity> subelement that specifies the
friendly name of the assembly listed in the client manifest (CarLibrary, for this example) and an
optional culture attribute (which can be assigned an empty string or omitted altogether if you wish
to specify the default culture for the machine). Moreover, the <dependentAssembly> element will
define a <bindingRedirect> subelement to define the version currently in the manifest (via the
oldVersion attribute) and the version in the GAC to load instead (via the newVersion attribute).

Create a new configuration file in the application directory of SharedCarLibClient named
SharedCarLibClient.exe.config that contains the following XML data. Of course, the value of your
public key token will be different from what you see in the following markup, and it can be obtained
either by examining the client manifest using ildasm.exe or via the GAC.

<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<dependentAssembly>

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES514

8849CH15.qxd 10/22/07 1:46 PM Page 514

<assemblyIdentity name="CarLibrary"
publicKeyToken="219ef380c9348a38"
culture="neutral"/>

<bindingRedirect oldVersion= "1.0.0.0"
newVersion= "2.0.0.0"/>

</dependentAssembly>
</assemblyBinding>

</runtime>
</configuration>

Now run the SharedCarLibClient.exe program by double-clicking the executable from the
Windows Explorer. You should see the message that displays version 2.0.0.0 has loaded.

Multiple <dependentAssembly> elements can appear within a client’s configuration file.
Although you have no need to do so for this example, assume that the manifest of
SharedCarLibClient.exe also referenced version 2.5.0.0 of an assembly named MathLibrary. If you
wished to redirect to version 3.0.0.0 of MathLibrary (in addition to version 2.0.0.0 of CarLibrary),
the SharedCarLibClient.exe.config file would look like the following:

<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<!-- Controls Binding to CarLibrary -->
<dependentAssembly>
<assemblyIdentity name="CarLibrary"

publicKeyToken="219ef380c9348a38"
culture=""/>

<bindingRedirect oldVersion= "1.0.0.0" newVersion= "2.0.0.0"/>
</dependentAssembly>

<!-- Controls Binding to MathLibrary -->
<dependentAssembly>
<assemblyIdentity name="MathLibrary"

publicKeyToken="219ef380c9348a38"
culture=""/>

<bindingRedirect oldVersion= "2.5.0.0" newVersion= "3.0.0.0"/>
</dependentAssembly>

</assemblyBinding>
</runtime>

</configuration>

■Note It is possible to specify a range of old version numbers via the oldVersion attribute; for example,
<bindingRedirect oldVersion="1.0.0.0-1.2.0.0" newVersion="2.0.0.0"/> informs the CLR to use
version 2.0.0.0 for any older version within the range of 1.0.0.0 to 1.2.0.0.

Revisiting the .NET Framework Configuration Utility
As you would hope, you can generate configuration details for shared assemblies using the
graphical .NET Framework Configuration utility. Like the process of building a *.config file for
private assemblies, the first step is to reference the *.exe to configure. To illustrate, delete the
SharedCarLibClient.exe.config you just authored. Now, add a reference to SharedCarLibClient.exe
by right-clicking the Applications node. Once you do, expand the plus sign (+) icon and select the

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 515

8849CH15.qxd 10/22/07 1:46 PM Page 515

Configured Assemblies subnode. From here, click the Configure an Assembly link on the right side
of the utility.

At this point, you are presented with a dialog box that allows you to establish a
<dependentAssembly> element using a number of friendly UI elements. First, select the “Choose
an assembly from the list of assemblies this application uses” radio button and click the Choose
Assembly button.

A dialog box now displays that shows you not only the assemblies specifically listed in the
client manifest, but also the assemblies referenced by these assemblies. For this example’s pur-
poses, select CarLibrary. When you click the Finish button, you will be shown a Properties page for
this one small aspect of the client’s manifest. Here, you can generate the <dependentAssembly>
using the Binding Policy tab.

Once you select the Binding Policy tab, you can set the oldVersion attribute (1.0.0.0) via the
Requested Version text field and the newVersion attribute (2.0.0.0) using the New Version text field.
Once you have committed the settings, you will find the following configuration file is generated
for you:

<?xml version="1.0"?>
<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<dependentAssembly>
<assemblyIdentity name="CarLibrary"

publicKeyToken="219ef380c9348a38" />
<publisherPolicy apply="yes" />
<bindingRedirect oldVersion="1.0.0.0" newVersion="2.0.0.0" />

</dependentAssembly>
</assemblyBinding>

</runtime>
</configuration>

Investigating the Internal Composition of the GAC
At this point, you have deployed and configured private and shared assemblies. Before we turn to
the topic of publisher policy, let’s investigate the internal composition of the GAC itself. When you
view the GAC using Windows Explorer, you find a number of icons representing each version of a
shared assembly. This graphical shell is provided courtesy of a COM server named shfusion.dll. As
you may suspect, however, beneath these icons is an elaborate (but predictable) directory structure.

To understand what the GAC really boils down to, open a command prompt and change to the
Assembly directory:

cd c:\windows\assembly

Issue a dir command from the command line. Here you will find a folder named GAC_MISL
(see Figure 15-26).

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES516

8849CH15.qxd 10/22/07 1:46 PM Page 516

Figure 15-26. The hidden GAC_MSIL subdirectory

Change to the GAC_MSIL directory and issue a dir command once more. You will now be pre-
sented with a list of a number of subdirectories that happen to have the same exact name as the
icons displayed by shfusion.dll. Change to the CarLibrary subdirectory and again issue a dir com-
mand (see Figure 15-27).

Figure 15-27. Inside the hidden CarLibrary subdirectory

As you can see, the GAC maintains a subdirectory for each version of a shared assembly, which
follows the naming convention <versionOfAssembly>__PublicKeyToken. If you were again to change
the current directory to version 1.0.0.0 of CarLibrary, you would indeed find a copy of the code
library (see Figure 15-28).

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 517

8849CH15.qxd 10/22/07 1:46 PM Page 517

Figure 15-28. Behold! The GAC’s internal copy of CarLibrary.dll.

When you install a strongly named assembly into the GAC, the operating system responds by
extending the directory structure beneath the Assembly subdirectory. Using this approach, the CLR
is able to manipulate multiple versions of a specific assembly while avoiding the expected name
clashes resulting from identically named *.dlls.

Understanding Publisher Policy Assemblies
The next configuration issue you’ll examine is the role of publisher policy assemblies. As you’ve just
seen, *.config files can be constructed to bind to a specific version of a shared assembly, thereby
bypassing the version recorded in the client manifest. While this is all well and good, imagine you’re
an administrator who now needs to reconfigure all client applications on a given machine to rebind
to version 2.0.0.0 of the CarLibrary.dll assembly. Given the strict naming convention of a configu-
ration file, you would need to duplicate the same XML content in numerous locations (assuming
you are, in fact, aware of the locations of the executables using CarLibrary!). Clearly this would be a
maintenance nightmare.

Publisher policy allows the publisher of a given assembly (you, your department, your com-
pany, or what have you) to ship a binary version of a *.config file that is installed into the GAC
along with the newest version of the associated assembly. The benefit of this approach is that client
application directories do not need to contain specific *.config files. Rather, the CLR will read the
current manifest and attempt to find the requested version in the GAC. However, if the CLR finds a
publisher policy assembly, it will read the embedded XML data and perform the requested redirec-
tion at the level of the GAC.

Publisher policy assemblies are created at the command line using a .NET utility named al.exe
(the assembly linker). While this tool provides a large number of options, building a publisher policy
assembly requires you only to pass in the following input parameters:

• The location of the *.config or *.xml file containing the redirecting instructions

• The name of the resulting publisher policy assembly

• The location of the *.snk file used to sign the publisher policy assembly

• The version numbers to assign the publisher policy assembly being constructed

If you wish to build a publisher policy assembly that controls CarLibrary.dll, the command
set is as follows (which must be entered on a single line within the command window):

al /link: CarLibraryPolicy.xml /out:policy.1.0.CarLibrary.dll
/keyf:C:\MyKey\myKey.snk /v:1.0.0.0

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES518

8849CH15.qxd 10/22/07 1:46 PM Page 518

Here, the XML content is contained within a file named CarLibraryPolicy.xml. The name of
the output file (which must be in the format policy.<major>.<minor>.assemblyToConfigure) is
specified using the obvious /out flag. In addition, note that the name of the file containing the pub-
lic/private key pair will also need to be supplied via the /keyf option. Remember, publisher policy
files are shared, and therefore must have a strong name!

Once the al.exe tool has executed, the result is a new assembly that can be placed into the
GAC to force all clients to bind to version 2.0.0.0 of CarLibrary.dll, without the use of a specific
client application configuration file. Using this technique, you are able to design a “machinewide”
redirection for all applications using a specific version (or range of versions) of an existing assembly.

Disabling Publisher Policy
Now, assume you (as a system administrator) have deployed a publisher policy assembly (and the
latest version of the related assembly) to the GAC of a client machine. As luck would have it, nine of
the ten affected applications rebind to version 2.0.0.0 without error. However, the remaining client
application (for whatever reason) blows up when accessing CarLibrary.dll 2.0.0.0 (as we all know,
it is next to impossible to build backward-compatible software that works 100 percent of the time).

In such a case, it is possible to build a configuration file for a specific troubled client that
instructs the CLR to ignore the presence of any publisher policy files installed in the GAC. The
remaining client applications that are happy to consume the newest .NET assembly will simply be
redirected via the installed publisher policy assembly. To disable publisher policy on a client-by-
client basis, author a (properly named) *.config file that makes use of the <publisherPolicy>
element and set the apply attribute to no. When you do so, the CLR will load the version of the
assembly originally listed in the client’s manifest.

<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<publisherPolicy apply="no" />

</assemblyBinding>
</runtime>

</configuration>

Understanding the <codeBase> Element
Application configuration files can also specify code bases. The <codeBase> element can be used to
instruct the CLR to probe for dependent assemblies located at arbitrary locations (such as network
end points, or an arbitrary local directory outside a client’s application directory).

If the value assigned to a <codeBase> element is located on a remote machine, the assembly will
be downloaded on demand to a specific directory in the GAC termed the download cache. Given
what you have learned about deploying assemblies to the GAC, it should make sense that assem-
blies loaded from a <codeBase> element will need to be assigned a strong name (after all, how else
could the CLR install remote assemblies to the GAC?). If you are interested, you can view the con-
tent of your machine’s download cache by supplying the /ldl option to gacutil.exe:

gacutil /ldl

■Note Technically speaking, the <codeBase> element can be used to probe for assemblies that do not have a
strong name. However, the assembly’s location must be relative to the client’s application directory (and thus is lit-
tle more than an alternative to the <privatePath> element).

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 519

8849CH15.qxd 10/22/07 1:46 PM Page 519

To see the <codeBase> element in action, create a Console Application named CodeBaseClient,
set a reference to CarLibrary.dll version 2.0.0.0, and update the initial file as follows:

using CarLibrary;

namespace CodeBaseClient
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Fun with CodeBases *****");
SportsCar c = new SportsCar();
Console.WriteLine("Sports car has been allocated.");
Console.ReadLine();

}
}

}

Given that CarLibrary.dll has been deployed to the GAC, you are able to run the program as is.
However, to illustrate the use of the <codeBase> element, create a new folder under your C drive
(perhaps C:\MyAsms) and place a copy of CarLibrary.dll version 2.0.0.0 into this directory.

Now, add an App.config file to the CodeBaseClient project (as explained earlier in this chapter)
and author the following XML content (remember that your .publickeytoken value will differ;
consult your GAC as required):

<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<dependentAssembly>
<assemblyIdentity name=" CarLibrary" publicKeyToken="219ef380c9348a38" />
<codeBase version="2.0.0.0" href="file:///C:/MyAsms/CarLibrary.dll" />

</dependentAssembly>
</assemblyBinding>

</runtime>
</configuration>

As you can see, the <codeBase> element is nested within the <assemblyIdentity> element,
which makes use of the name and publicKeyToken attributes to specify the friendly name as associ-
ated publicKeyToken values. The <codeBase> element itself specifies the version and location (via the
href property) of the assembly to load. If you were to delete version 2.0.0.0 of CarLibrary.dll from
the GAC, this client would still run successfully, as the CLR is able to locate the external assembly
under C:\MyAsms.

■Note If you place assemblies at random locations on your development machine, you are in effect re-creating
the system registry (and the related DLL hell), given that if you move or rename the folder containing your binaries,
the current bind will fail. Given this point, use <codeBase> with caution.

The <codeBase> element can also be helpful when referencing assemblies located on a remote
networked machine. Assume you have permission to access a folder located at http://www.
IntertechTraining.com. To download the remote *.dll to the GAC’s download cache on your loca-
tion machine, you could update the <codeBase> element as follows:

<codeBase version="2.0.0.0"
href="http://www.IntertechTraining.com/Assemblies/CarLibrary.dll" />

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES520

8849CH15.qxd 10/22/07 1:46 PM Page 520

file:///C:/MyAsms/CarLibrary.dll
http://www
http://www.IntertechTraining.com/Assemblies/CarLibrary.dll

■Source Code The CodeBaseClient application can be found under the Chapter 15 subdirectory.

The System.Configuration Namespace
Currently, all of the *.config files shown in this chapter have made use of well-known XML ele-
ments that are read by the CLR to resolve the location of external assemblies. In addition to these
recognized elements, it is perfectly permissible for a client configuration file to contain application-
specific data that has nothing to do with binding heuristics. Given this, it should come as no
surprise that the .NET Framework provides a namespace that allows you to programmatically read
the data within a client configuration file.

The System.Configuration namespace provides a small set of types you may use to read cus-
tom data from a client’s *.config file. These custom settings must be contained within the scope of
an <appSettings> element. The <appSettings> element contains any number of <add> elements that
define a key/value pair to be obtained programmatically.

For example, assume you have an App.config file for a Console Application named
AppConfigReaderApp that defines a database connection string and a point of data named
timesToSayHello:

<configuration>
<appSettings>
<add key="appConStr" value=
"Data Source=localhost;Initial Catalog=AutoLot;Integrated Security=True" />

<add key="timesToSayHello" value="8" />
</appSettings>

</configuration>

Reading these values for use by the client application is as simple as calling the instance-level
GetValue() method of the System.Configuration.AppSettingsReader type. As shown in the follow-
ing code, the first parameter to GetValue() is the name of the key in the *.config file, whereas the
second parameter is the underlying type of the key (obtained via the C# typeof operator):

using System.Configuration;

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Reading <appSettings> Data *****\n");
// Create a reader and get the connection string value.
AppSettingsReader ar = new AppSettingsReader();
Console.WriteLine(ar.GetValue("appConStr", typeof(string)));

// Now get the number of times to say hello, and then do it!
int numbOfTimes = (int)ar.GetValue("timesToSayHello", typeof(int));
for(int i = 0; i < numbOfTimes; i++)
Console.WriteLine("Howdy!");

Console.ReadLine();
}

}

The AppSettingsReader class type does not provide a way to write application-specific data to a
*.config file. However, if you ever needed to programmatically add new <appSettings> elements to

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES 521

8849CH15.qxd 10/22/07 1:46 PM Page 521

the *.config file, you can do so using the System.Configuration.Configuration class type. Consult
the .NET Framework 3.5 SDK documentation for complete details.

■Source Code The AppConfigReaderApp application can be found under the Chapter 15 subdirectory.

The Machine Configuration File
The configuration files you’ve examined in this chapter have a common theme: they apply only to a
specific application (that is why they have the same name as the launching application). In addi-
tion, each .NET-aware machine has a file named machine.config that contains a vast number of
configuration details (many of which have nothing to do with resolving external assemblies) that
control how a specific version of the .NET platform operates.

The .NET platform maintains a separate *.config file for each version of the framework
installed on the local machine. For example, the machine.config file for .NET 2.0 can be found
under the C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\CONFIG directory (your version
may differ). If you were to open this file, you would find numerous XML elements that control
ASP.NET settings, various security details, debugging support, and so forth. However, if you wish to
update the machine.config file with machinewide application settings (via an <appSettings> ele-
ment), you are free to do so.

Although this file can be directly edited using Notepad, be warned that if you alter this file
incorrectly, you may cripple the ability of a specific version of the runtime to function correctly. This
scenario can be far more painful than a malformed application *.config file, given that XML errors
in an application configuration file affect only a single application, but erroneous XML in the
machine.config file can break a specific version of the .NET platform.

Summary
This chapter drilled down into the details of how the CLR resolves the location of externally refer-
enced assemblies. You began by examining the content within an assembly: headers, metadata,
manifests, and CIL. Then you constructed single-file and multifile assemblies and a handful of
client applications (written in a language-agnostic manner).

As you have seen, assemblies may be private or shared. Private assemblies are copied to the
client’s subdirectory, whereas shared assemblies are deployed to the GAC, provided they have been
assigned a strong name. Finally, as you have seen, private and shared assemblies can be configured
using a client-side XML configuration file or, alternatively, via a publisher policy assembly.

CHAPTER 15 ■ INTRODUCING .NET ASSEMBLIES522

8849CH15.qxd 10/22/07 1:46 PM Page 522

Type Reflection, Late Binding, and
Attribute-Based Programming

As shown in the previous chapter, assemblies are the basic unit of deployment in the .NET uni-
verse. Using the integrated object browsers of Visual Studio 2008 (and numerous other IDEs), you
are able to examine the types within a project’s referenced set of assemblies. Furthermore, external
tools such as ildasm.exe and reflector.exe allow you to peek into the underlying CIL code, type
metadata, and assembly manifest for a given .NET binary. In addition to this design-time investiga-
tion of .NET assemblies, you are also able to programmatically obtain this same information using
the System.Reflection namespace. To this end, the first task of this chapter is to define the role of
reflection and the necessity of .NET metadata.

The remainder of the chapter examines a number of closely related topics, all of which hinge
upon reflection services. For example, you’ll learn how a .NET client may employ dynamic loading
and late binding to activate types it has no compile-time knowledge of. You’ll also learn how to
insert custom metadata into your .NET assemblies through the use of system-supplied and custom
attributes. To put all of these (seemingly esoteric) topics into perspective, the chapter closes by
demonstrating how to build several “snap-in objects” that you can plug into an extendable Win-
dows Forms application.

The Necessity of Type Metadata
The ability to fully describe types (classes, interfaces, structures, enumerations, and delegates)
using metadata is a key element of the .NET platform. Numerous .NET technologies, such as object
serialization, .NET remoting, XML web services, and Windows Communication Foundation (WCF),
require the ability to discover the format of types at runtime. Furthermore, cross-language interop-
erability, numerous compiler services, and an IDE’s IntelliSense capabilities all rely on a concrete
description of type.

Regardless of (or perhaps due to) its importance, metadata is not a new idea supplied by the
.NET Framework. Java, CORBA, and COM all have similar concepts. For example, COM type
libraries (which are little more than compiled IDL code) are used to describe the types contained
within a COM server. Like COM, .NET code libraries also support type metadata. Of course, .NET
metadata has no syntactic similarities to COM IDL.

Recall that the ildasm.exe utility allows you to view an assembly’s type metadata using the
Ctrl+M keyboard option (see Chapter 1). Thus, if you were to open any of the *.dll or *.exe assem-
blies created over the course of this book (such as the CarLibrary.dll created in the previous
chapter) using ildasm.exe and press Ctrl+M, you would find the relevant type metadata (see
Figure 16-1).

523

C H A P T E R 1 6

8849CH16.qxd 10/9/07 4:27 PM Page 523

Figure 16-1. Viewing an assembly’s metadata

As you can see, ildasm.exe’s display of .NET type metadata is very verbose (the actual binary
format is much more compact). In fact, if I were to list the entire metadata description representing
the CarLibrary.dll assembly, it would span several pages. Given that this act would be a woeful
waste of paper, let’s just glimpse into some key metadata descriptions of the CarLibrary.dll
assembly.

Viewing (Partial) Metadata for the EngineState Enumeration
Each type defined within the current assembly is documented using a TypeDef #n token (where
TypeDef is short for type definition). If the type being described uses a type defined within a separate
.NET assembly, the referenced type is documented using a TypeRef #n token (where TypeRef is short
for type reference). A TypeRef token is a pointer (if you will) to the referenced type’s full metadata
definition in an external library. In a nutshell, .NET metadata is a set of tables that clearly mark all
type definitions (TypeDefs) and referenced entities (TypeRefs), all of which can be viewed using
ildasm.exe’s metadata window.

As far as CarLibrary.dll goes, one TypeDef we encounter is the metadata description of the
CarLibrary.EngineState enumeration (your number may differ; TypeDef numbering is based on the
order in which the C# compiler processes the file):

TypeDef #1

TypDefName: CarLibrary.EngineState (02000002)
Flags : [Public] [AutoLayout] [Class] [Sealed] [AnsiClass] (00000101)
Extends : 01000001 [TypeRef] System.Enum

...
Field #2

Field Name: engineAlive (04000002)
Flags : [Public] [Static] [Literal] [HasDefault] (00008056)
DefltValue: (I4) 0
CallCnvntn: [FIELD]
Field type: ValueClass CarLibrary.EngineState

...

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING524

8849CH16.qxd 10/9/07 4:27 PM Page 524

Here, the TypDefName token is used to establish the name of the given type. The Extends meta-
data token is used to document the base class of a given .NET type (in this case, the referenced type,
System.Enum). Each field of an enumeration is marked using the Field #n token. For brevity, I have
simply listed the metadata for EngineState.engineAlive.

Viewing (Partial) Metadata for the Car Type
Here is a partial dump of the Car type that illustrates the following:

• How fields are defined in terms of .NET metadata

• How methods are documented via .NET metadata

• How a single type property is mapped to two discrete member functions

TypeDef #3

TypDefName: CarLibrary.Car (02000004)
Flags : [Public] [AutoLayout] [Class] [Abstract] [AnsiClass] (00100081)
Extends : 01000002 [TypeRef] System.Object
Field #1

Field Name: petName (04000008)
Flags : [Family] (00000004)
CallCnvntn: [FIELD]
Field type: String

...
Method #1

MethodName: .ctor (06000001)
Flags : [Public] [HideBySig] [ReuseSlot] [SpecialName]
[RTSpecialName] [.ctor] (00001886)
RVA : 0x00002050
ImplFlags : [IL] [Managed] (00000000)
CallCnvntn: [DEFAULT]
hasThis
ReturnType: Void
No arguments.

...
Property #1

Prop.Name : PetName (17000001)
Flags : [none] (00000000)
CallCnvntn: [PROPERTY]
hasThis
ReturnType: String
No arguments.
DefltValue:
Setter : (06000004) set_PetName
Getter : (06000003) get_PetName
0 Others

...

First, note that the Car class metadata marks the type’s base class and includes various flags
that describe how this type was constructed (e.g., [public], [abstract], and whatnot). Methods
(such as our Car’s constructor) are described in regard to their parameters, return value, and name.

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 525

8849CH16.qxd 10/9/07 4:27 PM Page 525

Finally, note how properties are mapped to their internal get/set methods using the .NET metadata
Setter/Getter tokens. As you would expect, the derived Car types (SportsCar and MiniVan) are
described in a similar manner.

Examining a TypeRef
Recall that an assembly’s metadata will describe not only the set of internal types (Car, EngineState,
etc.), but also any external types the internal types reference. For example, given that CarLibrary.
dll has defined two enumerations, you find a TypeRef block for the System.Enum type:

TypeRef #1 (01000001)

Token: 0x01000001
ResolutionScope: 0x23000001
TypeRefName: System.Enum
MemberRef #1

Member: (0a00000f) ToString:
CallCnvntn: [DEFAULT]
hasThis
ReturnType: String
No arguments.

Documenting the Defining Assembly
The ildasm.exe metadata window also allows you to view the .NET metadata that describes the
assembly itself using the Assembly token. As you can see from the following (partial) listing, infor-
mation documented within the Assembly table is (surprise, surprise!) the same information that
can be viewable via the MANIFEST icon. Here is a partial dump of the manifest of CarLibrary.dll
(version 2.0.0.0):

Assembly

Token: 0x20000001
Name : CarLibrary
Public Key : 00 24 00 00 04 80 00 00 // Etc...

Hash Algorithm : 0x00008004
Major Version: 0x00000002
Minor Version: 0x00000000
Build Number: 0x00000000
Revision Number: 0x00000000
Locale: <null>
Flags : [SideBySideCompatible] (00000000)

Documenting Referenced Assemblies
In addition to the Assembly token and the set of TypeDef and TypeRef blocks, .NET metadata also
makes use of AssemblyRef #n tokens to document each external assembly. Given that the
CarLibrary.dll makes use of the MessageBox type, you find an AssemblyRef for System.Windows.
Forms, for example:

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING526

8849CH16.qxd 10/9/07 4:27 PM Page 526

AssemblyRef #2

Token: 0x23000002
Public Key or Token: b7 7a 5c 56 19 34 e0 89
Name: System.Windows.Forms
Version: 2.0.3600.0
Major Version: 0x00000002
Minor Version: 0x00000000
Build Number: 0x00000e10
Revision Number: 0x00000000
Locale: <null>
HashValue Blob:
Flags: [none] (00000000)

Documenting String Literals
The final point of interest regarding .NET metadata is the fact that each and every string literal in
your code base is documented under the User Strings token, for example:

User Strings

70000001 : (11) L"Jamming {0}"
70000019 : (13) L"Quiet time..."
70000035 : (23) L"CarLibrary Version 2.0!"
70000065 : (14) L"Ramming speed!"
70000083 : (19) L"Faster is better..."
700000ab : (16) L"Time to call AAA"
700000cd : (16) L"Your car is dead"

Now, don’t be too concerned with the exact syntax of each and every piece of .NET metadata.
The bigger point to absorb is that .NET metadata is very descriptive and lists each internally defined
(and externally referenced) type found within a given code base.

The next question on your mind may be (in the best-case scenario) “How can I leverage this
information in my applications?” or (in the worst-case scenario) “Why should I care about meta-
data?” To address both points of view, allow me to introduce .NET reflection services. Be aware that
the usefulness of the topics presented over the pages that follow may be a bit of a head-scratcher
until this chapter’s endgame. So hang tight.

■Note You will also find a number of CustomAttribute tokens displayed by the MetaInfo window, which docu-
ments the attributes applied within the code base. You’ll learn about the role of .NET attributes later in this chapter.

Understanding Reflection
In the .NET universe, reflection is the process of runtime type discovery. Using reflection services,
you are able to programmatically obtain the same metadata information displayed by ildasm.exe
using a friendly object model. For example, through reflection, you can obtain a list of all types con-
tained within a given assembly (or *.netmodule), including the methods, fields, properties, and
events defined by a given type. You can also dynamically discover the set of interfaces supported by
a given type, the parameters of a method, and other related details (base classes, namespace infor-
mation, manifest data, and so forth).

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 527

8849CH16.qxd 10/9/07 4:27 PM Page 527

Like any namespace, System.Reflection contains a number of related types. Table 16-1 lists
some of the core items you should be familiar with.

Table 16-1. A Sampling of Members of the System.Reflection Namespace

Type Meaning in Life

Assembly This class contains a number of methods that allow you to load, investigate,
and manipulate an assembly.

AssemblyName This class allows you to discover numerous details behind an assembly’s
identity (version information, culture information, and so forth).

EventInfo This class holds information for a given event.

FieldInfo This class holds information for a given field.

MemberInfo This is the abstract base class that defines common behaviors for the
EventInfo, FieldInfo, MethodInfo, and PropertyInfo types.

MethodInfo This class contains information for a given method.

Module This class allows you to access a given module within a multifile assembly.

ParameterInfo This class holds information for a given parameter.

PropertyInfo This class holds information for a given property.

To understand how to leverage the System.Reflection namespace to programmatically read
.NET metadata, you need to first come to terms with the System.Type class.

The System.Type Class
The System.Type class defines a number of members that can be used to examine a type’s metadata,
a great number of which return types from the System.Reflection namespace. For example, Type.
GetMethods() returns an array of MethodInfo types, Type.GetFields() returns an array of FieldInfo
types, and so on. The complete set of members exposed by System.Type is quite expansive; however,
Table 16-2 offers a partial snapshot of the members supported by System.Type (see the .NET Frame-
work 3.5 SDK documentation for full details).

Table 16-2. Select Members of System.Type

Type Meaning in Life

IsAbstract These properties (among others) allow you to discover a number of
IsArray basic traits about the Type you are referring to (e.g., if it is an
IsClass abstract method, an array, a nested class, and so forth).
IsCOMObject
IsEnum
IsGenericTypeDefinition
IsGenericParameter
IsInterface
IsPrimitive
IsNestedPrivate
IsNestedPublic
IsSealedIsValueType

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING528

8849CH16.qxd 10/9/07 4:27 PM Page 528

Type Meaning in Life

GetConstructors() These methods (among others) allow you to obtain an array
GetEvents() representing the items (interface, method, property, etc.) you are
GetFields() interested in. Each method returns a related array (e.g., GetFields()
GetInterfaces() returns a FieldInfo array, GetMethods() returns a MethodInfo array,
GetMembers() etc.). Be aware that each of these methods has a singular form (e.g.,
GetMethods() GetMethod(), GetProperty(), etc.) that allows you to retrieve a
GetNestedTypes() specific item by name, rather than an array of all related items.
GetProperties()

FindMembers() This method returns an array of MemberInfo types based on search
criteria.

GetType() This static method returns a Type instance given a string name.

InvokeMember() This method allows late binding to a given item.

Obtaining a Type Reference Using System.Object.GetType()
You can obtain an instance of the Type class in a variety of ways. However, the one thing you cannot
do is directly create a Type object using the new keyword, as Type is an abstract class. Regarding your
first choice, recall that System.Object defines a method named GetType(), which returns an instance
of the Type class that represents the metadata for the current object:

// Obtain type information using a SportsCar instance.
SportsCar sc = new SportsCar();
Type t = sc.GetType();

Obviously, this approach will only work if you have compile-time knowledge of the type
(SportsCar in this case) and currently have an instance of the type in memory. Given this restriction,
it should make sense that tools such as ildasm.exe do not obtain type information by directly call-
ing System.Object.GetType() for each type, given the ildasm.exe was not compiled against your
custom assemblies!

Obtaining a Type Reference Using System.Type.GetType()
To obtain type information in a more flexible manner, you may call the static GetType() member of
the System.Type class and specify the fully qualified string name of the type you are interested in
examining. Using this approach, you do not need to have compile-time knowledge of the type you
are extracting metadata from, given that Type.GetType() takes an instance of the omnipresent
System.String.

■Note When I say you do not need compile-time knowledge when calling Type.GetType(), I am referring to
the fact that this method can take any string value whatsoever (rather than a strongly typed variable). Of course,
you would still need to know the name of the type in a stringified format!

The Type.GetType() method has been overloaded to allow you to specify two Boolean parame-
ters, one of which controls whether an exception should be thrown if the type cannot be found, and
the other of which establishes the case sensitivity of the string. To illustrate, ponder the following:

// Obtain type information using the static Type.GetType() method
// (don't throw an exception if SportsCar cannot be found and ignore case).
Type t = Type.GetType("CarLibrary.SportsCar", false, true);

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 529

8849CH16.qxd 10/9/07 4:27 PM Page 529

In the previous example, notice that the string you are passing into GetType() makes no men-
tion of the assembly containing the type. In this case, the assumption is that the type is defined
within the currently executing assembly. However, when you wish to obtain metadata for a type
within an external private assembly, the string parameter is formatted using the type’s fully quali-
fied name, followed by the friendly name of the assembly containing the type (each of which is
separated by a comma):

// Obtain type information for a type within an external assembly.
Type t = Type.GetType("CarLibrary.SportsCar, CarLibrary");

As well, do know that the string passed into Type.GetType() may specify a plus token (+) to
denote a nested type. Assume you wish to obtain type information for an enumeration (SpyOptions)
nested within a class named JamesBondCar. To do so, you would write the following:

// Obtain type information for a nested enumeration
// within the current assembly.
Type t = Type.GetType("CarLibrary.JamesBondCar+SpyOptions");

Obtaining a Type Reference Using typeof()
The final way to obtain type information is using the C# typeof operator:

// Get the Type using typeof.
Type t = typeof(SportsCar);

Like Type.GetType(), the typeof operator is helpful in that you do not need to first create an
object instance to extract type information. However, your code base must still have compile-time
knowledge of the type you are interested in examining, as typeof expects the strongly typed name of
the type, rather than a textual representation of the type.

Building a Custom Metadata Viewer
To illustrate the basic process of reflection (and the usefulness of System.Type), let’s create a Con-
sole Application named MyTypeViewer. This program will display details of the methods, properties,
fields, and supported interfaces (in addition to some other points of interest) for any type within
mscorlib.dll (recall all .NET applications have automatic access to this core framework class
library) or a type within MyTypeViewer itself. Once the application has been created, be sure to
import the System.Reflection namespace.

using System.Reflection;

Reflecting on Methods
The Program class will be updated to define a number of static methods, each of which takes a single
System.Type parameter and returns void. First you have ListMethods(), which (as you might guess)
prints the name of each method defined by the incoming type. Notice how Type.GetMethods()
returns an array of System.Reflection.MethodInfo types:

// Display method names of type.
static void ListMethods(Type t)
{
Console.WriteLine("***** Methods *****");
MethodInfo[] mi = t.GetMethods();
foreach(MethodInfo m in mi)

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING530

8849CH16.qxd 10/9/07 4:27 PM Page 530

Console.WriteLine("->{0}", m.Name);
Console.WriteLine();

}

Here, you are simply printing the name of the method using the MethodInfo.Name property. As
you might guess, MethodInfo has many additional members that allow you to determine whether
the method is static, virtual, generic, or abstract. As well, the MethodInfo type allows you to obtain
the method’s return value and parameter set. You’ll spruce up the implementation of ListMethods()
in just a bit.

Reflecting on Fields and Properties
The implementation of ListFields() is similar. The only notable difference is the call to Type.
GetFields() and the resulting FieldInfo array. Again, to keep things simple, you are printing out
only the name of each field.

// Display field names of type.
static void ListFields(Type t)
{
Console.WriteLine("***** Fields *****");
FieldInfo[] fi = t.GetFields();
foreach(FieldInfo field in fi)
Console.WriteLine("->{0}", field.Name);

Console.WriteLine();
}

The logic to display a type’s properties is similar:

// Display property names of type.
static void ListProps(Type t)
{
Console.WriteLine("***** Properties *****");
PropertyInfo[] pi = t.GetProperties();
foreach(PropertyInfo prop in pi)
Console.WriteLine("->{0}", prop.Name);

Console.WriteLine();
}

Reflecting on Implemented Interfaces
Next, you will author a method named ListInterfaces() that will print out the names of any
interfaces supported on the incoming type. The only point of interest here is that the call to
GetInterfaces() returns an array of System.Types! This should make sense given that interfaces
are, indeed, types:

// Display implemented interfaces.
static void ListInterfaces(Type t)
{
Console.WriteLine("***** Interfaces *****");
Type[] ifaces = t.GetInterfaces();
foreach(Type i in ifaces)
Console.WriteLine("->{0}", i.Name);

}

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 531

8849CH16.qxd 10/9/07 4:27 PM Page 531

Displaying Various Odds and Ends
Last but not least, you have one final helper method that will simply display various statistics (indi-
cating whether the type is generic, what the base class is, whether the type is sealed, and so forth)
regarding the incoming type:

// Just for good measure.
static void ListVariousStats(Type t)
{
Console.WriteLine("***** Various Statistics *****");
Console.WriteLine("Base class is: {0}", t.BaseType);
Console.WriteLine("Is type abstract? {0}", t.IsAbstract);
Console.WriteLine("Is type sealed? {0}", t.IsSealed);
Console.WriteLine("Is type generic? {0}", t.IsGenericTypeDefinition);
Console.WriteLine("Is type a class type? {0}", t.IsClass);
Console.WriteLine();

}

Implementing Main()
The Main() method of the Program class prompts the user for the fully qualified name of a type.
Once you obtain this string data, you pass it into the Type.GetType() method and send the extracted
System.Type into each of your helper methods. This process repeats until the user enters Q to termi-
nate the application:

static void Main(string[] args)
{
Console.WriteLine("***** Welcome to MyTypeViewer *****");
string typeName = "";
bool userIsDone = false;

do
{
Console.WriteLine("\nEnter a type name to evaluate");
Console.Write("or enter Q to quit: ");

// Get name of type.
typeName = Console.ReadLine();

// Does user want to quit?
if (typeName.ToUpper() == "Q")
{
userIsDone = true;
break;

}

// Try to display type.
try
{
Type t = Type.GetType(typeName);
Console.WriteLine("");
ListVariousStats(t);

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING532

8849CH16.qxd 10/9/07 4:27 PM Page 532

ListFields(t);
ListProps(t);
ListMethods(t);
ListInterfaces(t);

}
catch
{
Console.WriteLine("Sorry, can't find type");

}
} while (!userIsDone);

}

At this point, MyTypeViewer.exe is ready to take out for a test drive. For example, run your appli-
cation and enter the following fully qualified names (be aware that the manner in which you invoked
Type.GetType() requires case-sensitive string names):

• System.Int32

• System.Collections.ArrayList

• System.Threading.Thread

• System.Void

• System.IO.BinaryWriter

• System.Math

• System.Console

• MyTypeViewer.Program

Figure 16-2 shows the partial output when specifying System.Math.

Figure 16-2. Reflecting on System.Math

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 533

8849CH16.qxd 10/9/07 4:27 PM Page 533

Reflecting on Generic Types
When you call Type.GetType() in order to obtain metadata descriptions of generic types, you must
make use of a special syntax involving a “back tick” character (`) followed by a numerical value
that represents the number of type parameters the type supports. For example, if you wish to print
out the metadata description of List<T>, you would need to pass the following string into your
application:

System.Collections.Generic.List`1

Here, we are using the numerical value of 1, given that List<T> has only one type parameter.
However, if you wish to reflect over Dictionary<TKey, TValue>, you would supply the value 2:

System.Collections.Generic.Dictionary`2

Reflecting on Method Parameters and Return Values
So far, so good! Let’s make one minor enhancement to the current application. Specifically, you will
update the ListMethods() helper function to list not only the name of a given method, but also the
return value and incoming parameters. The MethodInfo type provides the ReturnType property and
GetParameters() method for these very tasks. In the following code, notice that you are building a
string type that contains the type and name of each parameter using a nested foreach loop:

static void ListMethods(Type t)
{
Console.WriteLine("***** Methods *****");
MethodInfo[] mi = t.GetMethods();
foreach (MethodInfo m in mi)
{
// Get return value.
string retVal = m.ReturnType.FullName;
string paramInfo = "(";

// Get params.
foreach (ParameterInfo pi in m.GetParameters())
{
paramInfo += string.Format("{0} {1} ", pi.ParameterType, pi.Name);

}
paramInfo += ")";

// Now display the basic method sig.
Console.WriteLine("->{0} {1} {2}", retVal, m.Name, paramInfo);

}
Console.WriteLine();

}

If you now run this updated application, you will find that the methods of a given type are
much more detailed. Figure 16-3 shows the method metadata of the System.Globalization.
GregorianCalendar type.

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING534

8849CH16.qxd 10/9/07 4:27 PM Page 534

Figure 16-3. Method details of System.Globalization.GregorianCalendar

The current implementation of ListMethods() is helpful, in that you can directly investigate
each parameter and method return value using the System.Reflection object model. As an extreme
shortcut, be aware that each of the XXXInfo types (MethodInfo, PropertyInfo, EventInfo, etc.) have
overridden ToString() to display the signature of the item requested. Thus, we could also imple-
ment ListMethods() as follows:

public static void ListMethods(Type t)
{
Console.WriteLine("***** Methods *****");
MethodInfo[] mi = t.GetMethods();
foreach (MethodInfo m in mi)
{
// Could also simply say "Console.WriteLine(m)" as well,
// as ToString() is called automatically by WriteLine().
Console.WriteLine(m.ToString());

}
Console.WriteLine();

}

Interesting stuff, huh? Clearly the System.Reflection namespace and System.Type class allow
you to reflect over many other aspects of a type beyond what MyTypeViewer is currently displaying.
As you would hope, you can obtain a type’s events, get the list of any generic parameters for a given
member, and glean dozens of other details.

Nevertheless, at this point you have created a (somewhat capable) object browser. The major
limitation, of course, is that you have no way to reflect beyond the current assembly (MyTypeViewer)
or the always accessible mscorlib.dll. This begs the question, “How can I build applications that
can load (and reflect over) assemblies not referenced at compile time?”

■Source Code The MyTypeViewer project can be found under the Chapter 16 subdirectory.

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 535

8849CH16.qxd 10/9/07 4:27 PM Page 535

Dynamically Loading Assemblies
In the previous chapter, you learned all about how the CLR consults the assembly manifest when
probing for an externally referenced assembly. However, there will be many times when you need
to load assemblies on the fly programmatically, even if there is no record of said assembly in the
manifest. Formally speaking, the act of loading external assemblies on demand is known as a
dynamic load.

System.Reflection defines a class named Assembly. Using this type, you are able to dynamically
load an assembly as well as discover properties about the assembly itself. Using the Assembly type,
you are able to dynamically load private or shared assemblies, as well as load an assembly located
at an arbitrary location. In essence, the Assembly class provides methods (Load() and LoadFrom() in
particular) that allow you to programmatically supply the same sort of information found in a
client-side *.config file.

To illustrate dynamic loading, create a brand-new Console Application named External
AssemblyReflector. Your task is to construct a Main() method that prompts for the friendly name of
an assembly to load dynamically. You will pass the Assembly reference into a helper method named
DisplayTypes(), which will simply print the names of each class, interface, structure, enumeration,
and delegate it contains. The code is refreshingly simple:

using System;
using System.Reflection;
using System.IO; // For FileNotFoundException definition.

namespace ExternalAssemblyReflector
{
class Program
{
static void DisplayTypesInAsm(Assembly asm)
{
Console.WriteLine("\n***** Types in Assembly *****");
Console.WriteLine("->{0}", asm.FullName);
Type[] types = asm.GetTypes();
foreach (Type t in types)
Console.WriteLine("Type: {0}", t);

Console.WriteLine("");
}

static void Main(string[] args)
{
Console.WriteLine("***** External Assembly Viewer *****");

string asmName = "";
bool userIsDone = false;
Assembly asm = null;

do
{
Console.WriteLine("\nEnter an assembly to evaluate");
Console.Write("or enter Q to quit: ");

// Get name of assembly.
asmName = Console.ReadLine();

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING536

8849CH16.qxd 10/9/07 4:27 PM Page 536

// Does user want to quit?
if (asmName.ToUpper() == "Q")
{
userIsDone = true;
break;

}

// Try to load assembly.
try
{
asm = Assembly.Load(asmName);
DisplayTypesInAsm(asm);

}
catch
{
Console.WriteLine("Sorry, can't find assembly.");

}
} while (!userIsDone);

}
}

}

Notice that the static Assembly.Load() method has been passed only the friendly name of the
assembly you are interested in loading into memory. Thus, if you wish to reflect over CarLibrary.
dll, you will need to copy the CarLibrary.dll binary to the \bin\Debug directory of the External
AssemblyReflector application to run this program. Once you do, you will find output similar to
Figure 16-4.

Figure 16-4. Reflecting on the external CarLibrary assembly

If you wish to make ExternalAssemblyReflector more flexible, you can update your code to load
the external assembly using Assembly.LoadFrom() rather than Assembly.Load(). By doing so, you can
enter an absolute path to the assembly you wish to view (e.g., C:\MyApp\MyAsm.dll). Essentially,
Assembly.LoadFrom() allows you to programmatically supply a <codeBase> value.

■Source Code The ExternalAssemblyReflector project is included in the Chapter 16 subdirectory.

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 537

8849CH16.qxd 10/9/07 4:27 PM Page 537

Reflecting on Shared Assemblies
The Assembly.Load() method has been overloaded a number of times. One variation allows you to
specify a culture value (for localized assemblies) as well as a version number and public key token
value (for shared assemblies). Collectively speaking, the set of items identifying an assembly is
termed the display name. The format of a display name is a comma-delimited string of name/value
pairs that begins with the friendly name of the assembly, followed by optional qualifiers (that may
appear in any order). Here is the template to follow (optional items appear in parentheses):

Name (,Version = major.minor.build.revision) (,Culture = culture token)
(,PublicKeyToken= public key token)

When you’re crafting a display name, the convention PublicKeyToken=null indicates that bind-
ing and matching against a non–strongly named assembly is required. Additionally, Culture=""
indicates matching against the default culture of the target machine, for example:

// Load version 1.0.982.23972 of CarLibrary using the default culture.
Assembly a = Assembly.Load(
@"CarLibrary, Version=1.0.982.23972, PublicKeyToken=null, Culture=""");

Also be aware that the System.Reflection namespace supplies the AssemblyName type, which
allows you to represent the preceding string information in a handy object variable. Typically, this
class is used in conjunction with System.Version, which is an OO wrapper around an assembly’s
version number. Once you have established the display name, it can then be passed into the over-
loaded Assembly.Load() method:

// Make use of AssemblyName to define the display name.
AssemblyName asmName;
asmName = new AssemblyName();
asmName.Name = "CarLibrary";
Version v = new Version("1.0.982.23972");
asmName.Version = v;
Assembly a = Assembly.Load(asmName);

To load a shared assembly from the GAC, the Assembly.Load() parameter must specify a
PublicKeyToken value. For example, assume you wish to load version 2.0.0.0 of the System.Windows.
Forms.dll assembly provided by the .NET base class libraries. Given that the number of types in this
assembly is quite large, the following application only prints out the names of public enums, using
a simple LINQ query:

using System;
using System.Reflection;
using System.IO;
using System.Linq;

namespace SharedAsmReflector
{
public class SharedAsmReflector
{
private static void DisplayInfo(Assembly a)
{
Console.WriteLine("***** Info about Assembly *****");
Console.WriteLine("Loaded from GAC? {0}", a.GlobalAssemblyCache);
Console.WriteLine("Asm Name: {0}", a.GetName().Name);
Console.WriteLine("Asm Version: {0}", a.GetName().Version);
Console.WriteLine("Asm Culture: {0}",
a.GetName().CultureInfo.DisplayName);

Console.WriteLine("\nHere are the public enums:");

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING538

8849CH16.qxd 10/9/07 4:27 PM Page 538

// Use a LINQ query to find the public enums.
Type[] types = a.GetTypes();
var publicEnums = from pe in types where pe.IsEnum &&
pe.IsPublic select pe;

foreach (var pe in publicEnums)
{
Console.WriteLine(pe);

}
}

static void Main(string[] args)
{
Console.WriteLine("***** The Shared Asm Reflector App *****\n");

// Load System.Windows.Forms.dll from GAC.
string displayName = null;
displayName = "System.Windows.Forms," +
"Version=2.0.0.0," +
"PublicKeyToken=b77a5c561934e089," +
@"Culture=""";

Assembly asm = Assembly.Load(displayName);
DisplayInfo(asm);
Console.WriteLine("Done!");
Console.ReadLine();

}
}

}

■Source Code The SharedAsmReflector project is included in the Chapter 16 subdirectory.

At this point you should understand how to use some of the core types defined within the
System.Reflection namespace to discover metadata at runtime. Of course, I realize despite the
“cool factor,” you likely will not need to build custom object browsers at your place of employment.
Do recall, however, that reflection services are the foundation for a number of very common pro-
gramming activities, including late binding.

Understanding Late Binding
Simply put, late binding is a technique in which you are able to create an instance of a given type
and invoke its members at runtime without having hard-coded compile-time knowledge of its exis-
tence. When you are building an application that binds late to a type in an external assembly, you
have no reason to set a reference to the assembly; therefore, the caller’s manifest has no direct list-
ing of the assembly.

At first glance, it is not easy to see the value of late binding. It is true that if you can “bind early”
to a type (e.g., set an assembly reference and allocate the type using the C# new keyword), you should
opt to do so. For one reason, early binding allows you to determine errors at compile time, rather
than at runtime. Nevertheless, late binding does have a critical role in any extendable application
you may be building. You will have a chance to build such an “extendable” program at the end of
this chapter in the section “Building an Extendable Application”; until then, we need to examine the
role of the Activator type.

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 539

8849CH16.qxd 10/9/07 4:27 PM Page 539

The System.Activator Class
The System.Activator class is the key to the .NET late binding process. Beyond the methods inher-
ited from System.Object, Activator defines only a small set of members, many of which have to do
with the .NET remoting API. For our current example, we are only interested in the Activator.
CreateInstance() method, which is used to create an instance of a type à la late binding.

This method has been overloaded numerous times to provide a good deal of flexibility. The
simplest variation of the CreateInstance() member takes a valid Type object that describes the
entity you wish to allocate on the fly. Create a new Console Application named LateBindingApp,
and update the Main() method as follows (be sure to place a copy of CarLibrary.dll in the project’s
\bin\Debug directory):

// Create a type dynamically.
public class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Fun with Late Binding *****");
// Try to load a local copy of CarLibrary.
Assembly a = null;
try
{
a = Assembly.Load("CarLibrary");

}
catch(FileNotFoundException e)
{
Console.WriteLine(e.Message);
return;

}

// Get metadata for the Minivan type.
Type miniVan = a.GetType("CarLibrary.MiniVan");

// Create the Minivan on the fly.
object obj = Activator.CreateInstance(miniVan);
Console.WriteLine("Created a {0} using late binding!", obj);
Console.ReadLine();

}
}

Notice that the Activator.CreateInstance() method returns a System.Object rather than a
strongly typed MiniVan. Therefore, if you apply the dot operator on the obj variable, you will fail to
see any members of the MiniVan type. At first glance, you may assume you can remedy this problem
with an explicit cast; however, this program has no clue what a MiniVan is in the first place (and if
you did, why use late binding at all)!

Remember that the whole point of late binding is to create instances of objects for which there
is no compile-time knowledge. Given this, how can you invoke the underlying methods of the
MiniVan object stored in the System.Object variable? The answer, of course, is by using reflection.

Invoking Methods with No Parameters
Assume you wish to invoke the TurboBoost() method of the MiniVan. As you recall, this method will
set the state of the engine to “dead” and display an informational message box. The first step is to
obtain a MethodInfo type for the TurboBoost() method using Type.GetMethod(). From the resulting

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING540

8849CH16.qxd 10/9/07 4:27 PM Page 540

MethodInfo, you are then able to call MiniVan.TurboBoost using Invoke(). MethodInfo.Invoke()
requires you to send in all parameters that are to be given to the method represented by MethodInfo.
These parameters are represented by an array of System.Object types (as the parameters for a given
method could be any number of various entities).

Given that TurboBoost() does not require any parameters, you can simply pass null (meaning
“this method has no parameters”). Update your Main() method as follows:

static void Main(string[] args)
{
...
// Get metadata for the Minivan type.
Type miniVan = a.GetType("CarLibrary.MiniVan");

// Create the Minivan on the fly.
object obj = Activator.CreateInstance(miniVan);
Console.WriteLine("Created a {0} using late binding!", obj);

// Get info for TurboBoost.
MethodInfo mi = miniVan.GetMethod("TurboBoost");

// Invoke method ('null' for no parameters).
mi.Invoke(obj, null);
Console.ReadLine();

}

At this point you are happy to see the message box in Figure 16-5.

Figure 16-5. Late-bound method invocation

Invoking Methods with Parameters
To illustrate how to dynamically invoke a method that does take some number of parameters,
assume you have updated the MiniVan type created in the previous chapter with a new method
named TellChildToBeQuiet():

// Quiet down the troops...
public void TellChildToBeQuiet(string kidName, int shameIntensity)
{
for(int i = 0 ; i < shameIntensity; i++)
MessageBox.Show(string.Format("Be quiet {0} !!", kidName));

}

TellChildToBeQuiet() takes two parameters: a string representing the child’s name and an
integer representing your current level of frustration. When using late binding, parameters are
packaged as an array of System.Objects. To invoke the new method, update the Main() method as
follows:

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 541

8849CH16.qxd 10/9/07 4:27 PM Page 541

static void Main(string[] args)
{
...
// Get metadata for the Minivan type.
Type miniVan = a.GetType("CarLibrary.MiniVan");

// Create the Minivan on the fly.
object obj = Activator.CreateInstance(miniVan);
Console.WriteLine("Created a {0} using late binding!", obj);

// Bind late to a method taking params.
object[] paramArray = new object[2];
paramArray[0] = "Fred"; // Child name.
paramArray[1] = 4; // Shame Intensity.
mi = miniVan.GetMethod("TellChildToBeQuiet");
mi.Invoke(obj, paramArray);
Console.ReadLine();

}

If you run this program, you will see four message boxes pop up, shaming young Fred. Hope-
fully at this point you can see the relationships among reflection, dynamic loading, and late binding.
Again, you still may wonder exactly when you might make use of these techniques in your own
applications. The conclusion of this chapter should shed light on this question; however, the next
topic under investigation is the role of .NET attributes.

■Source Code The LateBindingApp project is included in the Chapter 16 subdirectory.

Understanding Attributed Programming
As illustrated at beginning of this chapter, one role of a .NET compiler is to generate metadata
descriptions for all defined and referenced types. In addition to this standard metadata contained
within any assembly, the .NET platform provides a way for programmers to embed additional
metadata into an assembly using attributes. In a nutshell, attributes are nothing more than code
annotations that can be applied to a given type (class, interface, structure, etc.), member (property,
method, etc.), assembly, or module.

The idea of annotating code using attributes is not new. COM IDL provided numerous prede-
fined attributes that allowed developers to describe the types contained within a given COM server.
However, COM attributes were little more than a set of keywords. If a COM developer needed to
create a custom attribute, he or she could do so, but it was referenced in code by a 128-bit number
(GUID), which was cumbersome at best.

Unlike COM IDL attributes (which again were simply keywords), .NET attributes are class types
that extend the abstract System.Attribute base class. As you explore the .NET namespaces, you will
find many predefined attributes that you are able to make use of in your applications. Furthermore,
you are free to build custom attributes to further qualify the behavior of your types by creating a
new type deriving from Attribute.

Understand that when you apply attributes in your code, the embedded metadata is essentially
useless until another piece of software explicitly reflects over the information. If this is not the case,
the blurb of metadata embedded within the assembly is ignored and completely harmless.

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING542

8849CH16.qxd 10/9/07 4:27 PM Page 542

Attribute Consumers
As you would guess, the .NET 3.5 Framework SDK ships with numerous utilities that are indeed on
the lookout for various attributes. The C# compiler (csc.exe) itself has been preprogrammed to
discover the presence of various attributes during the compilation cycle. For example, if the C#
compiler encounters the [CLSCompliant] attribute, it will automatically check the attributed item to
ensure it is exposing only CLS-compliant constructs. By way of another example, if the C# compiler
discovers an item attributed with the [Obsolete] attribute, it will display a compiler warning in the
Visual Studio 2008 Error List window.

In addition to development tools, numerous methods in the .NET base class libraries are pre-
programmed to reflect over specific attributes. For example, if you wish to persist the state of an
object to file, all you are required to do is annotate your class with the [Serializable] attribute. If
the Serialize() method of the BinaryFormatter class encounters this attribute, the object is auto-
matically persisted to file in a compact binary format.

The .NET CLR is also on the prowl for the presence of certain attributes. Perhaps the most
famous .NET attribute is [WebMethod]. If you wish to expose a method via HTTP requests and auto-
matically encode the method return value as XML, simply apply [WebMethod] to the method and the
CLR handles the details. Beyond web service development, attributes are critical to the operation of
the .NET security system, Windows Communication Foundation, and COM/.NET interoperability
(and so on).

Finally, you are free to build applications that are programmed to reflect over your own custom
attributes as well as any attribute in the .NET base class libraries. By doing so, you are essentially
able to create a set of “keywords” that are understood by a specific set of assemblies.

Applying Attributes in C#
As previously mentioned, the .NET base class library provides a number of attributes in various
namespaces. Table 16-3 gives a snapshot of some—but by absolutely no means all—predefined
attributes.

Table 16-3. A Tiny Sampling of Predefined Attributes

Attribute Meaning in Life

[CLSCompliant] Enforces the annotated item to conform to the rules of the Common
Language Specification (CLS). Recall that CLS-compliant types are
guaranteed to be used seamlessly across all .NET programming languages.

[DllImport] Allows .NET code to make calls to any unmanaged C- or C++-based code
library, including the API of the underlying operating system. Do note that
[DllImport] is not used when communicating with COM-based software.

[Obsolete] Marks a deprecated type or member. If other programmers attempt to use
such an item, they will receive a compiler warning describing the error of
their ways.

[Serializable] Marks a class or structure as being “serializable,” meaning it is able to persist
its current state into a stream.

[NonSerialized] Specifies that a given field in a class or structure should not be persisted
during the serialization process.

[WebMethod] Marks a method as being invokable via HTTP requests and instructs the CLR
to serialize the method return value as XML.

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 543

8849CH16.qxd 10/9/07 4:27 PM Page 543

To illustrate the process of applying attributes in C#, assume you wish to build a class named
Motorcycle that can be persisted in a binary format. To do so, simply apply the [Serializable]
attribute to the class definition. If you have a field that should not be persisted, you may apply the
[NonSerialized] attribute:

// This class can be saved to disk.
[Serializable]
public class Motorcycle
{
// However this field will not be persisted.
[NonSerialized]
float weightOfCurrentPassengers;

// These fields are still serializable.
bool hasRadioSystem;
bool hasHeadSet;
bool hasSissyBar;

}

■Note An attribute only applies to the “very next” item. For example, the only nonserialized field of the
Motorcycle class is weightOfCurrentPassengers. The remaining fields are serializable given that the
entire class has been annotated with [Serializable].

At this point, don’t concern yourself with the actual process of object serialization (Chapter 21
examines the details). Just notice that when you wish to apply an attribute, the name of the attrib-
ute is sandwiched between square brackets.

Once this class has been compiled, you can view the extra metadata using ildasm.exe. Notice
that these attributes are recorded using the serializable and notserialized tokens (see Figure 16-6).

Figure 16-6. Attributes shown in ildasm.exe

As you might guess, a single item can be attributed with multiple attributes. Assume you have a
legacy C# class type (HorseAndBuggy) that was marked as serializable, but is now considered obsolete
for current development. Rather than deleting the class definition from your code base (and risk
breaking existing software), you can mark the class with the [Obsolete] attribute. To apply multiple
attributes to a single item, simply use a comma-delimited list:

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING544

8849CH16.qxd 10/9/07 4:27 PM Page 544

[Serializable, Obsolete("Use another vehicle!")]
public class HorseAndBuggy
{
// ...

}

As an alternative, you can also apply multiple attributes on a single item by stacking each
attribute as follows (the end result is identical):

[Serializable]
[Obsolete("Use another vehicle!")]
public class HorseAndBuggy
{
// ...

}

Specifying Constructor Parameters for Attributes
Notice that the [Obsolete] attribute is able to accept what appears to be a constructor parameter.
If you view the formal definition of the [Obsolete] attribute using the Code Definition window of
Visual Studio 2008, you will find that this class indeed provides a constructor receiving a System.
String:

public sealed class ObsoleteAttribute : System.Attribute
{
public bool IsError { get; }
public string Message { get; }
public ObsoleteAttribute(string message, bool error);
public ObsoleteAttribute(string message);
public ObsoleteAttribute();

}

Understand that when you supply constructor parameters to an attribute, the attribute is not
allocated into memory until the parameters are reflected upon by another type or an external tool.
The string data defined at the attribute level is simply stored within the assembly as a blurb of
metadata.

The Obsolete Attribute in Action
Now that HorseAndBuggy has been marked as obsolete, if you were to allocate an instance of this
type:

static void Main(string[] args)
{
HorseAndBuggy mule = new HorseAndBuggy();

}

you would find that the supplied string data is extracted and displayed within the Error List window
of Visual Studio 2008 (see Figure 16-7).

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 545

8849CH16.qxd 10/9/07 4:27 PM Page 545

Figure 16-7. Attributes in action

In this case, the “other piece of software” that is reflecting on the [Obsolete] attribute is the C#
compiler.

C# Attribute Shorthand Notation
If you were reading closely, you may have noticed that the actual class name of the [Obsolete]
attribute is ObsoleteAttribute, not Obsolete. As a naming convention, all .NET attributes (including
custom attributes you may create yourself) are suffixed with the Attribute token. However, to
simplify the process of applying attributes, the C# language does not require you to type in the
Attribute suffix. Given this, the following iteration of the HorseAndBuggy type is identical to the
previous (it just involves a few more keystrokes):

[SerializableAttribute]
[ObsoleteAttribute("Use another vehicle!")]
public class HorseAndBuggy
{
// ...

}

Be aware that this is a courtesy provided by C#. Not all .NET-enabled languages support this
shorthand attribute syntax. In any case, at this point you should hopefully understand the following
key points regarding .NET attributes:

• Attributes are classes that derive from System.Attribute.

• Attributes result in embedded metadata.

• Attributes are basically useless until another agent reflects upon them.

• Attributes are applied in C# using square brackets.

Next up, let’s examine how you can build your own custom attributes and a piece of custom
software that reflects over the embedded metadata.

Building Custom Attributes
The first step in building a custom attribute is to create a new class deriving from System.Attribute.
Keeping in step with the automobile theme used throughout this book, assume you have created a
brand new C# class library named AttributedCarLibrary. This assembly will define a handful of
vehicles (some of which you have already seen in this text), each of which is described using a cus-
tom attribute named VehicleDescriptionAttribute:

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING546

8849CH16.qxd 10/9/07 4:27 PM Page 546

// A custom attribute.
public sealed class VehicleDescriptionAttribute : System.Attribute
{
private string msgData;

public VehicleDescriptionAttribute(string description)
{ msgData = description;}
public VehicleDescriptionAttribute(){ }

public string Description
{
get { return msgData; }
set { msgData = value; }

}
}

As you can see, VehicleDescriptionAttribute maintains a private internal string (msgData)
that can be set using a custom constructor and manipulated using a type property (Description).
Beyond the fact that this class derived from System.Attribute, there is nothing unique to this class
definition.

■Note For security reasons, it is considered a .NET best practice to design all custom attributes as sealed. In
fact, Visual Studio 2008 provides a code snippet named Attribute that will dump out a new System.
Attribute-derived class into your code window. See Chapter 2 for an explication of using code snippets.

Applying Custom Attributes
Given that VehicleDescriptionAttribute is derived from System.Attribute, you are now able to
annotate your vehicles as you see fit. For testing purposes, add the following class definitions to
your new class library:

// Assign description using a "named property."
[Serializable]
[VehicleDescription(Description = "My rocking Harley")]
public class Motorcycle
{
}

[SerializableAttribute]
[ObsoleteAttribute("Use another vehicle!")]
[VehicleDescription("The old gray mare, she ain't what she used to be...")]
public class HorseAndBuggy
{
}

[VehicleDescription("A very long, slow, but feature-rich auto")]
public class Winnebago
{
}

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 547

8849CH16.qxd 10/9/07 4:27 PM Page 547

Named Property Syntax
Notice that the description of the Motorcycle is assigned a description using a new bit of attribute-
centric syntax termed a named property. In the constructor of the first [VehicleDescription]
attribute, you set the underlying System.String using a name/value pair. If this attribute is reflected
upon by an external agent, the value is fed into the Description property (named property syntax is
legal only if the attribute supplies a writable .NET property).

In contrast, the HorseAndBuggy and Winnebago types are not making use of named property syn-
tax and are simply passing the string data via the custom constructor. In any case, once you compile
the AttributedCarLibrary assembly, you can make use of ildasm.exe to view the injected metadata
descriptions for your type. For example, Figure 16-8 shows an embedded description of the
Winnebago type.

Figure 16-8. Embedded vehicle description data

Restricting Attribute Usage
By default, custom attributes can be applied to just about any aspect of your code (methods,
classes, properties, and so on). Thus, if it made sense to do so, you could use VehicleDescription
to qualify methods, properties, or fields (among other things):

[VehicleDescription("A very long, slow, but feature-rich auto")]
public class Winnebago
{
[VehicleDescription("My rocking CD player")]
public void PlayMusic(bool On)
{
...

}
}

In some cases, this is exactly the behavior you require. Other times, however, you may want to
build a custom attribute that can be applied only to select code elements. If you wish to constrain
the scope of a custom attribute, you will need to apply the [AttributeUsage] attribute on the
definition of your custom attribute. The [AttributeUsage] attribute allows you to supply any
combination of values (via an OR operation) from the AttributeTargets enumeration:

// This enumeration defines the possible targets of an attribute.
public enum AttributeTargets
{
All, Assembly, Class, Constructor,
Delegate, Enum, Event, Field,
Interface, Method, Module, Parameter,
Property, ReturnValue, Struct

}

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING548

8849CH16.qxd 10/9/07 4:27 PM Page 548

Furthermore, [AttributeUsage] also allows you to optionally set a named property
(AllowMultiple) that specifies whether the attribute can be applied more than once on the same
item. As well, [AttributeUsage] allows you to establish whether the attribute should be inherited
by derived classes using the Inherited named property.

To establish that the [VehicleDescription] attribute can be applied only once on a class or
structure (and the value is not inherited by derived types), you can update the
VehicleDescriptionAttribute definition as follows:

// This time, we are using the AttributeUsage attribute
// to annotate our custom attribute.
[AttributeUsage(AttributeTargets.Class | AttributeTargets.Struct,
AllowMultiple = false, Inherited = false)]
public sealed class VehicleDescriptionAttribute : System.Attribute
{
...
}

With this, if a developer attempted to apply the [VehicleDescription] attribute on anything
other than a class or structure, he or she is issued a compile-time error.

■Tip Always get in the habit of explicitly marking the usage flags for any custom attribute you may create, as not
all .NET programming languages honor the use of unqualified attributes!

Assembly-Level (and Module-Level) Attributes
It is also possible to apply attributes on all types within a given module (for a multifile assembly) or
all modules within a given assembly using the [module:] and [assembly:] tags, respectively. For
example, assume you wish to ensure that every public type defined within your assembly is CLS
compliant. To do so, simply add the following line in any one of your C# source code files (do note
that assembly-level attributes must be outside the scope of a namespace definition):

// Enforce CLS compliance for all public types in this assembly.
[assembly:System.CLSCompliantAttribute(true)]

If you now add a bit of code that falls outside the CLS specification (such as an exposed point
of unsigned data):

// Ulong types don't jibe with the CLS.
public class Winnebago
{
public ulong notCompliant;

}

you are issued a compiler warning.

The Visual Studio 2008 AssemblyInfo.cs File
By default, Visual Studio 2008 projects receive a file named AssemblyInfo.cs, which can be viewed
by expanding the Properties icon of the Solution Explorer (see Figure 16-9).

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 549

8849CH16.qxd 10/9/07 4:27 PM Page 549

Figure 16-9. The AssemblyInfo.cs file

This file is a handy place to put attributes that are to be applied at the assembly level. You may
recall from Chapter 15, during our examination of .NET assemblies, that the manifest contains
assembly-level metadata, much of which comes from the assembly-level attributes shown in
Table 16-4.

Table 16-4. Select Assembly-Level Attributes

Attribute Meaning in Life

AssemblyCompanyAttribute Holds basic company information

AssemblyCopyrightAttribute Holds any copyright information for the product or
assembly

AssemblyCultureAttribute Provides information on what cultures or languages the
assembly supports

AssemblyDescriptionAttribute Holds a friendly description of the product or modules
that make up the assembly

AssemblyKeyFileAttribute Specifies the name of the file containing the key pair used
to sign the assembly (i.e., establish a strong name)

AssemblyOperatingSystemAttribute Provides information on which operating system the
assembly was built to support

AssemblyProcessorAttribute Provides information on which processors the assembly
was built to support

AssemblyProductAttribute Provides product information

AssemblyTrademarkAttribute Provides trademark information

AssemblyVersionAttribute Specifies the assembly’s version information, in the
format <major.minor.build.revision>

■Source Code The AttributedCarLibrary project is included in the Chapter 16 subdirectory.

Reflecting on Attributes Using Early Binding
As mentioned in this chapter, an attribute is quite useless until some piece of software reflects
over its values. Once a given attribute has been discovered, that piece of software can take

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING550

8849CH16.qxd 10/9/07 4:27 PM Page 550

whatever course of action necessary. Now, like any application, this “other piece of software”
could discover the presence of a custom attribute using either early binding or late binding. If you
wish to make use of early binding, you’ll require the client application to have a compile-time
definition of the attribute in question (VehicleDescriptionAttribute in this case). Given that the
AttributedCarLibrary assembly has defined this custom attribute as a public class, early binding is
the best option.

To illustrate the process of reflecting on custom attributes, create a new C# Console Applica-
tion named VehicleDescriptionAttributeReader. Next, set a reference to the AttributedCarLibrary
assembly. Finally, update your initial *.cs file with the following code:

// Reflecting on custom attributes using early binding.
using System;
using AttributedCarLibrary;

public class Program
{
static void Main(string[] args)
{
// Get a Type representing the Winnebago.
Type t = typeof(Winnebago);

// Get all attributes on the Winnebago.
object[] customAtts = t.GetCustomAttributes(false);

// Print the description.
Console.WriteLine("***** Value of VehicleDescriptionAttribute *****\n");
foreach(VehicleDescriptionAttribute v in customAtts)
Console.WriteLine("-> {0}\n", v.Description);

Console.ReadLine();
}

}

As the name implies, Type.GetCustomAttributes() returns an object array that represents all
the attributes applied to the member represented by the Type (the Boolean parameter controls
whether the search should extend up the inheritance chain). Once you have obtained the list of
attributes, iterate over each VehicleDescriptionAttribute class and print out the value obtained by
the Description property.

■Source Code The VehicleDescriptionAttributeReader project is included under the Chapter 16 subdirectory.

Reflecting on Attributes Using Late Binding
The previous example made use of early binding to print out the vehicle description data for the
Winnebago type. This was possible due to the fact that the VehicleDescriptionAttribute class type
was defined as a public member in the AttributedCarLibrary assembly. It is also possible to make
use of dynamic loading and late binding to reflect over attributes.

Create a new project called VehicleDescriptionAttributeReaderLateBinding and copy
AttributedCarLibrary.dll to the project’s \bin\Debug directory. Now, update your Main() method
as follows:

using System.Reflection;

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 551

8849CH16.qxd 10/9/07 4:27 PM Page 551

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Descriptions of Your Vehicles *****\n");

// Load the local copy of AttributedCarLibrary.
Assembly asm = Assembly.Load("AttributedCarLibrary");

// Get type info of VehicleDescriptionAttribute.
Type vehicleDesc =
asm.GetType("AttributedCarLibrary.VehicleDescriptionAttribute");

// Get type info of the Description property.
PropertyInfo propDesc = vehicleDesc.GetProperty("Description");

// Get all types in the assembly.
Type[] types = asm.GetTypes();

// Iterate over each type and obtain any VehicleDescriptionAttributes.
foreach (Type t in types)
{
object[] objs = t.GetCustomAttributes(vehicleDesc, false);

// Iterate over each VehicleDescriptionAttribute and print
// the description using late binding.
foreach (object o in objs)
{
Console.WriteLine("-> {0}: {1}\n",
t.Name, propDesc.GetValue(o, null));

}
}
Console.ReadLine();

}
}

If you were able to follow along with the examples in this chapter, this Main() method should
be (more or less) self-explanatory. The only point of interest is the use of the PropertyInfo.
GetValue() method, which is used to trigger the property’s accessor. Figure 16-10 shows the
output.

Figure 16-10. Reflecting on attributes using late binding

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING552

8849CH16.qxd 10/9/07 4:27 PM Page 552

■Source Code The VehicleDescriptionAttributeReaderLateBinding project is included under the Chapter 16
subdirectory.

Putting Reflection, Late Binding, and Custom
Attributes in Perspective
Even though you have seen numerous examples of these techniques in action, you may still be
wondering when to make use of reflection, dynamic loading, late binding, and custom attributes in
your programs. To be sure, these topics can seem a bit on the academic side of programming (which
may or may not be a bad thing, depending on your point of view). To help map these topics to a
real-world situation, you need a solid example. Assume for the moment that you are on a program-
ming team that is building an application with the following requirement:

• The product must be extendable by the use of additional third-party tools.

So, what exactly is meant by extendable? Consider the Visual Studio 2008 IDE. When this appli-
cation was developed, various “hooks” were inserted to allow other software vendors to snap
custom modules into the IDE. Obviously, the Visual Studio 2008 development team had no way to
set references to external .NET assemblies it had not developed yet (thus, no early binding), so how
exactly would an application provide the required hooks? Here is one possible way to solve this
problem:

• First, an extendable application must provide some input vehicle to allow the user to specify
the module to plug in (such as a dialog box or command-line flag). This requires dynamic
loading.

• Second, an extendable application must be able to determine whether the module supports
the correct functionality (such as a set of required interfaces) in order to be plugged into the
environment. This requires reflection.

• Finally, an extendable application must obtain a reference to the required infrastructure
(such as a set of interface types) and invoke the members to trigger the underlying function-
ality. This may require late binding.

Simply put, if the extendable application has been preprogrammed to query for specific inter-
faces, it is able to determine at runtime whether the type can be activated. Once this verification
test has been passed, the type in question may support additional interfaces that provide a poly-
morphic fabric to their functionality. This is the exact approach taken by the Visual Studio 2008
team, and despite what you may be thinking, is not at all difficult.

Building an Extendable Application
In the sections that follow, I will take you through a complete example that illustrates the process of
building an extendable Windows Forms application that can be augmented by the functionality of
external assemblies. What I will not do at this point is comment on the process of programming
Windows Forms applications (see Chapter 27 for an overview of the Windows Forms API). So, if you
are not familiar with the process of building Windows Forms applications, feel free to simply open
up the supplied sample code and follow along. To serve as a road map, our extendable application
entails the following assemblies:

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 553

8849CH16.qxd 10/9/07 4:27 PM Page 553

• CommonSnappableTypes.dll: This assembly contains type definitions that will be used by each
snap-in object and will be directly referenced by the Windows Forms application.

• CSharpSnapIn.dll: A snap-in written in C#, which leverages the types of
CommonSnappableTypes.dll.

• VbNetSnapIn.dll: A snap-in written in Visual Basic, which leverages the types of
CommonSnappableTypes.dll.

• MyExtendableApp.exe: This Windows Forms application will be the entity that may be
extended by the functionality of each snap-in.

Again, this application will make use of dynamic loading, reflection, and late binding to
dynamically gain the functionality of assemblies it has no prior knowledge of.

Building CommonSnappableTypes.dll
The first order of business is to create an assembly that contains the types that a given snap-in must
leverage to be plugged into the expandable Windows Forms application. The CommonSnappable-
Types Class Library project defines two types:

namespace CommonSnappableTypes
{
public interface IAppFunctionality
{
void DoIt();

}

[AttributeUsage(AttributeTargets.Class)]
public sealed class CompanyInfoAttribute : System.Attribute
{
private string companyName;
private string companyUrl;
public CompanyInfoAttribute(){}

public string Name
{
get { return companyName; }
set { companyName = value; }

}

public string Url
{
get { return companyUrl; }
set { companyUrl = value; }

}
}

}

The IAppFunctionality interface provides a polymorphic interface for all snap-ins that can be
consumed by the extendable Windows Forms application. Given that this example is purely illustra-
tive, you supply a single method named DoIt(). A more realistic interface (or a set of interfaces)
might allow the object to generate scripting code, render an image onto the application’s toolbox, or
integrate into the main menu of the hosting application.

The CompanyInfoAttribute type is a custom attribute that will be applied on any class type
that wishes to be snapped in to the container. As you can tell by the definition of this class,
[CompanyInfo] allows the developer of the snap-in to provide some basic details about the compo-
nent’s point of origin.

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING554

8849CH16.qxd 10/9/07 4:27 PM Page 554

Building the C# Snap-In
Next up, you need to create a type that implements the IAppFunctionality interface. Again, to focus
on the overall design of an extendable application, a trivial type is in order. Assume a new C# Class
Library project named CSharpSnapIn defines a class type named CSharpModule. Given that this class
must make use of the types defined in CommonSnappableTypes, be sure to set a reference to this
binary (as well as System.Windows.Forms.dll to display a noteworthy message). This being said,
here is the code:

using System;
using CommonSnappableTypes;
using System.Windows.Forms;

namespace CSharpSnapIn
{
[CompanyInfo(Name = "Intertech Training",

Url = "www.intertech.com")]
public class CSharpModule : IAppFunctionality
{
void IAppFunctionality.DoIt()
{
MessageBox.Show("You have just used the C# snap in!");

}
}

}

Notice that I choose to make use of explicit interface implementation when supporting the
IAppFunctionality interface. This is not required; however, the idea is that the only part of the
system that needs to directly interact with this interface type is the hosting Windows application.
By explicitly implementing this interface, the DoIt() method is not directly exposed from the
CSharpModule type.

Building the Visual Basic Snap-In
Now, to simulate the role of a third-party vendor who prefers Visual Basic over C#, create a new
Visual Basic code library (VbNetSnapIn) that references the same external assemblies as the previ-
ous CSharpSnapIn project. The code is (again) intentionally simple:

Imports System.Windows.Forms
Imports CommonSnappableTypes

<CompanyInfo(Name:="Chucky's Software", Url:="www.ChuckySoft.com")> _
Public Class VbNetSnapIn

Implements IAppFunctionality

Public Sub DoIt() Implements CommonSnappableTypes.IAppFunctionality.DoIt
MessageBox.Show("You have just used the VB .NET snap in!")

End Sub
End Class

Notice that applying attributes in the syntax of Visual Basic requires angle brackets (< >) rather
than square brackets ([]). Also notice that the Implements keyword is used to implement interface
types on a given class or structure.

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 555

8849CH16.qxd 10/9/07 4:27 PM Page 555

http://www.intertech.com
http://www.ChuckySoft.com
http://www.intertech.com
http://www.ChuckySoft.com

Building an Extendable Windows Forms Application
The final step is to create a new Windows Forms application (MyExtendableApp) that allows the
user to select a snap-in using a standard Windows Open dialog box. Next, set a reference to the
CommonSnappableTypes.dll assembly, but not the CSharpSnapIn.dll or VbNetSnapIn.dll code
libraries. Remember that the whole goal of this application is to make use of late binding and
reflection to determine the “snapability” of independent binaries created by third-party vendors.

Again, I won’t bother to examine all the details of Windows Forms development at this point
in the text. However, assuming you have placed a MenuStrip component onto the forms designer,
define a topmost menu item named File that provides a single submenu named Snap In Module. As
well, the main window will contain a ListBox type (which I renamed as lstLoadedSnapIns) that will
be used to display the names of each snap-in loaded by the user. Figure 16-11 shows the final GUI.

Figure 16-11. GUI for MyExtendableApp

The code that handles the Click event for the File ➤ Snap In Module menu item (which may
be created simply by double-clicking the menu item from the design-time editor) displays a File
Open dialog box and extracts the path to the selected file. Assuming the user did not select the
CommonSnappableTypes.dll assembly (as this is purely infrastructure), the path is then sent into a
helper function named LoadExternalModule() for processing. This method will return false when
it is unable to find a class implementing IAppFunctionality:

private void snapInModuleToolStripMenuItem_Click(object sender,
EventArgs e)

{
// Allow user to select an assembly to load.
OpenFileDialog dlg = new OpenFileDialog();

if (dlg.ShowDialog() == DialogResult.OK)
{
if(dlg.FileName.Contains("CommonSnappableTypes"))
MessageBox.Show("CommonSnappableTypes has no snap-ins!");

else if(!LoadExternalModule(dlg.FileName))
MessageBox.Show("Nothing implements IAppFunctionality!");

}
}

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING556

8849CH16.qxd 10/9/07 4:27 PM Page 556

The LoadExternalModule() method performs the following tasks:

• Dynamically loads the selected assembly into memory

• Determines whether the assembly contains any types implementing IAppFunctionality

• Creates the type using late binding

If a type implementing IAppFunctionality is found, the DoIt() method is called, and the fully
qualified name of the type is added to the ListBox (note that the foreach loop will iterate over all
types in the assembly to account for the possibility that a single assembly has multiple snap-ins).
Finally, notice that we are making use of a LINQ query to obtain IAppFunctionality-compatible
class types.

private bool LoadExternalModule(string path)
{
bool foundSnapIn = false;
Assembly theSnapInAsm = null;

try
{
// Dynamically load the selected assembly.
theSnapInAsm = Assembly.LoadFrom(path);

}
catch(Exception ex)
{
MessageBox.Show(ex.Message);
return foundSnapIn;

}

// Get all IAppFunctionality compatible classes in assembly.
var theClassTypes = from t in theSnapInAsm.GetTypes()

where t.IsClass &&
(t.GetInterface("IAppFunctionality") != null)
select t;

// Now, create the object and call DoIt() method.
foreach (Type t in theClassTypes)
{
foundSnapIn = true;
// Use late binding to create the type.
IAppFunctionality itfApp =
(IAppFunctionality)theSnapInAsm.CreateInstance(t.FullName, true);

itfApp.DoIt();
lstLoadedSnapIns.Items.Add(t.FullName);

}
return foundSnapIn;

}

At this point, you can run your application. When you select the CSharpSnapIn.dll or
VbNetSnapIn.dll assemblies, you should see the correct message displayed. The final task is to dis-
play the metadata provided by the [CompanyInfo] attribute. To do so, update LoadExternalModule()
to call a new helper function named DisplayCompanyData() before exiting the foreach scope. Notice
this method takes a single System.Type parameter.

private bool LoadExternalModule(string path)
{
...
foreach (Type t in theClassTypes)

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 557

8849CH16.qxd 10/9/07 4:27 PM Page 557

{
...

// Show company info.
DisplayCompanyData(t);

}
return foundSnapIn;

}

Using the incoming type, simply reflect over the [CompanyInfo] attribute:

private void DisplayCompanyData(Type t)
{
// Get [CompanyInfo] data.
var compInfo = from ci in t.GetCustomAttributes(false) where

(ci.GetType() == typeof(CompanyInfoAttribute))
select ci;

// Show data.
foreach (CompanyInfoAttribute c in compInfo)
{
MessageBox.Show(c.Url,
string.Format("More info about {0} can be found at", c.Name));

}
}

Figure 16-12 shows one possible run.

Figure 16-12. Snapping in external assemblies

Excellent! That wraps up the example application. I hope at this point you can see that the top-
ics presented in this chapter can be quite helpful in the real world and are not limited to the tool
builders of the world.

■Source Code The CommonSnappableTypes, CSharpSnapIn, VbNetSnapIn, and MyExtendableApp projects are
included under the Chapter 16 subdirectory.

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING558

8849CH16.qxd 10/9/07 4:27 PM Page 558

Summary
Reflection is a very interesting aspect of a robust OO environment. In the world of .NET, the keys to
reflection services revolve around the System.Type class and the System.Reflection namespace. As
you have seen, reflection is the process of placing a type under the magnifying glass at runtime to
understand the who, what, where, when, why, and how of a given item.

Late binding is the process of creating a type and invoking its members without prior knowl-
edge of the specific names of said members. Late binding is often a direct result of dynamic loading,
which allows you to load a .NET assembly into memory programmatically. As shown during this
chapter’s extendable application example, this is a very powerful technique used by tool builders as
well as tool consumers. This chapter also examined the role of attribute-based programming. When
you adorn your types with attributes, the result is the augmentation of the underlying assembly
metadata.

CHAPTER 16 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 559

8849CH16.qxd 10/9/07 4:27 PM Page 559

8849CH16.qxd 10/9/07 4:27 PM Page 560

Processes, AppDomains, and
Object Contexts

In the previous two chapters, you examined the steps taken by the CLR to resolve the location of
an externally referenced assembly as well as the role of .NET metadata. In this chapter, you’ll drill
deeper into the details of how an assembly is hosted by the CLR and come to understand the rela-
tionship between processes, application domains, and object contexts.

In a nutshell, application domains (or simply AppDomains) are logical subdivisions within a
given process that host a set of related .NET assemblies. As you will see, an AppDomain is further
subdivided into contextual boundaries, which are used to group together like-minded .NET objects.
Using the notion of context, the CLR is able to ensure that objects with special runtime require-
ments are handled appropriately.

Reviewing Traditional Win32 Processes
The concept of a “process” has existed within Windows-based operating systems well before the
release of the .NET platform. Simply put, process is the term used to describe the set of resources
(such as external code libraries and the primary thread) and the necessary memory allocations used
by a running application. For each *.exe loaded into memory, the OS creates a separate and iso-
lated process for use during its lifetime. Using this approach to application isolation, the result is a
much more robust and stable runtime environment, given that the failure of one process does not
affect the functioning of another.

Now, every Win32 process is assigned a unique process identifier (PID) and may be independ-
ently loaded and unloaded by the OS as necessary (as well as programmatically using Win32 API
calls). As you may be aware, the Processes tab of the Windows Task Manager utility (activated via the
Ctrl+Shift+Esc keystroke combination) allows you to view various statistics regarding the processes
running on a given machine, including its PID and image name (see Figure 17-1).

■Note The View ➤ Select Columns menu option of the Windows Task Manager allows you to select which
columns (PID, User Name, etc.) you wish to have displayed.

561

C H A P T E R 1 7

8849CH17.qxd 10/9/07 4:29 PM Page 561

Figure 17-1. The Windows Task Manager

An Overview of Threads
Every Win32 process has exactly one main “thread” that functions as the entry point for the
application. The next chapter examines how to create threads under the .NET platform using the
System.Threading namespace; however, to facilitate the topics presented here, we need a few work-
ing definitions. First of all, a thread is a path of execution within a process. Formally speaking, the
first thread created by a process’s entry point is termed the primary thread. Win32 API GUI desktop
applications define the WinMain() method as the application’s entry point. On the other hand, a
console-based program provides the Main() method for the same purpose.

Processes that contain a single primary thread of execution are intrinsically thread safe, given
the fact that there is only one thread that can access the data in the application at a given time.
However, a single-threaded process (especially one that is GUI-based) will often appear a bit unre-
sponsive to the user if this single thread is performing a complex operation (such as printing out a
lengthy text file, performing a mathematically intensive calculation, or attempting to connect to a
remote server located thousands of miles away).

Given this potential drawback of single-threaded applications, the Win32 API (as well as the
.NET platform) makes it possible for the primary thread to spawn additional secondary threads
(also termed worker threads) using a handful of Win32 API functions such as CreateThread(). Each
thread (primary or secondary) becomes a unique path of execution in the process and has concur-
rent access to all shared points of data.

As you may have guessed, developers typically create additional threads to help improve the
program’s overall responsiveness. Multithreaded processes provide the illusion that numerous
activities are happening at more or less the same time. For example, an application may spawn a
worker thread to perform a labor-intensive unit of work (again, such as printing a large text file).

CHAPTER 17 ■ PROCESSES, APPDOMAINS, AND OBJECT CONTEXTS562

8849CH17.qxd 10/9/07 4:29 PM Page 562

As this secondary thread is churning away, the main thread is still responsive to user input, which
gives the entire process the potential of delivering greater performance. However, this may not
actually be the case: using too many threads in a single process can actually degrade performance,
as the CPU must switch between the active threads in the process (which takes time).

In reality, it is always worth keeping in mind that multithreading is most commonly an illusion
provided by the OS. Machines that host a single (nonhyperthreaded) CPU do not have the ability to
literally handle multiple threads at the same exact time. Rather, a single CPU will execute one
thread for a unit of time (called a time slice) based in part on the thread’s priority level. When a
thread’s time slice is up, the existing thread is suspended to allow another thread to perform its
business. For a thread to remember what was happening before it was kicked out of the way, each
thread is given the ability to write to Thread Local Storage (TLS) and is provided with a separate
call stack, as illustrated in Figure 17-2.

Figure 17-2. The Win32 process/thread relationship

If the subject of threads is new to you, don’t sweat the details. At this point, just remember that
a thread is a unique path of execution within a Win32 process. Every process has a primary thread
(created via the executable’s entry point) and may contain additional threads that have been pro-
grammatically created.

Interacting with Processes Under the
.NET Platform
Although processes and threads are nothing new, the manner in which we interact with these
primitives under the .NET platform has changed quite a bit (for the better). To pave the way to
understanding the world of building multithreaded assemblies (see Chapter 18), let’s begin by
checking out how to interact with processes using the .NET base class libraries.

The System.Diagnostics namespace defines a number of types that allow you to programmati-
cally interact with processes and various diagnostic-related types such as the system event log and
performance counters. In this chapter, we are only concerned with the process-centric types
defined in Table 17-1.

A Single Win32 Process

Thread A

TLS Call Stack TLS Call Stack

Shared Data

Thread B

CHAPTER 17 ■ PROCESSES, APPDOMAINS, AND OBJECT CONTEXTS 563

8849CH17.qxd 10/9/07 4:29 PM Page 563

Table 17-1. Select Members of the System.Diagnostics Namespace

Process-Centric Types of the
System.Diagnostics Namespace Meaning in Life

Process The Process class provides access to local and remote
processes and also allows you to programmatically start and
stop processes.

ProcessModule This type represents a module (*.dll or *.exe) that is loaded
into a particular process. Understand that the ProcessModule
type can represent any module—COM-based, .NET-based, or
traditional C-based binaries.

ProcessModuleCollection Provides a strongly typed collection of ProcessModule objects.

ProcessStartInfo Specifies a set of values used when starting a process via the
Process.Start() method.

ProcessThread Represents a thread within a given process. Be aware that
ProcessThread is a type used to diagnose a process’s thread set
and is not used to spawn new threads of execution within a
process.

ProcessThreadCollection Provides a strongly typed collection of ProcessThread objects.

The System.Diagnostics.Process type allows you to analyze the processes running on a given
machine (local or remote). The Process class also provides members that allow you to programmat-
ically start and terminate processes, view a process’s priority level, and obtain a list of active threads
and/or loaded modules within a given process. Table 17-2 lists some (but not all) of the key mem-
bers of System.Diagnostics.Process.

Table 17-2. Select Members of the Process Type

Members Meaning in Life

ExitCode This property gets the value that the associated process specified when it
terminated. Do note that you will be required to handle the Exited event
(for asynchronous notification) or call the WaitForExit() method (for
synchronous notification) to obtain this value.

ExitTime This property gets the timestamp associated with the process that has
terminated (represented with a DateTime type).

Handle This property returns the handle associated to the process by the OS.

HandleCount This property returns the number of handles opened by the process.

Id This property gets the PID for the associated process.

MachineName This property gets the name of the computer the associated process is
running on.

MainModule This property gets the ProcessModule type that represents the main
module for a given process.

MainWindowTitle MainWindowTitle gets the caption of the main window of the process (if
MainWindowHandle the process does not have a main window, you receive an empty string).

MainWindowHandle gets the underlying handle (represented via a
System.IntPtr type) of the associated window. If the process does not
have a main window, the IntPtr type is assigned the value System.
IntPtr.Zero.

Modules This property provides access to the strongly typed
ProcessModuleCollection type, which represents the set of modules
(*.dll or *.exe) loaded within the current process.

CHAPTER 17 ■ PROCESSES, APPDOMAINS, AND OBJECT CONTEXTS564

8849CH17.qxd 10/9/07 4:29 PM Page 564

Members Meaning in Life

PriorityBoostEnabled This property determines whether the OS should temporarily boost the
process if the main window has the focus.

PriorityClass This property allows you to read or change the overall priority for the
associated process.

ProcessName This property gets the name of the process (which, as you would assume,
is the name of the application itself).

Responding This property gets a value indicating whether the user interface of the
process is responding to user input (or is currently “hung”).

StartTime This property gets the time that the associated process was started (via a
DateTime type).

Threads This property gets the set of threads that are running in the associated
process (represented via an array of ProcessThread types).

CloseMainWindow() This method closes a process that has a user interface by sending a close
message to its main window.

GetCurrentProcess() This static method returns a new Process type that represents the
currently active process.

GetProcesses() This static method returns an array of new Process components running
on a given machine.

Kill() This method immediately stops the associated process.

Start() This method starts a process.

Enumerating Running Processes
To illustrate the process of manipulating Process types (pardon the redundancy), assume you have
a C# Console Application named ProcessManipulator that defines the following static helper
method within the Program class (be sure you import the System.Diagnostics namespace):

static void ListAllRunningProcesses()
{
// Get all the processes on the local machine.
Process[] runningProcs = Process.GetProcesses(".");

// Print out PID and name of each process.
foreach(Process p in runningProcs)
{
string info = string.Format("-> PID: {0}\tName: {1}",
p.Id, p.ProcessName);

Console.WriteLine(info);
}
Console.WriteLine("************************************\n");

}

Notice how the static Process.GetProcesses() method returns an array of Process types that
represent the running processes on the target machine (the dot notation shown here represents the
local computer). Once you have obtained the array of Process types, you are able to trigger any of
the members seen in Table 17-2. Here, you are simply displaying the PID and the name of each
process. Assuming the Main() method has been updated to call ListAllRunningProcesses(), you
will see something like the output shown in Figure 17-3.

CHAPTER 17 ■ PROCESSES, APPDOMAINS, AND OBJECT CONTEXTS 565

8849CH17.qxd 10/9/07 4:29 PM Page 565

Figure 17-3. Enumerating running processes

Investigating a Specific Process
In addition to obtaining a full and complete list of all running processes on a given machine, the
static Process.GetProcessById() method allows you to obtain a single Process type via the associ-
ated PID. If you request access to a nonexistent PID, an ArgumentException exception is thrown. For
example, if you were interested in obtaining a Process object representing a process with the PID of
987, you could write the following:

// If there is no process with the PID of 987, a
// runtime exception will be thrown.
static void GetSpecificProcess()
{
Process theProc = null;
try
{
theProc = Process.GetProcessById(987);

}
catch // Generic catch for used simplicity.
{
Console.WriteLine("-> Sorry...bad PID!");

}
}

Investigating a Process’s Thread Set
The Process class type also provides a manner to programmatically investigate the set of all
threads currently used by a specific process. The set of threads is represented by the strongly typed
ProcessThreadCollection collection, which contains some number of individual ProcessThread
types. To illustrate, assume the following additional static helper function has been added to your
current application:

CHAPTER 17 ■ PROCESSES, APPDOMAINS, AND OBJECT CONTEXTS566

8849CH17.qxd 10/9/07 4:29 PM Page 566

static void EnumThreadsForPid(int pID)
{
Process theProc = null;
try
{
theProc = Process.GetProcessById(pID);

}
catch
{
Console.WriteLine("-> Sorry...bad PID!");
Console.WriteLine("************************************\n");
return;

}

// List out stats for each thread in the specified process.
Console.WriteLine("Here are the threads used by: {0}",
theProc.ProcessName);

ProcessThreadCollection theThreads = theProc.Threads;
foreach(ProcessThread pt in theThreads)
{
string info =
string.Format("-> Thread ID: {0}\tStart Time {1}\tPriority {2}",
pt.Id , pt.StartTime.ToShortTimeString(), pt.PriorityLevel);

Console.WriteLine(info);
}
Console.WriteLine("************************************\n");

}

As you can see, the Threads property of the System.Diagnostics.Process type provides access
to the ProcessThreadCollection class. Here, you are printing out the assigned thread ID, start time,
and priority level of each thread in the process specified by the client. Thus, if you update your pro-
gram’s Main() method to prompt the user for a PID to investigate, as follows:

static void Main(string[] args)
{
...
// Prompt user for a PID and print out the set of active threads.
Console.WriteLine("***** Enter PID of process to investigate *****");
Console.Write("PID: ");
string pID = Console.ReadLine();
int theProcID = int.Parse(pID);

EnumThreadsForPid(theProcID);
Console.ReadLine();

}

you would find output along the lines of that shown in Figure 17-4.

CHAPTER 17 ■ PROCESSES, APPDOMAINS, AND OBJECT CONTEXTS 567

8849CH17.qxd 10/9/07 4:29 PM Page 567

Figure 17-4. Enumerating the threads within a running process

The ProcessThread type has additional members of interest beyond Id, StartTime, and
PriorityLevel. Table 17-3 documents some members of interest.

Table 17-3. Select Members of the ProcessThread Type

Member Meaning in Life

BasePriority Gets the base priority of the thread

CurrentPriority Gets the current priority of the thread

Id Gets the unique identifier of the thread

IdealProcessor Sets the preferred processor for this thread to run on

PriorityLevel Gets or sets the priority level of the thread

ProcessorAffinity Sets the processors on which the associated thread can run

StartAddress Gets the memory address of the function that the operating system called
that started this thread

StartTime Gets the time that the operating system started the thread

ThreadState Gets the current state of this thread

TotalProcessorTime Gets the total amount of time that this thread has spent using the
processor

WaitReason Gets the reason that the thread is waiting

Before you read any further, be very aware that the ProcessThread type is not the entity used to
create, suspend, or kill threads under the .NET platform. Rather, ProcessThread is a vehicle used to
obtain diagnostic information for the active Win32 threads within a running process. Again, you will
investigate how to build multithreaded applications using the System.Threading namespace in
Chapter 18.

CHAPTER 17 ■ PROCESSES, APPDOMAINS, AND OBJECT CONTEXTS568

8849CH17.qxd 10/9/07 4:29 PM Page 568

Investigating a Process’s Module Set
Next up, let’s check out how to iterate over the number of loaded modules that are hosted within a
given process. Recall that a module is a generic name used to describe a given *.dll (or the *.exe
itself) that is hosted by a specific process. When you access the ProcessModuleCollection via the
Process.Module property, you are able to enumerate over all modules hosted within a process: .NET-
based, COM-based, or traditional C-based libraries. Ponder the following additional helper function
that will enumerate the modules in a specific process based on the PID:

static void EnumModsForPid(int pID)
{
Process theProc = null;
try
{
theProc = Process.GetProcessById(pID);

}
catch
{
Console.WriteLine("-> Sorry...bad PID!");
Console.WriteLine("************************************\n");
return;

}
Console.WriteLine("Here are the loaded modules for: {0}",
theProc.ProcessName);

try
{
ProcessModuleCollection theMods = theProc.Modules;
foreach(ProcessModule pm in theMods)
{
string info = string.Format("-> Mod Name: {0}", pm.ModuleName);
Console.WriteLine(info);

}
Console.WriteLine("************************************\n");
}
catch
{
Console.WriteLine("No mods!");

}
}

To see some possible output, let’s check out the loaded modules for the process hosting
the current example program (ProcessManipulator). To do so, run the application, identify the
PID assigned to ProcessManipulator.exe (via the Task Manager) and pass this value to the
EnumModsForPid() method (be sure to update your Main() method accordingly). Once you do,
you may be surprised to see the list of *.dlls used for a simple Console Application (GDI32.dll,
USER32.dll, ole32.dll, and so forth). Figure 17-5 shows a test run.

CHAPTER 17 ■ PROCESSES, APPDOMAINS, AND OBJECT CONTEXTS 569

8849CH17.qxd 10/9/07 4:29 PM Page 569

Figure 17-5. Enumerating the loaded modules within a running process

Starting and Stopping Processes Programmatically
The final aspects of the System.Diagnostics.Process type examined here are the Start() and
Kill() methods. As you can gather by their names, these members provide a way to program-
matically launch and terminate a process, respectively. For example, consider the static
StartAndKillProcess() helper method:

static void StartAndKillProcess()
{
// Launch Internet Explorer.
Process ieProc = Process.Start("IExplore.exe", "www.intertech.com");

Console.Write("--> Hit enter to kill {0}...", ieProc.ProcessName);
Console.ReadLine();

// Kill the iexplore.exe process.
try
{
ieProc.Kill();

}
catch{} // In case the user already killed it...

}

The static Process.Start() method has been overloaded a few times. At minimum, you will
need to specify the friendly name of the process you wish to launch (such as Microsoft Internet
Explorer, iexplore.exe). This example makes use of a variation of the Start() method that allows
you to specify any additional arguments to pass into the program’s entry point (i.e., the Main()
method).

CHAPTER 17 ■ PROCESSES, APPDOMAINS, AND OBJECT CONTEXTS570

8849CH17.qxd 10/9/07 4:29 PM Page 570

http://www.intertech.com

The Start() method also allows you to pass in a System.Diagnostics.ProcessStartInfo type to
specify additional bits of information regarding how a given process should come to life. Here is the
formal definition of ProcessStartInfo (see the .NET Framework 3.5 SDK documentation for full
details):

public sealed class System.Diagnostics.ProcessStartInfo :
object

{
public ProcessStartInfo();
public ProcessStartInfo(string fileName);
public ProcessStartInfo(string fileName, string arguments);
public string Arguments { get; set; }
public bool CreateNoWindow { get; set; }
public StringDictionary EnvironmentVariables { get; }
public bool ErrorDialog { get; set; }
public IntPtr ErrorDialogParentHandle { get; set; }
public string FileName { get; set; }
public bool RedirectStandardError { get; set; }
public bool RedirectStandardInput { get; set; }
public bool RedirectStandardOutput { get; set; }
public bool UseShellExecute { get; set; }
public string Verb { get; set; }
public string[] Verbs { get; }
public ProcessWindowStyle WindowStyle { get; set; }
public string WorkingDirectory { get; set; }
public virtual bool Equals(object obj);
public virtual int GetHashCode();
public Type GetType();
public virtual string ToString();

}

Regardless of which version of the Process.Start() method you invoke, do note that you are
returned a reference to the newly activated process. When you wish to terminate the process, simply
call the instance-level Kill() method.

■Source Code The ProcessManipulator project is included under the Chapter 17 subdirectory.

Understanding .NET Application Domains
Now that you understand the role of Win32 processes and how to interact with them from managed
code, we need to investigate the concept of a .NET application domain. Under the .NET platform,
executables are not hosted directly within a process (as is the case in traditional Win32 applica-
tions). Rather, a .NET executable is hosted by a logical partition within a process termed an
application domain. As you will see, a single process may contain multiple application domains,
each of which is hosting a .NET executable. This additional subdivision of a traditional Win32
process offers several benefits, some of which are as follows:

CHAPTER 17 ■ PROCESSES, APPDOMAINS, AND OBJECT CONTEXTS 571

8849CH17.qxd 10/9/07 4:29 PM Page 571

• AppDomains are a key aspect of the OS-neutral nature of the .NET platform, given that this
logical division abstracts away the differences in how an underlying OS represents a loaded
executable.

• AppDomains are far less expensive in terms of processing power and memory than a full-
blown process. Thus, the CLR is able to load and unload application domains much quicker
than a formal process.

• AppDomains provide a deeper level of isolation for hosting a loaded application. If one
AppDomain within a process fails, the remaining AppDomains remain functional.

As suggested in the previous hit list, a single process can host any number of AppDomains,
each of which is fully and completely isolated from other AppDomains within this process (or any
other process). Given this fact, be very aware that an application running in one AppDomain is
unable to obtain data of any kind (global variables or static fields) within another AppDomain
unless they make use of a distributed programming protocol (such as Windows Communication
Foundation).

While a single process may host multiple AppDomains, this is not typically the case. At the very
least, an OS process will host what is termed the default application domain. This specific applica-
tion domain is automatically created by the CLR at the time the process launches. After this point,
the CLR creates additional application domains on an as-needed basis.

If the need should arise (which it most likely will not for the majority of your .NET endeavors),
you are also able to programmatically create application domains at runtime within a given process
using static methods of the System.AppDomain class. This class is also useful for low-level control of
application domains. Key members of this class are shown in Table 17-4.

Table 17-4. Select Members of AppDomain

Member Meaning in Life

CreateDomain() This static method creates a new AppDomain in the current process.
Understand that the CLR will create new application domains as
necessary, and thus the chance of you absolutely needing to call this
member is slim to none.

GetCurrentThreadId() This static method returns the ID of the active thread in the current
application domain.

Unload() This is another static method that allows you to unload a specified
AppDomain within a given process.

BaseDirectory This property returns the base directory used to probe for dependent
assemblies.

CreateInstance() This method creates an instance of a specified type defined in a specified
assembly file.

ExecuteAssembly() This method executes an assembly within an application domain, given
its file name.

GetAssemblies() This method gets the set of .NET assemblies that have been loaded into
this application domain (COM-based or C-based binaries are ignored).

Load() This method is used to dynamically load an assembly into the current
application domain.

In addition, the AppDomain type also defines a small set of events that correspond to various
aspects of an application domain’s life cycle, as shown in Table 17-5.

CHAPTER 17 ■ PROCESSES, APPDOMAINS, AND OBJECT CONTEXTS572

8849CH17.qxd 10/9/07 4:29 PM Page 572

Table 17-5. Events of the AppDomain Type

Event Meaning in Life

AssemblyLoad Occurs when an assembly is loaded

AssemblyResolve Occurs when the resolution of an assembly fails

DomainUnload Occurs when an AppDomain is about to be unloaded

ProcessExit Occurs on the default application domain when the default application
domain’s parent process exits

ResourceResolve Occurs when the resolution of a resource fails

TypeResolve Occurs when the resolution of a type fails

UnhandledException Occurs when an exception is not caught by an event handler

Enumerating a Process’s AppDomains
To illustrate how to interact with .NET application domains programmatically, assume you have a
new C# Console Application named AppDomainManipulator that defines a static method named
PrintAllAssembliesInAppDomain() within the Program type. This helper method makes use of
AppDomain.GetAssemblies() to obtain a list of all .NET binaries hosted within the application
domain in question.

This list is represented by an array of System.Reflection.Assembly types, and thus you are
required to use the System.Reflection namespace (see Chapter 16). Once you acquire the assembly
array, you iterate over the array and print out the friendly name and version of each assembly:

static void PrintAllAssembliesInAppDomain(AppDomain ad)
{
Assembly[] loadedAssemblies = ad.GetAssemblies();
Console.WriteLine("***** Here are the assemblies loaded in {0} *****\n",
ad.FriendlyName);

foreach(Assembly a in loadedAssemblies)
{
Console.WriteLine("-> Name: {0}", a.GetName().Name);
Console.WriteLine("-> Version: {0}\n", a.GetName().Version);

}
}

Now let’s update the Main() method to obtain a reference to the current application domain
before invoking PrintAllAssembliesInAppDomain(), using the AppDomain.CurrentDomain property.

To make things a bit more interesting, notice that the Main() method launches a Windows
Forms message box to force the CLR to load the System.Windows.Forms.dll, System.Drawing.dll,
and System.dll assemblies (so be sure to set a reference to these assemblies and update your using
statements appropriately):

static void Main(string[] args)
{
Console.WriteLine("***** Fun with AppDomains *****\n");

// Get info for current AppDomain.
AppDomain defaultAD= AppDomain.CurrentDomain;

CHAPTER 17 ■ PROCESSES, APPDOMAINS, AND OBJECT CONTEXTS 573

8849CH17.qxd 10/9/07 4:29 PM Page 573

// This call is simply to load additional
// assemblies into this app domain.
MessageBox.Show("Hello");
PrintAllAssembliesInAppDomain(defaultAD);

Console.ReadLine();
}

Figure 17-6 shows the output.

Figure 17-6. Enumerating assemblies within the current application domain

Programmatically Creating New AppDomains
Recall that a single process is capable of hosting multiple AppDomains. While it is true that you will
seldom (if ever) need to manually create AppDomains in code, you are able to do so via the static
CreateDomain() method. As you would guess, AppDomain.CreateDomain() has been overloaded a
number of times. At minimum, you will specify the friendly name of the new application domain,
as shown here:

static void Main(string[] args)
{
...
// Make a new AppDomain in the current process.
AppDomain anotherAD = AppDomain.CreateDomain("SecondAppDomain");
PrintAllAssembliesInAppDomain(anotherAD);

Console.ReadLine();
}

Now, if you run the application again (see Figure 17-7), notice that the System.Windows.Forms.
dll, System.Drawing.dll, and System.dll assemblies are only loaded within the default application
domain. This may seem counterintuitive if you have a background in traditional Win32 (as you
might suspect, both application domains have access to the same assembly set). Recall, however,
that an assembly loads into an application domain, not directly into the process itself.

CHAPTER 17 ■ PROCESSES, APPDOMAINS, AND OBJECT CONTEXTS574

8849CH17.qxd 10/9/07 4:29 PM Page 574

Figure 17-7. A single process with two application domains

Next, notice how the SecondAppDomain application domain automatically contains its own
copy of mscorlib.dll, as this key assembly is automatically loaded by the CLR for each and every
application domain. This begs the question, “How can I programmatically load an assembly into
an application domain?” Answer: with the AppDomain.Load() method (or, alternatively, AppDomain.
ExecuteAssembly() to load and execute the Main() method of an *.exe assembly).

Assuming you have copied CarLibrary.dll to the application directory of AppDomainManipulator.
exe, you may load CarLibrary.dll into the SecondAppDomain application domain as follows:

static void Main(string[] args)
{
...
// Load CarLibrary.dll into the new AppDomain.
AppDomain anotherAD = AppDomain.CreateDomain("SecondAppDomain");
try
{
anotherAD.Load("CarLibrary");
PrintAllAssembliesInAppDomain(anotherAD);

}
catch(Exception ex)
{
Console.WriteLine(ex.Message);

}
Console.ReadLine();

}

To solidify the relationship between processes, application domains, and assemblies,
Figure 17-8 diagrams the internal composition of the AppDomainManipulator.exe process just
constructed.

CHAPTER 17 ■ PROCESSES, APPDOMAINS, AND OBJECT CONTEXTS 575

8849CH17.qxd 10/9/07 4:29 PM Page 575

Figure 17-8. The AppDomainManipulator.exe process under the hood

■Note If you debug this project (via F5), you will find many additional assemblies are loaded into each
AppDomain which are used by the Visual Studio debugging process. Running this project (via Ctrl + F5) will
display only the assemblies directly by each app domain.

Programmatically Unloading AppDomains
It is important to point out that the CLR does not permit unloading individual .NET assemblies.
However, using the AppDomain.Unload() method, you are able to selectively unload a given applica-
tion domain from its hosting process. When you do so, the application domain will unload each
assembly in turn.

Recall that the AppDomain type defines a small set of events, one of which is DomainUnload. This
event is fired when a (nondefault) AppDomain is unloaded from the containing process. Another
event of interest is the ProcessExit event, which is fired when the default application domain is
unloaded from the process (which obviously entails the termination of the process itself). Thus, if
you wish to programmatically unload anotherAD from the AppDomainManipulator.exe process and be
notified when the associated application domain is torn down, you are able to write the following
event logic:

static void Main(string[] args)
{
...
// Hook into DomainUnload event.
anotherAD.DomainUnload +=
new EventHandler(anotherAD_DomainUnload);

CHAPTER 17 ■ PROCESSES, APPDOMAINS, AND OBJECT CONTEXTS576

8849CH17.qxd 10/9/07 4:29 PM Page 576

// Now unload anotherAD.
AppDomain.Unload(anotherAD);
Console.ReadLine();

}

Notice that the DomainUnload event works in conjunction with the System.EventHandler dele-
gate, and therefore the format of anotherAD_DomainUnload() takes the following arguments:

static void anotherAD_DomainUnload(object sender, EventArgs e)
{
Console.WriteLine("***** Unloaded anotherAD! *****\n");

}

If you wish to be notified when the default AppDomain is unloaded, modify your Main()
method to handle the ProcessEvent event of the default application domain:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with AppDomains *****\n");

AppDomain defaultAD = AppDomain.CurrentDomain;
defaultAD.ProcessExit +=new EventHandler(defaultAD_ProcessExit);

...
}

and define an appropriate event handler:

static void defaultAD_ProcessExit(object sender, EventArgs e)
{
Console.WriteLine("***** Unloaded defaultAD! *****\n");

}

■Source Code The AppDomainManipulator project is included under the Chapter 17 subdirectory.

Understanding Object Context Boundaries
As you have just seen, AppDomains are logical partitions within a process used to host .NET assem-
blies. On a related note, a given application domain may be further subdivided into numerous
context boundaries. In a nutshell, a .NET context provides a way for a single AppDomain to estab-
lish a “specific home” for a given object.

Using context, the CLR is able to ensure that objects that have special runtime requirements
are handled in an appropriate and consistent manner by intercepting method invocations into and
out of a given context. This layer of interception allows the CLR to adjust the current method invo-
cation to conform to the contextual settings of a given object. For example, if you define a C# class
type that requires automatic thread safety (using the [Synchronization] attribute), the CLR will
create a “synchronized context” during allocation.

Just as a process defines a default AppDomain, every application domain has a default context.
This default context (sometimes referred to as context 0, given that it is always the first context cre-
ated within an application domain) is used to group together .NET objects that have no specific or
unique contextual needs. As you may expect, a vast majority of .NET objects are loaded into context
0. If the CLR determines a newly created object has special needs, a new context boundary is cre-
ated within the hosting application domain. Figure 17-9 illustrates the process/AppDomain/
context relationship.

CHAPTER 17 ■ PROCESSES, APPDOMAINS, AND OBJECT CONTEXTS 577

8849CH17.qxd 10/9/07 4:29 PM Page 577

Figure 17-9. Processes, application domains, and context boundaries

Context-Agile and Context-Bound Types
.NET types that do not demand any special contextual treatment are termed context-agile objects.
These objects can be accessed from anywhere within the hosting AppDomain without interfering
with the object’s runtime requirements. Building context-agile objects is a no-brainer, given that
you simply do nothing (specifically, you do not adorn the type with any contextual attributes and
do not derive from the System.ContextBoundObject base class):

// A context-agile object is loaded into context 0.
class SportsCar{}

On the other hand, objects that do demand contextual allocation are termed context-bound
objects, and they must derive from the System.ContextBoundObject base class. This base class solidi-
fies the fact that the object in question can function appropriately only within the context in which
it was created. Given the role of .NET context, it should stand to reason that if a context-bound
object were to somehow end up in an incompatible context, bad things would be guaranteed to
occur at the most inopportune times.

In addition to deriving from System.ContextBoundObject, a context-sensitive type will also be
adorned by a special category of .NET attributes termed (not surprisingly) context attributes. All
context attributes derive from the ContextAttribute base class, which is defined within the System.
Runtime.Remoting.Contexts namespace:

public class ContextAttribute :
Attribute, IContextAttribute, IContextProperty

{
public ContextAttribute(string name);
public string Name { virtual get; }
public object TypeId { virtual get; }
public virtual bool Equals(object o);
public virtual void Freeze(System.Runtime.Remoting.Contexts.Context newContext);
public virtual int GetHashCode();
public virtual void GetPropertiesForNewContext(
System.Runtime.Remoting.Activation.IConstructionCallMessage ctorMsg);

public Type GetType();
public virtual bool IsContextOK(

A Single .NET Process

Default AppDomain

Default Context

Context 1

Context 2

AppDomain1

Default Context

Context 1

Context 2

AppDomain2

Default Context

CHAPTER 17 ■ PROCESSES, APPDOMAINS, AND OBJECT CONTEXTS578

8849CH17.qxd 10/9/07 4:29 PM Page 578

System.Runtime.Remoting.Contexts.Context ctx,
System.Runtime.Remoting.Activation.IConstructionCallMessage ctorMsg);

public virtual bool IsDefaultAttribute();
public virtual bool IsNewContextOK(
System.Runtime.Remoting.Contexts.Context newCtx);

public virtual bool Match(object obj);
public virtual string ToString();

}

Given that the ContextAttribute class is not sealed, it is possible for you to build your own cus-
tom contextual attribute (simply derive from ContextAttribute and override the necessary virtual
methods). Once you have done so, you are able to build a custom piece of software that can
respond to the contextual settings.

■Note This book doesn’t dive into the details of building custom object contexts; however, if you are interested
in learning more, check out Applied .NET Attributes, by Jason Bock and Tom Barnaby (Apress, 2003).

Defining a Context-Bound Object
Assume that you wish to define a class (SportsCarTS) that is automatically thread safe in nature,
even though you have not hard-coded thread synchronization logic within the member implemen-
tations. To do so, derive from ContextBoundObject and apply the [Synchronization] attribute as
follows:

using System.Runtime.Remoting.Contexts;

// This context-bound type will only be loaded into a
// synchronized (hence thread-safe) context.
[Synchronization]
class SportsCarTS : ContextBoundObject
{}

Types that are attributed with the [Synchronization] attribute are loaded into a thread-safe
context. Given the special contextual needs of the MyThreadSafeObject class type, imagine the
problems that would occur if an allocated object were moved from a synchronized context into a
nonsynchronized context. The object is suddenly no longer thread safe and thus becomes a candi-
date for massive data corruption, as numerous threads are attempting to interact with the (now
thread-volatile) reference object. To ensure the CLR does not move SportsCarTS objects outside of
a synchronized context, simply derive from ContextBoundObject.

Inspecting an Object’s Context
Although very few of the applications you will write will need to programmatically interact with
context, here is an illustrative example. Create a new Console Application named ContextManipulator.
This application defines one context-agile class (SportsCar) and a single context-bound type
(SportsCarTS):

using System.Runtime.Remoting.Contexts; // For Context type.
using System.Threading; // For Thread type.

// SportsCar has no special contextual
// needs and will be loaded into the
// default context of the app domain.

CHAPTER 17 ■ PROCESSES, APPDOMAINS, AND OBJECT CONTEXTS 579

8849CH17.qxd 10/9/07 4:29 PM Page 579

class SportsCar
{
public SportsCar()
{
// Get context information and print out context ID.
Context ctx = Thread.CurrentContext;
Console.WriteLine("{0} object in context {1}",
this.ToString(), ctx.ContextID);

foreach(IContextProperty itfCtxProp in ctx.ContextProperties)
Console.WriteLine("-> Ctx Prop: {0}", itfCtxProp.Name);

}
}

// SportsCarTS demands to be loaded in
// a synchronization context.
[Synchronization]
class SportsCarTS : ContextBoundObject
{
public SportsCarTS()
{
// Get context information and print out context ID.
Context ctx = Thread.CurrentContext;
Console.WriteLine("{0} object in context {1}",
this.ToString(), ctx.ContextID);

foreach(IContextProperty itfCtxProp in ctx.ContextProperties)
Console.WriteLine("-> Ctx Prop: {0}", itfCtxProp.Name);

}
}

Notice that each constructor obtains a Context type from the current thread of execution,
via the static Thread.CurrentContext property. Using the Context object, you are able to print out
statistics about the contextual boundary, such as its assigned ID, as well as a set of descriptors
obtained via Context.ContextProperties. This property returns an object implementing the
IContextProperty interface, which exposes each descriptor through the Name property. Now,
update Main() to allocate an instance of each class type:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Object Context *****\n");

// Objects will display contextual info upon creation.
SportsCar sport = new SportsCar();
Console.WriteLine();

SportsCar sport2 = new SportsCar();
Console.WriteLine();

SportsCarTS synchroSport = new SportsCarTS();
Console.ReadLine();

}

CHAPTER 17 ■ PROCESSES, APPDOMAINS, AND OBJECT CONTEXTS580

8849CH17.qxd 10/9/07 4:29 PM Page 580

As the objects come to life, the class constructors will dump out various bits of context-centric
information (see Figure 17-10).

Figure 17-10. Investigating an object’s context

Given that the SportsCar class has not been qualified with a context attribute, the CLR has allo-
cated sport and sport2 into context 0 (i.e., the default context). However, the SportsCarTS object is
loaded into a unique contextual boundary (which has been assigned a context ID of 1), given the
fact that this context-bound type was adorned with the [Synchronization] attribute.

■Source Code The ContextManipulator project is included under the Chapter 17 subdirectory.

Summarizing Processes, AppDomains,
and Context
At this point, you hopefully have a much better idea about how a .NET assembly is hosted by the
CLR. To summarize the key points:

• A .NET process hosts one to many application domains. Each AppDomain is able to host
any number of related .NET assemblies. AppDomains may be independently loaded and
unloaded by the CLR (or programmatically via the System.AppDomain type).

• A given AppDomain consists of one to many contexts. Using a context, the CLR is able to
place a “special needs” object into a logical container, to ensure that its runtime require-
ments are honored.

If the previous pages have seemed to be a bit too low level for your liking, fear not. For the most
part, the .NET runtime automatically deals with the details of processes, application domains, and
contexts on your behalf. The good news, however, is that this information provides a solid founda-
tion for understanding multithreaded programming under the .NET platform.

CHAPTER 17 ■ PROCESSES, APPDOMAINS, AND OBJECT CONTEXTS 581

8849CH17.qxd 10/9/07 4:29 PM Page 581

Summary
The point of this chapter was to examine exactly how a .NET-executable image is hosted by the
.NET platform. As you have seen, the long-standing notion of a Win32 process has been altered
under the hood to accommodate the needs of the CLR. A single process (which can be programmat-
ically manipulated via the System.Diagnostics.Process type) is now composed of multiple
application domains, which represent isolated and independent boundaries within a process.

As you have seen, a single process can host multiple application domains, each of which is
capable of hosting and executing any number of related assemblies. Furthermore, a single applica-
tion domain can contain any number of contextual boundaries. Using this additional level of type
isolation, the CLR can ensure that special-need objects are handled correctly.

CHAPTER 17 ■ PROCESSES, APPDOMAINS, AND OBJECT CONTEXTS582

8849CH17.qxd 10/9/07 4:29 PM Page 582

Building Multithreaded Applications

In the previous chapter, you examined the relationship between processes, application domains,
and contexts. This chapter builds on your newfound knowledge by examining how the .NET plat-
form allows you to build multithreaded applications and examines various ways to keep shared
resources thread-safe.

You’ll begin by revisiting the .NET delegate type and come to understand its intrinsic support
for asynchronous method invocations. As you’ll see, this technique allows you to invoke a method
on a secondary thread of execution automatically. Next, you’ll investigate the types within the
System.Threading namespace. Here you’ll examine numerous types (Thread, ThreadStart, etc.) that
allow you to easily create additional threads of execution. As well, you will come to understand the
use of the BackgroundWorker type, which simplifies the task of performing background operations
within the context of a GUI-based application.

Of course, the complexity of multithreaded development isn’t in the creation of threads, but in
ensuring that your code base is well equipped to handle concurrent access to shared resources.
Given this, the chapter also examines various synchronization primitives that the .NET Framework
provides.

The Process/AppDomain/Context/Thread
Relationship
In the previous chapter, a thread was defined as a path of execution within an executable applica-
tion. While many .NET applications can live happy and productive single-threaded lives, an
assembly’s primary thread (spawned by the CLR when Main() executes) may create secondary
threads of execution to perform additional units of work. By implementing additional threads,
you can build more responsive (but not necessarily faster executing on single-core machines)
applications.

■Note These days it is quite common for new computers to make use of multicore processors (or at very least a
hyperthreaded single-core processor). Without making use of multiple threads, developers are unable to exploit the
full power of multicore machines.

The System.Threading namespace contains various types that allow you to create multi-
threaded applications. The Thread class is perhaps the core type, as it represents a given thread. If
you wish to programmatically obtain a reference to the thread currently executing a given member,
simply call the static Thread.CurrentThread property:

583

C H A P T E R 1 8

8849CH18.qxd 9/27/07 5:15 PM Page 583

static void ExtractExecutingThread()
{
// Get the thread currently
// executing this method.
Thread currThread = Thread.CurrentThread;

}

Under the .NET platform, there is not a direct one-to-one correspondence between application
domains and threads. In fact, a given AppDomain can have numerous threads executing within it
at any given time. Furthermore, a particular thread is not confined to a single application domain
during its lifetime. Threads are free to cross application domain boundaries as the Win32 thread
scheduler and CLR see fit.

Although active threads can be moved between AppDomain boundaries, a given thread can
execute within only a single application domain at any point in time (in other words, it is impossi-
ble for a single thread to be doing work in more than one AppDomain at once). When you wish to
programmatically gain access to the AppDomain that is hosting the current thread, call the static
Thread.GetDomain() method:

static void ExtractAppDomainHostingThread()
{
// Obtain the AppDomain hosting the current thread.
AppDomain ad = Thread.GetDomain();

}

A single thread may also be moved into a particular context at any given time, and it may be
relocated within a new context at the whim of the CLR. When you wish to obtain the current context
a thread happens to be executing in, make use of the static Thread.CurrentContext property:

static void ExtractCurrentThreadContext()
{
// Obtain the context under which the
// current thread is operating.
Context ctx = Thread.CurrentContext;

}

Again, the CLR is the entity that is in charge of moving threads into (and out of) application
domains and contexts. As a .NET developer, you can usually remain blissfully unaware where a
given thread ends up (or exactly when it is placed into its new boundary). Nevertheless, you should
be aware of the various ways of obtaining the underlying primitives.

The Problem of Concurrency
One of the many “joys” (read: painful aspects) of multithreaded programming is that you have little
control over how the underlying operating system or the CLR makes use of its threads. For example,
if you craft a block of code that creates a new thread of execution, you cannot guarantee that the
thread executes immediately. Rather, such code only instructs the OS to execute the thread as soon
as possible (which is typically when the thread scheduler gets around to it).

Furthermore, given that threads can be moved between application and contextual boundaries
as required by the CLR, you must be mindful of which aspects of your application are thread-
volatile (e.g., subject to multithreaded access) and which operations are atomic (thread-volatile
operations are the dangerous ones!). To illustrate the problem, assume a thread is invoking a
method of a specific object. Now assume that this thread is instructed by the thread scheduler to
suspend its activity, in order to allow another thread to access the same method of the same object.

If the original thread was not completely finished with its operation, the second incoming
thread may be viewing an object in a partially modified state. At this point, the second thread is

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS584

8849CH18.qxd 9/27/07 5:15 PM Page 584

basically reading bogus data, which is sure to give way to extremely odd (and very hard to find)
bugs, which are even harder to replicate and debug.

Atomic operations, on the other hand, are always safe in a multithreaded environment. Sadly,
there are very few operations in the .NET base class libraries that are guaranteed to be atomic. Even
the act of assigning a value to a member variable is not atomic! Unless the .NET Framework 3.5 SDK
documentation specifically says an operation is atomic, you must assume it is thread-volatile and
take precautions.

The Role of Thread Synchronization
At this point, it should be clear that multithreaded application domains are in themselves quite
volatile, as numerous threads can operate on the shared functionality at (more or less) the same
time. To protect an application’s resources from possible corruption, .NET developers must make
use of any number of threading primitives (such as locks, monitors, and the [Synchronization]
attribute) to control access among the executing threads.

Although the .NET platform cannot make the difficulties of building robust multithreaded
applications completely disappear, the process has been simplified considerably. Using types
defined within the System.Threading namespace, you are able to spawn additional threads with
minimal fuss and bother. Likewise, when it is time to lock down shared points of data, you will find
additional types that provide the same functionality as the Win32 API threading primitives (using a
much cleaner object model).

However, the System.Threading namespace is not the only way to build multithreaded .NET
programs. During our examination of the .NET delegate (see Chapter 11), it was mentioned that all
delegates have the ability to invoke members asynchronously. This is a major benefit of the .NET
platform, given that one of the most common reasons a developer creates threads is for the purpose
of invoking methods in a nonblocking (a.k.a. asynchronous) manner. Although you could make use
of the System.Threading namespace to achieve a similar result, delegates make the whole process
much easier.

A Brief Review of the .NET Delegate
Recall that the .NET delegate type is essentially a type-safe object-oriented function pointer. When
you declare a .NET delegate, the C# compiler responds by building a sealed class that derives from
System.MulticastDelegate (which in turn derives from System.Delegate). These base classes pro-
vide every delegate with the ability to maintain a list of method addresses, all of which may be
invoked at a later time. Consider the BinaryOp delegate first defined in Chapter 11:

// A C# delegate type.
public delegate int BinaryOp(int x, int y);

Based on its definition, BinaryOp can point to any method taking two integers (by value) as
arguments and returning an integer. Once compiled, the defining assembly now contains a full-
blown class definition that is dynamically generated based on the delegate declaration. In the case
of BinaryOp, this class looks more or less like the following (shown in pseudo-code):

public sealed class BinaryOp : System.MulticastDelegate
{
public BinaryOp(object target, uint functionAddress);
public void Invoke(int x, int y);
public IAsyncResult BeginInvoke(int x, int y,
AsyncCallback cb, object state);

public int EndInvoke(IAsyncResult result);
}

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS 585

8849CH18.qxd 9/27/07 5:15 PM Page 585

Recall that the generated Invoke() method is used to invoke the methods maintained by a del-
egate object in a synchronous manner. Therefore, the calling thread (such as the primary thread of
the application) is forced to wait until the delegate invocation completes. Also recall that in C#, the
Invoke() method does not need to be directly called in code, but can be triggered indirectly under
the hood when applying “normal” method invocation syntax. Consider the following console pro-
gram (SyncDelegateReview), which invokes the static Add() method in a synchronous (a.k.a.
blocking) manner:

// Need this for the Thread.Sleep() call.
using System.Threading;
using System;

namespace SyncDelegate
{
public delegate int BinaryOp(int x, int y);

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Synch Delegate Review *****");

// Print out the ID of the executing thread.
Console.WriteLine("Main() invoked on thread {0}.",
Thread.CurrentThread.ManagedThreadId);

// Invoke Add() in a synchronous manner.
BinaryOp b = new BinaryOp(Add);

// Could also write b.Invoke(10, 10);
int answer = b(10, 10);

// These lines will not execute until
// the Add() method has completed.
Console.WriteLine("Doing more work in Main()!");
Console.WriteLine("10 + 10 is {0}.", answer);
Console.ReadLine();

}

static int Add(int x, int y)
{
// Print out the ID of the executing thread.
Console.WriteLine("Add() invoked on thread {0}.",
Thread.CurrentThread.ManagedThreadId);

// Pause to simulate a lengthy operation.
Thread.Sleep(5000);
return x + y;

}
}

}

Notice first of all that this program is making use of the System.Threading namespace to gain
access to the Thread type. Within the Add() method, you are invoking the static Thread.Sleep()
method to suspend the calling thread for approximately five seconds to simulate a lengthy task.
Given that you are invoking the Add() method in a synchronous manner, the Main() method will not
print out the result of the operation until the Add() method has completed.

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS586

8849CH18.qxd 9/27/07 5:15 PM Page 586

Next, note that the Main() method is obtaining access to the current thread (via Thread.
CurrentThread) and printing out the ID of the thread via the ManagedThreadId property. This same
logic is repeated in the static Add() method. As you might suspect, given that all the work in this
application is performed exclusively by the primary thread, you find the same ID value displayed to
the console (see Figure 18-1).

Figure 18-1. Synchronous method invocations are “blocking” calls.

When you run this program, you should notice that a five-second delay takes place before you
see the final Console.WriteLine() logic in Main() execute. Although many (if not most) methods
may be called synchronously without ill effect, .NET delegates can be instructed to call their meth-
ods asynchronously if necessary.

■Source Code The SyncDelegateReview project is located under the Chapter 18 subdirectory.

The Asynchronous Nature of Delegates
If you are new to the topic of multithreading, you may wonder what exactly an asynchronous
method invocation is all about. As you are no doubt fully aware, some programming operations
take time. Although the previous Add() was purely illustrative in nature, imagine that you built a
single-threaded application that is invoking a method on a remote object, performing a long-
running database query, downloading a large document, or writing 500 lines of text to an external
file. While performing these operations, the application will appear to hang for some amount of
time. Until the task at hand has been processed, all other aspects of this program (such as menu
activation, toolbar clicking, or console output) are unresponsive.

The question therefore is, how can you tell a delegate to invoke a method on a separate thread
of execution to simulate numerous tasks performing “at the same time”? The good news is that
every .NET delegate type is automatically equipped with this capability. The even better news is that
you are not required to directly dive into the details of the System.Threading namespace to do so
(although these entities can quite naturally work hand in hand).

The BeginInvoke() and EndInvoke() Methods
When the C# compiler processes the delegate keyword, the dynamically generated class defines
two methods named BeginInvoke() and EndInvoke(). Given our definition of the BinaryOp delegate,
these methods are prototyped as follows:

public sealed class BinaryOp : System.MulticastDelegate
{
...
// Used to invoke a method asynchronously.

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS 587

8849CH18.qxd 9/27/07 5:15 PM Page 587

public IAsyncResult BeginInvoke(int x, int y,
AsyncCallback cb, object state);

// Used to fetch the return value
// of the invoked method.
public int EndInvoke(IAsyncResult result);

}

The first stack of parameters passed into BeginInvoke() will be based on the format of the
C# delegate (two integers in the case of BinaryOp). The final two arguments will always be
System.AsyncCallback and System.Object. We’ll examine the role of these parameters shortly; for
the time being, though, we’ll supply null for each. Also note that the return value of EndInvoke() is
an integer, based on the definition of BinaryOp, while the parameter of this method is of type
IAsyncResult.

The System.IAsyncResult Interface
The BeginInvoke() method always returns an object implementing the IAsyncResult interface,
while EndInvoke() requires an IAsyncResult-compatible type as its sole parameter. The
IAsyncResult-compatible object returned from BeginInvoke() is basically a coupling mechanism
that allows the calling thread to obtain the result of the asynchronous method invocation at a later
time via EndInvoke(). The IAsyncResult interface (defined in the System namespace) is defined as
follows:

public interface IAsyncResult
{
object AsyncState { get; }
WaitHandle AsyncWaitHandle { get; }
bool CompletedSynchronously { get; }
bool IsCompleted { get; }

}

In the simplest case, you are able to avoid directly invoking these members. All you have to do
is cache the IAsyncResult-compatible object returned by BeginInvoke() and pass it to EndInvoke()
when you are ready to obtain the result of the method invocation. As you will see, you are able to
invoke the members of an IAsyncResult-compatible object when you wish to become “more
involved” with the process of fetching the method’s return value.

■Note If you asynchronously invoke a method that provides a void return value, you can simply “fire and for-
get.” In such cases, you will never need to cache the IAsyncResult-compatible object or call EndInvoke() in
the first place (as there is no return value to retrieve).

Invoking a Method Asynchronously
To instruct the BinaryOp delegate to invoke Add() asynchronously, you can update the previous
Main() method as follows:

static void Main(string[] args)
{
Console.WriteLine("***** Async Delegate Invocation *****");

// Print out the ID of the executing thread.
Console.WriteLine("Main() invoked on thread {0}.",

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS588

8849CH18.qxd 9/27/07 5:15 PM Page 588

Thread.CurrentThread.ManagedThreadId);

// Invoke Add() on a secondary thread.
BinaryOp b = new BinaryOp(Add);
IAsyncResult iftAR = b.BeginInvoke(10, 10, null, null);

// Do other work on primary thread...
Console.WriteLine("Doing more work in Main()!");

// Obtain the result of the Add()
// method when ready.
int answer = b.EndInvoke(iftAR);
Console.WriteLine("10 + 10 is {0}.", answer);
Console.ReadLine();

}

If you run this application, you will find that two unique thread IDs are displayed, given that
there are in fact multiple threads working within the current AppDomain (see Figure 18-2).

Figure 18-2. Methods invoked asynchronously are done so on a unique thread.

In addition to the unique ID values, you will also notice upon running the application that the
Doing more work in Main()! message displays immediately, while the secondary thread is occupied
attending to its business.

Synchronizing the Calling Thread
If you ponder the current implementation of Main(), you might have realized that the time span
between calling BeginInvoke() and EndInvoke() is clearly less than five seconds. Therefore, once
Doing more work in Main()! prints to the console, the calling thread is now blocked and waiting for
the secondary thread to complete before being able to obtain the result of the Add() method. There-
fore, you are effectively making yet another synchronous call:

static void Main(string[] args)
{
...
BinaryOp b = new BinaryOp(Add);
IAsyncResult iftAR = b.BeginInvoke(10, 10, null, null);

// This call takes far less than five seconds!
Console.WriteLine("Doing more work in Main()!");

// The calling thread is now blocked until
// BeginInvoke() completes.
int answer = b.EndInvoke(iftAR);

...
}

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS 589

8849CH18.qxd 9/27/07 5:15 PM Page 589

Obviously, asynchronous delegates would lose their appeal if the calling thread had the poten-
tial of being blocked under various circumstances. To allow the calling thread to discover if the
asynchronously invoked method has completed its work, the IAsyncResult interface provides the
IsCompleted property. Using this member, the calling thread is able to determine whether the asyn-
chronous call has indeed completed before calling EndInvoke(). If the method has not completed,
IsCompleted returns false, and the calling thread is free to carry on its work. If IsCompleted returns
true, the calling thread is able to obtain the result in the “least blocking manner” possible. Ponder
the following update to the Main() method:

static void Main(string[] args)
{
...
BinaryOp b = new BinaryOp(Add);
IAsyncResult iftAR = b.BeginInvoke(10, 10, null, null);

// This message will keep printing until
// the Add() method is finished.
while(!iftAR.IsCompleted)
{
Console.WriteLine("Doing more work in Main()!");
Thread.Sleep(1000);

}

// Now we know the Add() method is complete.
int answer = b.EndInvoke(iftAR);

...
}

Here, you enter a loop that will continue processing the Console.WriteLine() statement until
the secondary thread has completed. Once this has occurred, you can obtain the result of the Add()
method knowing full well the method has indeed completed. The call to Thread.Sleep(1000) is not
necessary for this particular application to function correctly; however, by forcing the primary
thread to wait for approximately one second during each iteration, it prevents the same message
from printing hundreds of times.

In addition to the IsCompleted property, the IAsyncResult interface provides the
AsyncWaitHandle property for more flexible waiting logic. This property returns an instance of the
WaitHandle type, which exposes a method named WaitOne(). The benefit of WaitHandle.WaitOne() is
that you can specify the maximum wait time. If the specified amount of time is exceeded, WaitOne()
returns false. Ponder the following updated while loop, which no longer makes use of a call to
Thread.Sleep():

while (!iftAR.AsyncWaitHandle.WaitOne(1000, true))
{
Console.WriteLine("Doing more work in Main()!");

}

While these properties of IAsyncResult do provide a way to synchronize the calling thread, they
are not the most efficient approach. In many ways, the IsCompleted property is much like a really
annoying manager (or classmate) who is constantly asking, “Are you done yet?” Thankfully, dele-
gates provide a number of additional (and more elegant) techniques to obtain the result of a
method that has been called asynchronously.

■Source Code The AsyncDelegate project is located under the Chapter 18 subdirectory.

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS590

8849CH18.qxd 9/27/07 5:15 PM Page 590

The Role of the AsyncCallback Delegate
Rather than polling a delegate to determine whether an asynchronously invoked method has com-
pleted, it would be more efficient to have the secondary thread inform the calling thread when the
task is finished. When you wish to enable this behavior, you will need to supply an instance of the
System.AsyncCallback delegate as a parameter to BeginInvoke(), which up until this point has been
null. However, when you do supply an AsyncCallback object, the delegate will call the specified
method automatically when the asynchronous call has completed.

Like any delegate, AsyncCallback can only invoke methods that match a specific pattern, which
in this case is a method taking IAsyncResult as the sole parameter and returning nothing:

// Targets of AsyncCallback must match the following pattern.
void MyAsyncCallbackMethod(IAsyncResult itfAR)

Assume you have another application making use of the BinaryOp delegate. This time, however,
you will not poll the delegate to determine whether the Add() method has completed. Rather, you
will define a static method named AddComplete() to receive the notification that the asynchronous
invocation is finished:

namespace AsyncCallbackDelegate
{
public delegate int BinaryOp(int x, int y);

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** AsyncCallbackDelegate Example *****");
Console.WriteLine("Main() invoked on thread {0}.",
Thread.CurrentThread.ManagedThreadId);

BinaryOp b = new BinaryOp(Add);
IAsyncResult iftAR = b.BeginInvoke(10, 10,
new AsyncCallback(AddComplete), null);

// Other work performed here...

Console.ReadLine();
}

static void AddComplete(IAsyncResult itfAR)
{
Console.WriteLine("AddComplete() invoked on thread {0}.",
Thread.CurrentThread.ManagedThreadId);

Console.WriteLine("Your addition is complete");
}

static int Add(int x, int y)
{
Console.WriteLine("Add() invoked on thread {0}.",
Thread.CurrentThread.ManagedThreadId);
Thread.Sleep(5000);
return x + y;

}
}

}

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS 591

8849CH18.qxd 9/27/07 5:15 PM Page 591

Again, the static AddComplete() method will be invoked by the AsyncCallback delegate when
the Add() method has completed. If you run this program, you can confirm that the secondary
thread is the thread invoking the AddComplete() callback (see Figure 18-3).

Figure 18-3. The AsyncCallback delegate in action

The Role of the AsyncResult Class
You may have noticed in the current example that the Main() method is not caching the
IAsyncResult type returned from BeginInvoke() and is no longer calling EndInvoke(). The reason is
that the target of the AsyncCallback delegate (AddComplete() in this example) does not have access
to the original BinaryOp delegate created in the scope of Main(). While you could simply declare the
BinaryOp variable as a static member variable in the class to allow both methods to access the same
object, a more elegant solution is to use the incoming IAsyncResult parameter.

The incoming IAsyncResult parameter passed into the target of the AsyncCallback delegate is
actually an instance of the AsyncResult class (note the lack of an I prefix) defined in the System.
Runtime.Remoting.Messaging namespace. The static AsyncDelegate property returns a reference to
the original asynchronous delegate that was created elsewhere. Therefore, if you wish to obtain a
reference to the BinaryOp delegate object allocated within Main(), simply cast the System.Object
returned by the AsyncDelegate property into type BinaryOp. At this point, you can trigger
EndInvoke() as expected:

// Don't forget to import
// System.Runtime.Remoting.Messaging!
static void AddComplete(IAsyncResult itfAR)
{
Console.WriteLine("AddComplete() invoked on thread {0}.",
Thread.CurrentThread.ManagedThreadId);

Console.WriteLine("Your addition is complete");

// Now get the result.
AsyncResult ar = (AsyncResult)itfAR;
BinaryOp b = (BinaryOp)ar.AsyncDelegate;
Console.WriteLine("10 + 10 is {0}.", b.EndInvoke(itfAR));

}

Passing and Receiving Custom State Data
The final aspect of asynchronous delegates we need to address is the final argument to the
BeginInvoke() method (which has been null up to this point). This parameter allows you to pass
additional state information to the callback method from the primary thread. Because this argu-
ment is prototyped as a System.Object, you can pass in any type of data whatsoever, as long as the
callback method knows what to expect. Assume for the sake of demonstration that the primary
thread wishes to pass in a custom text message to the AddComplete() method:

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS592

8849CH18.qxd 9/27/07 5:15 PM Page 592

static void Main(string[] args)
{
...
IAsyncResult iftAR = b.BeginInvoke(10, 10,
new AsyncCallback(AddComplete),
"Main() thanks you for adding these numbers.");

...
}

To obtain this data within the scope of AddComplete(), make use of the AsyncState property of
the incoming IAsyncResult parameter. Notice that an explicit cast will be required; therefore the
primary and secondary threads must agree on the underlying type returned from AsyncState.

static void AddComplete(IAsyncResult itfAR)
{
...
// Retrieve the informational object and cast it to string.
string msg = (string)itfAR.AsyncState;
Console.WriteLine(msg);

}

Figure 18-4 shows the output of the current application.

Figure 18-4. Passing and receiving custom state data

Now that you understand how a .NET delegate can be used to automatically spin off a second-
ary thread of execution to handle an asynchronous method invocation, let’s turn our attention to
directly interacting with threads using the System.Threading namespace.

■Source Code The AsyncCallbackDelegate project is located under the Chapter 18 subdirectory.

The System.Threading Namespace
Under the .NET platform, the System.Threading namespace provides a number of types that enable
the direct construction of multithreaded applications. In addition to providing types that allow you
to interact with a particular CLR thread, this namespace defines types that allow access to the CLR
maintained thread pool, a simple (non–GUI-based) Timer class, and numerous types used to pro-
vide synchronized access to shared resources. Table 18-1 lists some of the core members of this
namespace. (Be sure to consult the .NET Framework 3.5 SDK documentation for full details.)

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS 593

8849CH18.qxd 9/27/07 5:15 PM Page 593

Table 18-1. Select Types of the System.Threading Namespace

Type Meaning in Life

Interlocked This type provides atomic operations for types that are shared by
multiple threads.

Monitor This type provides the synchronization of threading objects using
locks and wait/signals. The C# lock keyword makes use of a Monitor
type under the hood.

Mutex This synchronization primitive can be used for synchronization
between application domain boundaries.

ParameterizedThreadStart This delegate allows a thread to call methods that take any number
of arguments.

Semaphore This type allows you to limit the number of threads that can access a
resource, or a particular type of resource, concurrently.

Thread This type represents a thread that executes within the CLR. Using
this type, you are able to spawn additional threads in the originating
AppDomain.

ThreadPool This type allows you to interact with the CLR-maintained thread
pool within a given process.

ThreadPriority This enum represents a thread’s priority level (Highest, Normal, etc.).

ThreadStart This delegate is used to specify the method to call for a given thread.
Unlike the ParameterizedThreadStart delegate, targets of
ThreadStart must match a fixed prototype.

ThreadState This enum specifies the valid states a thread may take (Running,
Aborted, etc.).

Timer This type provides a mechanism for executing a method at specified
intervals.

TimerCallback This delegate type is used in conjunction with Timer types.

The System.Threading.Thread Class
The most primitive of all types in the System.Threading namespace is Thread. This class represents
an object-oriented wrapper around a given path of execution within a particular AppDomain. This
type also defines a number of methods (both static and shared) that allow you to create new threads
within the current AppDomain, as well as to suspend, stop, and destroy a particular thread. Con-
sider the list of core static members in Table 18-2.

Table 18-2. Key Static Members of the Thread Type

Static Member Meaning in Life

CurrentContext This read-only property returns the context in which the thread is currently
running.

CurrentThread This read-only property returns a reference to the currently running thread.

GetDomain() These methods return a reference to the current AppDomain or the ID of this
GetDomainID() domain in which the current thread is running.

Sleep() This method suspends the current thread for a specified time.

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS594

8849CH18.qxd 9/27/07 5:15 PM Page 594

The Thread class also supports several instance-level members, some of which are shown in
Table 18-3.

Table 18-3. Select Instance-Level Members of the Thread Type

Instance-Level Member Meaning in Life

IsAlive Returns a Boolean that indicates whether this thread has been started.

IsBackground Gets or sets a value indicating whether or not this thread is a
“background thread” (more details in just a moment).

Name Allows you to establish a friendly text name of the thread.

Priority Gets or sets the priority of a thread, which may be assigned a value from
the ThreadPriority enumeration.

ThreadState Gets the state of this thread, which may be assigned a value from the
ThreadState enumeration.

Abort() Instructs the CLR to terminate the thread as soon as possible.

Interrupt() Interrupts (e.g., wakes) the current thread from a suitable wait period.

Join() Blocks the calling thread until the specified thread (the one on which
Join() is called) exits.

Resume() Resumes a thread that has been previously suspended.

Start() Instructs the CLR to execute the thread ASAP.

Suspend() Suspends the thread. If the thread is already suspended, a call to
Suspend() has no effect.

■Note Aborting or suspending an active thread is generally considered a bad idea. When you do so, there is a
chance (however small) that a thread could “leak” its workload when disturbed or terminated.

Obtaining Statistics About the Current Thread
Recall that the entry point of an executable assembly (i.e., the Main() method) runs on the primary
thread of execution. To illustrate the basic use of the Thread type, assume you have a new Console
Application named ThreadStats. As you know, the static Thread.CurrentThread property retrieves a
Thread type that represents the currently executing thread. Once you have obtained the current
thread, you are able to print out various statistics:

// Be sure to import the System.Threading namespace.
static void Main(string[] args)
{
Console.WriteLine("***** Primary Thread stats *****\n");

// Obtain and name the current thread.
Thread primaryThread = Thread.CurrentThread;
primaryThread.Name = "ThePrimaryThread";

// Show details of hosting AppDomain/Context.
Console.WriteLine("Name of current AppDomain: {0}",
Thread.GetDomain().FriendlyName);

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS 595

8849CH18.qxd 9/27/07 5:15 PM Page 595

Console.WriteLine("ID of current Context: {0}",
Thread.CurrentContext.ContextID);

// Print out some stats about this thread.
Console.WriteLine("Thread Name: {0}",
primaryThread.Name);

Console.WriteLine("Has thread started?: {0}",
primaryThread.IsAlive);

Console.WriteLine("Priority Level: {0}",
primaryThread.Priority);

Console.WriteLine("Thread State: {0}",
primaryThread.ThreadState);

Console.ReadLine();
}

Figure 18-5 shows the output for the current application.

Figure 18-5. Gathering thread statistics

The Name Property
While this code is more or less self-explanatory, do notice that the Thread class supports a property
called Name. If you do not set this value, Name will return an empty string. However, once you assign a
friendly string moniker to a given Thread object, you can greatly simplify your debugging endeavors.
If you are making use of Visual Studio 2008, you may access the Threads window during a debug-
ging session (select Debug ➤ Windows ➤ Threads). As you can see from Figure 18-6, you can
quickly identify the thread you wish to diagnose.

Figure 18-6. Debugging a thread with Visual Studio 2008

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS596

8849CH18.qxd 9/27/07 5:15 PM Page 596

The Priority Property
Next, notice that the Thread type defines a property named Priority. By default, all threads have a
priority level of Normal. However, you can change this at any point in the thread’s lifetime using the
ThreadPriority property and the related System.Threading.ThreadPriority enumeration:

public enum ThreadPriority
{
AboveNormal,
BelowNormal,
Highest,
Idle,
Lowest,
Normal, // Default value.
TimeCritical

}

If you were to assign a thread’s priority level to a value other than the default (ThreadPriority.
Normal), understand that you would have no direct control over when the thread scheduler switches
between threads. In reality, a thread’s priority level offers a hint to the CLR regarding the importance
of the thread’s activity. Thus, a thread with the value ThreadPriority.Highest is not necessarily
guaranteed to be given the highest precedence.

Again, if the thread scheduler is preoccupied with a given task (e.g., synchronizing an object,
switching threads, or moving threads), the priority level will most likely be altered accordingly.
However, all things being equal, the CLR will read these values and instruct the thread scheduler
how to best allocate time slices. Threads with an identical thread priority should each receive the
same amount of time to perform their work.

In most cases, you will seldom (if ever) need to directly alter a thread’s priority level. In theory,
it is possible to jack up the priority level on a set of threads, thereby preventing lower-priority
threads from executing at their required levels (so use caution).

■Source Code The ThreadStats project is included under the Chapter 18 subdirectory.

Programmatically Creating Secondary Threads
When you wish to programmatically create additional threads to carry on some unit of work, you
will follow a very predictable process:

1. Create a type method to be the entry point for the new thread.

2. Create a new ParameterizedThreadStart (or legacy ThreadStart) delegate, passing the
address of the method defined in step 1 to the constructor.

3. Create a Thread object, passing the ParameterizedThreadStart/ThreadStart delegate as a
constructor argument.

4. Establish any initial thread characteristics (name, priority, etc.).

5. Call the Thread.Start() method. This starts the thread at the method referenced by the
delegate created in step 2 as soon as possible.

As stated in step 2, you may make use of two distinct delegate types to “point to” the method
that the secondary thread will execute. The ThreadStart delegate has been part of the System.

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS 597

8849CH18.qxd 9/27/07 5:15 PM Page 597

Threading namespace since .NET 1.0, and it can point to any method that takes no arguments and
returns nothing. This delegate can be helpful when the method is designed to simply run in the
background without further interaction.

The obvious limitation of ThreadStart is that you are unable to pass in parameters for process-
ing. As of .NET 2.0, we were provided with the ParameterizedThreadStart delegate type, which
allows a single parameter of type System.Object. Given that anything can be represented as a
System.Object, you can pass in any number of parameters via a custom class or structure. Do note,
however, that the ParameterizedThreadStart delegate can only point to methods that return void.

Working with the ThreadStart Delegate
To illustrate the process of building a multithreaded application (as well as to demonstrate the use-
fulness of doing so), assume you have a Console Application (SimpleMultiThreadApp) that allows
the end user to choose whether the application will perform its duties using the single primary
thread or split its workload using two separate threads of execution.

Assuming you have imported the System.Threading namespace, your first step is to define a
type method to perform the work of the (possible) secondary thread. To keep focused on the
mechanics of building multithreaded programs, this method will simply print out a sequence of
numbers to the console window, pausing for approximately two seconds with each pass. Here is
the full definition of the Printer class:

public class Printer
{
public void PrintNumbers()
{
// Display Thread info.
Console.WriteLine("-> {0} is executing PrintNumbers()",
Thread.CurrentThread.Name);

// Print out numbers.
Console.Write("Your numbers: ");
for(int i = 0; i < 10; i++)
{
Console.Write("{0}, ", i);
Thread.Sleep(2000);

}
Console.WriteLine();

}
}

Now, within Main(), you will first prompt the user to determine whether one or two threads
will be used to perform the application’s work. If the user requests a single thread, you will simply
invoke the PrintNumbers() method within the primary thread. However, if the user specifies two
threads, you will create a ThreadStart delegate that points to PrintNumbers(), pass this delegate
object into the constructor of a new Thread object, and call Start() to inform the CLR this thread is
ready for processing.

To begin, set a reference to the System.Windows.Forms.dll assembly and display a message
within Main() using MessageBox.Show() (you’ll see the point of doing so once you run the program).
Here is the complete implementation of Main():

static void Main(string[] args)
{
Console.WriteLine("***** The Amazing Thread App *****\n");
Console.Write("Do you want [1] or [2] threads? ");
string threadCount = Console.ReadLine();

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS598

8849CH18.qxd 9/27/07 5:15 PM Page 598

// Name the current thread.
Thread primaryThread = Thread.CurrentThread;
primaryThread.Name = "Primary";

// Display Thread info.
Console.WriteLine("-> {0} is executing Main()",
Thread.CurrentThread.Name);

// Make worker class.
Printer p = new Printer();

switch(threadCount)
{
case "2":
// Now make the thread.
Thread backgroundThread =
new Thread(new ThreadStart(p.PrintNumbers));

backgroundThread.Name = "Secondary";
backgroundThread.Start();

break;
case "1":
p.PrintNumbers();

break;
default:
Console.WriteLine("I don't know what you want...you get 1 thread.");
goto case "1";

}

// Do some additional work.
MessageBox.Show("I'm busy!", "Work on main thread...");
Console.ReadLine();

}

Now, if you run this program with a single thread, you will find that the final message box will
not display the message until the entire sequence of numbers has printed to the console. As you are
explicitly pausing for approximately two seconds after each number is printed, this will result in a
less-than-stellar end-user experience. However, if you select two threads, the message box displays
instantly, given that a unique Thread object is responsible for printing out the numbers to the con-
sole (see Figure 18-7).

Figure 18-7. Multithreaded applications provide results in more responsive applications.

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS 599

8849CH18.qxd 9/27/07 5:15 PM Page 599

Before we move on, it is important to note that when you build multithreaded applications
(which includes the use of asynchronous delegates to do so) on single CPU machines, you do not
end up with an application that runs any faster, as that is a function of a machine’s CPU. When run-
ning this application using either one or two threads, the numbers are still displaying at the same
pace. In reality, multithreaded applications result in more responsive applications. To the end user, it
may appear that this particular program is “faster,” but this is not the case. Threads have no power
to make foreach loops execute quicker, to make paper print faster, or to force numbers to be added
together at rocket speed. Multithreaded applications simply allow multiple threads to share the
workload.

■Source Code The SimpleMultiThreadApp project is included under the Chapter 18 subdirectory.

Working with the ParameterizedThreadStart Delegate
Recall that the ThreadStart delegate can point only to methods that return void and take no argu-
ments. While this may fit the bill in many cases, if you wish to pass data to the method executing on
the secondary thread, you will need to make use of the ParameterizedThreadStart delegate type. To
illustrate, let’s re-create the logic of the AsyncCallbackDelegate project created earlier in this chap-
ter, this time making use of the ParameterizedThreadStart delegate type.

To begin, create a new Console Application named AddWithThreads and import the System.
Threading namespace. Now, given that ParameterizedThreadStart can point to any method taking a
System.Object parameter, you will create a custom type containing the numbers to be added:

class AddParams
{
public int a, b;

public AddParams(int numb1, int numb2)
{
a = numb1;
b = numb2;

}
}

Next, create a static method in the Program class that will take an AddParams type and print out
the summation of each value:

static void Add(object data)
{
if (data is AddParams)
{
Console.WriteLine("ID of thread in Main(): {0}",
Thread.CurrentThread.ManagedThreadId);

AddParams ap = (AddParams)data;
Console.WriteLine("{0} + {1} is {2}",
ap.a, ap.b, ap.a + ap.b);

}
}

The code within Main() is straightforward. Simply use ParameterizedThreadStart rather than
ThreadStart:

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS600

8849CH18.qxd 9/27/07 5:15 PM Page 600

static void Main(string[] args)
{
Console.WriteLine("***** Adding with Thread objects *****");
Console.WriteLine("ID of thread in Main(): {0}",
Thread.CurrentThread.ManagedThreadId);

// Make an AddParams object to pass to the secondary thread.
AddParams ap = new AddParams(10, 10);
Thread t = new Thread(new ParameterizedThreadStart(Add));
t.Start(ap);

...
}

■Source Code The AddWithThreads project is included under the Chapter 18 subdirectory.

Foreground Threads and Background Threads
Now that you have seen how to programmatically create new threads of execution using the System.
Threading namespace, let’s formalize the distinction between foreground threads and background
threads:

• Foreground threads have the ability to prevent the current application from terminating. The
CLR will not shut down an application (which is to say, unload the hosting AppDomain) until
all foreground threads have ended.

• Background threads (sometimes called daemon threads) are viewed by the CLR as expend-
able paths of execution that can be ignored at any point in time (even if they are currently
laboring over some unit of work). Thus, if all foreground threads have terminated, any and
all background threads are automatically killed when the application domain unloads.

It is important to note that foreground and background threads are not synonymous with pri-
mary and worker threads. By default, every thread you create via the Thread.Start() method is
automatically a foreground thread. Again, this means that the AppDomain will not unload until all
threads of execution have completed their units of work. In most cases, this is exactly the behavior
you require.

For the sake of argument, however, assume that you wish to invoke Printer.PrintNumbers() on
a secondary thread that should behave as a background thread. Again, this means that the method
pointed to by the Thread type (via the ThreadStart or ParameterizedThreadStart delegate) should be
able to halt safely as soon as all foreground threads are done with their work. Configuring such a
thread is as simple as setting the IsBackground property to true:

static void Main(string[] args)
{
Console.WriteLine("***** Background Threads *****\n");

Printer p = new Printer();
Thread bgroundThread =
new Thread(new ThreadStart(p.PrintNumbers));

// This is now a background thread.
bgroundThread.IsBackground = true;
bgroundThread.Start();

}

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS 601

8849CH18.qxd 9/27/07 5:15 PM Page 601

Notice that this Main() method is not making a call to Console.ReadLine() to force the console
to remain visible until you press the Enter key. Thus, when you run the application, it will shut down
immediately because the Thread object has been configured as a background thread. Given that the
Main() method triggers the creation of the primary foreground thread, as soon as the logic in Main()
completes, the AppDomain unloads before the secondary thread is able to complete its work.
However, if you comment out the line that sets the IsBackground property, you will find that each
number prints to the console, as all foreground threads must finish their work before the AppDomain
is unloaded from the hosting process.

For the most part, configuring a thread to run as a background type can be helpful when the
worker thread in question is performing a noncritical task that is no longer needed when the main
task of the program is finished.

■Source Code The BackgroundThread project is included under the Chapter 18 subdirectory.

The Issue of Concurrency
All the multithreaded sample applications you have written over the course of this chapter have
been thread-safe, given that only a single Thread object was executing the method in question.
While some of your applications may be this simplistic in nature, a good deal of your multithreaded
applications may contain numerous secondary threads. Given that all threads in an AppDomain
have concurrent access to the shared data of the application, imagine what might happen if multi-
ple threads were accessing the same point of data. As the thread scheduler will force threads to
suspend their work at random, what if thread A is kicked out of the way before it has fully com-
pleted its work? Thread B is now reading unstable data.

To illustrate the problem of concurrency, let’s build another C# Console Application project
named MultiThreadedPrinting. This application will once again make use of the Printer class cre-
ated previously, but this time the PrintNumbers() method will force the current thread to pause for a
randomly generated amount of time:

public class Printer
{
public void PrintNumbers()
{

...
for (int i = 0; i < 10; i++)
{
// Put thread to sleep for a random amount of time.
Random r = new Random();
Thread.Sleep(1000 * r.Next(5));
Console.Write("{0}, ", i);

}
Console.WriteLine();

}
}

The Main() method is responsible for creating an array of ten (uniquely named) Thread objects,
each of which is making calls on the same instance of the Printer object:

class Program
{
static void Main(string[] args)

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS602

8849CH18.qxd 9/27/07 5:15 PM Page 602

{
Console.WriteLine("*****Synchronizing Threads *****\n");

Printer p = new Printer();

// Make 10 threads that are all pointing to the same
// method on the same object.
Thread[] threads = new Thread[10];
for (int i = 0; i < 10; i++)
{
threads[i] =
new Thread(new ThreadStart(p.PrintNumbers));

threads[i].Name = string.Format("Worker thread #{0}", i);
}

// Now start each one.
foreach (Thread t in threads)
t.Start();

Console.ReadLine();
}

}

Before looking at some test runs, let’s recap the problem. The primary thread within this App-
Domain begins life by spawning ten secondary worker threads. Each worker thread is told to make
calls on the PrintNumbers() method on the same Printer instance. Given that you have taken no
precautions to lock down this object’s shared resources (the console), there is a good chance that
the current thread will be kicked out of the way before the PrintNumbers() method is able to print
out the complete results. Because you don’t know exactly when (or if) this might happen, you are
bound to get unpredictable results. For example, you might find the output shown in Figure 18-8.

Figure 18-8. Concurrency in action, take one

Now run the application a few more times. Figure 18-9 shows another possibility (your results
will obviously differ).

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS 603

8849CH18.qxd 9/27/07 5:15 PM Page 603

Figure 18-9. Concurrency in action, take two

■Note If you are unable to generate unpredictable outputs, increase the number of threads from 10 to 100 (for
example) or introduce another call to Thread.Sleep() within your program. Eventually, you will encounter the
concurrency issue.

There are clearly some problems here. As each thread is telling the Printer to print out the
numerical data, the thread scheduler is happily swapping threads in the background. The result is
inconsistent output. What we need is a way to programmatically enforce synchronized access to
the shared resources. As you would guess, the System.Threading namespace provides a number of
synchronization-centric types. The C# programming language also provides a particular keyword
for the very task of synchronizing shared data in multithreaded applications.

Synchronization Using the C# lock Keyword
The first technique you can use to synchronize access to shared resources is the C# lock keyword.
This keyword allows you to define a scope of statements that must be synchronized between
threads. By doing so, incoming threads cannot interrupt the current thread, preventing it from fin-
ishing its work. The lock keyword requires you to specify a token (an object reference) that must be
acquired by a thread to enter within the lock scope. When you are attempting to lock down a private
instance-level method, you can simply pass in a reference to the current type:

private void SomePrivateMethod()
{
// Use the current object as the thread token.
lock(this)
{
// All code within this scope is thread-safe.

}
}

However, if you are locking down a region of code within a public member, it is safer (and a
best practice) to declare a private object member variable to serve as the lock token:

public class Printer
{
// Lock token.
private object threadLock = new object();

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS604

8849CH18.qxd 9/27/07 5:15 PM Page 604

public void PrintNumbers()
{
// Use the lock token.
lock (threadLock)
{
...

}
}

}

In any case, if you examine the PrintNumbers() method, you can see that the shared resource
the threads are competing to gain access to is the console window. Therefore, if you scope all inter-
actions with the Console type within a lock scope as follows:

public void PrintNumbers()
{
// Use the private object lock token.
lock (threadLock)
{
// Display Thread info.
Console.WriteLine("-> {0} is executing PrintNumbers()",
Thread.CurrentThread.Name);

// Print out numbers.
Console.Write("Your numbers: ");
for (int i = 0; i < 10; i++)
{
Random r = new Random();
Thread.Sleep(1000 * r.Next(5));
Console.Write("{0}, ", i);

}
Console.WriteLine();

}
}

you have effectively designed a method that will allow the current thread to complete its task. Once
a thread enters into a lock scope, the lock token (in this case, a reference to the current object) is
inaccessible by other threads until the lock is released once the lock scope has exited. Thus, if
thread A has obtained the lock token, other threads are unable to enter the scope until thread A
relinquishes the lock token.

■Note If you are attempting to lock down code in a static method, simply declare a private static object member
variable to serve as the lock token.

If you now run the application, you can see that each thread has ample opportunity to finish its
business (see Figure 18-10).

■Source Code The MultiThreadedPrinting project is included under the Chapter 18 subdirectory.

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS 605

8849CH18.qxd 9/27/07 5:15 PM Page 605

Figure 18-10. All threads are now synchronized.

Synchronization Using the System.Threading.Monitor Type
The C# lock statement is really just a shorthand notation for working with the System.Threading.
Monitor class type. Once processed by the C# compiler, a lock scope actually resolves to the follow-
ing (which you can verify using ildasm.exe or reflector.exe):

public void PrintNumbers()
{
Monitor.Enter(threadLock);
try
{
// Display Thread info.
Console.WriteLine("-> {0} is executing PrintNumbers()",
Thread.CurrentThread.Name);

// Print out numbers.
Console.Write("Your numbers: ");
for (int i = 0; i < 10; i++)
{
Random r = new Random();
Thread.Sleep(1000 * r.Next(5));
Console.Write("{0}, ", i);

}
Console.WriteLine();

}
finally
{
Monitor.Exit(threadLock);

}
}

First, notice that the Monitor.Enter() method is the ultimate recipient of the thread token you
specified as the argument to the lock keyword. Next, all code within a lock scope is wrapped within
a try block. The corresponding finally clause ensures that the thread token is released (via the

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS606

8849CH18.qxd 9/27/07 5:15 PM Page 606

Monitor.Exit() method), regardless of any possible runtime exception. If you were to modify the
MultiThreadSharedData program to make direct use of the Monitor type (as just shown), you will
find the output is identical.

Now, given that the lock keyword seems to require less code than making explicit use of the
System.Threading.Monitor type, you may wonder about the benefits of using the Monitor type
directly. The short answer is control. If you make use of the Monitor type, you are able to instruct the
active thread to wait for some duration of time (via the Wait() method), inform waiting threads
when the current thread is completed (via the Pulse() and PulseAll() methods), and so on.

As you would expect, in a great number of cases, the C# lock keyword will fit the bill. However,
if you are interested in checking out additional members of the Monitor class, consult the .NET
Framework 3.5 SDK documentation.

Synchronization Using the System.Threading.Interlocked Type
Although it always is hard to believe until you look at the underlying CIL code, assignments and
simple arithmetic operations are not atomic. For this reason, the System.Threading namespace pro-
vides a type that allows you to operate on a single point of data atomically with less overhead than
with the Monitor type. The Interlocked class type defines the static members shown in Table 18-4.

Table 18-4. Members of the System.Threading.Interlocked Type

Member Meaning in Life

CompareExchange() Safely tests two values for equality and, if equal, changes one of the values
with a third

Decrement() Safely decrements a value by 1

Exchange() Safely swaps two values

Increment() Safely increments a value by 1

Although it might not seem like it from the onset, the process of atomically altering a single
value is quite common in a multithreaded environment. Assume you have a method named
AddOne() that increments an integer member variable named intVal. Rather than writing synchro-
nization code such as the following:

public void AddOne()
{
lock(myLockToken)
{
intVal++;

}
}

you can simplify your code via the static Interlocked.Increment() method. Simply pass in the vari-
able to increment by reference. Do note that the Increment() method not only adjusts the value of
the incoming parameter, but also returns the new value:

public void AddOne()
{
int newVal = Interlocked.Increment(ref intVal);

}

In addition to Increment() and Decrement(), the Interlocked type allows you to atomically
assign numerical and object data. For example, if you wish to assign the value of a member variable

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS 607

8849CH18.qxd 9/27/07 5:15 PM Page 607

to the value 83, you can avoid the need to use an explicit lock statement (or explicit Monitor logic)
and make use of the Interlocked.Exchange() method:

public void SafeAssignment()
{
Interlocked.Exchange(ref myInt, 83);

}

Finally, if you wish to test two values for equality to change the point of comparison in a
thread-safe manner, you are able to leverage the Interlocked.CompareExchange() method as
follows:

public void CompareAndExchange()
{
// If the value of i is currently 83, change i to 99.
Interlocked.CompareExchange(ref i, 99, 83);

}

Synchronization Using the [Synchronization] Attribute
The final synchronization primitive examined here is the [Synchronization] attribute, which is a
member of the System.Runtime.Remoting.Contexts namespace. In essence, this class-level attribute
effectively locks down all instance member code of the object for thread safety. When the CLR allo-
cates objects attributed with [Synchronization], it will place the object within a synchronized
context. As you may recall from Chapter 17, objects that should not be removed from a contextual
boundary should derive from ContextBoundObject. Therefore, if you wish to make the Printer class
type thread-safe (without explicitly writing thread-safe code within the class members), you could
update the definition as follows:

using System.Runtime.Remoting.Contexts;
...

// All methods of Printer are now thread-safe!
[Synchronization]
public class Printer : ContextBoundObject
{
public void PrintNumbers()
{
...

}
}

In some ways, this approach can be seen as the lazy way to write thread-safe code, given that
you are not required to dive into the details about which aspects of the type are truly manipulating
thread-sensitive data. The major downfall of this approach, however, is that even if a given method
is not making use of thread-sensitive data, the CLR will still lock invocations to the method. Obvi-
ously, this could degrade the overall functionality of the type, so use this technique with care.

At this point, you have seen a number of ways you are able to provide synchronized access to
shared blocks of data. To be sure, additional synchronization types are available within the System.
Threading namespace, which I will encourage you to explore at your leisure. To wrap up our exami-
nation of thread programming, allow me to introduce four additional types: TimerCallback, Timer,
ThreadPool, and BackgroundWorker.

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS608

8849CH18.qxd 9/27/07 5:15 PM Page 608

Programming with Timer Callbacks
Many applications have the need to call a specific method during regular intervals of time. For
example, you may have an application that needs to display the current time on a status bar via a
given helper function. As another example, you may wish to have your application call a helper
function every so often to perform noncritical background tasks such as checking for new e-mail
messages. For situations such as these, you can use the System.Threading.Timer type in conjunc-
tion with a related delegate named TimerCallback.

■Note The Windows Forms API provides a GUI-based Timer control that provides the same functionality of the
TimerCallback type. In fact, the GUI-based Timer type is typically simpler to use, as it can be configured at
design time.

To illustrate, assume you have a Console Application (TimerApp) that will print the current
time every second until the user presses a key to terminate the application. The first obvious step
is to write the method that will be called by the Timer type:

class Program
{
static void PrintTime(object state)
{
Console.WriteLine("Time is: {0}",
DateTime.Now.ToLongTimeString());

}

static void Main(string[] args)
{
}

}

Notice how this method has a single parameter of type System.Object and returns void. This is
not optional, given that the TimerCallback delegate can only call methods that match this signature.
The value passed into the target of your TimerCallback delegate can be any bit of information what-
soever (in the case of the e-mail example, this parameter might represent the name of the Microsoft
Exchange server to interact with during the process). Also note that given that this parameter is
indeed a System.Object, you are able to pass in multiple arguments using a System.Array or custom
class/structure.

The next step is to configure an instance of the TimerCallback delegate and pass it into the
Timer object. In addition to configuring a TimerCallback delegate, the Timer constructor allows
you to specify the optional parameter information to pass into the delegate target (defined as a
System.Object), the interval to poll the method, and the amount of time to wait (in milliseconds)
before making the first call, for example:

static void Main(string[] args)
{
Console.WriteLine("***** Working with Timer type *****\n");

// Create the delegate for the Timer type.
TimerCallback timeCB = new TimerCallback(PrintTime);

// Establish timer settings.
Timer t = new Timer(
timeCB, // The TimerCallback delegate type.
null, // Any info to pass into the called method (null for no info).

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS 609

8849CH18.qxd 9/27/07 5:15 PM Page 609

0, // Amount of time to wait before starting.
1000); // Interval of time between calls (in milliseconds).

Console.WriteLine("Hit key to terminate...");
Console.ReadLine();

}

In this case, the PrintTime() method will be called roughly every second and will pass in no
additional information to said method. If you did wish to send in some information for use by the
delegate target, simply substitute the null value of the second constructor parameter with the
appropriate information:

// Establish timer settings.
Timer t = new Timer(timeCB, "Hello From Main", 0, 1000);

We can then obtain the incoming data as follows:

static void PrintTime(object state)
{
Console.WriteLine("Time is: {0}, Param is: {1}",
DateTime.Now.ToLongTimeString(), state.ToString());

}

Figure 18-11 shows the output.

Figure 18-11. Timers at work

■Source Code The TimerApp project is included under the Chapter 18 subdirectory.

Understanding the CLR ThreadPool
The next thread-centric topic we will examine in this chapter is the role of the CLR thread pool.
When you invoke a method asynchronously using delegate types (via the BeginInvoke() method),
the CLR does not literally create a brand-new thread. For purposes of efficiency, a delegate’s
BeginInvoke() method leverages a pool of worker threads that is maintained by the runtime. To
allow you to interact with this pool of waiting threads, the System.Threading namespace provides
the ThreadPool class type.

If you wish to queue a method call for processing by a worker thread in the pool, you can make
use of the ThreadPool.QueueUserWorkItem() method. This method has been overloaded to allow
you to specify an optional System.Object for custom state data in addition to an instance of the
WaitCallback delegate:

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS610

8849CH18.qxd 9/27/07 5:15 PM Page 610

public sealed class ThreadPool
{
...
public static bool QueueUserWorkItem(WaitCallback callBack);
public static bool QueueUserWorkItem(WaitCallback callBack,
object state);

}

The WaitCallback delegate can point to any method that takes a System.Object as its sole
parameter (which represents the optional state data) and returns nothing. Do note that if you do
not provide a System.Object when calling QueueUserWorkItem(), the CLR automatically passes a null
value. To illustrate queuing methods for use by the CLR thread pool, ponder the following program,
which makes use of the Printer type once again. In this case, however, you are not manually creat-
ing an array of Thread types; rather, you are assigning members of the pool to the PrintNumbers()
method:

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Fun with the CLR Thread Pool *****\n");

Console.WriteLine("Main thread started. ThreadID = {0}",
Thread.CurrentThread.ManagedThreadId);

Printer p = new Printer();

WaitCallback workItem = new WaitCallback(PrintTheNumbers);

// Queue the method ten times.
for (int i = 0; i < 10; i++)
{
ThreadPool.QueueUserWorkItem(workItem, p);

}
Console.WriteLine("All tasks queued");
Console.ReadLine();

}

static void PrintTheNumbers(object state)
{
Printer task = (Printer)state;
task.PrintNumbers();

}
}

At this point, you may be wondering if it would be advantageous to make use of the CLR-
maintained thread pool rather than explicitly creating Thread objects. Consider these benefits of
leveraging the thread pool:

• The thread pool manages threads efficiently by minimizing the number of threads that must
be created, started, and stopped.

• By using the thread pool, you can focus on your business problem rather than the applica-
tion’s threading infrastructure.

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS 611

8849CH18.qxd 9/27/07 5:15 PM Page 611

However, using manual thread management is preferred in some cases, for example:

• If you require foreground threads or must set the thread priority. Pooled threads are always
background threads with default priority (ThreadPriority.Normal).

• If you require a thread with a fixed identity in order to abort it, suspend it, or discover it by
name.

■Source Code The ThreadPoolApp project is included under the Chapter 18 subdirectory.

The Role of the BackgroundWorker Component
The final threading type we will examine here is BackgroundWorker, defined in the System.
ComponentModel namespace (of mscorlib.dll). BackgroundWorker is a class that is very helpful when
you are building a graphical Windows Forms desktop application and need to execute a long-
running task (invoking a remote web service, performing a database transaction, downloading a
large file, etc.) on a thread different from your application’s main UI thread.

While you are most certainly able to build multithreaded GUI applications by making direct
use of the System.Threading types as seen in this chapter, BackgroundWorker allows you to get the
job done with much less fuss and bother. Thankfully, the programming model of this type leverages
much of the same threading syntax we find with asynchronous delegates, so learning how to use
this type is very straightforward.

To use a BackgroundWorker, you simply tell it what method to execute in the background and
call RunWorkerAsync(). The calling thread (typically the primary thread) continues to run normally
while the worker method runs asynchronously. When the time-consuming method has completed,
the BackgroundWorker type informs the calling thread by firing the RunWorkerCompleted event. The
associated event hander provides an incoming argument that allows you to obtain the results of the
operation (if any exist).

■Note The following example assumes you have some familiarity with GUI desktop development using Windows
Forms. If this is not the case, you may wish to return to this section once you have completed reading Chapter 27.

Working with the BackgroundWorker Type
To illustrate using this UI threading component, begin by creating a new Windows Forms applica-
tion named WinFormsBackgroundWorkerThread. Staying true to the same numerical operation
examples used here, construct a simple UI that allows the user to input two values to process (via
TextBox types) and a Button type to begin the background operation. Be sure to give each UI ele-
ment a fitting name using the Name property of the Properties window. Figure 18-12 shows one
possible layout.

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS612

8849CH18.qxd 9/27/07 5:15 PM Page 612

Figure 18-12. Layout of the Windows Forms UI application

After you have designed your UI layout, handle the Click event of the Button type by double-
clicking the control on the form designer. This will result in a new event handler that we will
implement in just a bit:

private void btnProcessData_Click(object sender, EventArgs e)
{
}

Now, open the Components region of your Toolbox, locate the BackgroundWorker component
(see Figure 18-13), and drag an instance of this type onto your form designer.

Figure 18-13. The BackgroundWorker type

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS 613

8849CH18.qxd 9/27/07 5:15 PM Page 613

You will now see a variable of this type on the designer’s component tray. Using the Properties
window, rename this component to ProcessNumbersBackgroundWorker. Now, switch to the Event
pane of the Properties window (by clicking the “lightning bolt” icon) and handle the DoWork and
RunWorkerCompleted events by double-clicking each event name. This will result in the following
new handlers added to your initial Form-derived type:

private void ProcessNumbersBackgroundWorker_DoWork(object sender,
DoWorkEventArgs e)

{
}

private void ProcessNumbersBackgroundWorker_RunWorkerCompleted(object sender,
RunWorkerCompletedEventArgs e)

{
}

The DoWork event handler represents the method that will be called by the BackgroundWorker
on the secondary thread of execution. Notice that the second parameter of the handler is a
DoWorkEventArgs type, which will contain any arguments required by the secondary thread to com-
plete its work. As you’ll see in just a moment, when you call the RunWorkerAsync() method to spawn
this thread, you have the option of passing in this related data (quite similar to working with the
ParameterizedThreadStart delegate type used previously in this chapter).

The RunWorkerCompleted event represents the method that the BackgroundWorker will invoke
once the background operation has completed. Using the RunWorkerCompletedEventArgs type, you
are able to scrape out any return value of the asynchronous operation.

Processing Our Data with the BackgroundWorker Type
At this point, we can flesh out the details of processing the user input. Recall that when you wish
to inform the BackgroundWorker type to spin up a secondary thread of execution, you must call
RunWorkerAsync(). When you do so, you have the option of passing in a System.Object type to repre-
sent any data to pass the method invoked by the DoWork event. Here, we will reuse the AddParams
class we created in the ParameterizedThreadStart example:

class AddParams
{
public int a, b;

public AddParams(int numb1, int numb2)
{
a = numb1;
b = numb2;

}
}

With this helper class in place, we are now able to implement the Click event handler of our
Button type as follows:

private void btnProcessData_Click(object sender, EventArgs e)
{
try
{
// First get the user data (as numerical).
int numbOne = int.Parse(txtFirstNumber.Text);
int numbTwo = int.Parse(this.txtSecondNumber.Text);
AddParams args = new AddParams(numbOne, numbTwo);

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS614

8849CH18.qxd 9/27/07 5:15 PM Page 614

// Now spin up the new thread and pass args variable.
ProcessNumbersBackgroundWorker.RunWorkerAsync(args);

}
catch(Exception ex)
{
MessageBox.Show(ex.Message);

}
}

As soon as you call RunWorkerAsync(), the DoWork event fires, which will be captured by your
handler. Implement this type to scrape out the AddParams object using the Argument property of the
incoming DoWorkEventArgs. Again, to simulate a lengthy operation, we will put the current thread
to sleep for approximately five seconds. After this point, we will return the value using the Result
property of the DoWorkEventArgs type:

private void ProcessNumbersBackgroundWorker_DoWork(object sender,
DoWorkEventArgs e)

{
// Get the incoming AddParam object.
AddParams args = (AddParams)e.Argument;

// Artificial lag.
System.Threading.Thread.Sleep(5000);

// Return the value.
e.Result = args.a + args.b;

}

Finally, once the BackgroundWorker type has exited the scope of the DoWork handler, the
RunWorkerCompleted event will fire. Our registered handler will simply display the result of the
operation using the RunWorkerCompletedEventArgs.Result property:

private void ProcessNumbersBackgroundWorker_RunWorkerCompleted(
object sender, RunWorkerCompletedEventArgs e)

{
MessageBox.Show(e.Result.ToString(), "Your result is");

}

If you were to now run your application, you will find that while the data is being processed,
the thread hosting the UI is still completely responsive (for example, the window can be resized,
moved, minimized, etc.). If you wish to accentuate this point, you might want to add a new TextBox
to the form and verify you are able to enter data within the UI area while the five-second addition
operation performs asynchronously in the background.

■Source Code The WinFormsBackgroundWorkerThread project is included under the Chapter 18 subdirectory.

That wraps up our examination of multithreaded programming under .NET. To be sure, the
System.Threading namespace defines numerous types beyond what I had the space to cover in this
chapter. Nevertheless, at this point you should have a solid foundation to build on.

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS 615

8849CH18.qxd 9/27/07 5:15 PM Page 615

Summary
This chapter began by examining how .NET delegate types can be configured to execute a method
in an asynchronous manner. As you have seen, the BeginInvoke() and EndInvoke() methods allow
you to indirectly manipulate a background thread with minimum fuss and bother. During this dis-
cussion, you were also introduced to the IAsyncResult interface and AsyncResult class type. As you
learned, these types provide various ways to synchronize the calling thread and obtain possible
method return values.

The remainder of this chapter examined the role of the System.Threading namespace. As you
learned, when an application creates additional threads of execution, the result is that the program
in question is able to carry out numerous tasks at (what appears to be) the same time. You also
examined several manners in which you can protect thread-sensitive blocks of code to ensure that
shared resources do not become unusable units of bogus data.

This chapter also pointed out that the CLR maintains an internal pool of threads for the
purposes of performance and convenience. Last but not least, you examined the use of the
BackgroundWorker type, which allows you to easily spin up new threads of execution within a
GUI-based application.

CHAPTER 18 ■ BUILDING MULTITHREADED APPLICATIONS616

8849CH18.qxd 9/27/07 5:15 PM Page 616

Understanding CIL and the Role of
Dynamic Assemblies

The goal of this chapter is twofold. In the first half, you will have a chance to examine the syntax
and semantics of the common intermediate language (CIL) in much greater detail than in previous
chapters. Now, to be perfectly honest, you are able to live a happy and productive life as a .NET pro-
grammer without concerning yourself too much with the details of CIL code. However, once you
learn the basics of CIL, you will gain a much deeper understanding of how some of the “magical”
aspects of .NET (such as cross-language inheritance) actually work.

In the remainder of this chapter, you will examine the role of the System.Reflection.Emit
namespace. Using these types, you are able to build software that is capable of generating .NET
assemblies in memory at runtime. Formally speaking, assemblies defined and executed in memory
are termed dynamic assemblies. As you might guess, this particular aspect of .NET development
requires you to speak the language of CIL, given that you will be required to specify the CIL instruc-
tion set that will be used during the assembly’s construction.

Reflecting on the Nature of CIL Programming
CIL is the true mother tongue of the .NET platform. When you build a .NET assembly using your
managed language of choice (C#, VB, COBOL.NET, etc.), the associated compiler translates your
source code into terms of CIL. Like any programming language, CIL provides numerous structural
and implementation-centric tokens. Given that CIL is just another .NET programming language, it
should come as no surprise that it is possible to build your .NET assemblies directly using CIL and
the CIL compiler (ilasm.exe) that ships with the .NET Framework 3.5 SDK.

Now while it is true that few programmers would choose to build an entire .NET application
directly with CIL, CIL is still an extremely interesting intellectual pursuit. Simply put, the more you
understand the grammar of CIL, the better able you are to move into the realm of advanced .NET
development. By way of some concrete examples, individuals who possess an understanding of CIL
are capable of the following:

• Talking intelligently about how different .NET programming languages map their respective
keywords to CIL tokens.

• Disassembling an existing .NET assembly, editing the CIL code, and recompiling the
updated code base into a modified .NET binary.

• Building dynamic assemblies using the System.Reflection.Emit namespace.

617

C H A P T E R 1 9

8849CH19.qxd 10/1/07 11:16 AM Page 617

• Leveraging aspects of the CTS that are not supported by higher-level managed languages,
but do exist at the level of CIL. To be sure, CIL is the only .NET language that allows you to
access each and every aspect of the CTS. For example, using raw CIL, you are able to define
global-level members and fields (which are not permissible in C#).

Again, to be perfectly clear, if you choose not to concern yourself with the details of CIL code,
you are absolutely able to gain mastery of C# and the .NET base class libraries. In many ways,
knowledge of CIL is analogous to a C(++) programmer’s understanding of assembly language. Those
who know the ins and outs of the low-level “goo” are able to create rather advanced solutions for the
task at hand and gain a deeper understanding of the underlying programming (and runtime) envi-
ronment. So, if you are up for the challenge, let’s begin to examine the details of CIL.

■Note Understand that this chapter is not intended to be a comprehensive treatment of the syntax and seman-
tics of CIL. If you require a full examination of the topic, check out CIL Programming: Under the Hood of .NET by
Jason Bock (Apress, 2002).

Examining CIL Directives, Attributes, and Opcodes
When you begin to investigate low-level languages such as CIL, you are guaranteed to find new (and
often intimidating-sounding) names for very familiar concepts. For example, at this point in the
text, if you were shown the following set of items:

{new, public, this, base, get, set, explicit, unsafe, enum, operator, partial}

you would most certainly understand them to be keywords of the C# language (which is correct).
However, if you look more closely at the members of this set, you may be able to see that while each
item is indeed a C# keyword, it has radically different semantics. For example, the enum keyword
defines a System.Enum-derived type, while the this and base keywords allow you to reference the
current object or the object’s parent class, respectively. The unsafe keyword is used to establish a
block of code that cannot be directly monitored by the CLR, while the operator keyword allows you
to build a hidden (specially named) method that will be called when you apply a specific C# opera-
tor (such as the plus sign).

In stark contrast to a higher-level language such as C#, CIL does not just simply define a
generic set of keywords, per se. Rather, the token set understood by the CIL compiler is subdivided
into three broad categories based on semantics:

• CIL directives

• CIL attributes

• CIL operation codes (opcodes)

Each category of CIL token is expressed using a particular syntax, and the tokens are combined
to build a valid .NET assembly.

The Role of CIL Directives
First up, we have a set of well-known CIL tokens that are used to describe the overall structure of a
.NET assembly. These tokens are called directives. CIL directives are used to inform the CIL compiler
how to define the namespaces(s), type(s), and member(s) that will populate an assembly.

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES618

8849CH19.qxd 10/1/07 11:16 AM Page 618

Directives are represented syntactically using a single dot (.) prefix (e.g., .namespace, .class,
.publickeytoken, .method, .assembly, etc.). Thus, if your *.il file (the conventional extension for a
file containing CIL code) has a single .namespace directive and three .class directives, the CIL com-
piler will generate an assembly that defines a single .NET namespace containing three .NET class
types.

The Role of CIL Attributes
In many cases, CIL directives in and of themselves are not descriptive enough to fully express the
definition of a given .NET type or type member. Given this fact, many CIL directives can be further
specified with various CIL attributes to qualify how a directive should be processed. For example,
the .class directive can be adorned with the public attribute (to establish the type visibility), the
extends attribute (to explicitly specify the type’s base class), and the implements attribute (to list the
set of interfaces supported by the type).

The Role of CIL Opcodes
Once a .NET assembly, namespace, and type set have been defined in terms of CIL using various
directives and related attributes, the final remaining task is to provide the type’s implementation
logic. This is a job for operation codes, or simply opcodes. In the tradition of other low-level lan-
guages, many CIL opcodes tend to be cryptic and completely unpronounceable by us mere
humans. For example, if you need to define a string variable, you don’t use a friendly opcode
named LoadString, but rather ldstr.

Now, to be fair, some CIL opcodes do map quite naturally to their C# counterparts (e.g., box,
unbox, throw, and sizeof). As you will see, the opcodes of CIL are always used within the scope of a
member’s implementation, and unlike CIL directives, they are never written with a dot prefix.

The CIL Opcode/CIL Mnemonic Distinction
As just explained, opcodes such as ldstr are used to implement the members of a given type. In
reality, however, tokens such as ldstr are CIL mnemonics for the actual binary CIL opcodes. To clar-
ify the distinction, assume you have authored the following method in C#:

static int Add(int x, int y)
{
return x + y;

}

The act of adding two numbers is expressed in terms of the CIL opcode 0X58. In a similar vein,
subtracting two numbers is expressed using the opcode 0X59, and the act of allocating a new object
on the managed heap is achieved using the 0X73 opcode. Given this reality, understand that the “CIL
code” processed by a JIT compiler is actually nothing more than blobs of binary data.

Thankfully, for each binary opcode of CIL, there is a corresponding mnemonic. For example,
the add mnemonic can be used rather than 0X58, sub rather than 0X59, and newobj rather than 0X73.
Given this opcode/mnemonic distinction, realize that CIL decompilers such as ildasm.exe translate
an assembly’s binary opcodes into their corresponding CIL mnemonics. For example, here would
be the CIL presented by ildasm.exe for the previous C# Add() method:

.method private hidebysig static int32 Add(int32 x,
int32 y) cil managed
{
// Code size 9 (0x9)
.maxstack 2
.locals init ([0] int32 CS$1$0000)

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 619

8849CH19.qxd 10/1/07 11:16 AM Page 619

IL_0000: nop
IL_0001: ldarg.0
IL_0002: ldarg.1
IL_0003: add
IL_0004: stloc.0
IL_0005: br.s IL_0007
IL_0007: ldloc.0
IL_0008: ret
} // end of method MathStuff::Add

Unless you’re building some extremely low-level .NET software (such as a custom managed
compiler), you’ll never need to concern yourself with the literal numeric binary opcodes of CIL. For
all practical purposes, when .NET programmers speak about “CIL opcodes” they’re referring to the
set of friendly string token mnemonics (as I’ve done within this text, and will do for the remainder
of this chapter) rather than the underlying numerical values.

Pushing and Popping: The Stack-Based
Nature of CIL
Higher-level .NET languages (such as C#) attempt to hide low-level CIL grunge from view as much
as possible. One aspect of .NET development that is particularly well hidden is the fact that CIL is a
stack-based programming language. Recall from our examination of the collection namespaces (see
Chapter 10) that the System.Collections.Stack type can be used to push a value onto a stack as well
as pop the topmost value off of the stack for use. Of course, CIL developers do not literally use an
object of type System.Collections.Stack to load and unload the values to be evaluated; however,
the same pushing and popping mind-set still applies.

Formally speaking, the entity used to hold a set of values to be evaluated is termed the virtual
execution stack. As you will see, CIL provides a number of opcodes that are used to push a value
onto the stack; this process is termed loading. As well, CIL defines a number of additional opcodes
that transfer the topmost value on the stack into memory (such as a local variable) using a process
termed storing.

In the world of CIL, it is impossible to access a point of data directly, including locally defined
variables, incoming method arguments, or field data of a type. Rather, you are required to explicitly
load the item onto the stack, only to then pop it off for later use (keep this point in mind, as it will
help explain why a given block of CIL code can look a bit redundant).

■Note Recall that CIL is not directly executed, but compiled on demand. During the compilation of CIL code,
many of these implementation redundancies are optimized away. Furthermore, if you enable the code optimization
option for your current project (using the Build tab of the Visual Studio Project Properties window), the compiler will
also remove various CIL redundancies.

To understand how CIL leverages a stack-based processing model, consider a simple C#
method, PrintMessage(), which takes no arguments and returns void. Within the implementation
of this method, you will simply print out the value of a local string variable to the standard output
stream:

public void PrintMessage()
{
string myMessage = "Hello.";
Console.WriteLine(myMessage);

}

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES620

8849CH19.qxd 10/1/07 11:16 AM Page 620

If you were to examine how the C# compiler translates this method in terms of CIL, you would
first find that the PrintMessage() method defines a storage slot for a local variable using the .locals
directive. The local string is then loaded and stored in this local variable using the ldstr (load
string) and stloc.0 opcodes (which can be read as “store the current value in a local variable at
index zero”).

The value (again, at index 0) is then loaded into memory using the ldloc.0 (“load the local
argument at index 0”) opcode for use by the System.Console.WriteLine() method invocation
(specified using the call opcode). Finally, the function returns via the ret opcode. Here is the
(annotated) CIL code for the PrintMessage() method:

.method public hidebysig instance void PrintMessage() cil managed
{
.maxstack 1
// Define a local string variable (at index 0).
.locals init ([0] string myMessage)
// Load a string on to the stack with the value "Hello."
ldstr " Hello."
// Store string value on the stack in the local variable.
stloc.0
// Load the value at index 0.
ldloc.0
// Call method with current value.
call void [mscorlib]System.Console::WriteLine(string)
ret

}

■Note As you can see, CIL supports code comments using the double-slash syntax (as well as the /*...*/ syntax,
for that matter). As in C#, code comments are completely ignored by the CIL compiler.

Now that you have the basics of CIL in your mind, let’s see a practical use of CIL programming,
beginning with the topic of “round-trip engineering.”

Understanding Round-Trip Engineering
You are aware of how to use ildasm.exe to view the CIL code generated by the C# compiler (see
Chapter 1). What you may not know, however, is that ildasm.exe allows you to dump the CIL con-
tained within an assembly loaded into ildasm.exe to an external file. Once you have the CIL code at
your disposal, you are free to edit and recompile the code base using the CIL compiler, ilasm.exe.

■Note Also recall that reflector.exe can be used to view the CIL code of a given assembly, as well as to
translate the CIL code into an approximate C# code base. However, if an assembly contains CIL constructs that do
not have a C# equivalent, you will need to fall back on the use of ildasm.exe.

Formally speaking, this technique is termed round-trip engineering, and it can be useful under
a number of circumstances:

• You need to modify an assembly for which you no longer have the source code.

• You are working with a less-than-perfect .NET language compiler that has emitted ineffec-
tive (or flat-out incorrect) CIL code, and you wish to modify the code base.

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 621

8849CH19.qxd 10/1/07 11:16 AM Page 621

• You are building COM interoperability assemblies and wish to account for some IDL attrib-
utes that have been lost during the conversion process (such as the COM [helpstring]
attribute).

To illustrate the process of round-tripping, begin by creating a new C# code file
(HelloProgram.cs) using a simple text editor, and define the following class type (you are free to
use Visual Studio 2008’s Console Application project if you wish; however, be sure to delete the
AssemblyInfo.cs file to decrease the amount of generated CIL code):

// A simple C# console app.
using System;

class Program
{
static void Main(string[] args)
{
Console.WriteLine("Hello CIL code!");
Console.ReadLine();

}
}

Save your file to a convenient location (for example, C:\HelloCilCode) and compile your pro-
gram using csc.exe:

csc HelloProgram.cs

Now, open HelloProgram.exe with ildasm.exe and, using the File ➤ Dump menu option, save
the raw CIL code to a new *.il file (HelloProgram.il) in the same folder containing your compiled
assembly (all of the default values of the resulting dialog box are fine as is).

■Note ildasm.exe will also generate a *.res file when dumping the contents of an assembly to file. These
resource files can be ignored (and deleted) throughout this chapter, as we will not be making use of them.

Now you are able to view this file using your text editor of choice. Here is the (slightly reformat-
ted and annotated) result:

// Referenced Assemblies.
.assembly extern mscorlib
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}

// Our assembly.
.assembly HelloProgram
{
.hash algorithm 0x00008004
.ver 0:0:0:0

}
.module HelloProgram.exe
.imagebase 0x00400000
.file alignment 0x00000200
.stackreserve 0x00100000
.subsystem 0x0003
.corflags 0x00000001

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES622

8849CH19.qxd 10/1/07 11:16 AM Page 622

// Definition of Program class.
.class private auto ansi beforefieldinit Program
extends [mscorlib]System.Object

{
.method private hidebysig static void Main(string[] args) cil managed
{
// Marks this method as the entry point of the
// executable.
.entrypoint
.maxstack 8
IL_0000: nop
IL_0001: ldstr "Hello CIL code!"
IL_0006: call void [mscorlib]System.Console::WriteLine(string)
IL_000b: nop
IL_000c: call string [mscorlib]System.Console::ReadLine()
IL_0011: pop
IL_0012: ret

}

// The default constructor.
.method public hidebysig specialname rtspecialname
instance void .ctor() cil managed

{
.maxstack 8
IL_0000: ldarg.0
IL_0001: call instance void [mscorlib]System.Object::.ctor()
IL_0006: ret

}
}

First, notice that the *.il file opens by declaring each externally referenced assembly the cur-
rent assembly is compiled against. Here, you can see a single .assembly extern token set for the
always present mscorlib.dll. Of course, if your class library made use of types within other refer-
enced assemblies, you would find additional .assembly extern directives.

Next, you find the formal definition of your HelloProgram.exe assembly, which has been
assigned a default version of 0.0.0.0 (given that you did not specify a value using the
[AssemblyVersion] attribute). The assembly is further described using various CIL directives
(such as .module, .imagebase, and so forth).

After documenting the externally referenced assemblies and defining the current assembly,
you find a definition of the Program type. Note that the .class directive has various attributes
(many of which are actually optional) such as extends, which marks the base class of the type:

.class private auto ansi beforefieldinit Program
extends [mscorlib]System.Object

{ ... }

The bulk of the CIL code represents the implementation of the class’s default constructor and
the Main() method, both of which are defined (in part) with the .method directive. Once the mem-
bers have been defined using the correct directives and attributes, they are implemented using
various opcodes.

It is critical to understand that when interacting with .NET types (such as System.Console) in
CIL, you will always need to use the type’s fully qualified name. Furthermore, the type’s fully quali-
fied name must always be prefixed with the friendly name of the defining assembly (in square
brackets). Consider the CIL implementation of Main():

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 623

8849CH19.qxd 10/1/07 11:16 AM Page 623

.method private hidebysig static void Main(string[] args) cil managed
{
.entrypoint
.maxstack 8
IL_0000: nop
IL_0001: ldstr "Hello CIL code!"
IL_0006: call void [mscorlib]System.Console::WriteLine(string)
IL_000b: nop
IL_000c: call string [mscorlib]System.Console::ReadLine()
IL_0011: pop
IL_0012: ret

}

The implementation of the default constructor in terms of CIL code makes use of yet another
“load-centric” instruction (ldarg.0). In this case, the value loaded onto the stack is not a custom
variable specified by us, but the current object reference (more details on this later). Also note that
the default constructor explicitly makes a call to the base class constructor:

.method public hidebysig specialname rtspecialname
instance void .ctor() cil managed

{
.maxstack 8
IL_0000: ldarg.0
IL_0001: call instance void [mscorlib]System.Object::.ctor()
IL_0006: ret

}

The Role of CIL Code Labels
One thing you certainly have noticed is that each line of implementation code is prefixed with a
token of the form IL_XXX: (e.g., IL_0000:, IL_0001:, and so on). These tokens are called code labels
and may be named in any manner you choose (provided they are not duplicated within the same
member scope). When you dump an assembly to file using ildasm.exe, it will automatically gener-
ate code labels that follow an IL_XXX: naming convention. However, you may change them to
reflect a more descriptive marker:

.method private hidebysig static void Main(string[] args) cil managed
{
.entrypoint
.maxstack 8
Nothing_1: nop
Load_String: ldstr "Hello CIL code!"
PrintToConsole: call void [mscorlib]System.Console::WriteLine(string)
Nothing_2: nop
WaitFor_KeyPress: call string [mscorlib]System.Console::ReadLine()
RemoveValueFromStack: pop
Leave_Function: ret

}

The truth of the matter is that most code labels are completely optional. The only time code
labels are truly mandatory is when you are authoring CIL code that makes use of various branching
or looping constructs, as you can specify where to direct the flow of logic via these code labels. For
our current example, you can remove these autogenerated labels altogether with no ill effect:

.method private hidebysig static void Main(string[] args) cil managed
{
.entrypoint

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES624

8849CH19.qxd 10/1/07 11:16 AM Page 624

.maxstack 8
nop
ldstr "Hello CIL code!"
call void [mscorlib]System.Console::WriteLine(string)
nop
call string [mscorlib]System.Console::ReadLine()
pop
ret

}

Interacting with CIL: Modifying an *.il File
Now that you have a better understanding of how a basic CIL file is composed, let’s complete our
round-tripping experiment. The goal here is to update the CIL within the existing *.il file as
follows:

• Add a reference to the System.Windows.Forms.dll assembly.

• Load a local string within Main().

• Call the System.Windows.Forms.MessageBox.Show() method using the local string variable as
an argument.

The first step is to add a new .assembly directive (qualified with the extern attribute) that spec-
ifies your assembly requires the System.Windows.Forms.dll assembly. To do so, update the *.il file
with the following logic after the external reference to mscorlib:

.assembly extern System.Windows.Forms
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}

Be aware that the value assigned to the .ver directive may differ depending on which
version of the .NET platform you have installed on your development machine. Here, you see
that System.Windows.Forms.dll version 2.0.0.0 is used and has the public key token of
B77A5C561934E089. If you open the GAC (see Chapter 15) and locate your version of the System.
Windows.Forms.dll assembly, you can simply copy the correct version and public key token value
through the assembly’s Properties page (via a right-click of your mouse).

Next, you need to alter the current implementation of the Main() method. Locate this method
within the *.il file and remove the current implementation code (the .maxstack and .entrypoint
directives should remain intact; I’ll describe them later):

.method private hidebysig static void Main(string[] args) cil managed
{
.entrypoint
.maxstack 8
// ToDo: Write new CIL code!

}

Again, the goal is to push a new string onto the stack and call the MessageBox.Show() method
(rather than the Console.WriteLine() method). Recall that when you specify the name of an exter-
nal type, you must make use of the type’s fully qualified name (in conjunction with the friendly
name of the assembly). Keeping this in mind, update the Main() method as follows:

.method private hidebysig static void Main(string[] args) cil managed
{
.entrypoint

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 625

8849CH19.qxd 10/1/07 11:16 AM Page 625

.maxstack 8
ldstr "CIL is way cool"
call valuetype [System.Windows.Forms]
System.Windows.Forms.DialogResult
[System.Windows.Forms]
System.Windows.Forms.MessageBox::Show(string)

pop
ret

}

In effect, you have just updated the CIL code to correspond to the following C# class definition:

class Program
{
static void Main(string[] args)
{
System.Windows.Forms.MessageBox.Show("CIL is way cool");

}
}

Compiling CIL Code Using ilasm.exe
Assuming you have saved this modified *.il file, you can compile a new .NET assembly using the
ilasm.exe (CIL compiler) utility. While the CIL compiler has numerous command-line options (all
of which can be seen by specifying the -? option), Table 19-1 shows the core flags of interest.

Table 19-1. Common ilasm.exe Command-Line Flags

Flag Meaning in Life

/debug Includes debug information (such as local variable and argument names, as
well as line numbers).

/dll Produces a *.dll file as output.

/exe Produces an *.exe file as output. This is the default setting and may be omitted.

/key Compiles the assembly with a strong name using a given *.snk file.

/noautoinherit Prevents class types from automatically inheriting from System.Object when a
specific base class is not defined.

/output Specifies the output file name and extension. If you do not make use of the
/output flag, the resulting file name (minus the file extension) is the same as
the name of the first source file.

To compile your updated HelloProgram.il file into a new .NET *.exe, you can issue the follow-
ing command within a Visual Studio 2008 command prompt:

ilasm /exe HelloProgram.il /output=NewAssembly.exe

Assuming things have worked successfully, you will see the report shown in Figure 19-1.

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES626

8849CH19.qxd 10/1/07 11:16 AM Page 626

Figure 19-1. Compiling *.il files using ilasm.exe

At this point, you can run your new application. Sure enough, rather than showing a message
within the console window, you will now see a message box displaying your message (see
Figure 19-2).

Figure 19-2. The result of the round-trip

Compiling CIL Code Using SharpDevelop
When working with *.il files, you may wish to make use of the freely available SharpDevelop IDE
(see Chapter 2). When you create a new solution (via the File ➤ New Solution menu option), one of
your choices is to create a CIL project workspace (see Figure 19-3).

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 627

8849CH19.qxd 10/1/07 11:16 AM Page 627

Figure 19-3. The SharpDevelop CIL project template

While SharpDevelop does not have IntelliSense support for CIL projects, CIL tokens are color-
coded, and you are able to compile and run your application directly within the IDE (rather than
running ilasm.exe from a command prompt). Consider Figure 19-4.

Figure 19-4. Authoring CIL code within SharpDevelop

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES628

8849CH19.qxd 10/1/07 11:16 AM Page 628

The Role of peverify.exe
When you are building or modifying assemblies using CIL code, it is always advisable to verify that
the compiled binary image is a well-formed .NET image using the peverify.exe command-line
tool:

peverify MyNewAssembly.exe

This tool will examine all opcodes within the specified assembly for valid CIL code. For exam-
ple, in terms of CIL code, the evaluation stack must always be empty before exiting a function. If
you forget to pop off any remaining values, the ilasm.exe compiler will still generate a valid assem-
bly (given that compilers are concerned only with syntax). peverify.exe, on the other hand, is
concerned with semantics. If you did forget to clear the stack before exiting a given function,
peverify.exe will let you know before you try running your code base.

■Source Code The HelloCilCode example is included under the Chapter 19 subdirectory.

Understanding CIL Directives and Attributes
Now that you have seen how ildasm.exe and ilasm.exe can be used to perform a round-trip, we can
get down to the business of checking out the syntax and semantics of CIL itself. The next sections
will walk you through the process of authoring a custom namespace containing a set of types.
However, to keep things simple, these types will not contain any implementation logic for their
members. Once you understand how to create empty types, you can then turn your attention to
the process of providing “real” members using CIL opcodes.

Specifying Externally Referenced Assemblies in CIL
Create a new file named CilTypes.il using your editor of choice. The first task a CIL project will
require is to list the set of external assemblies used by the current assembly. For this example, you
will only make use of types found within mscorlib.dll. To do so, the .assembly directive will be
qualified using the external attribute. When you are referencing a strongly named assembly, such
as mscorlib.dll, you’ll want to specify the .publickeytoken and .ver directives as well:

.assembly extern mscorlib
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}

■Note Strictly speaking, you are not required to explicitly reference mscorlib.dll as an external reference, as
ilasm.exe will do so automatically.

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 629

8849CH19.qxd 10/1/07 11:16 AM Page 629

Defining the Current Assembly in CIL
The next order of business is to define the assembly you are interested in building using the
.assembly directive. At the simplest level, an assembly can be defined by specifying the friendly
name of the binary:

// Our assembly.
.assembly CILTypes { }

While this indeed defines a new .NET assembly, you will typically place additional directives
within the scope of the assembly declaration. For this example, update your assembly definition to
include a version number of 1.0.0.0 using the .ver directive (note that each numerical identifier is
separated by colons, not the C#-centric dot notation):

// Our assembly.
.assembly CILTypes
{
.ver 1:0:0:0

}

Given that the CILTypes assembly is a single-file assembly, you will finish up the assembly
definition using a single .module directive, which marks the official name of your .NET binary,
CILTypes.dll:

.assembly CILTypes
{
.ver 1:0:0:0
}
// The module of our single-file assembly.
.module CILTypes.dll

In addition to .assembly and .module are CIL directives that further qualify the overall structure
of the .NET binary you are composing. Table 19-2 lists a few of the more common assembly-level
directives.

Table 19-2. Additional Assembly-Centric Directives

Directive Meaning in Life

.mresources If your assembly makes use of internal resources (such as bitmaps or string tables),
this directive is used to identify the name of the file that contains the resources to
be embedded.

.subsystem This CIL directive is used to establish the preferred UI that the assembly wishes to
execute within. For example, a value of 2 signifies that the assembly should run
within a Forms-based GUI, whereas a value of 3 denotes a console executable.

Defining Namespaces in CIL
Now that you have defined the look and feel of your assembly (and the required external refer-
ences), you can create a .NET namespace (MyNamespace) using the .namespace directive:

// Our assembly has a single namespace.
.namespace MyNamespace {}

Like C#, CIL namespace definitions can be nested within further namespaces. We have no need
to define a root namespace here; however, for the sake of argument, assume you wish to create a
root namespace named Intertech:

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES630

8849CH19.qxd 10/1/07 11:16 AM Page 630

.namespace Intertech
{
.namespace MyNamespace {}

}

Like C#, CIL allows you to define a nested namespace as follows:

// Defining a nested namespace.
.namespace Intertech.MyNamespace{}

Defining Class Types in CIL
Empty namespaces are not very interesting, so let’s now check out the process of defining a class
type using CIL. Not surprisingly, the .class directive is used to define a new class type. However,
this simple directive can be adorned with numerous additional attributes, to further qualify the
nature of the type. To illustrate, add a public class to your namespace named MyBaseClass. As in C#,
if you do not specify an explicit base class, your type will automatically be derived from System.
Object, unless you compile the *.il code by specifying the /noautoinherit option of ilasm.exe.

.namespace MyNamespace
{
// System.Object base class assumed.
.class public MyBaseClass {}

}

When you are building a class type that derives from any class other than System.Object, you
make use of the extends attribute. Whenever you need to reference a type defined within the same
assembly, CIL demands that you also make use of the fully qualified name (however, if the base type
is within the same assembly, you can omit the assembly’s friendly name prefix). Therefore, the fol-
lowing attempt to extend MyBaseClass results in a compiler error:

// This will not compile!
.namespace MyNamespace
{
.class public MyBaseClass {}

.class public MyDerivedClass
extends MyBaseClass {}

}

To correctly define the parent class of MyDerivedClass, you must specify the full name of
MyBaseClass as follows:

// Better!
.namespace MyNamespace
{
.class public MyBaseClass {}

.class public MyDerivedClass
extends MyNamespace.MyBaseClass {}

}

In addition to the public and extends attributes, a CIL class definition may take numerous
additional qualifiers that control the type’s visibility, field layout, and so on. Table 19-3 illustrates
some (but not all) of the attributes that may be used in conjunction with the .class directive.

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 631

8849CH19.qxd 10/1/07 11:16 AM Page 631

Table 19-3. Various Attributes Used in Conjunction with the .class Directive

Attributes Meaning in Life

public, private, nested assembly, CIL defines various attributes that are used to specify
nested famandassem, nested family, the visibility of a given type. As you can see, raw CIL
nested famorassem, nested public, offers numerous possibilities other than those offered
nested private by C#.

abstract, sealed These two attributes may be tacked onto a .class
directive to define an abstract class or sealed class,
respectively.

auto, sequential, explicit These attributes are used to instruct the CLR how to lay
out field data in memory. For class types, the default
layout flag (auto) is appropriate.

extends, implements These attributes allow you to define the base class of a
type (via extends) or implement an interface on a type
(via implements).

Defining and Implementing Interfaces in CIL
As odd as it may seem, interface types are defined in CIL using the .class directive. However, when
the .class directive is adorned with the interface attribute, the type is realized as a CTS interface
type. Once an interface has been defined, it may be bound to a class or structure type using the CIL
implements attribute:

.namespace MyNamespace
{
// An interface definition.
.class public interface IMyInterface {}
.class public MyBaseClass {}

// MyDerivedClass now implements IAmAnInterface.
.class public MyDerivedClass
extends MyNamespace.MyBaseClass
implements MyNamespace.IMyInterface {}

}

As you recall from Chapter 9, interfaces can function as the base interface to other interface
types in order to build interface hierarchies. However, contrary to what you might be thinking, the
extends attribute cannot be used to derive interface A from interface B. The extends attribute is
used only to qualify a type’s base class. When you wish to extend an interface, you will make use of
the implements attribute yet again:

// Extending interfaces in terms of CIL.
.class public interface IMyInterface {}
.class public interface IMyOtherInterface
implements MyNamespace.IMyInterface {}

Defining Structures in CIL
The .class directive can be used to define a CTS structure if the type extends System.ValueType. As
well, the .class directive is qualified with the sealed attribute (given that structures can never be a
base structure to other value types). If you attempt to do otherwise, ilasm.exe will issue a compiler
error.

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES632

8849CH19.qxd 10/1/07 11:16 AM Page 632

// A structure definition is always sealed.
.class public sealed MyStruct
extends [mscorlib]System.ValueType{}

Do be aware that CIL provides a shorthand notation to define a structure type. If you use the
value attribute, the new type will derive the type from [mscorlib]System.ValueType automatically.
Therefore, you could define MyStruct as follows:

// Shorthand notation for declaring a structure.
.class public sealed value MyStruct{}

Defining Enums in CIL
.NET enumerations (as you recall) derive from System.Enum, which is a System.ValueType (and
therefore must also be sealed). When you wish to define an enum in terms of CIL, simply extend
[mscorlib]System.Enum:

// An enum.
.class public sealed MyEnum
extends [mscorlib]System.Enum{}

Like a structure definition, enumerations can be defined with a shorthand notation using the
enum attribute:

// Enum shorthand.
.class public sealed enum MyEnum{}

You’ll see how to specify the name/value pairs of an enumeration in just a moment.

■Note The other fundamental .NET type, the delegate, also has a specific CIL representation. See Chapter 11 for
full details.

Defining Generics in CIL
Generic types also have a specific representation in the syntax of CIL. Recall from Chapter 10 that a
given generic type or generic member may have one or more type parameters. For example, the
List<T> type has a single type parameter, while Dictionary<TKey, TValue> has two. In terms of CIL,
the number of type parameters is specified using a backward-leaning single tick, `, followed by a
numerical value representing the number of type parameters. Like C#, the actual value of the type
parameters is encased within angled brackets.

■Note On most keyboards, the ` character can be found on the key above the Tab key (and to the left of the
1 key).

For example, assume you wish to create a List<T> type, where T is of type System.Int32. In CIL,
you would author the following:

// In C#: List<int> myInts = new List<int>();
newobj instance void class [mscorlib]
System.Collections.Generic.List`1<int32>::.ctor()

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 633

8849CH19.qxd 10/1/07 11:16 AM Page 633

Notice that this generic class is defined as List`1<int32>, as List<T> has a single type parame-
ter. However, if you needed to define a Dictionary<string, int>type, you would do so as the
following:

// In C#: Dictionary<string, int> d = new Dictionary<string, int>();
newobj instance void class [mscorlib]
System.Collections.Generic.Dictionary`2<string,int32>::.ctor()

As another example, if you have a generic type that uses another generic type as a type param-
eter, you would author CIL code such as the following:

// In C#: List<List<int>> myInts = new List<List<int>>();
newobj instance void class [mscorlib]
System.Collections.Generic.List`1<class
[mscorlib]System.Collections.Generic.List`1<int32>>::.ctor()

Finally, when you are authoring a class, a structure, or an interface that is itself generic, you
would make use of this same syntax at the point of type declaration. For example:

// A custom generic class with 1 type parameter.
.class public MyGenericClass`1<T>{}

Compiling the CILTypes.il file
Even though you have not yet added any members or implementation code to the types you have
defined, you are able to compile this *.il file into a .NET DLL assembly (which you must do, as you
have not specified a Main() method). Open up a command prompt and enter the following com-
mand to ilasm.exe:

ilasm /dll CilTypes.il

Once you have done so, you are able to open your binary into ildasm.exe (see Figure 19-5).

Figure 19-5. The CILTypes.dll assembly

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES634

8849CH19.qxd 10/1/07 11:16 AM Page 634

Once you have confirmed the contents of your assembly, run peverify.exe against it. Notice
that you are issued a number of errors, given that all your types are completely empty (see
Figure 19-6).

Figure 19-6. Empty types yield verification errors!

To understand how to populate a type with content, you first need to examine the fundamental
data types of CIL.

.NET Base Class Library, C#, and CIL Data Type
Mappings
Table 19-4 illustrates how a .NET base class type maps to the corresponding C# keyword, and how
each C# keyword maps into raw CIL. As well, Table 19-4 documents the shorthand constant nota-
tions used for each CIL type. As you will see in just a moment, these constants are often referenced
by numerous CIL opcodes.

Table 19-4. Mapping .NET Base Class Types to C# Keywords, and C# Keywords to CIL

.NET Base Class Type C# Keyword CIL Representation CIL Constant Notation

System.SByte sbyte int8 I1

System.Byte byte unsigned int8 U1

System.Int16 short int16 I2

System.UInt16 ushort unsigned int16 U2

System.Int32 int int32 I4

System.UInt32 uint unsigned int32 U4

System.Int64 long int64 I8

System.UInt64 ulong unsigned int64 U8

System.Char char char CHAR

System.Single float float32 R4

System.Double double float64 R8

System.Boolean bool bool BOOLEAN

System.String string string N/A

System.Object object object N/A

System.Void void void VOID

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 635

8849CH19.qxd 10/1/07 11:16 AM Page 635

Defining Type Members in CIL
As you are already aware, .NET types may support various members. Enumerations have some set
of name/value pairs. Structures and classes may have constructors, fields, methods, properties,
static members, and so on. Over the course of this book’s first 18 chapters, you have already seen
partial CIL definitions for the items previously mentioned, but nevertheless, here is a quick recap
of how various members map to CIL primitives.

Defining Field Data in CIL
Enumerations, structures, and classes can all support field data. In each case, the .field directive
will be used. For example, let’s breathe some life into the skeleton MyEnum enumeration and define
three name/value pairs (note the values are specified within parentheses):

.class public sealed enum MyEnum
{
.field public static literal valuetype
MyNamespace.MyEnum A = int32(0)
.field public static literal valuetype
MyNamespace.MyEnum B = int32(1)
.field public static literal valuetype
MyNamespace.MyEnum C = int32(2)

}

Fields that reside within the scope of a .NET System.Enum-derived type are qualified using the
static and literal attributes. As you would guess, these attributes set up the field data to be a fixed
value accessible from the type itself (e.g., MyEnum.NameOne).

■Note The values assigned to an enum value may also be in hexadecimal with an 0x prefix.

Of course, when you wish to define a point of field data within a class or structure, you are not
limited to a point of public static literal data. For example, you could update MyBaseClass to support
two points of private, instance-level field data:

.class public MyBaseClass
{
.field private string stringField
.field private int32 intField

}

As in C#, class field data will automatically be initialized to an appropriate default value. If you
wish to allow the object user to supply custom values at the time of creation for each of these points
of private field data, you (of course) need to create custom constructors.

Defining Type Constructors in CIL
The CTS supports both instance-level and class-level (static) constructors. In terms of CIL,
instance-level constructors are represented using the .ctor token, while a static-level constructor
is expressed via .cctor (class constructor). Both of these CIL tokens must be qualified using the
rtspecialname (return type special name) and specialname attributes. Simply put, these attributes
are used to identify a specific CIL token that can be treated in unique ways by a given .NET lan-
guage. For example, in C#, constructors do not define a return type; however, in terms of CIL, the
return value of a constructor is indeed void:

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES636

8849CH19.qxd 10/1/07 11:16 AM Page 636

.class public MyBaseClass
{
.field private string stringField
.field private int32 intField

.method public hidebysig specialname rtspecialname
instance void .ctor(string s, int32 i) cil managed

{
// TODO: Add implementation code...

}
}

Note that the .ctor directive has been qualified with the instance attribute (as it is not a static
constructor). The cil managed attributes denote that the scope of this method contains CIL code,
rather than unmanaged code, which may be used during platform invocation requests.

Defining Properties in CIL
Properties and methods also have specific CIL representations. By way of an example, if
MyBaseClass were updated to support a public property named TheString, you would author
the following CIL (note again the use of the specialname attribute):

.class public MyBaseClass
{
...
.method public hidebysig specialname
instance string get_TheString() cil managed

{
// TODO: Add implementation code...

}

.method public hidebysig specialname
instance void set_TheString(string 'value') cil managed

{
// TODO: Add implementation code...

}

.property instance string TheString()
{
.get instance string
MyNamespace.MyBaseClass::get_TheString()

.set instance void
MyNamespace. MyBaseClass::set_TheString(string)

}
}

Recall that in terms of CIL, a property maps to a pair of methods that take get_ and set_
prefixes. The .property directive makes use of the related .get and .set directives to map property
syntax to the correct “specially named” methods.

■Note Notice that the incoming parameter to the set method of a property is placed in single-tick quotation
marks, which represents the name of the token to use on the right-hand side of the assignment operator within
the method scope.

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 637

8849CH19.qxd 10/1/07 11:16 AM Page 637

Defining Member Parameters
In a nutshell, specifying arguments in CIL is (more or less) identical to doing so in C#. For example,
each argument is defined by specifying its data type followed by the parameter name. Furthermore,
like C#, CIL provides a way to define input, output, and pass-by-reference parameters. As well, CIL
allows you to define a parameter array argument (aka the C# params keyword) as well as optional
parameters (which are not supported in C#, but are used in VB .NET).

To illustrate the process of defining parameters in raw CIL, assume you wish to build a method
that takes an int32 (by value), an int32 (by reference), a [mscorlib]System.Collection.ArrayList,
and a single output parameter (of type int32). In terms of C#, this method would look something
like the following:

public static void MyMethod(int inputInt,
ref int refInt, ArrayList ar, out int outputInt)

{
outputInt = 0; // Just to satisfy the C# compiler...

}

If you were to map this method into CIL terms, you would find that C# reference parameters
are marked with an ampersand (&) suffixed to the parameter’s underlying data type (int32&).
Output parameters also make use of the & suffix, but they are further qualified using the CIL [out]
token. Also notice that if the parameter is a reference type (in this case, the [mscorlib]System.
Collections.ArrayList type), the class token is prefixed to the data type (not to be confused with
the .class directive!):

.method public hidebysig static void MyMethod(int32 inputInt,
int32& refInt,
class [mscorlib]System.Collections.ArrayList ar,
[out] int32& outputInt) cil managed

{
...

}

Examining CIL Opcodes
The final aspect of CIL code you’ll examine in this chapter has to do with the role of various
operational codes (opcodes). Recall that an opcode is simply a CIL token used to build the imple-
mentation logic for a given member. The complete set of CIL opcodes (which is fairly large) can be
grouped into the following broad categories:

• Opcodes that control program flow

• Opcodes that evaluate expressions

• Opcodes that access values in memory (via parameters, local variables, etc.)

To provide some insight to the world of member implementation via CIL, Table 19-5 defines
some of the more useful opcodes that are directly related to member implementation logic,
grouped by related functionality.

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES638

8849CH19.qxd 10/1/07 11:16 AM Page 638

Table 19-5. Various Implementation-Specific CIL Opcodes

Opcodes Meaning in Life

add, sub, mul, div, rem These CIL opcodes allow you to add, subtract, multiply, and divide two
values (rem returns the remainder of a division operation).

and, or, not, xor These CIL opcodes allow you to perform binary operations on two
values.

ceq, cgt, clt These CIL opcodes allow you to compare two values on the stack in
various manners, for example:
ceq: Compare for equality
cgt: Compare for greater than
clt: Compare for less than

box, unbox These CIL opcodes are used to convert between reference types and
value types.

ret This CIL opcode is used to exit a method and return a value to the
caller (if necessary).

beq, bgt, ble, blt, switch These CIL opcodes (in addition to many other related opcodes) are
used to control branching logic within a method, for example:
beq: Break to code label if equal
bgt: Break to code label if greater than
ble: Break to code label if less than or equal to
blt: Break to code label if less than
All of the branch-centric opcodes require that you specify a CIL code
label to jump to if the result of the test is true.

call This CIL opcode is used to call a member on a given type.

nearer, newobj These CIL opcodes allow you to allocate a new array or new object
type into memory (respectively).

The next broad category of CIL opcodes (a subset of which is shown in Table 19-6) are used to
load (push) arguments onto the virtual execution stack. Note how these load-specific opcodes take
an ld (load) prefix.

Table 19-6. The Primary Stack-Centric Opcodes of CIL

Opcode Meaning in Life

ldarg (with numerous variations) Loads a method’s argument onto the stack. In addition to
the general ldarg (which works in conjunction with a given
index that identifies the argument), there are numerous
other variations. For example, ldarg opcodes that have a
numerical suffix (ldarg_0) hard-code which argument to
load. As well, variations of the ldarg opcode allow you to
hard-code the data type using the CIL constant notation
shown in Table 19-4 (ldarg_I4, for an int32) as well as the
data type and value (ldarg_I4_5, to load an int32 with the
value of 5).

ldc (with numerous variations) Loads a constant value onto the stack.

ldfld (with numerous variations) Loads the value of an instance-level field onto the stack.

ldloc (with numerous variations) Loads the value of a local variable onto the stack.

ldobj Obtains all the values gathered by a heap-based object and
places them on the stack.

ldstr Loads a string value onto the stack.

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 639

8849CH19.qxd 10/1/07 11:16 AM Page 639

In addition to the set of load-specific opcodes, CIL provides numerous opcodes that explicitly
pop the topmost value off the stack. As shown over the first few examples in this chapter, popping a
value off the stack typically involves storing the value into temporary local storage for further use
(such as a parameter for an upcoming method invocation). Given this, note how many opcodes that
pop the current value off the virtual execution stack take an st (store) prefix. Table 19-7 hits the
highlights.

Table 19-7. Various Pop-Centric Opcodes

Opcode Meaning in Life

pop Removes the value currently on top of the evaluation stack,
but does not bother to store the value

starg Stores the value on top of the stack into the method
argument at a specified index

stloc (with numerous variations) Pops the current value from the top of the evaluation stack
and stores it in a local variable list at a specified index

stobj Copies a value of a specified type from the evaluation stack
into a supplied memory address

stsfld Replaces the value of a static field with a value from the
evaluation stack

Do be aware that various CIL opcodes will implicitly pop values off the stack to perform the
task at hand. For example, if you are attempting to subtract two numbers using the sub opcode, it
should be clear that sub will have to pop off the next two available values before it can perform the
calculation. Once the calculation is complete, the result of the value (surprise, surprise) is pushed
onto the stack once again.

The .maxstack Directive
When you write method implementations using raw CIL, you need to be mindful of a special direc-
tive named .maxstack. As its name suggests, .maxstack establishes the maximum number of
variables that may be pushed onto the stack at any given time during the execution of the method.
The good news is that the .maxstack directive has a default value (8), which should be safe for a vast
majority of methods you may be authoring. However, if you wish to be very explicit, you are able to
manually calculate the number of local variables on the stack and define this value explicitly:

.method public hidebysig instance void
Speak() cil managed

{
// During the scope of this method, exactly
// 1 value (the string literal) is on the stack.
.maxstack 1
ldstr "Hello there..."
call void [mscorlib]System.Console::WriteLine(string)
ret

}

Declaring Local Variables in CIL
Let’s first check out how to declare a local variable. Assume you wish to build a method in CIL
named MyLocalVariables() that takes no arguments and returns void. Within the method, you

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES640

8849CH19.qxd 10/1/07 11:16 AM Page 640

wish to define three local variables of type System.String, System.Int32, and System.Object. In C#,
this member would appear as follows (recall that locally scoped variables do not receive a default
value and should be set to an initial state before further use):

public static void MyLocalVariables()
{
string myStr = "CIL code is fun!";
int myInt = 33;
object myObj = new object();

}

If you were to construct MyLocalVariables() directly in CIL, you could author the following:

.method public hidebysig static void
MyLocalVariables() cil managed

{
.maxstack 8
// Define three local variables.
.locals init ([0] string myStr, [1] int32 myInt, [2] object myObj)

// Load a string onto the virtual execution stack.
ldstr "CIL code is fun!"
// Pop off current value and store in local variable [0].
stloc.0

// Load a constant of type "i4"
// (shorthand for int32) set to the value 33.
ldc.i4 33
// Pop off current value and store in local variable [1].
stloc.1

// Create a new object and place on stack.
newobj instance void [mscorlib]System.Object::.ctor()
// Pop off current value and store in local variable [2].
stloc.2
ret

}

As you can see, the first step taken to allocate local variables in raw CIL is to make use of the
.locals directive, which is paired with the init attribute. Within the scope of the related parenthe-
ses, your goal is to associate a given numerical index to each variable (seen here as [0], [1], and
[2]). As you can see, each index is identified by its data type and an optional variable name. Once
the local variables have been defined, you load a value onto the stack (using the various load-
centric opcodes) and store the value within the local variable (using the various storage-centric
opcodes).

Mapping Parameters to Local Variables in CIL
You have already seen how to declare local variables in raw CIL using the .local init directive; how-
ever, you have yet to see exactly how to map incoming parameters to local methods. Consider the
following static C# method:

public static int Add(int a, int b)
{
return a + b;

}

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 641

8849CH19.qxd 10/1/07 11:16 AM Page 641

This innocent-looking method has a lot to say in terms of CIL. First, the incoming arguments (a
and b) must be pushed onto the virtual execution stack using the ldarg (load argument) opcode.
Next, the add opcode will be used to pop the next two values off the stack and find the summation,
and store the value on the stack yet again. Finally, this sum is popped off the stack and returned to
the caller via the ret opcode. If you were to disassemble this C# method using ildasm.exe, you
would find numerous additional tokens injected by csc.exe, but the crux of the CIL code is quite
simple:

.method public hidebysig static int32 Add(int32 a,
int32 b) cil managed

{
.maxstack 2
ldarg.0 // Load "a" onto the stack.
ldarg.1 // Load "b" onto the stack.
add // Add both values.
ret

}

The Hidden this Reference
Notice that the two incoming arguments (a and b) are referenced within the CIL code using their
indexed position (index 0 and index 1), given that the virtual execution stack begins indexing at
position 0.

One thing to be very mindful of when you are examining or authoring CIL code is that every
nonstatic method that takes incoming arguments automatically receives an implicit additional
parameter, which is a reference to the current object (think the C# this keyword). Given this, if the
Add() method were defined as nonstatic:

// No longer static!
public int Add(int a, int b)
{
return a + b;

}

the incoming a and b arguments are loaded using ldarg.1 and ldarg.2 (rather than the expected
ldarg.0 and ldarg.1 opcodes). Again, the reason is that slot 0 actually contains the implicit this
reference. Consider the following pseudo-code:

// This is JUST pseudo-code!
.method public hidebysig static int32 AddTwoIntParams(
MyClass_HiddenThisPointer this, int32 a, int32 b) cil managed

{
ldarg.0 // Load MyClass_HiddenThisPointer onto the stack.
ldarg.1 // Load "a" onto the stack.
ldarg.2 // Load "b" onto the stack.

...
}

Representing Iteration Constructs in CIL
Iteration constructs in the C# programming language are represented using the for, foreach, while,
and do keywords, each of which has a specific representation in CIL. Consider the classic for loop:

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES642

8849CH19.qxd 10/1/07 11:16 AM Page 642

public static void CountToTen()
{
for(int i = 0; i < 10; i++)
;

}

Now, as you may recall, the br opcodes (br, blt, and so on) are used to control a break in flow
when some condition has been met. In this example, you have set up a condition in which the for
loop should break out of its cycle when the local variable i is equal to or greater than the value of 10.
With each pass, the value of 1 is added to i, at which point the test condition is yet again evaluated.

Also recall that when you make use of any of the CIL branching opcodes, you will need to
define a specific code label (or two) that marks the location to jump to when the condition is indeed
true. Given these points, ponder the following (augmented) CIL code generated via ildasm.exe
(including the autogenerated code labels):

.method public hidebysig static void CountToTen() cil managed
{
.maxstack 2
.locals init ([0] int32 i) // Init the local integer "i".
IL_0000: ldc.i4.0 // Load this value onto the stack.
IL_0001: stloc.0 // Store this value at index "0".
IL_0002: br.s IL_0008 // Jump to IL_0008.
IL_0004: ldloc.0 // Load value of variable at index 0.
IL_0005: ldc.i4.1 // Load the value "1" on the stack.
IL_0006: add // Add current value on the stack at index 0.
IL_0007: stloc.0
IL_0008: ldloc.0 // Load value at index "0".
IL_0009: ldc.i4.s 10 // Load value of "10" onto the stack.
IL_000b: blt.s IL_0004 // Less than? If so, jump back to IL_0004
IL_000d: ret

}

In a nutshell, this CIL code begins by defining the local int32 and loading it onto the stack. At
this point, you jump back and forth between code label IL_0008 and IL_0004, each time bumping
the value of i by 1 and testing to see whether i is still less than the value 10. If so, you exit the
method.

■Source Code The CilTypes example is included under the Chapter 19 subdirectory.

Building a .NET Assembly with CIL
Now that you’ve taken a tour of the syntax and semantics of raw CIL, it’s time to solidify your cur-
rent understanding by building a .NET application using nothing but ilasm.exe and your text editor
of choice. Specifically, your application will consist of a privately deployed, single-file *.dll that
contains two class type definitions, and a console-based *.exe that interacts with these types.

Building CILCars.dll
The first order of business is to build the *.dll to be consumed by the client. Open a text editor and
create a new *.il file named CILCars.il. This single-file assembly will make use of two external
.NET binaries. Begin by updating your code file as follows:

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 643

8849CH19.qxd 10/1/07 11:16 AM Page 643

// Reference mscorlib.dll and
// System.Windows.Forms.dll
.assembly extern mscorlib
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}
.assembly extern System.Windows.Forms
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}

// Define the single-file assembly.
.assembly CILCars
{
.hash algorithm 0x00008004
.ver 1:0:0:0

}
.module CILCars.dll

As mentioned, this assembly will contain two class types. The first type, CILCar, defines two
points of field data and a custom constructor. The second type, CarInfoHelper, defines a single
static method named DisplayCarInfo(), which takes CILCar as a parameter and returns void. Both
types are in the CILCars namespace. In terms of CIL, CILCar can be implemented as follows:

// Implementation of CILCars.CILCar type.
.namespace CILCars
{
.class public auto ansi beforefieldinit CILCar
extends [mscorlib]System.Object

{
// The field data of the CILCar.
.field public string petName
.field public int32 currSpeed

// The custom constructor simply allows the caller
// to assign the field data.
.method public hidebysig specialname rtspecialname

instance void .ctor(int32 c, string p) cil managed
{
.maxstack 8

// Load first arg onto the stack and call base class ctor.
ldarg.0 // "this" object, not the int32!
call instance void [mscorlib]System.Object::.ctor()

// Now load first and second args onto the stack.
ldarg.0 // "this" object
ldarg.1 // int32 arg

// Store topmost stack (int 32) member in currSpeed field.
stfld int32 CILCars.CILCar::currSpeed

// Load string arg and store in petName field.
ldarg.0 // "this" object
ldarg.2 // string arg

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES644

8849CH19.qxd 10/1/07 11:16 AM Page 644

stfld string CILCars.CILCar::petName
ret

}
}
}

Keeping in mind that the real first argument for any nonstatic member is the current object ref-
erence, the first block of CIL simply loads the object reference and calls the base class constructor.
Next, you push the incoming constructor arguments onto the stack and store them into the type’s
field data using the stfld (store in field) opcode.

Now let’s implement the second type in this namespace: CILCarInfo. The meat of the type is
found within the static Display() method. In a nutshell, the role of this method is to take the
incoming CILCar parameter, extract the values of its field data, and display it in a Windows Forms
message box. Here is the complete implementation of CILCarInfo, with analysis to follow:

.class public auto ansi beforefieldinit CILCarInfo
extends [mscorlib]System.Object

{
.method public hidebysig static void
Display(class CILCars.CILCar c) cil managed

{
.maxstack 8

// We need a local string variable.
.locals init ([0] string caption)

// Load string and the incoming CILCar onto the stack.
ldstr "{0}'s speed is:"
ldarg.0

// Now place the value of the CILCar's petName on the
// stack and call the static String.Format() method.
ldfld string CILCars.CILCar::petName
call string [mscorlib]System.String::Format(string, object)
stloc.0

// Now load the value of the currSpeed field and get its string
// representation (note call to ToString()).
ldarg.0
ldflda int32 CILCars.CILCar::currSpeed
call instance string [mscorlib]System.Int32::ToString()
ldloc.0

// Now call the MessageBox.Show() method with loaded values.
call valuetype [System.Windows.Forms]

System.Windows.Forms.DialogResult
[System.Windows.Forms]
System.Windows.Forms.MessageBox::Show(string, string)

pop
ret

}
}

Although the amount of CIL code is a bit more than you see in the implementation of CILCar,
things are still rather straightforward. First, given that you are defining a static method, you don’t
have to be concerned with the hidden object reference (thus, the ldarg.0 opcode really does load
the incoming CILCar argument).

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 645

8849CH19.qxd 10/1/07 11:16 AM Page 645

The method begins by loading a string ("{0}'s speed is") onto the stack, followed by the
CILCar argument. Once these two values are in place, you load the value of the petName field and
call the static System.String.Format() method to substitute the curly bracket placeholder with the
CILCar’s pet name.

The same general procedure takes place when processing the currSpeed field, but note that you
use the ldflda opcode, which loads the argument address onto the stack. At this point, you call
System.Int32.ToString() to transform the value at said address into a string type. Finally, once both
strings have been formatted as necessary, you call the MessageBox.Show() method.

At this point, you are able to compile your new *.dll using ilasm.exe with the following
command:

ilasm /dll CILCars.il

and verify the contained CIL using peverify.exe:

peverify CILCars.dll

Building CILCarClient.exe
Now you can build a simple *.exe assembly that will

• Make a CILCar type.

• Pass the type into the static CILCarInfo.Display() method.

Create a new file named CarClient.il and define external references to mscorlib.dll and
CILCars.dll (don’t forget to place a copy of this .NET assembly in the client’s application directory!).
Next, define a single type (Program) that manipulates the CILCars.dll assembly. Here’s the complete
code:

// External assembly refs.
.assembly extern mscorlib
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}
.assembly extern CILCars
{
.ver 1:0:0:0

}

// Our executable assembly.
.assembly CarClient
{
.hash algorithm 0x00008004
.ver 0:0:0:0

}
.module CarClient.exe

// Implementation of Program type
.namespace CarClient
{
.class private auto ansi beforefieldinit Program
extends [mscorlib]System.Object
{
.method private hidebysig static void

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES646

8849CH19.qxd 10/1/07 11:16 AM Page 646

Main(string[] args) cil managed
{
// Marks the entry point of the *.exe.
.entrypoint
.maxstack 8

// Declare a local CILCar type and push
// values on the stack for ctor call.
.locals init ([0] class
[CILCars]CILCars.CILCar myCilCar)
ldc.i4 55
ldstr "Junior"

// Make new CilCar; store and load reference.
newobj instance void
[CILCars]CILCars.CILCar::.ctor(int32, string)

stloc.0
ldloc.0

// Call Display() and pass in topmost value on stack.
call void [CILCars]

CILCars.CILCarInfo::Display(
class [CILCars]CILCars.CILCar)

ret
}

}
}

The one opcode that is important to point out is .entrypoint. Recall from the discussion earlier
in this chapter that this opcode is used to mark which method of an *.exe functions as the entry
point of the module. In fact, given that .entrypoint is how the CLR identifies the initial method to
execute, this method can be called anything, although here we are using the standard method name
of Main(). The remainder of the CIL code found in the Main() method is your basic pushing and
popping of stack-based values.

Do note, however, that the creation of CILCar involves the use of the .newobj opcode. On a
related note, recall that when you wish to invoke a member of a type using raw CIL, you make use of
the double-colon syntax and, as always, make use of the fully qualified name of the type. With this,
you can compile your new file with ilasm.exe, verify your assembly with peverify.exe, and execute
your program. Issue the following commands within your command prompt:

ilasm CarClient.il
peverify CarClient.exe
CarClient.exe

Figure 19-7 shows the end result.

Figure 19-7. Your CILCar in action

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 647

8849CH19.qxd 10/1/07 11:16 AM Page 647

That wraps up the CIL primer and the first goal of this chapter. At this point, I hope you feel
confident that you can open a particular .NET assembly using ildasm.exe (or a similar tool) and
gain a better understanding of what exactly is occurring behind the scenes.

■Source Code The CilCars example is included under the Chapter 19 subdirectory.

Understanding Dynamic Assemblies
As you may have gathered, the process of building a complex .NET application in CIL would be
quite the labor of love. On the one hand, CIL is an extremely expressive programming language that
allows you to interact with all of the programming constructs allowed by the CTS. On the other
hand, authoring raw CIL is tedious, error-prone, and painful. While it is true that knowledge is
power, you may indeed wonder just how important it is to commit the laws of CIL syntax to mem-
ory. The answer is, “It depends.” To be sure, most of your .NET programming endeavors will not
require you to view, edit, or author CIL code. However, with the CIL primer behind you, you are now
ready to investigate the world of dynamic assemblies (as opposed to static assemblies) and the role
of the System.Reflection.Emit namespace.

The first question you may have is, “What exactly is the difference between static and dynamic
assemblies?” By definition, static assemblies are .NET binaries loaded directly from disk storage,
meaning they are located somewhere on your hard drive in a physical file (or possibly a set of files
in the case of a multifile assembly) at the time the CLR requests them. As you might guess, every
time you compile your C# source code, you end up with a static assembly.

A dynamic assembly, on the other hand, is created in memory on the fly using the types pro-
vided by the System.Reflection.Emit namespace. The System.Reflection.Emit namespace makes it
possible to create an assembly and its modules, type definitions, and CIL implementation logic at
runtime. Once you have done so, you are then free to save your in-memory binary to disk. This, of
course, results in a new static assembly. To be sure, the process of building a dynamic assembly
using the System.Reflection.Emit namespace does require some level of understanding regarding
the nature of CIL opcodes.

Although creating dynamic assemblies is a fairly advanced (and uncommon) programming
task, they can be useful under various circumstances:

• You are building a .NET programming tool that needs to generate assemblies on demand
based on user input.

• You are building a program that needs to generate proxies to remote types on the fly based
on the obtained metadata.

• You wish to load a static assembly and dynamically insert new types into the binary image.

Several aspects of the .NET runtime engine involve generating dynamic assemblies quietly in
the background. For example, ASP.NET makes use of this technique to map markup and server-side
script code into a runtime object model. LINQ also can generate code on the fly based on various
query expressions. This being said, let’s check out the types within System.Reflection.Emit.

Exploring the System.Reflection.Emit Namespace
Creating a dynamic assembly requires you to have some familiarity with CIL opcodes, but the types
of the System.Reflection.Emit namespace hide the complexity of CIL as much as possible. For

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES648

8849CH19.qxd 10/1/07 11:16 AM Page 648

example, rather than directly specifying the necessary CIL directives and attributes to define a class
type, you can simply make use of the TypeBuilder class. Likewise, if you wish to define a new
instance-level constructor, you have no need to emit the specialname, rtspecialname, or .ctor
tokens; rather, you can make use of the ConstructorBuilder. Table 19-8 documents the key mem-
bers of the System.Reflection.Emit namespace.

Table 19-8. Select Members of the System.Reflection.Emit Namespace

Members Meaning in Life

AssemblyBuilder Used to create an assembly (*.dll or *.exe) at runtime. *.exes must
call the ModuleBuilder.SetEntryPoint() method to set the method
that is the entry point to the module. If no entry point is specified, a
*.dll will be generated.

ModuleBuilder Used to define the set of modules within the current assembly.

EnumBuilder Used to create a .NET enumeration type.

TypeBuilder May be used to create classes, interfaces, structures, and delegates
within a module at runtime.

MethodBuilder Used to create type members (such as methods, local variables,
LocalBuilder properties, constructors, and attributes) at runtime.
PropertyBuilder
FieldBuilder
ConstructorBuilder
CustomAttributeBuilder
ParameterBuilder
EventBuilder

ILGenerator Emits CIL opcodes into a given type member.

OpCodes Provides numerous fields that map to CIL opcodes. This type is used
in conjunction with the various members of System.Reflection.
Emit.ILGenerator.

In general, the types of the System.Reflection.Emit namespace allow you to represent raw CIL
tokens programmatically during the construction of your dynamic assembly. You will see many of
these members in the example that follows; however, the ILGenerator type is worth checking out
straightaway.

The Role of the System.Reflection.Emit.ILGenerator
As its name implies, the ILGenerator type’s role is to inject CIL opcodes into a given type member.
However, you cannot directly create ILGenerator objects, as this type has no public constructors,
rather you receive an ILGenerator type by calling specific methods of the builder-centric types
(such as the MethodBuilder and ConstructorBuilder types), for example:

// Obtain an ILGenerator from a ConstructorBuilder
// object named "myCtorBuilder".
ConstructorBuilder myCtorBuilder =
new ConstructorBuilder(/* ...various args... */);

ILGenerator myCILGen = myCtorBuilder.GetILGenerator();

Once you have an ILGenerator in your hands, you are then able to emit the raw CIL opcodes
using any number of methods. Table 19-9 documents some (but not all) methods of ILGenerator.

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 649

8849CH19.qxd 10/1/07 11:16 AM Page 649

Table 19-9. Various Methods of ILGenerator

Method Meaning in Life

BeginCatchBlock() Begins a catch block

BeginExceptionBlock() Begins an exception block for a nonfiltered exception

BeginFinallyBlock() Begins a finally block

BeginScope() Begins a lexical scope

DeclareLocal() Declares a local variable

DefineLabel() Declares a new label

Emit() Is overloaded numerous times to allow you to emit CIL opcodes

EmitCall() Pushes a call or callvirt opcode into the CIL stream

EmitWriteLine() Emits a call to Console.WriteLine() with different types of values

EndExceptionBlock() Ends an exception block

EndScope() Ends a lexical scope

ThrowException() Emits an instruction to throw an exception

UsingNamespace() Specifies the namespace to be used in evaluating locals and watches for
the current active lexical scope

The key method of ILGenerator is Emit(), which works in conjunction with the System.
Reflection.Emit.OpCodes class type. As mentioned earlier in this chapter, this type exposes a good
number of read-only fields that map to raw CIL opcodes. The full set of these members are all docu-
mented within online help, and you will see various examples in the pages that follow.

Emitting a Dynamic Assembly
To illustrate the process of defining a .NET assembly at runtime, let’s walk through the process of
creating a single-file dynamic assembly named MyAssembly.dll. Within this module is a class
named HelloWorld. The HelloWorld type supports a default constructor and a custom constructor
that is used to assign the value of a private member variable (theMessage) of type string. In addi-
tion, HelloWorld supports a public instance method named SayHello(), which prints a greeting to
the standard I/O stream, and another instance method named GetMsg(), which returns the internal
private string. In effect, you are going to programmatically generate the following class type:

// This class will be created at runtime
// using System.Reflection.Emit.
public class HelloWorld
{
private string theMessage;
HelloWorld() {}
HelloWorld(string s) {theMessage = s;}

public string GetMsg() {return theMessage;}
public void SayHello()
{
System.Console.WriteLine("Hello from the HelloWorld class!");

}
}

Assume you have created a new Visual Studio 2008 Console Application project workspace
named DynamicAsmBuilder and import the System.Reflection, System.Reflection.Emit, and

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES650

8849CH19.qxd 10/1/07 11:16 AM Page 650

System.Threading namespaces. Define a static method named CreateMyAsm(). This single method
is in charge of the following:

• Defining the characteristics of the dynamic assembly (name, version, etc.)

• Implementing the HelloClass type

• Saving the in-memory assembly to a physical file

Also note that the CreateMyAsm() method takes as a single parameter a System.AppDomain type,
which will be used to obtain access to the AssemblyBuilder type associated with the current applica-
tion domain (see Chapter 17 for a discussion of .NET application domains). Here is the complete
code, with analysis to follow:

// The caller sends in an AppDomain type.
public static void CreateMyAsm(AppDomain curAppDomain)
{
// Establish general assembly characteristics.
AssemblyName assemblyName = new AssemblyName();
assemblyName.Name = "MyAssembly";
assemblyName.Version = new Version("1.0.0.0");

// Create new assembly within the current AppDomain.
AssemblyBuilder assembly =
curAppDomain.DefineDynamicAssembly(assemblyName,
AssemblyBuilderAccess.Save);

// Given that we are building a single-file
// assembly, the name of the module is the same as the assembly.
ModuleBuilder module =
assembly.DefineDynamicModule("MyAssembly", "MyAssembly.dll");

// Define a public class named "HelloWorld".
TypeBuilder helloWorldClass = module.DefineType("MyAssembly.HelloWorld",
TypeAttributes.Public);

// Define a private String member variable named "theMessage".
FieldBuilder msgField =
helloWorldClass.DefineField("theMessage", Type.GetType("System.String"),
FieldAttributes.Private);

// Create the custom ctor.
Type[] constructorArgs = new Type[1];
constructorArgs[0] = typeof(string);
ConstructorBuilder constructor =
helloWorldClass.DefineConstructor(MethodAttributes.Public,
CallingConventions.Standard,
constructorArgs);

ILGenerator constructorIL = constructor.GetILGenerator();
constructorIL.Emit(OpCodes.Ldarg_0);
Type objectClass = typeof(object);
ConstructorInfo superConstructor =
objectClass.GetConstructor(new Type[0]);

constructorIL.Emit(OpCodes.Call, superConstructor);
constructorIL.Emit(OpCodes.Ldarg_0);
constructorIL.Emit(OpCodes.Ldarg_1);
constructorIL.Emit(OpCodes.Stfld, msgField);
constructorIL.Emit(OpCodes.Ret);

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 651

8849CH19.qxd 10/1/07 11:16 AM Page 651

// Create the default ctor.
helloWorldClass.DefineDefaultConstructor(MethodAttributes.Public);

// Now create the GetMsg() method.
MethodBuilder getMsgMethod =
helloWorldClass.DefineMethod("GetMsg", MethodAttributes.Public,
typeof(string), null);

ILGenerator methodIL = getMsgMethod.GetILGenerator();
methodIL.Emit(OpCodes.Ldarg_0);
methodIL.Emit(OpCodes.Ldfld, msgField);
methodIL.Emit(OpCodes.Ret);

// Create the SayHello method.
MethodBuilder sayHiMethod =
helloWorldClass.DefineMethod("SayHello",
MethodAttributes.Public, null, null);

methodIL = sayHiMethod.GetILGenerator();
methodIL.EmitWriteLine("Hello from the HelloWorld class!");
methodIL.Emit(OpCodes.Ret);

// "Bake" the class HelloWorld.
// (Baking is the formal term for emitting the type)
helloWorldClass.CreateType();

// (Optionally) save the assembly to file.
assembly.Save("MyAssembly.dll");

}

Emitting the Assembly and Module Set
The method body begins by establishing the minimal set of characteristics about your assembly,
using the AssemblyName and Version types (defined in the System.Reflection namespace). Next, you
obtain an AssemblyBuilder type via the instance-level AppDomain.DefineDynamicAssembly() method
(recall the caller will pass in an AppDomain reference into the CreateMyAsm() method):

// Establish general assembly characteristics
// and gain access to the AssemblyBuilder type.
public static void CreateMyAsm(AppDomain curAppDomain)
{
AssemblyName assemblyName = new AssemblyName();
assemblyName.Name = "MyAssembly";
assemblyName.Version = new Version("1.0.0.0");

// Create new assembly within the current AppDomain.
AssemblyBuilder assembly =
curAppDomain.DefineDynamicAssembly(assemblyName,
AssemblyBuilderAccess.Save);

...
}

As you can see, when calling AppDomain.DefineDynamicAssembly(), you must specify the access
mode of the assembly you wish to define, which can be any of the values shown in Table 19-10.

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES652

8849CH19.qxd 10/1/07 11:16 AM Page 652

Table 19-10. Values of the AssemblyBuilderAccess Enumeration

Value Meaning in Life

ReflectionOnly Represents that a dynamic assembly that can only be reflected over

Run Represents that a dynamic assembly can be executed in memory but not saved
to disk

RunAndSave Represents that a dynamic assembly can be executed in memory and saved
to disk

Save Represents that a dynamic assembly can be saved to disk but not executed in
memory

The next task is to define the module set for your new assembly. Given that the assembly is a
single file unit, you need to define only a single module. If you were to build a multifile assembly
using the DefineDynamicModule() method, you would specify an optional second parameter that
represents the name of a given module (e.g., myMod.dotnetmodule). However, when creating a single-
file assembly, the name of the module will be identical to the name of the assembly itself. In any
case, once the DefineDynamicModule() method has returned, you are provided with a reference to a
valid ModuleBuilder type:

// The single-file assembly.
ModuleBuilder module =
assembly.DefineDynamicModule("MyAssembly", "MyAssembly.dll");

The Role of the ModuleBuilder Type
ModuleBuilder is the key type used during the development of dynamic assemblies. As you would
expect, ModuleBuilder supports a number of members that allow you to define the set of types con-
tained within a given module (classes, interfaces, structures, etc.) as well as the set of embedded
resources (string tables, images, etc.) contained within. Table 19-11 describes a few of the creation-
centric methods. (Do note that each method will return to you a related type that represents the
type you wish to construct.)

Table 19-11. Select Members of the ModuleBuilder Type

Method Meaning in Life

DefineEnum() Used to emit a .NET enum definition

DefineResource() Defines a managed embedded resource to be stored in this module

DefineType() Constructs a TypeBuilder, which allows you to define value types, interfaces,
and class types (including delegates)

The key member of the ModuleBuilder class to be aware of is DefineType(). In addition to spec-
ifying the name of the type (via a simple string), you will also make use of the System.Reflection.
TypeAttributes enum to describe the format of the type itself. Table 19-12 lists some (but not all) of
the key members of the TypeAttributes enumeration.

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 653

8849CH19.qxd 10/1/07 11:16 AM Page 653

Table 19-12. Select Members of the TypeAttributes Enumeration

Member Meaning in Life

Abstract Specifies that the type is abstract

Class Specifies that the type is a class

Interface Specifies that the type is an interface

NestedAssembly Specifies that the class is nested with assembly visibility and is thus
accessible only by methods within its assembly

NestedFamAndAssem Specifies that the class is nested with assembly and family visibility, and is
thus accessible only by methods lying in the intersection of its family and
assembly

NestedFamily Specifies that the class is nested with family visibility and is thus accessible
only by methods within its own type and any subtypes

NestedFamORAssem Specifies that the class is nested with family or assembly visibility, and is
thus accessible only by methods lying in the union of its family and
assembly

NestedPrivate Specifies that the class is nested with private visibility

NestedPublic Specifies that the class is nested with public visibility

NotPublic Specifies that the class is not public

Public Specifies that the class is public

Sealed Specifies that the class is concrete and cannot be extended

Serializable Specifies that the class can be serialized

Emitting the HelloClass Type and the String Member Variable
Now that you have a better understanding of the role of the ModuleBuilder.CreateType() method,
let’s examine how you can emit the public HelloWorld class type and the private string variable:

// Define a public class named "MyAssembly.HelloWorld".
TypeBuilder helloWorldClass = module.DefineType("MyAssembly.HelloWorld",
TypeAttributes.Public);

// Define a private String member variable named "theMessage".
FieldBuilder msgField =
helloWorldClass.DefineField("theMessage",
typeof(string),
FieldAttributes.Private);

Notice how the TypeBuilder.DefineField() method provides access to a FieldBuilder type.
The TypeBuilder class also defines other methods that provide access to other “builder” types.
For example, DefineConstructor() returns a ConstructorBuilder, DefineProperty() returns a
PropertyBuilder, and so forth.

Emitting the Constructors
As mentioned earlier, the TypeBuilder.DefineConstructor() method can be used to define a
constructor for the current type. However, when it comes to implementing the constructor of
HelloClass, you need to inject raw CIL code into the constructor body, which is responsible for

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES654

8849CH19.qxd 10/1/07 11:16 AM Page 654

assigning the incoming parameter to the internal private string. To obtain an ILGenerator type,
you call the GetILGenerator() method from the respective “builder” type you have reference to (in
this case, the ConstructorBuilder type).

The Emit() method of the ILGenerator class is the entity in charge of placing CIL into a mem-
ber implementation. Emit() itself makes frequent use of the OpCodes class type, which exposes the
opcode set of CIL using read-only fields. For example, OpCodes.Ret signals the return of a method
call. OpCodes.Stfld makes an assignment to a member variable. OpCodes.Call is used to call a given
method (in this case, the base class constructor). That said, ponder the following constructor logic:

// Create the custom constructor taking
// a single System.String argument.
Type[] constructorArgs = new Type[1];
constructorArgs[0] = typeof(string);
ConstructorBuilder constructor =
helloWorldClass.DefineConstructor(MethodAttributes.Public,
CallingConventions.Standard, constructorArgs);

// Now emit the necessary CIL into the ctor.
ILGenerator constructorIL = constructor.GetILGenerator();
constructorIL.Emit(OpCodes.Ldarg_0);
Type objectClass = typeof(object);
ConstructorInfo superConstructor = objectClass.GetConstructor(new Type[0]);
constructorIL.Emit(OpCodes.Call, superConstructor); // Call base class ctor.

// Load the object's "this" pointer on the stack.
constructorIL.Emit(OpCodes.Ldarg_0);

// Load incoming argument on virtual stack and store in msgField.
constructorIL.Emit(OpCodes.Ldarg_1);
constructorIL.Emit(OpCodes.Stfld, msgField); // Assign msgField.
constructorIL.Emit(OpCodes.Ret); // Return.

Now, as you are well aware, as soon as you define a custom constructor for a type, the default
constructor is silently removed. To redefine the no-argument constructor, simply call the
DefineDefaultConstructor() method of the TypeBuilder type as follows:

// Reinsert the default ctor.
helloWorldClass.DefineDefaultConstructor(MethodAttributes.Public);

This single call emits the standard CIL code used to define a default constructor:

.method public hidebysig specialname rtspecialname
instance void .ctor() cil managed

{
.maxstack 1
ldarg.0
call instance void [mscorlib]System.Object::.ctor()
ret

}

Emitting the SayHello() Method
Last but not least, let’s examine the process of emitting the SayHello() method. The first task is to
obtain a MethodBuilder type from the helloWorldClass variable. Once you do this, you define the
method and obtain the underlying ILGenerator to inject the CIL instructions:

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 655

8849CH19.qxd 10/1/07 11:16 AM Page 655

// Create the SayHello method.
MethodBuilder sayHiMethod =
helloWorldClass.DefineMethod("SayHello",
MethodAttributes.Public, null, null);

methodIL = sayHiMethod.GetILGenerator();

// Write a line to the Console.
methodIL.EmitWriteLine("Hello there!");
methodIL.Emit(OpCodes.Ret);

Here you have established a public method (MethodAttributes.Public) that takes no parame-
ters and returns nothing (marked by the null entries contained in the DefineMethod() call). Also
note the EmitWriteLine() call. This helper member of the ILGenerator class automatically writes a
line to the standard output with minimal fuss and bother.

Using the Dynamically Generated Assembly
Now that you have the logic in place to create and save your assembly, all that’s needed is a class to
trigger the logic. To come full circle, assume your current project defines a second class named
AsmReader. The logic in Main() obtains the current AppDomain via the Thread.GetDoMain() method
that will be used to host the assembly you will dynamically create. Once you have a reference, you
are able to call the CreateMyAsm() method.

To make things a bit more interesting, once the call to CreateMyAsm() returns, you will exercise
some late binding (see Chapter 16) to load your newly created assembly into memory and interact
with the members of the HelloWorld class. Update your Main() method as follows:

static void Main(string[] args)
{
Console.WriteLine("***** The Amazing Dynamic Assembly Builder App *****");
// Get the application domain for the current thread.
AppDomain curAppDomain = Thread.GetDomain();

// Create the dynamic assembly using our helper f(x).
CreateMyAsm(curAppDomain);
Console.WriteLine("-> Finished creating MyAssembly.dll.");

// Now load the new assembly from file.
Console.WriteLine("-> Loading MyAssembly.dll from file.");
Assembly a = Assembly.Load("MyAssembly");

// Get the HelloWorld type.
Type hello = a.GetType("MyAssembly.HelloWorld");

// Create HelloWorld object and call the correct ctor.
Console.Write("-> Enter message to pass HelloWorld class: ");
string msg = Console.ReadLine();
object[] ctorArgs = new object[1];
ctorArgs[0] = msg;
object obj = Activator.CreateInstance(hello, ctorArgs);

// Call SayHello and show returned string.
Console.WriteLine("-> Calling SayHello() via late binding.");
MethodInfo mi = hello.GetMethod("SayHello");
mi.Invoke(obj, null);

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES656

8849CH19.qxd 10/1/07 11:16 AM Page 656

// Invoke method.
mi = hello.GetMethod("GetMsg");
Console.WriteLine(mi.Invoke(obj, null));

}

In effect, you have just created a .NET assembly that is able to create and execute .NET assem-
blies at runtime! That wraps up our examination of CIL and the role of dynamic assemblies. I hope
this chapter has deepened your understanding of the .NET type system and the syntax and seman-
tics of CIL.

■Note Be sure to load your dynamically created assembly into ildasm.exe to connect the dots between raw
CIL code and the functionality within the System.Reflection.Emit namespace.

■Source Code The DynamicAsmBuilder project is included under the Chapter 19 subdirectory.

Summary
This chapter provided an overview of the syntax and semantics of CIL. Unlike higher-level managed
languages such as C#, CIL does not simply define a set of keywords, but provides directives (used to
define the structure of an assembly and its types), attributes (which further qualify a given direc-
tive), and opcodes (which are used to implement type members). You were introduced to the CIL
compiler (ilasm.exe) and learned how to alter the contents of a .NET assembly with new CIL code
and also the basic process of building a .NET assembly using raw CIL.

The latter half of this chapter introduced you to the System.Reflection.Emit namespace.
Using these types, you are able to emit a .NET assembly on the fly to memory. As well, if you so
choose, you may persist this in-memory image to a physical file. Recall that many types of System.
Reflection.Emit will automatically generate the correct CIL directives and attributes using friendly
types such as ConstructorBuilder, TypeBuilder, and so forth. The ILGenerator type can be used to
inject the necessary CIL opcodes into a given member. While we do have a number of helper types
that attempt to make the process of programming with the CIL opcode set more palatable, you
must have an understanding of CIL when programming with dynamic assemblies.

CHAPTER 19 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 657

8849CH19.qxd 10/1/07 11:16 AM Page 657

8849CH19.qxd 10/1/07 11:16 AM Page 658

Introducing the .NET Base
Class Libraries

P A R T 5

8849CH20.qxd 10/17/07 5:58 PM Page 659

8849CH20.qxd 10/17/07 5:58 PM Page 660

File I/O and Isolated Storage

When you are creating full-blown desktop applications, the ability to save information between
user sessions is imperative. This chapter examines a number of I/O-related topics as seen through
the eyes of the .NET Framework. The first order of business is to explore the core types defined in
the System.IO namespace and come to understand how to programmatically modify a machine’s
directory and file structure. The next task is to explore various ways to read from and write to
character-based, binary-based, string-based, and memory-based data stores.

Once you have learned to manipulate files and directories using the core I/O types, you will
then be introduced to the topic of isolated storage (via the System.IO.IsolatedStorage namespace).
This approach to persisting user and application data allows applications that are running under a
restricted security environment to perform limited file I/O in a safe manner. To illustrate this API in
action, you will examine a security-centric aspect of the .NET platform termed Code Access Security
(CAS), which is commonly used in conjunction with isolated storage.

Exploring the System.IO Namespace
In the framework of .NET, the System.IO namespace is the region of the base class libraries devoted
to file-based (and memory-based) input and output (I/O) services. Like any namespace, System.IO
defines a set of classes, interfaces, enumerations, structures, and delegates, most of which are con-
tained in mscorlib.dll. In addition to the types contained within mscorlib.dll, the System.dll
assembly defines additional members of the System.IO namespace (given that all Visual Studio 2008
projects automatically set a reference to both assemblies, you should be ready to go).

Many of the types within the System.IO namespace focus on the programmatic manipulation
of physical directories and files. However, additional types provide support to read data from and
write data to string buffers as well as raw memory locations. To give you a road map of the function-
ality in System.IO, Table 20-1 outlines the core (nonabstract) classes.

Table 20-1. Key Members of the System.IO Namespace

Nonabstract I/O Class Type Meaning in Life

BinaryReader, BinaryWriter These types allow you to store and retrieve primitive data types
(integers, Booleans, strings, and whatnot) as a binary value.

BufferedStream This type provides temporary storage for a stream of bytes that
may be committed to storage at a later time.

Directory, DirectoryInfo These types are used to manipulate a machine’s directory
structure. The Directory type exposes functionality using static
members. The DirectoryInfo type exposes similar functionality
from a valid object reference.

Continued
661

C H A P T E R 2 0

8849CH20.qxd 10/17/07 5:58 PM Page 661

Table 20-1. Continued

Nonabstract I/O Class Type Meaning in Life

DriveInfo This type provides detailed information regarding the drives used
by a given machine.

File, FileInfo These types are used to manipulate a machine’s set of files. The
File type exposes functionality using static members. The FileInfo
type exposes similar functionality from a valid object reference.

FileStream This type allows for random file access (e.g., seeking capabilities)
with data represented as a stream of bytes.

FileSystemWatcher This type allows you to monitor the modification of external files
in a specified directory.

MemoryStream This type provides random access to streamed data stored in
memory rather than a physical file.

Path This type performs operations on System.String types that contain
file or directory path information in a platform-neutral manner.

StreamWriter, StreamReader These types are used to store (and retrieve) textual information to
(or from) a file. These types do not support random file access.

StringWriter, StringReader Like the StreamReader/StreamWriter types, these classes also work
with textual information. However, the underlying storage is a
string buffer rather than a physical file.

In addition to these concrete class types, System.IO defines a number of enumerations, as well
as a set of abstract classes (Stream, TextReader, TextWriter, and so forth), that define a shared poly-
morphic interface to all descendents. You will read about many of these types in this chapter.

The Directory(Info) and File(Info) Types
System.IO provides four types that allow you to manipulate individual files, as well as interact with
a machine’s directory structure. The first two types, Directory and File, expose creation, deletion,
copying, and moving operations using various static members. The closely related FileInfo and
DirectoryInfo types expose similar functionality as instance-level methods (and therefore must be
allocated with the new keyword). In Figure 20-1, notice that the Directory and File types directly extend
System.Object, while DirectoryInfo and FileInfo derive from the abstract FileSystemInfo type.

Figure 20-1. The File- and Directory-centric types

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE662

8849CH20.qxd 10/17/07 5:58 PM Page 662

Generally speaking, FileInfo and DirectoryInfo are better choices for obtaining full details of
a file or directory (e.g., time created, read/write capabilities, etc.), as their members tend to return
strongly typed objects. In contrast, the Directory and File class members tend to return simple
string values rather than strongly typed objects.

The Abstract FileSystemInfo Base Class
The DirectoryInfo and FileInfo types receive many behaviors from the abstract FileSystemInfo
base class. For the most part, the members of the FileSystemInfo class are used to discover general
characteristics (such as time of creation, various attributes, and so forth) about a given file or direc-
tory. Table 20-2 lists some core properties of interest.

Table 20-2. FileSystemInfo Properties

Property Meaning in Life

Attributes Gets or sets the attributes associated with the current file that are represented
by the FileAttributes enumeration

CreationTime Gets or sets the time of creation for the current file or directory

Exists Can be used to determine whether a given file or directory exists

Extension Retrieves a file’s extension

FullName Gets the full path of the directory or file

LastAccessTime Gets or sets the time the current file or directory was last accessed

LastWriteTime Gets or sets the time when the current file or directory was last written to

Name Obtains the name of the current file or directory

FileSystemInfo also defines the Delete() method. This is implemented by derived types to
delete a given file or directory from the hard drive. As well, Refresh() can be called prior to obtain-
ing attribute information to ensure that the statistics regarding the current file (or directory) are not
outdated.

Working with the DirectoryInfo Type
The first creatable I/O-centric type you will examine is the DirectoryInfo class. This class contains a
set of members used for creating, moving, deleting, and enumerating over directories and subdirec-
tories. In addition to the functionality provided by its base class (FileSystemInfo), DirectoryInfo
offers the key members in Table 20-3.

Table 20-3. Key Members of the DirectoryInfo Type

Member Meaning in Life

Create(), CreateSubdirectory() Create a directory (or set of subdirectories), given a path name

Delete() Deletes a directory and all its contents

GetDirectories() Returns an array of strings that represent all subdirectories in
the current directory

GetFiles() Retrieves an array of FileInfo types that represent a set of files
in the given directory

Continued

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 663

8849CH20.qxd 10/17/07 5:58 PM Page 663

Table 20-3. Continued

Member Meaning in Life

MoveTo() Moves a directory and its contents to a new path

Parent Retrieves the parent directory of the specified path

Root Gets the root portion of a path

You begin working with the DirectoryInfo type by specifying a particular directory path as a
constructor parameter. If you want to obtain access to the current working directory (i.e., the direc-
tory of the executing application), use the "." notation. Here are some examples:

// Bind to the current working directory.
DirectoryInfo dir1 = new DirectoryInfo(".");

// Bind to C:\Windows,
// using a verbatim string.
DirectoryInfo dir2 = new DirectoryInfo(@"C:\Windows");

In the second example, you are making the assumption that the path passed into the construc-
tor (C:\Windows) already exists on the physical machine. However, if you attempt to interact with a
nonexistent directory, a System.IO.DirectoryNotFoundException is thrown. Thus, if you specify a
directory that is not yet created, you will need to call the Create() method before proceeding:

// Bind to a nonexistent directory, then create it.
DirectoryInfo dir3 = new DirectoryInfo(@"C:\MyCode\Testing");
dir3.Create();

Once you have created a DirectoryInfo object, you can investigate the underlying directory
contents using any of the properties inherited from FileSystemInfo. To illustrate, create a new Con-
sole Application named DirectoryApp. Update your Program class with a new static method that
creates a new DirectoryInfo object mapped to C:\Windows (adjust your path if need be) that dis-
plays a number of interesting statistics (see Figure 20-2 for output):

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Fun with Directory(Info) *****\n");
ShowWindowsDirectoryInfo();
Console.ReadLine();

}

static void ShowWindowsDirectoryInfo()
{
// Dump directory information.
DirectoryInfo dir = new DirectoryInfo(@"C:\Windows");
Console.WriteLine("***** Directory Info *****");
Console.WriteLine("FullName: {0}", dir.FullName);
Console.WriteLine("Name: {0}", dir.Name);
Console.WriteLine("Parent: {0}", dir.Parent);
Console.WriteLine("Creation: {0}", dir.CreationTime);
Console.WriteLine("Attributes: {0}", dir.Attributes);
Console.WriteLine("Root: {0}", dir.Root);
Console.WriteLine("**************************\n");

}
}

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE664

8849CH20.qxd 10/17/07 5:58 PM Page 664

Figure 20-2. Information about your Windows directory

Enumerating Files with the DirectoryInfo Type
In addition to obtaining basic details of an existing directory, you can extend the current example to
use some methods of the DirectoryInfo type. First, let’s leverage the GetFiles() method to obtain
information about all *.jpg files located under the C:\Windows\Web\Wallpaper directory.

■Note If your machine does not have a C:\Windows\Web\Wallpaper directory, retrofit this code to read files of a
directory on your machine (for example, to read all *.bmp files from the C:\Windows directory).

This method returns an array of FileInfo types, each of which exposes details of a particular
file (full details of the FileInfo type are explored later in this chapter). Assume the following static
method of the Program class, called from within Main():

static void DisplayImageFiles()
{
DirectoryInfo dir = new DirectoryInfo(@"C:\Windows\Web\Wallpaper");
// Get all files with a *.jpg extension.
FileInfo[] imageFiles = dir.GetFiles("*.jpg");

// How many were found?
Console.WriteLine("Found {0} *.jpg files\n", imageFiles.Length);

// Now print out info for each file.
foreach (FileInfo f in imageFiles)
{
Console.WriteLine("***************************");
Console.WriteLine("File name: {0}", f.Name);
Console.WriteLine("File size: {0}", f.Length);
Console.WriteLine("Creation: {0}", f.CreationTime);
Console.WriteLine("Attributes: {0}", f.Attributes);
Console.WriteLine("***************************\n");

}
}

Once you run the application, you see a listing something like that shown in Figure 20-3. (Your
image names may vary!)

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 665

8849CH20.qxd 10/17/07 5:58 PM Page 665

Figure 20-3. Image file information

Creating Subdirectories with the DirectoryInfo Type
You can programmatically extend a directory structure using the DirectoryInfo.
CreateSubdirectory() method. This method can create a single subdirectory, as well as multiple
nested subdirectories, in a single function call. To illustrate, here is a method that extends the
directory structure of the application’s install path with some custom subdirectories:

static void ModifyAppDirectory()
{
DirectoryInfo dir = new DirectoryInfo(".");

// Create \MyFolder off application directory.
dir.CreateSubdirectory("MyFolder");

// Create \MyFolder2\Data off application directory.
dir.CreateSubdirectory(@"MyFolder2\Data");

}

If you call this method from within Main() and examine your Windows directory using Windows
Explorer, you will see that the new subdirectories are present and accounted for (see Figure 20-4).

Although you are not required to capture the return value of the CreateSubdirectory()
method, be aware that a DirectoryInfo type representing the newly created item is passed back
on successful execution. Consider the following update:

static void ModifyAppDirectory()
{
DirectoryInfo dir = new DirectoryInfo(".");

// Create \MyFolder off initial directory.
dir.CreateSubdirectory("MyFolder");

// Capture returned DirectoryInfo object.
DirectoryInfo myDataFolder = dir.CreateSubdirectory(@"MyFolder2\Data");

// Prints path to ..\MyFolder2\Data.
Console.WriteLine("New Folder is: {0}", myDataFolder);

}

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE666

8849CH20.qxd 10/17/07 5:58 PM Page 666

Figure 20-4. Creating subdirectories

Working with the Directory Type
Now that you have seen the DirectoryInfo type in action, you can learn about the Directory type.
For the most part, the static members of Directory mimic the functionality provided by the
instance-level members defined by DirectoryInfo. Recall, however, that the members of Directory
typically return string types rather than strongly typed FileInfo/DirectoryInfo types.

To illustrate some functionality of the Directory type, this final helper function displays the
names of all drives mapped to the current computer (via the Directory.GetLogicalDrives()
method) and uses the static Directory.Delete() method to remove the \MyFolder and
\MyFolder2\Data subdirectories previously created:

static void FunWithDirectoryType()
{
// List all drives on current computer.
string[] drives = Directory.GetLogicalDrives();
Console.WriteLine("Here are your drives:");
foreach (string s in drives)
Console.WriteLine("--> {0} ", s);

// Delete what was created.
Console.WriteLine("Press Enter to delete directories");
Console.ReadLine();
try
{
Directory.Delete(string.Format(@"{0}\MyFolder",
Environment.CurrentDirectory));

// The second parameter specifies whether you
// wish to destroy any subdirectories.
Directory.Delete(string.Format(@"{0}\MyFolder2",
Environment.CurrentDirectory), true);

}
catch (IOException e)
{
Console.WriteLine(e.Message);

}
}

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 667

8849CH20.qxd 10/17/07 5:58 PM Page 667

■Source Code The DirectoryApp project is located under the Chapter 20 subdirectory.

Working with the DriveInfo Class Type
The System.IO namespace provides a class named DriveInfo. Like Directory.GetLogicalDrives(),
the static DriveInfo.GetDrives() method allows you to discover the names of a machine’s drives.
Unlike Directory.GetLogicalDrives(), however, DriveInfo provides numerous other details (such
as the drive type, available free space, volume label, and whatnot). Consider the following Program
class defined within a new Console Application named DriveInfoApp:

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Fun with DriveInfo *****\n");

// Get info regarding all drives.
DriveInfo[] myDrives = DriveInfo.GetDrives();

// Now print drive stats.
foreach(DriveInfo d in myDrives)
{
Console.WriteLine("Name: {0}", d.Name);
Console.WriteLine("Type: {0}", d.DriveType);

// Check to see whether the drive is mounted.
if (d.IsReady)
{
Console.WriteLine("Free space: {0}", d.TotalFreeSpace);
Console.WriteLine("Format: {0}", d.DriveFormat);
Console.WriteLine("Label: {0}", d.VolumeLabel);
Console.WriteLine();

}
}
Console.ReadLine();

}
}

Figure 20-5 shows some possible output.

Figure 20-5. Gather drive details via DriveInfo.

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE668

8849CH20.qxd 10/17/07 5:58 PM Page 668

At this point, you have investigated some core behaviors of the Directory, DirectoryInfo, and
DriveInfo classes. Next, you’ll learn how to create, open, close, and destroy the files that populate a
given directory.

■Source Code The DriveInfoApp project is located under the Chapter 20 subdirectory.

Working with the FileInfo Class
As shown in the previous DirectoryApp example, the FileInfo class allows you to obtain details
regarding existing files on your hard drive (time created, size, file attributes, and so forth) and aids
in the creation, copying, moving, and destruction of files. In addition to the set of functionality
inherited by FileSystemInfo are some core members unique to the FileInfo class, which are
described in Table 20-4.

Table 20-4. FileInfo Core Members

Member Meaning in Life

AppendText() Creates a StreamWriter type (described later) that appends text to a file

CopyTo() Copies an existing file to a new file

Create() Creates a new file and returns a FileStream type (described later) to interact with
the newly created file

CreateText() Creates a StreamWriter type that writes a new text file

Delete() Deletes the file to which a FileInfo instance is bound

Directory Gets an instance of the parent directory

DirectoryName Gets the full path to the parent directory

Length Gets the size of the current file or directory

MoveTo() Moves a specified file to a new location, providing the option to specify a new
file name

Name Gets the name of the file

Open() Opens a file with various read/write and sharing privileges

OpenRead() Creates a read-only FileStream

OpenText() Creates a StreamReader type (described later) that reads from an existing text file

OpenWrite() Creates a write-only FileStream type

It is important to understand that a majority of the methods of the FileInfo class return a spe-
cific I/O-centric object (FileStream, StreamWriter, and so forth) that allows you to begin reading
and writing data to (or reading from) the associated file in a variety of formats. You will check out
these types in just a moment; however, before you see a working example, let’s examine various
ways to obtain a file handle using the FileInfo class type.

The FileInfo.Create() Method
The first way you can create a file handle is to make use of the FileInfo.Create() method:

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 669

8849CH20.qxd 10/17/07 5:58 PM Page 669

static void Main(string[] args)
{
// Make a new file on the C drive.
FileInfo f = new FileInfo(@"C:\Test.dat");
FileStream fs = f.Create();

// Use the FileStream object...

// Close down file stream.
fs.Close();

}

Notice that the FileInfo.Create() method returns a FileStream type, which exposes synchro-
nous and asynchronous write/read operations to/from the underlying file (more details in a
moment). Be aware that the FileStream object returned by FileInfo.Create() grants full read/write
access to all users.

Also notice that after we are done with the current FileStream object, we make sure to close
down the handle to release the underlying unmanaged resources of the stream. Given that
FileStream implements IDisposable, you can make use of the C# using scope to allow the compiler
to generate the teardown logic (see Chapter 8 for details):

static void Main(string[] args)
{
// Defining a 'using scope' for file I/O
// types is ideal.
FileInfo f = new FileInfo(@"C:\Test.dat");
using (FileStream fs = f.Create())
{
// Use the FileStream object...

}
}

The FileInfo.Open() Method
You can use the FileInfo.Open() method to open existing files as well as create new files with far
more precision than FileInfo.Create(), given that Open() typically takes several parameters to
qualify the overall structure of the file you are manipulating. Once the call to Open() completes, you
are returned a FileStream object. Consider the following logic:

static void Main(string[] args)
{
// Make a new file via FileInfo.Open().
FileInfo f2 = new FileInfo(@"C:\Test2.dat");
using(FileStream fs2 = f2.Open(FileMode.OpenOrCreate,
FileAccess.ReadWrite, FileShare.None))

{
// Use the FileStream object...

}
}

This version of the overloaded Open() method requires three parameters. The first parameter
specifies the general flavor of the I/O request (e.g., make a new file, open an existing file, append to
a file, etc.), which is specified using the FileMode enumeration (see Table 20-5 for details):

public enum FileMode
{
CreateNew,

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE670

8849CH20.qxd 10/17/07 5:58 PM Page 670

Create,
Open,
OpenOrCreate,
Truncate,
Append

}

Table 20-5. Members of the FileMode Enumeration

Member Meaning in Life

CreateNew Informs the OS to make a new file. If it already exists, an IOException is thrown.

Create Informs the OS to make a new file. If it already exists, it will be overwritten.

Open Opens an existing file. If the file does not exist, a FileNotFoundException is
thrown.

OpenOrCreate Opens the file if it exists; otherwise, a new file is created.

Truncate Opens a file and truncates the file to 0 bytes in size.

Append Opens a file, moves to the end of the file, and begins write operations (this flag
can only be used with a write-only stream). If the file does not exist, a new file is
created.

The second parameter, a value from the FileAccess enumeration, is used to determine the
read/write behavior of the underlying stream:

public enum FileAccess
{
Read,
Write,
ReadWrite

}

Finally, you have the third parameter, FileShare, which specifies how the file is to be shared
among other file handlers. Here are the core names:

public enum FileShare
{
None,
Read,
Write,
ReadWrite

}

The FileInfo.OpenRead() and FileInfo.OpenWrite() Methods
While the FileInfo.Open() method allows you to obtain a file handle in a very flexible manner, the
FileInfo class also provides members named OpenRead() and OpenWrite(). As you might imagine,
these methods return a properly configured read-only or write-only FileStream type, without the
need to supply various enumeration values. Like FileInfo.Create() and FileInfo.Open(),
OpenRead() and OpenWrite() return a FileStream object (do note that the following code assumes
you have files named Test3.dat and Test4.dat on your C drive):

static void Main(string[] args)
{
// Get a FileStream object with read-only permissions.

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 671

8849CH20.qxd 10/17/07 5:58 PM Page 671

FileInfo f3 = new FileInfo(@"C:\Test3.dat");
using(FileStream readOnlyStream = f3.OpenRead())
{
// Use the FileStream object...

}

// Now get a FileStream object with write-only permissions.
FileInfo f4 = new FileInfo(@"C:\Test4.dat");
using(FileStream writeOnlyStream = f4.OpenWrite())
{
// Use the FileStream object...

}
}

The FileInfo.OpenText() Method
Another open-centric member of the FileInfo type is OpenText(). Unlike Create(), Open(),
OpenRead(), and OpenWrite(), the OpenText() method returns an instance of the StreamReader type,
rather than a FileStream type. Assuming you have a file named boot.ini on your C drive, the follow-
ing would be one manner to gain access to its contents:

static void Main(string[] args)
{
// Get a StreamReader object.
FileInfo f5 = new FileInfo(@"C:\boot.ini");
using(StreamReader sreader = f5.OpenText())
{
// Use the StreamReader object...

}
}

As you will see shortly, the StreamReader type provides a way to read character data from the
underlying file.

The FileInfo.CreateText() and FileInfo.AppendText() Methods
The final two methods of interest at this point are CreateText() and AppendText(), both of which
return a StreamWriter reference, as shown here:

static void Main(string[] args)
{
FileInfo f6 = new FileInfo(@"C:\Test5.txt");
using(StreamWriter swriter = f6.CreateText())
{
// Use the StreamWriter object...

}

FileInfo f7 = new FileInfo(@"C:\FinalTest.txt");
using(StreamWriter swriterAppend = f7.AppendText())
{
// Use the StreamWriter object...

}
}

As you would guess, the StreamWriter type provides a way to write character data to the
underlying file.

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE672

8849CH20.qxd 10/17/07 5:58 PM Page 672

Working with the File Type
The File type provides functionality almost identical to that of the FileInfo type, using a number
of static members. Like FileInfo, File supplies AppendText(), Create(), CreateText(), Open(),
OpenRead(), OpenWrite(), and OpenText() methods. In fact, in many cases, the File and FileInfo
types may be used interchangeably. To illustrate, each of the previous FileStream examples can be
simplified by using the File type instead:

static void Main(string[] args)
{
// Obtain FileStream object via File.Create().
using(FileStream fs = File.Create(@"C:\Test.dat"))
{
}

// Obtain FileStream object via File.Open().
using(FileStream fs2 = File.Open(@"C:\Test2.dat",
FileMode.OpenOrCreate,
FileAccess.ReadWrite, FileShare.None))

{
}

// Get a FileStream object with read-only permissions.
using(FileStream readOnlyStream = File.OpenRead(@"Test3.dat"))
{
}

// Get a FileStream object with write-only permissions.
using(FileStream writeOnlyStream = File.OpenWrite(@"Test4.dat"))
{
}

// Get a StreamReader object.
using(StreamReader sreader = File.OpenText(@"C:\boot.ini"))
{
}

// Get some StreamWriters.
using(StreamWriter swriter = File.CreateText(@"C:\Test3.txt"))
{
}

using(StreamWriter swriterAppend = File.AppendText(@"C:\FinalTest.txt"))
{
}

}

Additional File-centric Members
The File type also supports a few unique members shown in Table 20-6, which can greatly simplify
the processes of reading and writing textual data.

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 673

8849CH20.qxd 10/17/07 5:58 PM Page 673

Table 20-6. Methods of the File Type

Method Meaning in Life

ReadAllBytes() Opens the specified file, returns the binary data as an array of bytes, and then
closes the file

ReadAllLines() Opens a specified file, returns the character data as an array of strings, and
then closes the file

ReadAllText() Opens a specified file, returns the character data as a System.String, and then
closes the file

WriteAllBytes() Opens the specified file, writes out the byte array, and then closes the file

WriteAllLines() Opens a specified file, writes out an array of strings, and then closes the file

WriteAllText() Opens a specified file, writes the character data, and then closes the file

Using these new methods of the File type, you are able to read and write batches of data in just
a few lines of code. Even better, each of these new members automatically closes down the under-
lying file handle. For example, the following console program (named SimpleFileIO) will persist the
string data into a new file on the C drive (and read it into memory) with minimal fuss:

using System;
using System.IO;

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Simple IO with the File Type *****\n");
string[] myTasks = {
"Fix bathroom sink", "Call Dave",
"Call Mom and Dad", "Play Xbox 360"};

// Write out all data to file on C drive.
File.WriteAllLines(@"C:\tasks.txt", myTasks);

// Read it all back and print out.
foreach (string task in File.ReadAllLines(@"C:\tasks.txt"))
{
Console.WriteLine("TODO: {0}", task);

}
Console.ReadLine();

}
}

Clearly, when you wish to quickly obtain a file handle, the File type will save you some key-
strokes. However, one benefit of first creating a FileInfo object is that you are able to investigate the
file using the members of the abstract FileSystemInfo base class.

■Source Code The SimpleFileIO project is located under the Chapter 20 subdirectory.

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE674

8849CH20.qxd 10/17/07 5:58 PM Page 674

The Abstract Stream Class
At this point, you have seen numerous ways to obtain FileStream, StreamReader, and StreamWriter
objects, but you have yet to read data from, or write data to, a file using these types. To understand
how to do so, you’ll need to become familiar with the concept of a stream. In the world of I/O
manipulation, a stream represents a chunk of data flowing between a source and a destination.
Streams provide a common way to interact with a sequence of bytes, regardless of what kind of
device (file, network connection, printer, etc.) is storing or displaying the bytes in question.

The abstract System.IO.Stream class defines a number of members that provide support for
synchronous and asynchronous interactions with the storage medium (e.g., an underlying file or
memory location). Figure 20-6 shows various descendents of the Stream type, seen through the
eyes of the Visual Studio 2008 Object Browser.

Figure 20-6. Stream-derived types

■Note Be aware that the concept of a stream is not limited to files IO. To be sure, the .NET libraries provide
stream access to networks, memory locations, and other stream-centric abstractions.

Again, Stream descendents represent data as a raw stream of bytes; therefore, working directly
with raw streams can be quite cryptic. Some Stream-derived types support seeking, which refers to
the process of obtaining and adjusting the current position in the stream. To begin understanding
the functionality provided by the Stream class, take note of the core members described in
Table 20-7.

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 675

8849CH20.qxd 10/17/07 5:58 PM Page 675

Table 20-7. Abstract Stream Members

Member Meaning in Life

CanRead, CanWrite Determine whether the current stream supports reading, seeking, and/or
CanSeek writing.

Close() Closes the current stream and releases any resources (such as sockets and
file handles) associated with the current stream. Internally, this method
is aliased to the Dispose() method; therefore “closing a stream” is
functionally equivalent to “disposing a stream.”

Flush() Updates the underlying data source or repository with the current state of
the buffer and then clears the buffer. If a stream does not implement a
buffer, this method does nothing.

Length Returns the length of the stream, in bytes.

Position Determines the position in the current stream.

Read(), ReadByte() Read a sequence of bytes (or a single byte) from the current stream and
advance the current position in the stream by the number of bytes read.

Seek() Sets the position in the current stream.

SetLength() Sets the length of the current stream.

Write(), WriteByte() Write a sequence of bytes (or a single byte) to the current stream and
advance the current position in this stream by the number of bytes
written.

Working with FileStreams
The FileStream class provides an implementation for the abstract Stream members in a manner
appropriate for file-based streaming. It is a fairly primitive stream; it can read or write only a single
byte or an array of bytes. In reality, you will not often need to directly interact with the members of
the FileStream type. Rather, you will most likely make use of various stream wrappers, which make
it easier to work with textual data or .NET types. Nevertheless, for illustrative purposes, let’s experi-
ment with the synchronous read/write capabilities of the FileStream type.

Assume you have a new Console Application named FileStreamApp. Your goal is to write a sim-
ple text message to a new file named myMessage.dat. However, given that FileStream can operate
only on raw bytes, you will be required to encode the System.String type into a corresponding byte
array. Luckily, the System.Text namespace defines a type named Encoding, which provides members
that encode and decode strings to (or from) an array of bytes (check out the .NET Framework 3.5
SDK documentation for full details of the Encoding type).

Once encoded, the byte array is persisted to file using the FileStream.Write() method. To read
the bytes back into memory, you must reset the internal position of the stream (via the Position
property) and call the ReadByte() method. Finally, you display the raw byte array and the decoded
string to the console. Here is the complete Main() method:

// Don't forget to import the System.Text and System.IO namespaces.
static void Main(string[] args)
{
Console.WriteLine("***** Fun with FileStreams *****\n");

// Obtain a FileStream object.
using(FileStream fStream = File.Open(@"C:\myMessage.dat",
FileMode.Create))

{
// Encode a string as an array of bytes.

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE676

8849CH20.qxd 10/17/07 5:58 PM Page 676

string msg = "Hello!";
byte[] msgAsByteArray = Encoding.Default.GetBytes(msg);

// Write byte[] to file.
fStream.Write(msgAsByteArray, 0, msgAsByteArray.Length);

// Reset internal position of stream.
fStream.Position = 0;

// Read the types from file and display to console.
Console.Write("Your message as an array of bytes: ");
byte[] bytesFromFile = new byte[msgAsByteArray.Length];
for (int i = 0; i < msgAsByteArray.Length; i++)
{
bytesFromFile[i] = (byte)fStream.ReadByte();
Console.Write(bytesFromFile[i]);

}

// Display decoded messages.
Console.Write("\nDecoded Message: ");
Console.WriteLine(Encoding.Default.GetString(bytesFromFile));

}
Console.ReadLine();

}

While this example does indeed populate the file with data, it punctuates the major downfall
of working directly with the FileStream type: it demands to operate on raw bytes. Other Stream-
derived types operate in a similar manner. For example, if you wish to write a sequence of bytes to a
region of memory, you can allocate a MemoryStream. Likewise, if you wish to push an array of bytes
through a network connection, you can make use of the NetworkStream type.

As mentioned, the System.IO namespace thankfully provides a number of “reader” and “writer”
types that encapsulate the details of working with Stream-derived types.

■Source Code The FileStreamApp project is included under the Chapter 20 subdirectory.

Working with StreamWriters and StreamReaders
The StreamWriter and StreamReader classes are useful whenever you need to read or write charac-
ter-based data (e.g., strings). Both of these types work by default with Unicode characters; however,
you can change this by supplying a properly configured System.Text.Encoding object reference. To
keep things simple, let’s assume that the default Unicode encoding fits the bill.

StreamReader derives from an abstract type named TextReader, as does the related
StringReader type (discussed later in this chapter). The TextReader base class provides a very lim-
ited set of functionality to each of these descendents, specifically the ability to read and peek into a
character stream.

The StreamWriter type (as well as StringWriter, also examined later in this chapter) derives
from an abstract base class named TextWriter. This class defines members that allow derived types
to write textual data to a given character stream.

To aid in your understanding of the core writing capabilities of the StreamWriter and
StringWriter classes, Table 20-8 describes the core members of the abstract TextWriter base
class.

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 677

8849CH20.qxd 10/17/07 5:58 PM Page 677

Table 20-8. Core Members of TextWriter

Member Meaning in Life

Close() This method closes the writer and frees any associated resources. In the process,
the buffer is automatically flushed (again, this member is functionally equivalent
to calling the Dispose() method).

Flush() This method clears all buffers for the current writer and causes any buffered data
to be written to the underlying device, but does not close the writer.

NewLine This property indicates the newline constant for the derived writer class. The
default line terminator for the Windows OS is a carriage return followed by a line
feed (\r\n).

Write() This overloaded method writes data to the text stream without a newline constant.

WriteLine() This overloaded method writes data to the text stream with a newline constant.

■Note The last two members of the TextWriter class probably look familiar to you. If you recall, the
System.Console type has Write() and WriteLine() members that push textual data to the standard output
device. In fact, the Console.In property wraps a TextWriter, and the Console.Out property wraps a
TextReader.

The derived StreamWriter class provides an appropriate implementation for the Write(),
Close(), and Flush() methods, and it defines the additional AutoFlush property. This property,
when set to true, forces StreamWriter to flush all data every time you perform a write operation.
Be aware that you can gain better performance by setting AutoFlush to false, provided you always
call Close() when you are done writing with a StreamWriter.

Writing to a Text File
To see the StreamWriter type in action, create a new Console Application named
StreamWriterReaderApp. The following Main() method creates a new file named reminders.txt
using the File.CreateText() method. Using the obtained StreamWriter object, you add some
textual data to the new file, as shown here:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with StreamWriter / StreamReader *****\n");

// Get a StreamWriter and write string data.
using(StreamWriter writer = File.CreateText("reminders.txt"))
{
writer.WriteLine("Don't forget Mother's Day this year...");
writer.WriteLine("Don't forget Father's Day this year...");
writer.WriteLine("Don't forget these numbers:");
for(int i = 0; i < 10; i++)
writer.Write(i + " ");

// Insert a new line.
writer.Write(writer.NewLine);

}

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE678

8849CH20.qxd 10/17/07 5:58 PM Page 678

Console.WriteLine("Created file and wrote some thoughts...");
Console.ReadLine();

}

Once you run this program, you can examine the contents of this new file (see Figure 20-7). You
will find this file under the bin\Debug folder of your current application, given that you have not
specified an absolute path at the time you called CreateText().

Figure 20-7. The contents of your *.txt file

Reading from a Text File
Now you need to understand how to programmatically read data from a file using the correspon-
ding StreamReader type. As you recall, this class derives from the abstract TextReader, which offers
the functionality described in Table 20-9.

Table 20-9. TextReader Core Members

Member Meaning in Life

Peek() Returns the next available character without actually changing the position of the
reader. A value of -1 indicates you are at the end of the stream.

Read() Reads data from an input stream.

ReadBlock() Reads a maximum of count characters from the current stream and writes the
data to a buffer, beginning at index.

ReadLine() Reads a line of characters from the current stream and returns the data as a string
(a null string indicates EOF).

ReadToEnd() Reads all characters from the current position to the end of the stream and returns
them as a single string.

If you now extend the current MyStreamWriterReader class to use a StreamReader, you can read
in the textual data from the reminders.txt file as shown here:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with StreamWriter / StreamReader *****\n");

...
// Now read data from file.
Console.WriteLine("Here are your thoughts:\n");
using(StreamReader sr = File.OpenText("reminders.txt"))
{
string input = null;
while ((input = sr.ReadLine()) != null)
{

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 679

8849CH20.qxd 10/17/07 5:58 PM Page 679

Console.WriteLine (input);
}

}
Console.ReadLine();

}

Once you run the program, you will see the character data within reminders.txt displayed to
the console.

Directly Creating StreamWriter/StreamReader Types
One of the slightly confusing aspects of working with the types within System.IO is that you can
often achieve an identical result using numerous approaches. For example, you have already seen
that you can obtain a StreamWriter via the File or FileInfo type using the CreateText() method.
In reality, there is yet another way in which you can work with StreamWriters and StreamReaders:
create them directly. For example, the current application could be retrofitted as follows:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with StreamWriter / StreamReader *****\n");

// Get a StreamWriter and write string data.
using(StreamWriter writer = new StreamWriter("reminders.txt"))
{
...
}

// Now read data from file.
using(StreamReader sr = new StreamReader("reminders.txt"))
{
...

}
}

Although it can be a bit confusing to see so many seemingly identical approaches to file I/O,
keep in mind that the end result is greater flexibility. In any case, now that you have seen how to
move character data to and from a given file using the StreamWriter and StreamReader types, you
will next examine the role of the StringWriter and StringReader classes.

■Source Code The StreamWriterReaderApp project is included under the Chapter 20 subdirectory.

Working with StringWriters and StringReaders
Using the StringWriter and StringReader types, you can treat textual information as a stream of
in-memory characters. This can prove helpful when you wish to append character-based infor-
mation to an underlying buffer. To illustrate, the following Console Application (named
StringReaderWriterApp) writes a block of string data to a StringWriter object rather than a
file on the local hard drive:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with StringWriter / StringReader *****\n");

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE680

8849CH20.qxd 10/17/07 5:58 PM Page 680

// Create a StringWriter and emit character data to memory.
using(StringWriter strWriter = new StringWriter())
{
strWriter.WriteLine("Don't forget Mother's Day this year...");
// Get a copy of the contents (stored in a string) and pump
// to console.
Console.WriteLine("Contents of StringWriter:\n{0}", strWriter);

}
Console.ReadLine();

}

Because StringWriter and StreamWriter both derive from the same base class (TextWriter),
the writing logic is more or less identical. However, given that nature of StringWriter, be aware that
this class allows you to extract a System.Text.StringBuilder object via the GetStringBuilder()
method:

using (StringWriter strWriter = new StringWriter())
{
strWriter.WriteLine("Don't forget Mother's Day this year...");
Console.WriteLine("Contents of StringWriter:\n{0}", strWriter);

// Get the internal StringBuilder.
StringBuilder sb = strWriter.GetStringBuilder();
sb.Insert(0, "Hey!! ");
Console.WriteLine("-> {0}", sb.ToString());
sb.Remove(0, "Hey!! ".Length);
Console.WriteLine("-> {0}", sb.ToString());

}

When you wish to read from a stream of character data, make use of the corresponding
StringReader type, which (as you would expect) functions identically to the related StreamReader
class. In fact, the StringReader class does nothing more than override the inherited members to
read from a block of character data, rather than a file, as shown here:

using (StringWriter strWriter = new StringWriter())
{
strWriter.WriteLine("Don't forget Mother's Day this year...");
Console.WriteLine("Contents of StringWriter:\n{0}", strWriter);

// Read data from the StringWriter.
using (StringReader strReader = new StringReader(strWriter.ToString()))
{
string input = null;
while ((input = strReader.ReadLine()) != null)
{
Console.WriteLine(input);

}
}

}

■Source Code The StringReaderWriterApp is included under the Chapter 20 subdirectory.

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 681

8849CH20.qxd 10/17/07 5:58 PM Page 681

Working with BinaryWriters and BinaryReaders
The final writer/reader sets you will examine here are BinaryReader and BinaryWriter, both of
which derive directly from System.Object. These types allow you to read and write discrete data
types to an underlying stream in a compact binary format. The BinaryWriter class defines a highly
overloaded Write() method to place a data type in the underlying stream. In addition to Write(),
BinaryWriter provides additional members that allow you to get or set the Stream-derived type and
offers support for random access to the data (see Table 20-10).

Table 20-10. BinaryWriter Core Members

Member Meaning in Life

BaseStream This read-only property provides access to the underlying stream used with the
BinaryWriter object.

Close() This method closes the binary stream.

Flush() This method flushes the binary stream.

Seek() This method sets the position in the current stream.

Write() This method writes a value to the current stream.

The BinaryReader class complements the functionality offered by BinaryWriter with the mem-
bers described in Table 20-11.

Table 20-11. BinaryReader Core Members

Member Meaning in Life

BaseStream This read-only property provides access to the underlying stream used with the
BinaryReader object.

Close() This method closes the binary reader.

PeekChar() This method returns the next available character without actually advancing the
position in the stream.

Read() This method reads a given set of bytes or characters and stores them in the
incoming array.

ReadXXXX() The BinaryReader class defines numerous read methods that grab the next type
from the stream (ReadBoolean(), ReadByte(), ReadInt32(), and so forth).

The following example (a Console Application named BinaryWriterReader) writes a number of
data types to a new *.dat file:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Binary Writers / Readers *****\n");

// Open a binary writer for a file.
FileInfo f = new FileInfo("BinFile.dat");
using(BinaryWriter bw = new BinaryWriter(f.OpenWrite()))
{
// Print out the type of BaseStream.
// (System.IO.FileStream in this case).
Console.WriteLine("Base stream is: {0}", bw.BaseStream);

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE682

8849CH20.qxd 10/17/07 5:58 PM Page 682

// Create some data to save in the file
double aDouble = 1234.67;
int anInt = 34567;
string aString = "A, B, C";

// Write the data
bw.Write(aDouble);
bw.Write(anInt);
bw.Write(aString);

}
Console.ReadLine();

}

Notice how the FileStream object returned from FileInfo.OpenWrite() is passed to the con-
structor of the BinaryWriter type. Using this technique, it is very simple to “layer in” a stream before
writing out the data. Do understand that the constructor of BinaryWriter takes any Stream-derived
type (e.g., FileStream, MemoryStream, or BufferedStream). Thus, if you would rather write binary data
to memory, simply supply a valid MemoryStream object.

To read the data out of the BinFile.dat file, the BinaryReader type provides a number of
options. Here, you will call various read-centric members to pluck each chunk of data from the
file stream:

static void Main(string[] args)
{
...
FileInfo f = new FileInfo("BinFile.dat");

...
// Read the binary data from the stream.
using(BinaryReader br = new BinaryReader(f.OpenRead()))
{
Console.WriteLine(br.ReadDouble());
Console.WriteLine(br.ReadInt32());
Console.WriteLine(br.ReadString());

}
Console.ReadLine();

}

■Source Code The BinaryWriterReader application is included under the Chapter 20 subdirectory.

Programmatically “Watching” Files
Now that you have a better handle on the use of various readers and writers, next you’ll look at the
role of the FileSystemWatcher class. This type can be quite helpful when you wish to programmati-
cally monitor (or “watch”) files on your system. Specifically, the FileSystemWatcher type can be
instructed to monitor files for any of the actions specified by the System.IO.NotifyFilters enumer-
ation (while many of these members are self-explanatory, check the .NET Framework 3.5 SDK
documentation for further details):

public enum NotifyFilters
{
Attributes, CreationTime,
DirectoryName, FileName,

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 683

8849CH20.qxd 10/17/07 5:58 PM Page 683

LastAccess, LastWrite,
Security, Size,

}

The first step you will need to take to work with the FileSystemWatcher type is to set the Path
property to specify the name (and location) of the directory that contains the files to be monitored,
as well as the Filter property that defines the file extensions of the files to be monitored.

At this point, you may choose to handle the Changed, Created, and Deleted events, all of which
work in conjunction with the FileSystemEventHandler delegate. This delegate can call any method
matching the following pattern:

// The FileSystemEventHandler delegate must point
// to methods matching the following signature.
void MyNotificationHandler(object source, FileSystemEventArgs e)

As well, the Renamed event may also be handled via the RenamedEventHandler delegate type,
which can call methods matching the following signature:

// The RenamedEventHandler delegate must point
// to methods matching the following signature.
void MyNotificationHandler(object source, RenamedEventArgs e)

To illustrate the process of watching a file, assume you have created a new directory on your
C drive named MyFolder that contains various *.txt files (named whatever you wish). The follow-
ing Console Application (named MyDirectoryWatcher) will monitor the *.txt files within the
MyFolder directory and print out messages in the event that the files are created, deleted, modified,
or renamed:

static void Main(string[] args)
{
Console.WriteLine("***** The Amazing File Watcher App *****\n");

// Establish the path to the directory to watch.
FileSystemWatcher watcher = new FileSystemWatcher();
try
{
watcher.Path = @"C:\MyFolder";

}
catch(ArgumentException ex)
{
Console.WriteLine(ex.Message);
return;

}

// Set up the things to be on the lookout for.
watcher.NotifyFilter = NotifyFilters.LastAccess
| NotifyFilters.LastWrite
| NotifyFilters.FileName
| NotifyFilters.DirectoryName;

// Only watch text files.
watcher.Filter = "*.txt";

// Add event handlers.
watcher.Changed += new FileSystemEventHandler(OnChanged);
watcher.Created += new FileSystemEventHandler(OnChanged);
watcher.Deleted += new FileSystemEventHandler(OnChanged);
watcher.Renamed += new RenamedEventHandler(OnRenamed);

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE684

8849CH20.qxd 10/17/07 5:58 PM Page 684

// Begin watching the directory.
watcher.EnableRaisingEvents = true;

// Wait for the user to quit the program.
Console.WriteLine(@"Press 'q' to quit app.");
while(Console.Read()!='q');

}

The two event handlers simply print out the current file modification:

static void OnChanged(object source, FileSystemEventArgs e)
{

// Specify what is done when a file is changed, created, or deleted.
Console.WriteLine("File: {0} {1}!", e.FullPath, e.ChangeType);

}

static void OnRenamed(object source, RenamedEventArgs e)
{

// Specify what is done when a file is renamed.
Console.WriteLine("File: {0} renamed to\n{1}", e.OldFullPath, e.FullPath);

}

To test this program, run the application and open Windows Explorer. Try renaming your files,
creating a *.txt file, deleting a *.txt file, and so forth. You will see various bits of information
regarding the state of the text files within MyFolder (see Figure 20-8).

Figure 20-8. Watching some text files

■Source Code The MyDirectoryWatcher application is included under the Chapter 20 subdirectory.

Performing Asynchronous File I/O
To conclude our examination of the System.IO namespace, let’s see how to interact with FileStream
types asynchronously. You have already seen the asynchronous support provided by the .NET
Framework during the examination of multithreading (see Chapter 18). Because large file I/O oper-
ations can be a lengthy task, all types deriving from System.IO.Stream inherit a set of methods that
enable asynchronous processing of the data. As you would expect, these methods work in conjunc-
tion with the IAsyncResult type:

public abstract class Stream :
MarshalByRefObject, IDisposable

{

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 685

8849CH20.qxd 10/17/07 5:58 PM Page 685

...
public virtual IAsyncResult BeginRead(byte[] buffer, int offset,
int count, AsyncCallback callback, object state);

public virtual IAsyncResult BeginWrite(byte[] buffer, int offset,
int count, AsyncCallback callback, object state);

public virtual int EndRead(IAsyncResult asyncResult);
public virtual void EndWrite(IAsyncResult asyncResult);

}

The process of working with the asynchronous behavior of Stream-derived types is identical to
working with asynchronous delegates and asynchronous remote method invocations. While it’s
unlikely that asynchronous behaviors will greatly improve file access, other streams (e.g., socket
based) are much more likely to benefit from asynchronous handling. In any case, the following
Console Application (AsyncFileStream) illustrates one manner in which you can asynchronously
interact with a FileStream type (be sure to import the System.Threading and System.IO name-
spaces):

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Fun with Async File I/O *****\n");

Console.WriteLine("Main thread started. ThreadID = {0}",
Thread.CurrentThread.GetHashCode());

// Must use this ctor to get a FileStream with asynchronous
// read or write access.
FileStream fs = new FileStream("logfile.txt", FileMode.Append,
FileAccess.Write, FileShare.None, 4096, true);

string msg = "this is a test";
byte[] buffer = Encoding.ASCII.GetBytes(msg);

// Start the asynchronous write. WriteDone invoked when finished.
// Note that the FileStream object is passed as state info to the
// callback method.
fs.BeginWrite(buffer, 0, buffer.Length,
new AsyncCallback(WriteDone), fs);

}

private static void WriteDone(IAsyncResult ar)
{
Console.WriteLine("AsyncCallback method on ThreadID = {0}",
Thread.CurrentThread.GetHashCode());

Stream s = (Stream)ar.AsyncState;
s.EndWrite(ar);
s.Close();

}
}

The only point of interest in this example (assuming you recall the process of working with del-
egates!) is that in order to enable the asynchronous behavior of the FileStream type, you must make
use of a specific constructor (shown here). The final System.Boolean parameter (when set to true)
informs the FileStream object to perform its work on a secondary thread of execution.

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE686

8849CH20.qxd 10/17/07 5:58 PM Page 686

■Source Code The AsyncFileStream application is included under the Chapter 20 subdirectory.

Understanding the Role of Isolated Storage
Each of the file I/O examples you have just examined make a very big assumption regarding the
execution of the application: that it has been granted full trust security privileges by the CLR. As you
would imagine, the act of reading from, or writing to, a machine’s hard drive could be a potential
security threat, based on the origin of the application. Recall that the .NET platform supports the
ability to download assemblies from a variety of locations including external websites, from an
intranet, or even dynamically in memory using an assembly created via the types of the System.
Reflection.Emit namespace (examined in Chapter 19).

Furthermore, you may also recall from Chapter 15 that the <codeBase> element of a client
*.config file allows you to declaratively specify such an arbitrary path for the CLR to find an
external assembly; while the Assembly.LoadFrom() method (see Chapter 16) allows you to program-
matically load assemblies located at an external URI.

It’s a Matter of Trust
Given the fact that a .NET assembly can be loaded from a variety of locations beyond the current
machine’s local hard drive, the issue of trust becomes very important. By way of illustration, assume
you have an application that executes code downloaded from a remote location. If this code library
attempts to read files on the local computer, how can we ensure the library is not attempting to read
sensitive information? Likewise, if we download a remote executable to run on a local machine, how
can we make sure this assembly does not attempt to read sensitive data within the system registry,
make calls to the underlying API of the operating system (for evil purposes), or other such potential
security risks?

The answer, as far as the .NET platform is concerned, is to make use of a .NET-centric security
mechanism known as Code Access Security. Using CAS, the CLR can deny or grant a number of
security privileges to the executing assembly, including the following:

• Manipulation of a machine’s directory/file structure

• Manipulation of network/web/database connections

• Creation of new application domains/dynamic assemblies

• Use of .NET reflection services

• Calls to unmanaged code using PInvoke

Focusing on the I/O-specific security concerns, assume that you are authoring an application
that will be deployed to external users via some remote web-based URL. Based on how you config-
ure the deployment script (and based on the security policy of the user’s machine), it may run
under a restricted security environment that will prevent access to the local file system. If your
application must store user or application settings using the types of the System.IO namespace,
the CLR will throw runtime security exceptions!

The types within the System.IO.IsolatedStorage namespace can be used to create an applica-
tion that reads and writes data to a very specific location of a .NET-aware machine using isolated
storage. This can be understood as a safe “sandbox” where the CLR will allow file I/O operations to
occur, even if the application has been downloaded from an external URL or has in other ways been
placed in a security sandbox by a system administrator.

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 687

8849CH20.qxd 10/17/07 5:58 PM Page 687

Other Uses of the Isolated Storage API
Understand, however, that the isolated storage API is not limited to controlling read/write file oper-
ations on remotely downloaded code. This API also provides a simple way to persist per-user data in
a manner that ensures other applications cannot indirectly (or directly) tamper with said data. For
example, using isolated storage, it is possible to build a single application that saves data in isolated
folders for each user logged on to a specific workstation.

Another benefit of using the isolated storage API is that your code base does not need to hard-
code paths or directory names in the application. Rather, when using isolated storage, an appli-
cation indirectly saves data to a unique data compartment that is associated with some aspect of
the code’s identity, such as its URL, strong name, or X509 digital signature (more information on
code identity later in this chapter).

Thankfully, programming with the isolated storage API is very simple to those who understand
basic file I/O operations. However, before we examine how to do so, allow me to provide an
overview of the .NET Code Access Security model.

■Note Complete coverage of CAS would easily entail an entire chapter (or two). Here I will explain the core
operation of CAS in order to set the foundation for the role of the isolated storage API. Please consult the .NET
Framework 3.5 SDK for further details of CAS if you are so inclined.

A Primer on Code Access Security
To address the security issues involved with downloading and executing remote .NET assemblies,
the CLR will automatically determine the assembly’s identity and assign it to one of many precon-
figured code groups. Simply put, a code group is a collection of assemblies that all meet the same
criteria (such as the point of origin).

The criterion used by the CLR to determine which code group an assembly belongs to is
referred to as evidence. Beyond the point of origin, an assembly can be placed into a code group
using other forms of evidence such as an assembly’s strong name, an embedded X509 digital certifi-
cate, or some sort of custom criteria you have accounted for programmatically.

■Note Strictly speaking, evidence comes in two flavors: assembly evidence and host evidence. While assembly
evidence is compiled into the assembly, host evidence can only be specified programmatically using the
AppDomain type.

Once an assembly’s evidence has been evaluated to determine which code group it belongs to,
the CLR will then consult the permission set (which, as you might guess, is simply a named collec-
tion of individual permissions) associated with the code group to determine what the assembly can
and, more importantly, cannot do.

Collectively, code groups and their related permissions constitute a security policy, which can
actually be partitioned at three major levels (enterprise, machine, and user). Using this stratified
approach, it is possible for a system administrator to create unique policies for the company at
large as well as at the machine/user level.

Once each of the security policies have been applied (enterprise, machine, and user), the
assembly will execute under the .NET runtime. If the assembly attempts to execute code outside
of its permission set, the CLR will throw a runtime security exception. Figure 20-9 illustrates how

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE688

8849CH20.qxd 10/17/07 5:58 PM Page 688

these building blocks of CAS (evidence, code groups/permission sets, and policies) intertwine from
a high level.

Figure 20-9. The building blocks of CAS

The act of evaluating evidence, placing assemblies into code groups, and mapping permission
sets to the assembly in question happens transparently in the background whenever you run a .NET
application. For the most part, the default CAS security settings and CLR/CAS interactions can be
allowed to function in the background without any direct interaction on your part. However, it is
worth your while to dig a bit deeper into the building blocks of CAS, beginning with the notion of
assembly evidence.

The Role of Evidence
In order for the CLR to determine which code group to place an assembly into, the first step is to
read the supplied evidence. As mentioned, evidence is simply information obtained from an assem-
bly (or possible the hosting application domain) at the point it is loaded into memory. Table 20-12
documents the major types of evidence an assembly can present to the CLR.

Table 20-12. Various Types of Assembly Evidence

Host Evidence Type Meaning in Life

Application directory The installation directory of the assembly

Assembly hash code The hash value of an assembly’s contents

Publisher certificate The Authenticode X509 digital certificate assigned to the assembly (if
any)

Site The source website where an assembly was loaded (does not apply to
assemblies loaded from the local machine)

Assembly strong name The strong name of an assembly (if any)

URL The URL from which an assembly was loaded (HTTP, FTP, file, and so on)

Zone The name of the zone where the assembly was loaded

While the reading of evidence happens automatically, it is possible to programmatically read
evidence as well using the reflection APIs and the Evidence type within the System.Security.Policy
namespace. To deepen your understanding of evidence, create a new Console Application named

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 689

8849CH20.qxd 10/17/07 5:58 PM Page 689

MyEvidenceViewer. Once you have done so, be sure to import the System.Reflection, System.
Collections, and System.Security.Policy namespaces.

We will now build a simple application that will prompt the user for the name of an assembly
to load into memory. At this point, we will enumerate over each supplied form of assembly evidence
and print the data to the console window. To begin, the Program type provides a Main() method that
allows users to enter the full path to the assembly they wish to evaluate. If they enter the L option,
we will call a helper method that attempts to load the specified assembly into memory. If success-
ful, we will pass the Assembly reference to another helper method named DisplayAsmEvidence().
Here is the story so far:

class Program
{
static void Main(string[] args)
{
bool isUserDone = false;
string userOption = "";
Assembly asm = null;

Console.WriteLine("***** Evidence Viewer *****\n");
do
{
Console.Write("L (load assembly) or Q (quit): ");
userOption = Console.ReadLine();
switch (userOption.ToLower())
{
case "l":
asm = LoadAsm();
if (asm != null)
{
DisplayAsmEvidence(asm);

}
break;

case "q":
isUserDone = true;
break;

default:
Console.WriteLine("I have no idea what you want!");
break;

}
} while (!isUserDone);

}
}

The LoadAsm() method will simply call Assembly.LoadFrom() to set the private Assembly
member variable:

private static Assembly LoadAsm()
{
Console.Write("Enter path to assembly: ");
try
{
return Assembly.LoadFrom(Console.ReadLine());

}
catch
{

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE690

8849CH20.qxd 10/17/07 5:58 PM Page 690

Console.WriteLine("Load error...");
return null;

}
}

Finally, the DisplayAsmEvidence() method will extract out the evidence of the loaded assembly
via the Evidence property of the Assembly type. From here, we obtain an enumerator (via the
GetHostEvidence() method of the Evidence type) and print out each flavor of presented evidence:

private static void DisplayAsmEvidence(Assembly asm)
{
// Get evidence collection and underlying enumerator.
Evidence e = asm.Evidence;
IEnumerator itfEnum = e.GetHostEnumerator();

// Now print out the evidence.
while (itfEnum.MoveNext())
{
Console.WriteLine(" **** Press Enter to continue ****");
Console.ReadLine();
Console.WriteLine(itfEnum.Current);

}
}

To test our application, my suggestion is to create a folder directly off your C drive named
MyAsms. Into this folder, copy the strongly named CarLibrary.dll assembly (from Chapter 15), and
run your program. Assuming you opt for the L command, specify the full path to your assembly and
press Enter. Your application should now print out each flavor of evidence to the console, as shown
in Figure 20-10 (note that the way our application was created, you will need to hit the Enter key to
display each form of evidence).

Figure 20-10. Viewing the evidence of CarLibrary.dll

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 691

8849CH20.qxd 10/17/07 5:58 PM Page 691

Here you can see that CarLibrary.dll has been placed into the MyComputer zone, from the
URL of C:\MyAsms\CarLibrary.dll, and has a specific strong name value. If you were to load assem-
blies from an entirely different location (such as a remote website), you would obviously see unique
output. In any case, at this point simply understand that when an assembly is loaded into memory,
the CLR will investigate the supplied evidence.

■Source Code The MyEvidenceViewer project is included under the Chapter 20 subdirectory.

The Role of Code Groups
Using evidence, the CLR can then place the assembly into a code group. Each code group is
mapped to a security zone that has a default out-of-the-box set of security settings the CLR will use
to dictate exactly what the assembly can (or cannot) do. Table 20-13 documents some of the more
common code groups to be aware of, including their default assigned permission set (examined in
the next section).

Table 20-13. Several Common Code Groups

Default Code Group Assigned Permission Set Meaning in Life

My_Computer_Zone Full Trust Represents an assembly loaded directly from
the local hard drive

LocalIntranet_Zone LocalIntranet Represents an assembly downloaded from a
share point on the local intranet

Internet_Zone Internet Represents an assembly downloaded from
the World Wide Web

The .NET Framework 3.5 SDK ships with a GUI administration tool that allows system adminis-
trators to view and tweak existing code groups or, if need be, define a brand new code group. For
example, using this tool it is possible to inform the CLR that any external assembly downloaded
from a particular URL (such as http://www.intertech.com) should execute within a customized
security sandbox.

■Note The .NET Framework 3.5 SDK also provides a command-line tool named caspol.exe that provides the
same options.

This tool can be run by double-clicking the Microsoft .NET Framework Configuration applet
located under the Administrative Tools folder of your machine’s Control Panel. Once you launch
this tool, you are able to configure CAS settings on three basic levels: the enterprise at large (e.g.,
all networked machines), the current machine, or on a per-user basis. (It is also possible to config-
ure CAS on the application domain level as well, but this can only be done programmatically.)
Figure 20-11 shows the expended nodes of the default “machine-level policy” settings for CAS on
my current computer.

Again, notice that the All_Code code group (which represents all .NET assemblies) defines sev-
eral zones to which an assembly can belong (My_Computer_Zone, etc.). If you were to right-click
any of the nodes under the All_Code root, you would be able to activate a property page that
describes further details. For example, Figure 20-12 shows the properties of the My_Computer_
Zone code group, which again represents any assembly loaded directly from the local hard drive.

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE692

8849CH20.qxd 10/17/07 5:58 PM Page 692

http://www.intertech.com

Figure 20-11. The CAS-centric machine policy

Figure 20-12. Details of the My_Computer_Zone code group

If you were to click the Membership Condition tab, you would be able to determine how the
CLR figured out whether a given .NET assembly should be a member of this zone. In Figure 20-13,
you can see the membership condition is the rather nondescript value Zone, meaning the location
at which the assembly has been loaded.

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 693

8849CH20.qxd 10/17/07 5:58 PM Page 693

Figure 20-13. The membership condition for the My_Computer_Zone code group

If you were to click the Permission Set tab of the My_Computer_Zone code group, you would
see that any assembly loaded from the local hard drive is assigned a set of security permissions
given the name Full Trust (see Figure 20-14).

Figure 20-14. Assemblies loaded from the local hard drive are granted Full Trust permissions by
default.

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE694

8849CH20.qxd 10/17/07 5:58 PM Page 694

In contrast, the permission set granted to assemblies that are loaded from an external URL
(outside of a company intranet) will be placed into the Internet_Zone code group, which runs under
a much more restrictive set of privileges. As you can see in Figure 20-15, assemblies loaded into the
Internet_Zone group are not given Full Trust permissions, but are rather assigned to a set of permis-
sions named Internet.

Figure 20-15. Assemblies loaded from external URLs are not granted Full Trust permissions by default.

The Role of Permission Sets
As you have seen, the CLR will place an assembly into a code group based on various criteria (origin
of the load, strong name, etc.). The code group in turn has a set of permissions assigned to it that
are given a friendly name such as Full Trust, Internet, and so forth. Each permission set (as the
name implies) is a collection of individually configured permissions that control various security
settings (access to the printer, access to the file system, use of the reflection API, etc.). Using the
Microsoft .NET Framework Configuration utility, you are able to view the settings for any of the
default permission sets simply by selecting the View Permissions link. Figure 20-16 shows the
permissions for the Internet permission set, once the View Permissions link has been clicked.

Each of these icons (File Dialog, Isolated Storage File, Security, etc.) represents a specific per-
mission in the set, all of which can be further configured by double-clicking a given item. For
example, if you were to double-click the Security permission (which is sort of a catchall permission
for common security settings), you could see that if an assembly is running under the Internet_
Zone (thereby restricted by the Internet permission set), it is able to execute, but by default cannot
perform a number of other basic details, such as make use of platform invocation services to call
into the API of the operating system (see Figure 20-17).

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 695

8849CH20.qxd 10/17/07 5:58 PM Page 695

Figure 20-16. Internet permission set

Figure 20-17. Viewing individual permissions for a permisson set

Observing CAS in Action
To illustrate a very simple example of CAS operations, we will change some default settings for the
My_Computer code group and observe the results. Begin by right-clicking the My_Computer_Zone
code group for your machine policy using the Microsoft .NET Framework Configuration applet to
open the related property page. Next, click the Permission Set tab, and change the permission set
from Full Trust to Internet (see Figure 20-18).

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE696

8849CH20.qxd 10/17/07 5:58 PM Page 696

Figure 20-18. Changing the permission set for the My_Computer_Zone code group

Once you click the OK button, you have just changed the security policy for your local
machine. Specifically for our purposes, any .NET executable that you load from your hard drive will
no longer be able to access the local hard drive using the types of System.IO! To verify, attempt to
run any of the IO-centric applications created in this chapter. To illustrate, use a command prompt
to navigate to the directory containing the DriveInfoApp.exe application created earlier in this
chapter. Now, attempt to run the program. When the runtime error dialog box is displayed, select
the Close the Program option, and observe the output in the command window. As you can see
from Figure 20-19, this application was denied access to the local hard drive, and the CLR threw a
security exception.

Figure 20-19. Security breach! The My_Computer_Zone code group no longer allows IO operations!

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 697

8849CH20.qxd 10/17/07 5:58 PM Page 697

Restoring Full Trust to the My_Computer_Zone Code Group
Now, use the Microsoft .NET Framework Configuration applet to restore the Full Trust permission
set to the My_Computer_Zone code group. Once you do so, you should be able to execute the
DriveInfoApp.exe without error.

■Note Obviously, when you tinker with the default CAS settings for your machine account, you could accidentally
establish settings that severely cripple the execution of your applications! If you ever need to roll back to the
default out-of-the-box machine policy settings, simply right-click the Machine icon under the Runtime Security
Policy folder and select the Reset menu option.

That wraps up our primer of Code Access Security. Again, this introduction was not intended to
provide complete coverage of this very rich API; however, you should now be in a solid position to
better understand the usefulness of isolated storage.

An Overview of Isolated Storage
As mentioned, one major reason for the isolated storage API is to provide a safe sandbox where
applications can read/write data, regardless of which code group they are placed into and without
the need to alter the default security policies. In addition, use of this technology is ideally under a
number of circumstances such as the following:

• You need to save preferences for your application for each user or forms of per-user data
(DataSets, XML files, etc.).

• You are deploying a ClickOnce application that functions in a sandbox and has no access to
the (unrestrained) local file system.

• You have downloaded Windows Forms controls from a URL that integrate into a web appli-
cation, and they must store settings on the client machine.

• You are deploying a XAML Browser Application, or XBAP (see Chapter 28), that needs to
persist data on the user’s machine.

Do be aware that if your application is using isolated storage, this does not mean that you
would not also opt to store bits of data in a *.config file (such as connection strings) or place vari-
ous application settings in the system registry. In fact, like any technology, isolated storage does
have a few potential drawbacks. First and foremost, data placed into isolated storage is not auto-
matically encrypted. Therefore, just like traditional IO, if you write out sensitive data (e.g., credit
card information), you will need to manually encrypt (and decrypt) the information.

■Note Use of the .NET encryption APIs in not covered in this edition of the text. If you are interested in examining
the details, look up the topic “Cryptographic Services” using the .NET Framework 3.5 SDK documentation.

As well, data placed into isolated storage, like any part of the file system, can be copied, moved,
or deleted by the end user. However, as you will see, the types of the System.IO.IsolatedStorage
namespace store data in a dynamically generated directory structure that is tucked away in a spe-
cific location of the hard drive. For this reason, it is true that most end users will have no direct
encounters with their machine’s isolated storage area.

Finally, be aware that a system administrator can limit the storage size of a machine’s isolated
storage quota. Thus, if your application is persisting vast amounts of data, and other applications

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE698

8849CH20.qxd 10/17/07 5:58 PM Page 698

on the machine are also persisting vast amounts of data, there is a chance that the storage area will
meet its upper limit (it is always a good idea to make use of structured exception handling tech-
niques to gracefully handle this possibility).

The Scope of Isolated Storage
By its very nature, isolated storage will also persist data using (at very least) the current user as a
level of isolation. Therefore, if you have authored a program that saves data using isolated storage,
the data is persisted based on the currently logged on user. If another user logs on to the same
workstation and saves data using the same application, the data is persisted into a unique location
for that particular user.

In addition to user-level partitioning, isolated storage can also be set up to further isolate data
based on the assembly and/or application domain identity. If you configure isolation and the user +
assembly level, the application will be able to use the same store regardless of which application
domain is hosting the program. In this case, the most specific piece of available evidence (such as a
strong name) will be used to create the store name. This would allow the end user to have multiple
instances of the program running on a single machine, where each instance is “pointing” to the
same store (see Figure 20-20).

Figure 20-20. User and assembly-level isolation

On the other hand, if you configure a user + assembly + application domain isolation level, the
application domain is also taken into consideration. In addition to the most specific form of assem-
bly evidence, the most specific form of AppDomain evidence (typically Site) will be used to build
the store. With this approach, even if the same assembly is used by unique AppDomains, the data is
maintained in separate stores (see Figure 20-21).

Isolated storage can also be used to build roaming profiles. The roaming scope allows users to
log on to unique workstations and obtain the same application data. In this case, the storage data is
persisted to a network location and downloaded on demand when a user logs on to a given work-
station. We will not be examining this aspect of isolated storage, so consult the .NET Framework 3.5
SDK documentation if you are interested.

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 699

8849CH20.qxd 10/17/07 5:58 PM Page 699

Figure 20-21. User, assembly, and application domain-level isolation

Locating Isolated Storage
Again, isolated storage is nothing more than a dedicated part of a .NET machine’s file system, so to
this end it is no different from C:\Windows, C:\Program Files, or any other directory on your disk.
However, the exact location of isolated storage will differ based on your operating system. On a Vista
machine, you can find the root location of a given store under

C:\Users\<user>\App Data\Local\IsolatedStorage

On a Windows XP machine, the root location for isolated storage can be found under

C:\Documents and Settings\<user>\Local Settings\Application Data\IsolatedStorage

Beneath this root, you will find a number of (completely unpronounceable) subdirectories that
are created and maintained by the isolated storage API. Consider Figure 20-22, which shows the
storage location on my current Vista machine.

Again, you do not need to worry about deciphering the names of these folders, nor do you
need to specify their names programmatically when creating stores for your users. These names are
generated based on user identity and the required assembly and/or application domain evidence.
When gathering evidence for assemblies and AppDomains, the CLR evaluates in this order (most
specific to least):

• Publisher certificate

• Strong name

• URL

• Site

• Zone

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE700

8849CH20.qxd 10/17/07 5:58 PM Page 700

Figure 20-22. Isolated storage on a Vista machine

Interacting with Isolated Storage Using storeadm.exe
The .NET Framework 3.5 SDK ships with a command-line utility named storeadm.exe, which can be
used to interact with the current storage system on a given .NET machine. Using this tool, you are
able to view the current stores for the logged in user (via the /list option) and completely delete all
storage for the current user (by specifying /remove). Consider Figure 20-23, which shows the output
resulting from the /list option.

As you can glean from the previous figure output, this tool also displays the level of isolation
(assembly, application domain) and the forms of evidence used to establish the store. What this
tool does not display is the actual contents of the files placed in a given store. To do so, you will
have to locate the generated store location using the Windows Explorer or read in the data program-
matically.

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 701

8849CH20.qxd 10/17/07 5:58 PM Page 701

Figure 20-23. Examining the current user’s storage using storeadm.exe

The Type of System.IO.IsolatedStorage
Before examining how to write data into (and read data from) isolated storage, consider Table 20-14,
which documents the core types of isolated storage. As you can see, this namespace is refreshingly
small, given that the types are used in conjunction with the basic types of System.IO.

Table 20-14. The Types of System.IO.IsolatedStorage

System.IO.IsolatedStorage Type Meaning in Life

IsolatedStorage This type represents the abstract base class from which all
isolated storage implementations must derive.

IsolatedStorageScope This enum controls the level of isolation to make use of
(assembly, application domain, roaming).

IsolatedStorageException This type specifies the exception that is thrown when an
operation in isolated storage fails.

IsolatedStorageFile This type represents an isolated storage area containing files and
directories.

IsolatedStorageFileStream This type exposes a file within isolated storage.

Obtaining a Store Using IsolatedStorageFile
When you wish to store application data in isolated storage, the first step is to decide the level of
isolation you which to establish. Recall that storage is always isolated by the current user; however,
a store can also be established using assembly or application domain evidence (as well as via roam-
ing profiles, which we will not examine here). To configure the correct isolation level, one option is

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE702

8849CH20.qxd 10/17/07 5:58 PM Page 702

to establish values using the IsolatedStorageScope enumeration and call IsolatedStorageFile.
GetStore(). As a shorthand notation, however, you can call the static GetUserStoreForDomain() or
GetUserStoreForAssembly() of the IsolatedStorageFile type. Consider the following examples:

static void GetAppDomainStorageForUser()
{
// Open up isolated storage based on identity of
// assembly and AppDomain (short hand).
IsolatedStorageFile store =
IsolatedStorageFile.GetUserStoreForDomain();

// Or combine flags and use GetStore().
IsolatedStorageFile store2 =
IsolatedStorageFile.GetStore(IsolatedStorageScope.User |
IsolatedStorageScope.Domain, null, null);

}

static void GetAssemblyStorageForUser()
{
// Open up isolated storage based on identity of
// assembly (short hand).
IsolatedStorageFile store2 =
IsolatedStorageFile.GetUserStoreForAssembly();

// Or combine flags and use GetStore().
IsolatedStorageFile store2 =
IsolatedStorageFile.GetStore(IsolatedStorageScope.User |
IsolatedStorageScope.Assembly, null, null);

}

Notice that regardless of the approach taken, the end result is you receive an
IsolatedStorageFile object. Using this type, you are able to write data into the store, read data from
a store, and create a custom directory structure within the current user’s store. Table 20-15 docu-
ments some of the interesting members of IsolatedStorageFile.

Table 20-15. Members of IsolatedStorageFile

Member Meaning in Life

CurrentSize, MaximumSize These read-only properties allow you to view size characteristics of
isolated storage.

Scope This property shows the scope of isolation (user, assembly,
AppDomain).

CreateDirectory() This method creates a new directory in the store.

DeleteDirectory() This method deletes a directory from the store.

DeleteFile() This method deletes a file within a given directory.

GetDirectoryNames() This method allows you to iterate over named directories.

GetEnumerator() This method gets a scope-specific IEnumerator.

GetFiles() This method gets files within a specific store.

GetStore() This overloaded method obtains isolated storage corresponding to
the given application domain and assembly evidence objects and
isolated storage scope.

Continued

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 703

8849CH20.qxd 10/17/07 5:58 PM Page 703

Table 20-15. Continued

Member Meaning in Life

GetUserStoreForAssembly() This method obtains isolated storage corresponding to the calling
code’s assembly identity.

GetUserStoreForDomain() This method obtains isolated storage corresponding to the
application domain identity and assembly identity.

Remove() This method removes stores.

Writing Data to Storage
Once you have obtained a store, your next task is to create an instance of the
IsolatedStorageFileStream type, which represents the file in the store you will be using to persist
your data. Like other IO streams, this type can be configured using the System.IO.FileMode
enumeration examined earlier in this chapter. To illustrate, create a new Console Application proj-
ect named SimpleIsoStorage and be sure you import the System.IO and System.IO.IsolatedStorage
namespaces. Now, update Main() to call the following helper method of the Program type:

static void WriteTextToIsoStorage()
{
// Open up isolated storage based on identity of
// user + assembly evidence.
using (IsolatedStorageFile store =
IsolatedStorageFile.GetUserStoreForAssembly())

{
// Now create an IsolatedStorageFileStream type.
using (IsolatedStorageFileStream isStream

= new IsolatedStorageFileStream("MyData.txt",
FileMode.OpenOrCreate, store))

{
// Layer this stream into a StreamWriter
// and write out some text.
using (StreamWriter sw = new StreamWriter(isStream))
{
sw.WriteLine("This is my data.");
sw.WriteLine("Cool, huh?");

}
}

}
}

Here, we begin by obtaining a store for the user based on the identity of the executing assembly
(SimpleIsoStorage.exe) by calling IsolatedStorageFile.GetUserStoreForAssembly(). Next, we
create a new IsolatedStorageFileStream object, specifying a new file to be named MyData.txt that
will be created (or opened if it currently exists) in the store we just obtained. Finally, we layer the
IsolatedStorageFileStream object into a System.IO.StreamWriter and pump out a few lines of text.

If you execute this application, you will then be able to dig into your isolated storage location
of your computer and (after a bit of hunting) discover the MyData.txt file (see Figure 20-24). If you
were to open this file in notepad.exe, you would of course see the two lines of textual data.

Of course, you can layer into an IsolatedStorageFileStream object a Stream-derived type. For
example, if you would rather write out data in a binary format, simply make use of the BinaryWriter
rather than StreamWriter.

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE704

8849CH20.qxd 10/17/07 5:58 PM Page 704

Figure 20-24. Our text file placed in isolated storage

Reading Data from Storage
Reading data from a user’s store is also very simple. Consider the following new method (which I am
assuming you will also call from Main() after the call to the WriteTextToIsoStorage() method) that
will read the data within the MyData.txt file and display it to the console window:

private static void ReadTextFromIsoStorage()
{
using (IsolatedStorageFile store =
IsolatedStorageFile.GetUserStoreForAssembly())

{
using (IsolatedStorageFileStream isStream

= new IsolatedStorageFileStream("MyData.txt", FileMode.Open,
FileAccess.Read, store))

{
// Layer into StreamReader.
using (StreamReader sr = new StreamReader(isStream))
{
string allTheData = sr.ReadToEnd();
Console.WriteLine(allTheData);

}
}

}
}

Deleting User Data from Storage
The IsolatedStorageFile type supplies two mechanisms for deleting user stores. The instance-level
Remove() deletes the store that calls it. The static method IsolatedStorageFile.Remove() method
takes the IsolatedStorageScope.User value and deletes all stores for the user running the code. For
example, the following code deletes the active store and destroys all contents:

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 705

8849CH20.qxd 10/17/07 5:58 PM Page 705

// Remove data for current store for the current user.
IsolatedStorageFile store =
IsolatedStorageFile.GetUserStoreForAssembly();

store.Remove();

while the following code destroys all stores for the current user (this is the same behavior as seen
when supplying the /remove flag to storeadm.exe):

// Remove ALL stores for current user.
IsolatedStorageFile.Remove(IsolatedStorageScope.User);

Creating a Custom Directory Structure
The current code examples did not create a unique hierarchy to contain the various data files.
Rather, the MyData.txt file was placed directly in the root of the store (in many cases, this is exactly
what you required). If you wish to create unique subdirectories, you do so using the instance-level
CreateDirectory() method. Be aware that there is no object representation of a subdirectory within
isolated storage. Instead, you pass in a string that represents the directories to be created. Once you
do, CreateDirectory() returns an IsolatedStorageFile type that represents the access to the most
nested directory. Consider the following code:

private static void CreateStorageDirectories()
{
// Forward slashes and backwards slashes are acceptable.
using (IsolatedStorageFile store =
IsolatedStorageFile.GetUserStoreForAssembly())

{
store.CreateDirectory(@"MyDir\XmlData");
store.CreateDirectory("MyDir\\BinaryData");
store.CreateDirectory("MyDir/TextData");

}
}

If you call this method from within Main(), you will now be able to find the directory structure
shown in Figure 20-25 under your isolated storage area.

Figure 20-25. Establishing a directory structure for a given store

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE706

8849CH20.qxd 10/17/07 5:58 PM Page 706

■Source Code The SimpleIsoStorage project is included under the Chapter 20 subdirectory.

Isolated Storage in Action: ClickOnce Deployment
At this point, isolated storage might seem like little more than a unique approach to persisting
application data on a per-user level (which is very useful in its own right). However, recall that one
of the problems this API solves is how to allow applications that do not run under the umbrella of
Full Trust security to persist data in a safe manner.

To close this chapter, assume you have a Windows Forms application (named
FileOrIsoStorageWinApp) that defines a Form containing two buttons. Chapter 27 examines the
details of the Windows Forms API; however, if you are following along, handle the Click event for
each Button type.

The first button will attempt to save data to the local hard drive using standard file IO tech-
niques (be sure to import the System.IO and System.IO.IsolatedStorage namespaces in your
code file):

private void btnFileIO_Click(object sender, EventArgs e)
{
using (StreamWriter sw = new StreamWriter(@"C:\MyData.txt"))
{
sw.WriteLine("This is my data.");
sw.WriteLine("Cool, huh?");

}
}

The second button will write the same data to a file in isolated storage. The implementation of
this Click event handler is identical to the WriteTextToIsoStorage() method you created in the pre-
vious project; however, here it is again for your convenience:

private void btnIsoStorage_Click(object sender, EventArgs e)
{
// Open up isolated storage based on identity of
// user + assembly evidence.
using (IsolatedStorageFile store =
IsolatedStorageFile.GetUserStoreForAssembly())

{
// Now create an IsolatedStorageFileStream type.
using (IsolatedStorageFileStream isStream

= new IsolatedStorageFileStream("MyData.txt",
FileMode.OpenOrCreate, store))

{
// Layer this stream into a StreamWriter
// and write out some text.
using (StreamWriter sw = new StreamWriter(isStream))
{
sw.WriteLine("This is my data.");
sw.WriteLine("Cool, huh?");

}
}

}
}

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 707

8849CH20.qxd 10/17/07 5:58 PM Page 707

The IsolatedStorageFilePermission Attribute
Now, before we test our application, add the following using directive in the C# file defining your
initial Form-derived type:

using System.Security.Permissions;

This namespace defines a number of security-centric attributes that can be applied to your
application to inform the security subsystem which security settings a given assembly requires to
operate correctly (among other details). Here, we wish to inform the CLR that our application
requires, at minimum, assembly-level store isolation permissions. This can be achieved by adding
the following assembly-level attribute to the code file of your Form-derived type:

[assembly: IsolatedStorageFilePermission(SecurityAction.RequestMinimum,
UsageAllowed = IsolatedStorageContainment.AssemblyIsolationByUser)]

Now, when you compile and run this application directly within Visual Studio 2008 (via
Ctrl+F5), you will see that clicking either button results in the creation of a new file with blobs of
textual data. This is because the application has loaded from My_Computer_Zone, which as you
recall grants Full Trust privileges to the assembly.

Constraining the Security Zone
Let’s deploy this application in such a way as to load it into Internet_Zone using a more restrictive
permission set. To do so, we will deploy our application using ClickOnce deployment. As you might
know, ClickOnce is a way to deploy an executable application to an end user’s machine via a remote
web server. The remote application is hosted within an IIS virtual directory, which can be down-
loaded and installed to a local machine simply by using a web browser to point to the URL.

■Note Full coverage of ClickOnce is beyond the scope of this chapter. If you have never deployed an application
in this manner, simply follow the instructions I provide next (and consult the .NET Framework 3.5 SDK documenta-
tion for further details if you so choose).

To begin, open your project’s Properties page by double-clicking the Properties icon of Solution
Explorer. Once you have done so, click the Security tab. By default, ClickOnce applications are
deployed with Full Trust, and therefore they have all the security privileges as a local application
installed using traditional means.

Here, we want to build a deployment script that will force our program to run under the
Internet zone, which as you recall does not allow access to the hard drive using standard file IO
operations. To do so, click the Enable Click Once Security Settings check box, select the This is a par-
tial trust application radio button, and select Internet from the zone drop-down list box. Last but
not least, click the Calculate Permissions button at the bottom of the Security configuration page.
This will calculate the final permission set required by your application (see Figure 20-26).

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE708

8849CH20.qxd 10/17/07 5:58 PM Page 708

Figure 20-26. Constraining our application’s security zone

Publishing the Application to a Web Server
Now, click the Publish tab of the Properties editor. Click the Publish Wizard button on the lower part
of this page, and on the first page of this wizard, enter the following URL to specify a new IIS virtual
directory on your local machine to host this application:

http://localhost/MyIsolatedStorageApp/

The remaining options of the tool may be left at their defaults. Once you click the Finish but-
ton, your web browser will load the autogenerated publish.htm file. This is what end users will see
when navigating to the remote web server that contains the application they wish to download and
install locally (and yes, this web page can be customized to your heart’s content; you’ll find this file
and related content under your project’s bin\Debug folder). Click the Install button and run the
setup.exe application (and accept each security prompt). After a moment or two, the application
will install to an area of the user’s machine named the ClickOnce cache and the program should
launch.

Viewing the Results
Given that we have configured this application to run under restricted security, if you click the but-
ton that attempts to save data using the System.IO types, you will find the security exception shown
in Figure 20-27.

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE 709

8849CH20.qxd 10/17/07 5:58 PM Page 709

http://localhost/MyIsolatedStorageApp

Figure 20-27. Security breach! Can’t access local file system when running in the Internet zone.

However, if you click the button that saves data to isolated storage, the application runs as
expected. That wraps up our look at the isolated storage API and our introductory look at the Code
Access Security model. While there is much more that could be said about CAS, as you have seen,
using the types of System.IO.IsolatedStorage is very simple, as they are really just an extension of
the file IO primitives.

■Source Code The FileOrIsoStorageWinApp project is included under the Chapter 20 subdirectory.

Summary
This chapter began by examining the use of the Directory(Info) and File(Info) types. As you
learned, these classes allow you to manipulate a physical file or directory on your hard drive. Next,
you examined a number of types derived from the abstract Stream class, specifically FileStream.
Given that Stream-derived types operate on a raw stream of bytes, the System.IO namespace pro-
vides numerous reader/writer types (StreamWriter, StringWriter, BinaryWriter, etc.) that simplify
the process. Along the way, you also checked out the functionality provided by DriveType, and you
learned how to monitor files using the FileSystemWatcher type and how to interact with streams in
an asynchronous manner.

The second part of this chapter introduced you to the topic of isolated storage. As explained,
this API allows a program to read and write data in a safe sandbox, even if the application has been
loaded in a constrained security environment. While the programming model is very straightfor-
ward (if you have a grasp of basic file IO), the surrounding topics add some level of complexity.
Given this, you also were given a whirlwind tour of Code Access Security.

Here, you learned that assemblies present evidence to the CLR at the time they are loaded into
an application domain. At this point, they are assigned a code group that has a default set of per-
missions. The interesting aspect of CAS as it relates to file IO is that if an application is not granted
Full Trust, use of the traditional IO operations result in a security exception. However, using isolated
storage, your programs can persist data on a per-user level in a safe manner.

CHAPTER 20 ■ FILE I /O AND ISOLATED STORAGE710

8849CH20.qxd 10/17/07 5:58 PM Page 710

Introducing Object Serialization

In Chapter 20, you learned about the functionality provided by the System.IO namespace and the
role of isolated storage (using the types of System.IO.IsolatedStorage). As shown, these name-
spaces provide numerous readers and writers that can be used to persist data to a given location (in
a given format). This chapter examines the related topic of object serialization. Using object seriali-
zation, you are able to persist and retrieve the state of an object to (or from) any System.IO.Stream-
derived type (including the IsolatedStorageFileStream type).

The ability to serialize types is critical when attempting to copy an object to a remote machine
via various remoting technologies such as the .NET remoting layer, XML web services, and Windows
Communication Foundation. Understand, however, that serialization is quite useful in its own right
and will likely play a role in many of your .NET applications (distributed or not). Over the course of
this chapter, you will be exposed to numerous aspects of the .NET serialization scheme, including a
set of attributes (and interfaces) that allow you to customize the process.

Understanding Object Serialization
The term serialization describes the process of persisting (and possibly transferring) the state of an
object into a stream (file stream, memory stream, etc.). The persisted data sequence contains all
necessary information needed to reconstruct (or deserialize) the state of the object for use later.
Using this technology, it is trivial to save vast amounts of data (in various formats) with minimal
fuss and bother. In fact, in many cases, saving application data using serialization services results
in less code than making use of the readers/writers found within the System.IO namespace.

For example, assume you have created a GUI-based desktop application and wish to provide a
way for end users to save their preferences (window color, font size, etc.). To do so, you might define
a class named UserPrefs that encapsulates 20 or so pieces of field data. Now, if you were to make
use of a System.IO.BinaryWriter type, you would need to manually save each field of the UserPrefs
object. Likewise, when you wished to load the data from a file back into memory, you would need to
make use of a System.IO.BinaryReader and (once again) manually read in each value to reconfigure
a new UserPrefs object.

While this is certainly doable, you would save yourself a good amount of time simply by mark-
ing the UserPrefs class with the [Serializable] attribute:

[Serializable]
public class UserPrefs
{
// Various points of data...

}

711

C H A P T E R 2 1

8849CH21.qxd 10/10/07 11:06 AM Page 711

By doing so, the entire state of the object can be persisted out using a few lines of code. Without
getting hung up on the details for the time being, consider the following Main() method:

static void Main(string[] args)
{
// Assume UserPrefs defines the following properties.
UserPrefs userData= new UserPrefs();
userData.WindowColor = "Yellow";
userData.FontSize = "50";

// The BinaryFormatter persists state data in a binary format.
BinaryFormatter binFormat = new BinaryFormatter();

// Store object in a local file.
using(Stream fStream = new FileStream("user.dat",
FileMode.Create, FileAccess.Write, FileShare.None))

{
binFormat.Serialize(fStream, userData);

}
Console.ReadLine();

}

While it is quite simple to persist objects using .NET object serialization, the processes used
behind the scenes are quite sophisticated. For example, when an object is persisted to a stream, all
associated data (base class data, contained objects, etc.) are automatically serialized as well. There-
fore, if you are attempting to persist a derived class, all data up the chain of inheritance comes
along for the ride. As you will see, a set of interrelated objects is represented using an object graph.

.NET serialization services also allow you to persist an object graph in a variety of formats. The
previous code example made use of the BinaryFormatter type; therefore, the state of the UserPrefs
object was persisted as a compact binary format. You are also able to persist an object graph into
SOAP or XML format using other types. These formats can be quite helpful when you wish to ensure
that your persisted objects travel well across operating systems, languages, and architectures.

Finally, understand that an object graph can be persisted into any System.IO.Stream-derived
type. In the previous example, you persisted a UserPrefs object into a local file via the FileStream
type. However, if you would rather store an object to a specific region of memory, you could make
use of a MemoryStream type instead. All that matters is the fact that the sequence of data correctly
represents the state of objects within the graph.

The Role of Object Graphs
As mentioned, when an object is serialized, the CLR will account for all related objects to ensure the
data is persisted correctly. This set of related objects is referred to as an object graph. Object graphs
provide a simple way to document how a set of objects refer to each other and do not necessarily
map to classic OO relationships (such as the “is-a” or “has-a” relationship), although they do model
this paradigm quite well.

Each object in an object graph is assigned a unique numerical value. Keep in mind that the
numbers assigned to the members in an object graph are arbitrary and have no real meaning to the
outside world. Once all objects have been assigned a numerical value, the object graph can record
each object’s set of dependencies.

As a simple example, assume you have created a set of classes that model some automobiles
(of course). You have a base class named Car, which “has-a” Radio. Another class named
JamesBondCar extends the Car base type. Figure 21-1 shows a possible object graph that models
these relationships.

CHAPTER 21 ■ INTRODUCING OBJECT SERIALIZATION712

8849CH21.qxd 10/10/07 11:06 AM Page 712

Figure 21-1. A simple object graph

When reading object graphs, you can use the phrase “depends on” or “refers to” when connect-
ing the arrows. Thus, in Figure 21-1 you can see that the Car class refers to the Radio class (given the
“has-a” relationship). JamesBondCar refers to Car (given the “is-a” relationship) as well as Radio (as it
inherits this protected member variable).

Of course, the CLR does not paint pictures in memory to represent a graph of related objects.
Rather, the relationship documented in the previous diagram is represented by a mathematical for-
mula that looks something like this:

[Car 3, ref 2], [Radio 2], [JamesBondCar 1, ref 3, ref 2]

If you parse this formula, you can again see that object 3 (the Car) has a dependency on
object 2 (the Radio). Object 2, the Radio, is a lone wolf and requires nobody. Finally, object 1 (the
JamesBondCar) has a dependency on object 3 as well as object 2. In any case, when you serialize or
deserialize an instance of JamesBondCar, the object graph ensures that the Radio and Car types also
participate in the process.

The beautiful thing about the serialization process is that the graph representing the relation-
ships among your objects is established automatically behind the scenes. As you will see later in
this chapter, however, if you do wish to become more involved in the construction of a given object
graph, it is possible to do so by customizing the serialization process via attributes and interfaces.

■Note Strictly speaking, the XmlSerializer type (described later in this chapter) does not persist state using
object graphs; however, this type will still serialize and deserialize related objects in a predictable manner.

Configuring Objects for Serialization
To make an object available to .NET serialization services, all you need to do is decorate each
related class (or structure) with the [Serializable] attribute. If you determine that a given type has
some member data that should not (or perhaps cannot) participate in the serialization scheme, you
can mark such fields with the [NonSerialized] attribute. This can be helpful if you have member
variables in a serializable class that do not need to be “remembered” (e.g., fixed values, random
values, transient data, etc.) and you wish to reduce the size of the persisted data.

Defining Serializable Types
To get the ball rolling, create a new Console Application named SimpleSerialize. Insert a new class
named Radio, which has been marked [Serializable], excluding a single member variable

CHAPTER 21 ■ INTRODUCING OBJECT SERIALIZATION 713

8849CH21.qxd 10/10/07 11:06 AM Page 713

(radioID) that has been marked [NonSerialized] and will therefore not be persisted into the speci-
fied data stream:

[Serializable]
public class Radio
{
public bool hasTweeters;
public bool hasSubWoofers;
public double[] stationPresets;

[NonSerialized]
public string radioID = "XF-552RR6";

}

Next, insert two additional class types to represent the JamesBondCar and Car base classes, both
of which are also marked [Serializable] and define the following pieces of field data:

[Serializable]
public class Car
{
public Radio theRadio = new Radio();
public bool isHatchBack;

}

[Serializable]
public class JamesBondCar : Car
{
public bool canFly;
public bool canSubmerge;

}

Be aware that the [Serializable] attribute cannot be inherited from a parent class. Therefore,
if you derive a class from a type marked [Serializable], the child class must be marked
[Serializable] as well, or it cannot be persisted. In fact, all objects in an object graph must be
marked with the [Serializable] attribute. If you attempt to serialize a nonserializable object using
the BinaryFormatter or SoapFormatter, you will receive a SerializationException at runtime.

■Note Because the XmlSerializer type does not make use of object graphs, you are not technically required
to mark types with the [Serializable] attribute in order to persist an object’s state as XML. However, to ensure
that your types can be persisted in all possible formats, you will typically always want to mark types that will be
persisted with the serialization attributes.

Public Fields, Private Fields, and Public Properties
Notice that in each of these classes, I have defined the field data as public, just to simplify the exam-
ple. Of course, private data exposed using public properties would be preferable from an OO point
of view. Also, for the sake of simplicity, I have not defined any custom constructors on these types,
and therefore all unassigned field data will receive the expected default values.

OO design principles aside, you may wonder how the various formatters expect a type’s field
data to be defined in order to be serialized into a stream. The answer is, it depends. If you are per-
sisting an object’s state using the BinaryFormatter or SoapFormatter it makes absolutely no
difference. These types are programmed to serialize all serializable fields of a type, regardless of
whether they are public fields, private fields, or private fields exposed through public properties.
Do recall, however, that if you have points of data that you do not want to be persisted into the

CHAPTER 21 ■ INTRODUCING OBJECT SERIALIZATION714

8849CH21.qxd 10/10/07 11:06 AM Page 714

object graph, you can selectively mark public or private fields as [NonSerialized], as done with the
string field of the Radio type.

The situation is quite different if you make use of the XmlSerializer type, however. This type
will only serialize public data fields or private data exposed by public properties. Private data not
exposed from properties will be ignored. For example, consider the following serializable Person
type:

[Serializable]
public class Person
{
// A public field.
public bool isAlive = true;

// A private field.
private int personAge = 21;

// Public property/private data.
private string fName = string.Empty;
public string FirstName
{
get { return fName; }
set { fName = value; }

}
}

When processed by the BinaryFormatter or SoapFormatter, you would indeed find that the
isAlive, personAge, and fName fields are each saved into the selected stream. However, the
XmlSerializer would not save the value of personAge, as this piece of private data is not encapsu-
lated by a type property. If you wished to persist the age of the person with the XmlSerializer, you
would need to define the field publicly or encapsulate the private member using a public property.

Choosing a Serialization Formatter
Once you have configured your types to participate in the .NET serialization scheme by applying
the necessary attributes, your next step is to choose which format (binary, SOAP, or XML) should be
used when persisting your object’s state. Each possibility is represented by the following classes:

• BinaryFormatter

• SoapFormatter

• XmlSerializer

The BinaryFormatter type serializes your object’s state to a stream using a compact binary for-
mat. This type is defined within the System.Runtime.Serialization.Formatters.Binary namespace
that is part of mscorlib.dll. Therefore, if you wish to gain access to this type, simply specify the fol-
lowing C# using directive:

// Gain access to the BinaryFormatter in mscorlib.dll.
using System.Runtime.Serialization.Formatters.Binary;

The SoapFormatter type persists an object’s state as a SOAP message. This type is defined
within the System.Runtime.Serialization.Formatters.Soap namespace that is defined within a
separate assembly. Thus, to format your object graph into a SOAP message, you must first set a
reference to System.Runtime.Serialization.Formatters.Soap.dll using the Visual Studio 2008 Add
Reference dialog box and then specify the following C# using directive:

CHAPTER 21 ■ INTRODUCING OBJECT SERIALIZATION 715

8849CH21.qxd 10/10/07 11:06 AM Page 715

// Must reference System.Runtime.Serialization.Formatters.Soap.dll.
using System.Runtime.Serialization.Formatters.Soap;

Finally, if you wish to persist a tree of objects as an XML document, you have the
XmlSerializer type. To use this type, you will need to specify that you are using the System.Xml.
Serialization namespace and set a reference to the assembly System.Xml.dll. As luck would have
it, all Visual Studio 2008 project templates automatically reference System.Xml.dll, therefore you
will simply need to use the following namespace:

// Defined within System.Xml.dll.
using System.Xml.Serialization;

The IFormatter and IRemotingFormatter Interfaces
Regardless of which formatter you choose to make use of, be aware that each of them derives
directly from System.Object, so they do not share a common set of members from a serialization-
centric base class. However, the BinaryFormatter and SoapFormatter types do support common
members through the implementation of the IFormatter and IRemotingFormatter interfaces
(strange as it may seem, the XmlSerializer implements neither).

System.Runtime.Serialization.IFormatter defines the core Serialize() and Deserialize()
methods, which do the grunt work to move your object graphs into and out of a specific stream.
Beyond these members, IFormatter defines a few properties that are used behind the scenes by the
implementing type:

public interface IFormatter
{
SerializationBinder Binder { get; set; }
StreamingContext Context { get; set; }
ISurrogateSelector SurrogateSelector { get; set; }
object Deserialize(System.IO.Stream serializationStream);
void Serialize(System.IO.Stream serializationStream, object graph);

}

The System.Runtime.Remoting.Messaging.IRemotingFormatter interface (which is leveraged
internally by the .NET remoting layer) overloads the Serialize() and Deserialize() members into
a manner more appropriate for distributed persistence. Note that IRemotingFormatter derives from
the more general IFormatter interface:

public interface IRemotingFormatter : IFormatter
{
object Deserialize(Stream serializationStream, HeaderHandler handler);
void Serialize(Stream serializationStream, object graph,
Header[] headers);

}

Although you may not need to directly interact with these interfaces for most of your seriali-
zation endeavors, recall that interface-based polymorphism allows you to hold an instance of
BinaryFormatter or SoapFormatter using an IFormatter reference. Therefore, if you wish to build
a method that can serialize an object graph using either of these classes, you could write the
following:

static void SerializeObjectGraph(IFormatter itfFormat,
Stream destStream, object graph)

{
itfFormat.Serialize(destStream, graph);

}

CHAPTER 21 ■ INTRODUCING OBJECT SERIALIZATION716

8849CH21.qxd 10/10/07 11:06 AM Page 716

Type Fidelity Among the Formatters
The most obvious difference among the three formatters is how the object graph is persisted to the
stream (binary, SOAP, or XML). You should be aware of a few more subtle points of distinction,
specifically how the formatters contend with type fidelity. When you make use of the BinaryFormatter
type, it will persist not only the field data of the objects in the object graph, but also each type’s fully
qualified name and the full name of the defining assembly (name, version, public key token, and
culture). These extra points of data make the BinaryFormatter an ideal choice when you wish
to transport objects by value (e.g., as a full copy) across machine boundaries for .NET-centric
applications.

The SoapFormatter persists traces of the assembly of origin through the use of an XML name-
space. For example, recall the Person type earlier in this chapter. If this type were persisted as a
SOAP message, you would find that the opening element of Person is qualified by the generated
xmlns. Consider this partial definition, taking note of the a1 XML namespace:

<a1:Person id="ref-1" xmlns:a1=
"http://schemas.microsoft.com/clr/nsassem/SimpleSerialize/MyApp%2C%20
Version%3D1.0.0.0%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull">
<isAlive>true</isAlive>
<personAge>21</personAge>
<fName id="ref-3"></fName>

</a1:Person>

However, the XmlSerializer, does not attempt to preserve full type fidelity and therefore does
not record the type’s fully qualified name or assembly of origin. While this may seem like a limita-
tion at first glance, the reason has to do with the open-ended nature of XML data representation.
Here is a possible XML representation of the Person type:

<?xml version="1.0"?>
<Person xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<isAlive>true</isAlive>
<PersonAge>21</PersonAge>
<FirstName />

</Person>

If you wish to persist an object’s state in a manner that can be used by any operating system
(Windows XP, Mac OS X, and various Linux distributions), application framework (.NET, J2EE, COM,
etc.), or programming language, you do not want to maintain full type fidelity, as you cannot
assume all possible recipients can understand .NET-specific data types. Given this, SoapFormatter
and XmlSerializer are ideal choices when you wish to ensure as broad a reach as possible for the
persisted tree of objects.

Serializing Objects Using the BinaryFormatter
To illustrate how easy it is to persist an instance of the JamesBondCar to a physical file, let’s first make
use of the BinaryFormatter type. Again, the two key methods of the BinaryFormatter type to be
aware of are Serialize() and Deserialize():

• Serialize(): Persists an object graph to a specified stream as a sequence of bytes

• Deserialize(): Converts a persisted sequence of bytes to an object graph

CHAPTER 21 ■ INTRODUCING OBJECT SERIALIZATION 717

8849CH21.qxd 10/10/07 11:06 AM Page 717

http://schemas.microsoft.com/clr/nsassem/SimpleSerialize/MyApp%2C%20Version%3D1.0.0.0%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull
http://schemas.microsoft.com/clr/nsassem/SimpleSerialize/MyApp%2C%20Version%3D1.0.0.0%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema

Assume you have created an instance of JamesBondCar, modified some state data, and want to
persist your spy mobile into a *.dat file. The first task is to create the *.dat file itself. This can be
achieved by creating an instance of the System.IO.FileStream type (see Chapter 20). At this point,
simply create an instance of the BinaryFormatter and pass in the FileStream and object graph to
persist. Consider the following Main() method:

// Be sure to import the System.Runtime.Serialization.Formatters.Binary
// and System.IO namespaces.
static void Main(string[] args)
{
Console.WriteLine("***** Fun with Object Serialization *****\n");

// Make a JamesBondCar and set state.
JamesBondCar jbc = new JamesBondCar();
jbc.canFly = true;
jbc.canSubmerge = false;
jbc.theRadio.stationPresets = new double[]{89.3, 105.1, 97.1};
jbc.theRadio.hasTweeters = true;

// Now save the car to a specific file in a binary format.
SaveAsBinaryFormat(jbc, "CarData.dat");
Console.ReadLine();

}

The SaveAsBinaryFormat() method is implemented as so:

static void SaveAsBinaryFormat(object objGraph, string fileName)
{
// Save object to a file named CarData.dat in binary.
BinaryFormatter binFormat = new BinaryFormatter();

using(Stream fStream = new FileStream(fileName,
FileMode.Create, FileAccess.Write, FileShare.None))

{
binFormat.Serialize(fStream, objGraph);

}
Console.WriteLine("=> Saved car in binary format!");

}

As you can see, the BinaryFormatter.Serialize() method is the member responsible for com-
posing the object graph and moving the byte sequence to some Stream-derived type. In this case,
the stream happens to be a physical file. Again, you could also serialize your object types to any
Stream-derived type such as a memory location, network stream, and so forth. Once you run your
program, you can view the contents of the CarData.dat file that represents this instance of the
JamesBondCar by navigating to the \bin\Debug folder of the current project. Figure 21-2 shows this
file opened within Visual Studio 2008.

CHAPTER 21 ■ INTRODUCING OBJECT SERIALIZATION718

8849CH21.qxd 10/10/07 11:06 AM Page 718

Figure 21-2. JamesBondCar serialized using a BinaryFormatter

Deserializing Objects Using the BinaryFormatter
Now suppose you want to read the persisted JamesBondCar from the binary file back into an object
variable. Once you have programmatically opened CarData.dat (via the File.OpenRead() method),
simply call the Deserialize() method of the BinaryFormatter. Be aware that Deserialize() returns
a generic System.Object type, so you need to impose an explicit cast, as shown here:

static void LoadFromBinaryFile(string fileName)
{
BinaryFormatter binFormat = new BinaryFormatter();

// Read the JamesBondCar from the binary file.
using(Stream fStream = File.OpenRead(fileName))
{
JamesBondCar carFromDisk =
(JamesBondCar)binFormat.Deserialize(fStream);

Console.WriteLine("Can this car fly? : {0}", carFromDisk.canFly);
}

}

Notice that when you call Deserialize(), you pass the Stream-derived type that represents the
location of the persisted object graph. Once you cast the object back into the correct type, you will
find the state data has been retained from the point at which you saved the object.

Serializing Objects Using the SoapFormatter
Your next choice of formatter is the SoapFormatter type. The SoapFormatter will persist an object
graph into a SOAP message, which makes this formatter a solid choice when you wish to distribute
objects remotely across diverse environments. If you are unfamiliar with the Simple Object Access
Protocol (SOAP) specification, in a nutshell, SOAP defines a standard process in which methods
may be invoked in a platform- and OS-neutral manner.

Assuming you have set a reference to the System.Runtime.Serialization.Formatters.Soap.dll
assembly (and imported the System.Runtime.Serialization.Formatters.Soap namespace), you
could persist and retrieve a JamesBondCar as a SOAP message simply by replacing each occurrence
of BinaryFormatter with SoapFormatter. Consider the following new method of the Program class,
which serializes an object to a local file:

CHAPTER 21 ■ INTRODUCING OBJECT SERIALIZATION 719

8849CH21.qxd 10/10/07 11:06 AM Page 719

// Be sure to import System.Runtime.Serialization.Formatters.Soap
// and reference System.Runtime.Serialization.Formatters.Soap.dll.
static void SaveAsSoapFormat (object objGraph, string fileName)
{
// Save object to a file named CarData.soap in SOAP format.
SoapFormatter soapFormat = new SoapFormatter();

using(Stream fStream = new FileStream(fileName,
FileMode.Create, FileAccess.Write, FileShare.None))

{
soapFormat.Serialize(fStream, objGraph);

}
Console.WriteLine("=> Saved car in SOAP format!");

}

As before, simply use Serialize() and Deserialize() to move the object graph into and out of
the stream. If you call this method from Main() and run the application, you can open the resulting
*.soap file. Here you can locate the XML elements that mark the stateful values of the current
JamesBondCar as well as the relationship between the objects in the graph via the #ref tokens (see
Figure 21-3).

Figure 21-3. JamesBondCar serialized using a SoapFormatter

Serializing Objects Using the XmlSerializer
In addition to the SOAP and binary formatters, the System.Xml.dll assembly provides a third for-
matter, System.Xml.Serialization.XmlSerializer, which can be used to persist the public state of a
given object as pure XML, as opposed to XML data wrapped within a SOAP message. Working with
this type is a bit different from working with the SoapFormatter or BinaryFormatter type. Consider
the following code, which assumes you have imported the System.Xml.Serialization namespace:

static void SaveAsXmlFormat(object objGraph, string fileName)
{
// Save object to a file named CarData.xml in XML format.

CHAPTER 21 ■ INTRODUCING OBJECT SERIALIZATION720

8849CH21.qxd 10/10/07 11:06 AM Page 720

XmlSerializer xmlFormat = new XmlSerializer(typeof(JamesBondCar),
new Type[] { typeof(Radio), typeof(Car) });

using(Stream fStream = new FileStream(fileName,
FileMode.Create, FileAccess.Write, FileShare.None))

{
xmlFormat.Serialize(fStream, objGraph);

}
Console.WriteLine("=> Saved car in XML format!");

}

The key difference is that the XmlSerializer type requires you to specify type information
that represents each subelement nested within the root. The first constructor argument of the
XmlSerializer defines the root element of the XML file, while the second argument is an array of
System.Type types that hold metadata regarding the subelements. If you were to look within the
newly generated XML file (assuming you indeed call this new method from within Main()), you
would find the XML data shown in Figure 21-4.

Figure 21-4. JamesBondCar serialized using an XmlSerializer

■Note The XmlSerializer demands that all serialized types in the object graph support a default constructor
(so be sure to add it back if you define custom constructors). If this is not the case, you will receive an
InvalidOperationException at runtime.

Controlling the Generated XML Data
If you have a background in XML technologies, you are well aware that it is often critical to ensure
the data within an XML document conforms to a set of rules that establish the validity of the data.
Understand that a “valid” XML document does not have to do with the syntactic well-being of the
XML elements (e.g., all opening elements must have a closing element). Rather, valid documents
conform to agreed-upon formatting rules (e.g., field X must be expressed as an attribute and not a
subelement), which are typically defined by an XML schema or document-type definition (DTD)
file.

CHAPTER 21 ■ INTRODUCING OBJECT SERIALIZATION 721

8849CH21.qxd 10/10/07 11:06 AM Page 721

By default, all public data of a [Serializable] type is formatted as elements rather than XML
attributes. If you wish to control how the XmlSerializer generates the resulting XML document, you
may decorate your [Serializable] types with any number of additional attributes from the System.
Xml.Serialization namespace. Table 21-1 documents some (but not all) of the attributes that influ-
ence how XML data is encoded to a stream.

Table 21-1. Select Attributes of the System.Xml.Serialization Namespace

Attribute Meaning in Life

XmlAttributeAttribute The member will be serialized as an XML attribute.

XmlElementAttribute The field or property will be serialized as an XML element.

XmlEnumAttribute The element name of an enumeration member.

XmlRootAttribute This attribute controls how the root element will be constructed
(namespace and element name).

XmlTextAttribute The property or field should be serialized as XML text.

XmlTypeAttribute The name and namespace of the XML type.

By way of a simple example, first consider how the field data of JamesBondCar is currently per-
sisted as XML:

<?xml version="1.0" encoding="utf-8"?>
<JamesBondCar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
...
<canFly>true</canFly>
<canSubmerge>false</canSubmerge>

</JamesBondCar>

If you wish to specify a custom XML namespace that qualifies the JamesBondCar as well as
encodes the canFly and canSubmerge values as XML attributes, you can do so by modifying the C#
definition of JamesBondCar as so:

[Serializable,
XmlRoot(Namespace = "http://www.intertech.com")]
public class JamesBondCar : Car
{
[XmlAttribute]
public bool canFly;
[XmlAttribute]
public bool canSubmerge;

}

This yields the following XML document (note the opening <JamesBondCar> element):

<?xml version="1.0"""?>
<JamesBondCar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
canFly="true" canSubmerge="false"
xmlns="http://www.intertechtraining.com">

...
</JamesBondCar>

Of course, numerous other attributes can be used to control how the XmlSerializer generates
the resulting XML document. For full details, look up the System.Xml.Serialization namespace
using the .NET Framework 3.5 SDK documentation.

CHAPTER 21 ■ INTRODUCING OBJECT SERIALIZATION722

8849CH21.qxd 10/10/07 11:06 AM Page 722

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.intertech.com
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.intertechtraining.com
http://www.intertechtraining.com

Serializing Collections of Objects
Now that you have seen how to persist a single object to a stream, let’s examine how to save a set of
objects. As you may have noticed, the Serialize() method of the IFormatter interface does not pro-
vide a way to specify an arbitrary number of objects as input (only a single System.Object). On a
related note, the return value of Deserialize() is, again, a single System.Object (the same basic lim-
itation holds true for the XmlSerializer):

public interface IFormatter
{
...
object Deserialize(System.IO.Stream serializationStream);
void Serialize(System.IO.Stream serializationStream, object graph);

}

Recall that the System.Object in fact represents a complete tree of objects. Given this, if you
pass in an object that has been marked as [Serializable] and contains other [Serializable]
objects, the entire set of objects is persisted in a single method call. As luck would have it, most of
the types found within the System.Collections and System.Collections.Generic namespaces have
already been marked as [Serializable]. Therefore, if you wish to persist a set of objects, simply add
the set to the container (such as an ArrayList or a List<T>) and serialize the object to your stream
of choice.

Assume you have updated the JamesBondCar class with a two-argument constructor to set a
few pieces of state data (note that you add back the default constructor as required by the
XmlSerializer):

[Serializable,
XmlRoot(Namespace = "http://www.intertech.com")]
public class JamesBondCar : Car
{
public JamesBondCar(bool skyWorthy, bool seaWorthy)
{
canFly = skyWorthy;
canSubmerge = seaWorthy;

}
// The XmlSerializer demands a default constructor!
public JamesBondCar(){}

...
}

With this, you are now able to persist any number of JamesBondCars as so:

static void SaveListOfCars()
{
// Now persist a List<T> of JamesBondCars.
List<JamesBondCar> myCars = new List<JamesBondCar>();
myCars.Add(new JamesBondCar(true, true));
myCars.Add(new JamesBondCar(true, false));
myCars.Add(new JamesBondCar(false, true));
myCars.Add(new JamesBondCar(false, false));

using(Stream fStream = new FileStream("CarCollection.xml",
FileMode.Create, FileAccess.Write, FileShare.None))

{
XmlSerializer xmlFormat = new XmlSerializer(typeof(List<JamesBondCar>),
new Type[] { typeof(JamesBondCar), typeof(Car), typeof(Radio) });

xmlFormat.Serialize(fStream, myCars);

CHAPTER 21 ■ INTRODUCING OBJECT SERIALIZATION 723

8849CH21.qxd 10/10/07 11:06 AM Page 723

http://www.intertech.com

}
Console.WriteLine("=> Saved list of cars!");

}

Here, because you made use of the XmlSerializer, you are required to specify type information
for each of the subobjects within the root object (which in this case is the List<JamesBondCar>). Had
you made use of the BinaryFormatter or SoapFormatter type, the logic would be even more straight-
forward, for example:

static void SaveListOfCarsAsBinary()
{
// Save ArrayList object (myCars) as binary.
List<JamesBondCar> myCars = new List<JamesBondCar>();

BinaryFormatter binFormat = new BinaryFormatter();
using(Stream fStream = new FileStream("AllMyCars.dat",
FileMode.Create, FileAccess.Write, FileShare.None))

{
binFormat.Serialize(fStream, myCars);

}
Console.WriteLine("=> Saved list of cars in binary!");

}

■Source Code The SimpleSerialize application is located under the Chapter 21 subdirectory.

Customizing the Serialization Process
In a majority of cases, the default serialization scheme provided by the .NET platform will be exactly
what you require. Simply apply the [Serializable] attribute to your related types and pass the tree
of objects to your formatter of choice for processing. In some cases, however, you may wish to
become more involved with how a tree is constructed and handled during the serialization process.
For example, maybe you have a business rule that says all field data must be persisted using a par-
ticular format, or perhaps you wish to add additional bits of data to the stream that do not directly
map to fields in the object being persisted (timestamps, unique identifiers, or whatnot).

When you wish to become more involved with the process of object serialization, the
System.Runtime.Serialization namespace provides several types that allow you to do so. Table 21-2
describes some of the core types to be aware of.

Table 21-2. System.Runtime.Serialization Namespace Core Types

Type Meaning in Life

ISerializable This interface can be implemented on a [Serializable] type to control its
serialization and deserialization.

ObjectIDGenerator This type generates IDs for members in an object graph.

[OnDeserialized] This attribute allows you to specify a method that will be called
immediately after the object has been deserialized.

[OnDeserializing] This attribute allows you to specify a method that will be called before the
deserialization process.

CHAPTER 21 ■ INTRODUCING OBJECT SERIALIZATION724

8849CH21.qxd 10/10/07 11:06 AM Page 724

Type Meaning in Life

[OnSerialized] This attribute allows you to specify a method that will be called
immediately after the object has been serialized.

[OnSerializing] This attribute allows you to specify a method that will be called before the
serialization process.

[OptionalField] This attribute allows you to define a field on a type that can be missing
from the specified stream.

SerializationInfo In essence, this class is a “property bag” that maintains name/value pairs
representing the state of an object during the serialization process.

A Deeper Look at Object Serialization
Before we examine various ways in which you can customize the serialization process, it will be
helpful to take a deeper look at what takes place behind the scenes. When the BinaryFormatter seri-
alizes an object graph, it is in charge of transmitting the following information into the specified
stream:

• The fully qualified name of the objects in the graph (e.g., MyApp.JamesBondCar)

• The name of the assembly defining the object graph (e.g., MyApp.exe)

• An instance of the SerializationInfo class that contains all stateful data maintained by the
members in the object graph

During the deserialization process, the BinaryFormatter uses this same information to build
an identical copy of the object, using the information extracted from the underlying stream. The
process used by the SoapFormatter is quite similar.

■Note Recall that the XmlSerializer does not persist a type’s fully qualified name or the name of the defining
assembly in order to keep the state of the object as mobile as possible. This type is concerned only with persisting
exposed public data.

Beyond moving the required data into and out of a stream, formatters also analyze the mem-
bers in the object graph for the following pieces of infrastructure:

• A check is made to determine whether the object is marked with the [Serializable] attrib-
ute. If the object is not, a SerializationException is thrown.

• If the object is marked [Serializable], a check is made to determine if the object imple-
ments the ISerializable interface. If this is the case, GetObjectData() is called on the object.

• If the object does not implement ISerializable, the default serialization process is used,
serializing all fields not marked as [NonSerialized].

In addition to determining if the type supports ISerializable, formatters are also responsible
for discovering if the types in question support members that have been adorned with the
[OnSerializing], [OnSerialized], [OnDeserializing], or [OnDeserialized] attribute. We’ll examine
the role of these attributes in just a bit, but first let’s look at the role of ISerializable.

CHAPTER 21 ■ INTRODUCING OBJECT SERIALIZATION 725

8849CH21.qxd 10/10/07 11:06 AM Page 725

Customizing Serialization Using ISerializable
Objects that are marked [Serializable] have the option of implementing the ISerializable inter-
face. By doing so, you are able to “get involved” with the serialization process and perform any
pre- or post-data formatting.

■Note Since the release of .NET 2.0, the preferred way to customize the serialization process is to use the seri-
alization attributes (described next). However, knowledge of ISerializable is important for the purpose of
maintaining existing systems.

The ISerializable interface is quite simple, given that it defines only a single method,
GetObjectData():

// When you wish to tweak the serialization process,
// implement ISerializable.
public interface ISerializable
{
void GetObjectData(SerializationInfo info,
StreamingContext context);

}

The GetObjectData() method is called automatically by a given formatter during the serializa-
tion process. The implementation of this method populates the incoming SerializationInfo
parameter with a series of name/value pairs that (typically) map to the field data of the object being
persisted. SerializationInfo defines numerous variations on the overloaded AddValue() method,
in addition to a small set of properties that allow the type to get and set the type’s name, defining
assembly, and member count. Here is a partial snapshot:

public sealed class SerializationInfo : object
{
public SerializationInfo(Type type, IFormatterConverter converter);
public string AssemblyName { get; set; }
public string FullTypeName { get; set; }
public int MemberCount { get; }
public void AddValue(string name, short value);
public void AddValue(string name, UInt16 value);
public void AddValue(string name, int value);

...
}

Types that implement the ISerializable interface must also define a special constructor
taking the following signature:

// You must supply a custom constructor with this signature
// to allow the runtime engine to set the state of your object.
[Serializable]
class SomeClass : ISerializable
{
protected SomeClass (SerializationInfo si, StreamingContext ctx) {...}
...

}

Notice that the visibility of this constructor is set as protected. This is permissible given that the
formatter will have access to this member regardless of its visibility. These special constructors tend
to be marked as protected (or private for that matter) to ensure that the casual object user would

CHAPTER 21 ■ INTRODUCING OBJECT SERIALIZATION726

8849CH21.qxd 10/10/07 11:06 AM Page 726

never create an object in this manner. As you can see, the first parameter of this constructor is an
instance of the SerializationInfo type (seen previously).

The second parameter of this special constructor is a StreamingContext type, which contains
information regarding the source or destination of the bits. The most informative member of this
type is the State property, which represents a value from the StreamingContextStates enumeration.
The values of this enumeration represent the basic composition of the current stream.

To be honest, unless you are implementing some low-level custom remoting services, you will
seldom need to deal with this enumeration directly. Nevertheless, here are the possible names of the
StreamingContextStates enum (consult the .NET Framework 3.5 SDK documentation for full details):

public enum StreamingContextStates
{
CrossProcess,
CrossMachine,
File,
Persistence,
Remoting,
Other,
Clone,
CrossAppDomain,
All

}

To illustrate customizing the serialization process using ISerializable, assume you have a new
Console Application project (named CustomSerialization) that defines a class type containing two
points of string data. Furthermore, assume that you must ensure the string objects are serialized
to the stream in all uppercase and deserialized from the stream in all lowercase. To account for such
rules, you could implement ISerializable as so (be sure to import the System.Runtime.
Serialization namespace):

[Serializable]
class StringData : ISerializable
{
public string dataItemOne = "First data block";
public string dataItemTwo= "More data";

public StringData(){}
protected StringData(SerializationInfo si, StreamingContext ctx)
{
// Rehydrate member variables from stream.
dataItemOne = si.GetString("First_Item").ToLower();
dataItemTwo = si.GetString("dataItemTwo").ToLower();

}

void ISerializable.GetObjectData(SerializationInfo info, StreamingContext ctx)
{
// Fill up the SerializationInfo object with the formatted data.
info.AddValue("First_Item", dataItemOne.ToUpper());
info.AddValue("dataItemTwo", dataItemTwo.ToUpper());

}
}

Notice that when you are filling the SerializationInfo type from within the GetObjectData()
method, you are not required to name the data points identically to the type’s internal member
variables. This can obviously be helpful if you need to further decouple the type’s data from the per-
sisted format. Do be aware, however, that you will need to obtain the values from within the special
protected constructor using the same names assigned within GetObjectData().

CHAPTER 21 ■ INTRODUCING OBJECT SERIALIZATION 727

8849CH21.qxd 10/10/07 11:06 AM Page 727

To test your customization, assume you have persisted an instance of MyStringData using a
SoapFormatter:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Custom Serialization *****");

// Recall that this type implements ISerializable.
StringData myData = new StringData();

// Save to a local file in SOAP format.
SoapFormatter soapFormat = new SoapFormatter();
using(Stream fStream = new FileStream("MyData.soap",
FileMode.Create, FileAccess.Write, FileShare.None))

{
soapFormat.Serialize(fStream, myData);

}
Console.ReadLine();

}

When you view the resulting *.soap file, you will note that the string fields have indeed been
persisted in uppercase (see Figure 21-5).

Figure 21-5. Customizing our serialization via ISerializable

Customizing Serialization Using Attributes
Although implementing the ISerializable interface is one possible way to customize the serializa-
tion process, since the release of .NET 2.0 the preferred way to customize the serialization process
is to define methods that are attributed with any of the new serialization-centric attributes:
[OnSerializing], [OnSerialized], [OnDeserializing], or [OnDeserialized]. Using these attributes
is less cumbersome than implementing ISerializable, given that you do not need to manually
interact with an incoming SerializationInfo parameter. Instead, you are able to directly modify
your state data while the formatter is operating on the type.

■Note These serialization attributes are defined within the System.Runtime.Serialization namespace.

When applying these attributes, the methods must be defined to receive a StreamingContext
parameter and return nothing (otherwise, you will receive a runtime exception). Do note that you
are not required to account for each of the serialization-centric attributes, and you can simply
contend with the stages of serialization you are interested in intercepting. To illustrate, here is a new

CHAPTER 21 ■ INTRODUCING OBJECT SERIALIZATION728

8849CH21.qxd 10/10/07 11:06 AM Page 728

[Serializable] type that has the same requirements as StringData, this time accounted for using
the [OnSerializing] and [OnDeserialized] attributes:

[Serializable]
class MoreData
{
public string dataItemOne = "First data block";
public string dataItemTwo= "More data";

[OnSerializing]
private void OnSerializing(StreamingContext context)
{
// Called during the serialization process.
dataItemOne = dataItemOne.ToUpper();
dataItemTwo = dataItemTwo.ToUpper();

}

[OnDeserialized]
private void OnDeserialized(StreamingContext context)
{
// Called once the deserialization process is complete.
dataItemOne = dataItemOne.ToLower();
dataItemTwo = dataItemTwo.ToLower();

}
}

If you were to serialize this new type, you would again find that the data has been persisted as
uppercase and deserialized as lowercase.

■Source Code The CustomSerialization project is included under the Chapter 21 subdirectory.

With this example behind us, you have now been exposed to the core details regarding object
serialization services, including various ways to customize the process. As you have seen, the serial-
ization and deserialization process makes it very simple to persist large amounts of data, and it can
be less labor-intensive than working with the various reader/writer classes of the System.IO name-
space. If you wish to dig deeper into this aspect of the .NET platform, be sure to look up the
BinaryFormatter, SoapFormatter, and XmlSerializer using the .NET Framework 3.5 SDK documen-
tation.

Summary
This chapter introduced the topic of object serialization services. As you have seen, the .NET plat-
form makes use of an object graph to correctly account for the full set of related objects that are to
be persisted to a stream. As long as each member in the object graph has been marked with the
[Serializable] attribute, the data is persisted using your format of choice (binary, SOAP, or XML).

You also learned that it is possible to customize the out-of-the-box serialization process using
two possible approaches. First, you learned how to implement the ISerializable interface (and
support a special private constructor) to become more involved with how formatters persist the
supplied data. Next, you came to know a set of .NET attributes that simplify the process of
custom serialization. Just apply the [OnSerializing], [OnSerialized], [OnDeserializing], or
[OnDeserialized] attribute on members taking a StreamingContext parameter, and the formatters
will invoke them accordingly.

CHAPTER 21 ■ INTRODUCING OBJECT SERIALIZATION 729

8849CH21.qxd 10/10/07 11:06 AM Page 729

8849CH21.qxd 10/10/07 11:06 AM Page 730

ADO.NET Part I:
The Connected Layer

As you would expect, the .NET platform defines a number of namespaces that allow you to inter-
act with machine local and remote relational databases. Collectively speaking, these namespaces
are known as ADO.NET. In this chapter, once I frame the overall role of ADO.NET, I’ll move on to
discuss the topic of ADO.NET data providers. The .NET platform supports numerous data providers,
each of which is optimized to communicate with a specific database management system (Microsoft
SQL Server, Oracle, MySQL, etc.).

After you understand the common functionality provided by various data providers, you will
then examine the data provider factory pattern. As you will see, using types within the System.Data.
Common namespace (and a related App.config file), you are able to build a single code base that can
dynamically pick and choose the underlying data provider without the need to recompile or rede-
ploy the application’s code base.

Perhaps most importantly, this chapter will give you the chance to build a custom data access
library assembly (AutoLotDAL.dll) that will encapsulate various database operations performed on
a custom database named AutoLot. This library will be expanded upon in Chapter 23 and leveraged
over many of this text’s remaining chapters. We wrap things up by examining how to communicate
with Microsoft SQL Server in an asynchronous manner using the types within the System.Data.
SqlClient namespace and introduce the topic of database transactions.

A High-Level Definition of ADO.NET
If you have a background in Microsoft’s previous COM-based data access model (Active Data
Objects, or ADO), understand that ADO.NET has very little to do with ADO beyond the letters “A,”
“D,” and “O.” While it is true that there is some relationship between the two systems (e.g., each has
the concept of connection and command objects), some familiar ADO types (e.g., the Recordset) no
longer exist. Furthermore, there are a number of new ADO.NET types that have no direct equivalent
under classic ADO (e.g., the data adapter).

Unlike classic ADO, which was primarily designed for tightly coupled client/server systems,
ADO.NET was built with the disconnected world in mind, using DataSets. This type represents a
local copy of any number of related data tables, each of which contain a collection of rows and col-
umn. Using the DataSet, the calling assembly (such as a web page or desktop executable) is able to
manipulate and update a DataSet’s contents while disconnected from the data source, and send any
modified data back for processing using a related data adapter.

Another major difference between classic ADO and ADO.NET is that ADO.NET has deep sup-
port for XML data representation. In fact, the data obtained from a data store is serialized (by
default) as XML. Given that XML is often transported between layers using standard HTTP,
ADO.NET is not limited by firewall constraints.

731

C H A P T E R 2 2

8849CH22.qxd 10/19/07 9:27 AM Page 731

Perhaps the most fundamental difference between classic ADO and ADO.NET is that ADO.NET
is a managed library of code, therefore it plays by the same rules as any managed library. The types
that make up ADO.NET use the CLR memory management protocol, adhere to the same type sys-
tem (classes, interfaces, enums, structures, and delegates), and can be accessed by any .NET
language.

From a programmatic point of view, the bulk of ADO.NET is represented by a core assembly
named System.Data.dll. Within this binary, you will find a good number of namespaces (see
Figure 22-1), many of which represent the types of a particular ADO.NET data provider (defined
shortly).

Figure 22-1. System.Data.dll is the core ADO.NET assembly.

As it turns out, most Visual Studio 2008 project templates automatically reference this key data
access library. However, you will need to update your code files to import the namespaces you wish
to use; for example:

using System;

// Bring in some ADO.NET namespaces!
using System.Data;
using System.Data.SqlClient;

namespace MyApp
{
class Program
{
static void Main(string[] args)
{
}

}
}

Do understand that there are other ADO.NET-centric assemblies beyond System.Data.dll
(such as System.Data.OracleClient.dll) that you may need to manually reference in your current
project using the Add Reference dialog box.

■Note With the release of .NET 3.5, ADO.NET has received many additional assemblies/namespaces that
facilitate ADO.NET/LINQ integration. Chapter 24 will examine LINQ-centric aspects of ADO.NET.

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER732

8849CH22.qxd 10/19/07 9:27 AM Page 732

The Two Faces of ADO.NET
The ADO.NET libraries can be used in two conceptually unique manners: connected or discon-
nected. When you are making use of the connected layer, your code base will explicitly connect to
and disconnect from the underlying data store. When you are using ADO.NET in this manner, you
typically interact with the data store using connection objects, command objects, and data reader
objects.

The disconnected layer, which is the subject of Chapter 23, allows you to manipulate a set of
DataTable objects (contained within a DataSet) that functions as a client-side copy of the external
data. When you obtain a DataSet using a related data adapter object, the connection is automati-
cally opened and closed on your behalf. As you would guess, this approach helps quickly free up
connections for other callers and goes a long way to increasing the scalability of your systems.

Once a caller receives a DataSet, it is able to traverse and manipulate the contents without
incurring the cost of network traffic. As well, if the caller wishes to submit the changes back to the
data store, the data adapter (in conjunction with a set of SQL statements) is used once again to
update the data source, at which point the connection is closed immediately.

Understanding ADO.NET Data Providers
Unlike classic ADO, ADO.NET does not provide a single set of types that communicate with multi-
ple database management systems (DBMSs). Rather, ADO.NET supports multiple data providers,
each of which is optimized to interact with a specific DBMS. The first benefit of this approach is that
a specific data provider can be programmed to access any unique features of a particular DBMS.
Another benefit is that a specific data provider is able to directly connect to the underlying engine
of the DBMS in question without an intermediate mapping layer standing between the tiers.

Simply put, a data provider is a set of types defined in a given namespace that understand how
to communicate with a specific data source. Regardless of which data provider you make use of,
each defines a set of class types that provide core functionality. Table 22-1 documents some of the
core common objects, their base class (all defined in the System.Data.Common namespace), and the
data-centric interfaces (each defined in the System.Data namespace) they implement.

Table 22-1. Core Objects of an ADO.NET Data Provider

Object Base Class Implemented Interfaces Meaning in Life

Connection DbConnection IDbConnection Provides the ability to connect to
and disconnect from the data store.
Connection objects also provide
access to a related transaction
object.

Command DbCommand IDbCommand Represents a SQL query or a stored
procedure. Command objects also
provide access to the provider’s data
reader object.

DataReader DbDataReader IDataReader, Provides forward-only, read-only
IDataRecord access to data using a server-side

cursor.

Continued

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 733

8849CH22.qxd 10/19/07 9:27 AM Page 733

Table 22-1. Continued

Object Base Class Implemented Interfaces Meaning in Life

DataAdapter DbDataAdapter IDataAdapter, Transfers DataSets between the
IDbDataAdapter caller and the data store. Data

adapters contain a connection and
a set of four internal command
objects used to select, insert,
update, and delete information
from the data store.

Parameter DbParameter IDataParameter, Represents a named parameter
IDbDataParameter within a parameterized query.

Transaction DbTransaction IDbTransaction Encapsulates a database
transaction.

Although the specific names of these core objects will differ among data providers (e.g.,
SqlConnection versus OracleConnection versus OdbcConnection versus MySqlConnection), each
object derives from the same base class (DbConnection in the case of connection objects) that imple-
ments identical interfaces (such as IDbConnection). Given this, you are correct to assume that once
you learn how to work with one data provider, the remaining providers are quite straightforward.

■Note Understand that under ADO.NET, when speaking of a “connection object,” one is really referring to a spe-
cific DbConnection-derived type; there is no class literally named “Connection”. The same idea holds true for a
“command object,” “data adapter object,” and so forth. As a naming convention, the objects in a specific data
provider are prefixed with the name of the related DBMS (for example, SqlConnection, OracleConnection,
SqlDataReader, etc.).

Figure 22-2 illustrates the big picture behind ADO.NET data providers. Note that in the diagram,
the “Client Assembly” can literally be any type of .NET application: console program, Windows
Forms application, ASP.NET web page, WCF service, a .NET code library, and so on.

Figure 22-2. ADO.NET data providers provide access to a given DBMS.

.NET Platform Data Provider

Connection Object

Connection Object

Transaction Select Command

Insert Command

Update Command

Delete Command

Parameter Collection

DataReader Object

DataAdapter Object

Database

Client
Assembly

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER734

8849CH22.qxd 10/19/07 9:27 AM Page 734

Now, to be sure, a data provider will supply you with other types beyond the objects shown in
Figure 22-2. However, these core objects define a common baseline across all data providers.

The Microsoft-Supplied ADO.NET Data Providers
Microsoft’s .NET distribution ships with numerous data providers, including a provider for Oracle,
SQL Server, and OLE DB/ODBC-style connectivity. Table 22-2 documents the namespace and con-
taining assembly for each Microsoft ADO.NET data provider.

Table 22-2. Microsoft ADO.NET Data Providers

Data Provider Namespace Assembly

OLE DB System.Data.OleDb System.Data.dll

Microsoft SQL Server System.Data.SqlClient System.Data.dll

Microsoft SQL Server Mobile System.Data.SqlServerCe System.Data.SqlServerCe.dll

ODBC System.Data.Odbc System.Data.dll

Oracle System.Data.OracleClient System.Data.OracleClient.dll

■Note There is no specific data provider that maps directly to the Jet engine (and therefore Microsoft Access).
If you wish to interact with an Access data file, you can do so using the OLE DB or ODBC data provider.

The OLE DB data provider, which is composed of the types defined in the System.Data.OleDb
namespace, allows you to access data located in any data store that supports the classic COM-based
OLE DB protocol. Using this provider, you may communicate with any OLE DB–compliant database
simply by tweaking the Provider segment of your connection string.

Be aware, however, that the OLE DB provider interacts with various COM objects behind the
scenes, which can affect the performance of your application. By and large, the OLE DB data
provider is only useful if you are interacting with a DBMS that does not define a specific .NET data
provider. However, given the fact that these days any DBMS worth its salt should have a custom
ADO.NET data provider for download, System.Data.OleDb should be considered a legacy name-
space that has little use in the .NET 3.5 world (this is even more the case with the advent of the data
provider factory model introduced under .NET 2.0).

■Note There is one case in which using the types of System.Data.OleDb is necessary; specifically if you need
to communicate with Microsoft SQL Server version 6.5 or earlier. The System.Data.SqlClient namespace can
only communicate with Microsoft SQL Server version 7.0 or higher.

The Microsoft SQL Server data provider offers direct access to Microsoft SQL Server data stores,
and only SQL Server data stores (version 7.0 and greater). The System.Data.SqlClient namespace
contains the types used by the SQL Server provider and offers the same basic functionality as the
OLE DB provider. The key difference is that the SQL Server provider bypasses the OLE DB layer and
thus gives numerous performance benefits. As well, the Microsoft SQL Server data provider allows
you to gain access to the unique features of this particular DBMS.

The remaining Microsoft-supplied providers (System.Data.OracleClient, System.Data.Odbc,
and System.Data.SqlClientCe) provide access to Oracle databases, interactivity with ODBC connec-
tions, and the SQL Server Mobile edition DBMS (commonly used by handheld devices, such as a

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 735

8849CH22.qxd 10/19/07 9:27 AM Page 735

Pocket PC). The ODBC types defined within the System.Data.Odbc namespace are typically only
useful if you need to communicate with a given DBMS for which there is no custom .NET data
provider (in that ODBC is a widespread model that provides access to a number of data stores).

Obtaining Third-Party ADO.NET Data Providers
In addition to the data providers that ship from Microsoft, numerous third-party data providers
exist for various open source and commercial databases. While you will most likely be able to obtain
an ADO.NET data provider directly from the database vendor, you should be aware of the following
site (please note that this URL is subject to change): http://www.sqlsummit.com/DataProv.htm.

This website is one of many sites that documents each known ADO.NET data provider and pro-
vides links for more information and downloads. Here you will find numerous ADO.NET providers,
including SQLite, DB2, MySQL, PostgreSQL, and Sybase (among others).

Given the large number of ADO.NET data providers, the examples in this chapter will make use
of the Microsoft SQL Server data provider (System.Data.SqlClient.dll). Recall that this provider
allows you to communicate with Microsoft SQL Server version 7.0 and higher, including SQL Server
2005 Express Edition. If you intend to use ADO.NET to interact with another DBMS, you should
have no problem doing so once you understand the material presented in the pages that follow.

Additional ADO.NET Namespaces
In addition to the .NET namespaces that define the types of a specific data provider, the .NET base
class libraries provide a number of additional ADO.NET-centric namespaces, some of which are
shown in Table 22-3.

Table 22-3. Select Additional ADO.NET-Centric Namespaces

Namespace Meaning in Life

Microsoft.SqlServer.Server This namespace provides types that facilitate CLR and SQL Server
2005 integration services.

System.Data This namespace defines the core ADO.NET types used by all data
providers, including common interfaces and numerous types that
represent the disconnected layer (DataSet, DataTable, etc.).

System.Data.Common This namespace contains types shared between all ADO.NET data
providers, including the common abstract base classes.

System.Data.Sql This namespace contains types that allow you to discover
Microsoft SQL Server instances installed on the current local
network.

System.Data.SqlTypes This namespace contains native data types used by Microsoft SQL
Server. Although you are always free to use the corresponding CLR
data types, the SqlTypes are optimized to work with SQL Server.

Do understand that this chapter will not examine each and every type within each and every
ADO.NET namespace (that task would require a large book in and of itself). However, it is quite
important for you to understand the types within the System.Data namespace.

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER736

8849CH22.qxd 10/19/07 9:27 AM Page 736

http://www.sqlsummit.com/DataProv.htm

The Types of the System.Data Namespace
Of all the ADO.NET namespaces, System.Data is the lowest common denominator. You simply
cannot build ADO.NET applications without specifying this namespace in your data access
applications. This namespace contains types that are shared among all ADO.NET data providers,
regardless of the underlying data store. In addition to a number of database-centric exceptions
(NoNullAllowedException, RowNotInTableException, MissingPrimaryKeyException, and the like),
System.Data contains types that represent various database primitives (tables, rows, columns, con-
straints, etc.), as well as the common interfaces implemented by data provider objects. Table 22-4
lists some of the core types to be aware of.

Table 22-4. Core Members of the System.Data Namespace

Type Meaning in Life

Constraint Represents a constraint for a given DataColumn object

DataColumn Represents a single column within a DataTable object

DataRelation Represents a parent/child relationship between two DataTable objects

DataRow Represents a single row within a DataTable object

DataSet Represents an in-memory cache of data consisting of any number of
interrelated DataTable objects

DataTable Represents a tabular block of in-memory data

DataTableReader Allows you to treat a DataTable as a fire-hose cursor (forward only, read-only
data access)

DataView Represents a customized view of a DataTable for sorting, filtering, searching,
editing, and navigation

IDataAdapter Defines the core behavior of a data adapter object

IDataParameter Defines the core behavior of a parameter object

IDataReader Defines the core behavior of a data reader object

IDbCommand Defines the core behavior of a command object

IDbDataAdapter Extends IDataAdapter to provide additional functionality of a data adapter
object

IDbTransaction Defines the core behavior of a transaction object

A vast majority of the classes within System.Data are used when programming against the dis-
connected layer of ADO.NET. In the next chapter, you will get to know the details of the DataSet and
its related cohorts (DataTable, DataRelation, DataRow, etc.) and how to use them (and a related data
adapter) to represent and manipulate client side copies of remote data.

However, your next task is to examine the core interfaces of System.Data at a high level, to
better understand the common functionality offered by any data provider. You will learn specific
details throughout this chapter, so for the time being let’s simply focus on the overall behavior of
each interface type.

The Role of the IDbConnection Interface
First up is the IDbConnection type, which is implemented by a data provider’s connection object. This
interface defines a set of members used to configure a connection to a specific data store, and it
also allows you to obtain the data provider’s transaction object. Here is the formal definition of
IDbConnection:

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 737

8849CH22.qxd 10/19/07 9:27 AM Page 737

public interface IDbConnection : IDisposable
{
string ConnectionString { get; set; }
int ConnectionTimeout { get; }
string Database { get; }
ConnectionState State { get; }
IDbTransaction BeginTransaction();
IDbTransaction BeginTransaction(IsolationLevel il);
void ChangeDatabase(string databaseName);
void Close();
IDbCommand CreateCommand();
void Open();

}

■Note Like many other types in the .NET base class libraries, the Close() method is functionally equivalent to
calling the Dispose() method directly or indirectly within a C# using scope (see Chapter 8).

The Role of the IDbTransaction Interface
As you can see, the overloaded BeginTransaction() method defined by IDbConnection provides
access to the provider’s transaction object. Using the members defined by IDbTransaction, you are
able to programmatically interact with a transactional session and the underlying data store:

public interface IDbTransaction : IDisposable
{
IDbConnection Connection { get; }
IsolationLevel IsolationLevel { get; }
void Commit();
void Rollback();

}

The Role of the IDbCommand Interface
Next, we have the IDbCommand interface, which will be implemented by a data provider’s command
object. Like other data access object models, command objects allow programmatic manipulation
of SQL statements, stored procedures, and parameterized queries. In addition, command objects
provide access to the data provider’s data reader type via the overloaded ExecuteReader() method:

public interface IDbCommand : IDisposable
{
string CommandText { get; set; }
int CommandTimeout { get; set; }
CommandType CommandType { get; set; }
IDbConnection Connection { get; set; }
IDataParameterCollection Parameters { get; }
IDbTransaction Transaction { get; set; }
UpdateRowSource UpdatedRowSource { get; set; }
void Cancel();
IDbDataParameter CreateParameter();
int ExecuteNonQuery();
IDataReader ExecuteReader();
IDataReader ExecuteReader(CommandBehavior behavior);

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER738

8849CH22.qxd 10/19/07 9:27 AM Page 738

object ExecuteScalar();
void Prepare();

}

The Role of the IDbDataParameter and IDataParameter
Interfaces
Notice that the Parameters property of IDbCommand returns a strongly typed collection that imple-
ments IDataParameterCollection. This interface provides access to a set of IDbDataParameter-
compliant class types (e.g., parameter objects):

public interface IDbDataParameter : IDataParameter
{
byte Precision { get; set; }
byte Scale { get; set; }
int Size { get; set; }

}

IDbDataParameter extends the IDataParameter interface to obtain the following additional
behaviors:

public interface IDataParameter
{
DbType DbType { get; set; }
ParameterDirection Direction { get; set; }
bool IsNullable { get; }
string ParameterName { get; set; }
string SourceColumn { get; set; }
DataRowVersion SourceVersion { get; set; }
object Value { get; set; }

}

As you will see, the functionality of the IDbDataParameter and IDataParameter interfaces allows
you to represent parameters within a SQL command (including stored procedures) via specific
ADO.NET parameter objects rather than hard-coded string literals.

The Role of the IDbDataAdapter and IDataAdapter Interfaces
Data adapters are used to push and pull DataSets to and from a given data store. Given this, the
IDbDataAdapter interface defines a set of properties that are used to maintain the SQL statements
for the related select, insert, update, and delete operations:

public interface IDbDataAdapter : IDataAdapter
{
IDbCommand DeleteCommand { get; set; }
IDbCommand InsertCommand { get; set; }
IDbCommand SelectCommand { get; set; }
IDbCommand UpdateCommand { get; set; }

}

In addition to these four properties, an ADO.NET data adapter also picks up the behavior
defined in the base interface, IDataAdapter. This interface defines the key function of a data adapter
type: the ability to transfer DataSets between the caller and underlying data store using the Fill()
and Update() methods. As well, the IDataAdapter interface allows you to map database column
names to more user-friendly display names via the TableMappings property:

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 739

8849CH22.qxd 10/19/07 9:27 AM Page 739

public interface IDataAdapter
{
MissingMappingAction MissingMappingAction { get; set; }
MissingSchemaAction MissingSchemaAction { get; set; }
ITableMappingCollection TableMappings { get; }
int Fill(System.Data.DataSet dataSet);
DataTable[] FillSchema(DataSet dataSet, SchemaType schemaType);
IDataParameter[] GetFillParameters();
int Update(DataSet dataSet);

}

The Role of the IDataReader and IDataRecord Interfaces
The next key interface to be aware of is IDataReader, which represents the common behaviors sup-
ported by a given data reader object. When you obtain an IDataReader-compatible type from an
ADO.NET data provider, you are able to iterate over the result set in a forward-only, read-only
manner.

public interface IDataReader : IDisposable, IDataRecord
{
int Depth { get; }
bool IsClosed { get; }
int RecordsAffected { get; }
void Close();
DataTable GetSchemaTable();
bool NextResult();
bool Read();

}

Finally, as you can see, IDataReader extends IDataRecord, which defines a good number of
members that allow you to extract a strongly typed value from the stream, rather than casting the
generic System.Object retrieved from the data reader’s overloaded indexer method. Here is a partial
listing of the various GetXXX() methods defined by IDataRecord (see the .NET Framework 3.5 SDK
documentation for a complete listing):

public interface IDataRecord
{
int FieldCount { get; }
object this[string name] { get; }
object this[int i] { get; }
bool GetBoolean(int i);
byte GetByte(int i);
char GetChar(int i);
DateTime GetDateTime(int i);
Decimal GetDecimal(int i);
float GetFloat(int i);
short GetInt16(int i);
int GetInt32(int i);
long GetInt64(int i);

...
bool IsDBNull(int i);

}

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER740

8849CH22.qxd 10/19/07 9:27 AM Page 740

■Note The IDataReader.IsDBNull() method can be used to programmatically discover if a specified field is
set to null before obtaining a value from the data reader (to avoid triggering a runtime exception). Also recall that
C# supports nullable data types (see Chapter 4), which are ideal for interacting with data columns that could be
empty.

Abstracting Data Providers Using Interfaces
At this point, you should have a better idea of the common functionality found among all .NET data
providers. Recall that even though the exact names of the implementing types will differ among
data providers, you are able to program against these types in a similar manner—that’s the beauty
of interface-based polymorphism. For example, if you define a method that takes an IDbConnection
parameter, you can pass in any ADO.NET connection object:

public static void OpenConnection(IDbConnection cn)
{
// Open the incoming connection for the caller.
cn.Open();

}

■Note Interfaces are not strictly required; the same end result could be achieved using abstract base classes
(such as DbConnection) as parameters or return values.

The same holds true for member return values. For example, consider the following simple C#
Console Application project (named MyConnectionFactory), which allows you to obtain a specific
connection object based on the value of a custom enumeration. For diagnostic purposes, we will
simply print out the underlying connection object via reflection services:

// Need these to get definitions of common interfaces,
// and various connection objects for our test.
using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.Odbc;
using System.Data.OleDb;

// Need to reference System.Data.OracleClient.dll to nab this namespace!
using System.Data.OracleClient;

namespace MyConnectionFactory
{
// A list of possible providers.
enum DataProvider
{ SqlServer, OleDb, Odbc, Oracle, None }

class Program
{
static void Main(string[] args)
{
Console.WriteLine("**** Very Simple Connection Factory *****\n");

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 741

8849CH22.qxd 10/19/07 9:27 AM Page 741

// Get a specific connection.
IDbConnection myCn = GetConnection(DataProvider.SqlServer);
Console.WriteLine("Your connection is a {0}", myCn.GetType().Name);

// Open, use and close connection...

Console.ReadLine();
}

// This method returns a specific connection object
// based on the value of a DataProvider enum.
static IDbConnection GetConnection(DataProvider dp)
{
IDbConnection conn = null;
switch (dp)
{
case DataProvider.SqlServer:
conn = new SqlConnection();
break;

case DataProvider.OleDb:
conn = new OleDbConnection();
break;

case DataProvider.Odbc:
conn = new OdbcConnection();
break;

case DataProvider.Oracle:
conn = new OracleConnection();
break;

}
return conn;

}
}

}

The benefit of working with the general interfaces of System.Data (or for that matter, the
abstract base classes of System.Data.Common) is that you have a much better chance of building a
flexible code base that can evolve over time. For example, perhaps today you are building an appli-
cation targeting Microsoft SQL Server, but what if your company switches to Oracle months down
the road? If you build a solution that hard-codes the MS SQL Server–specific types of System.Data.
SqlClient, you will obviously need to edit, recompile, and redeploy the assembly should the back-
end database management system change.

Increasing Flexibility Using Application Configuration Files
To further increase the flexibility of your ADO.NET applications, you could incorporate a client-side
*.config file that makes use of custom key/value pairs within the <appSettings> element. Recall
from Chapter 15 that custom data stored within a *.config file can be programmatically obtained
using types within the System.Configuration namespace. For example, assume you have specified
a data provider value within a configuration file as follows:

<configuration>
<appSettings>
<!-- This key value maps to one of our enum values-->
<add key="provider" value="SqlServer"/>

</appSettings>
</configuration>

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER742

8849CH22.qxd 10/19/07 9:27 AM Page 742

With this, you could update Main() to programmatically obtain the underlying data provider.
By doing so, you have essentially build a connection object factory that allows you to change the
provider without requiring you to recompile your code base (simply change the *.config file). Here
are the relevant updates to Main():

■Note To use the ConfigurationManager type, be sure to set a reference to the System.Configuration.
dll assembly and import the System.Configuration namespace.

static void Main(string[] args)
{
Console.WriteLine("**** Very Simple Connection Factory *****\n");

// Read the provider key.
string dataProvString = ConfigurationManager.AppSettings["provider"];

// Transform string to enum.
DataProvider dp = DataProvider.None;
if(Enum.IsDefined(typeof(DataProvider), dataProvString))
dp = (DataProvider)Enum.Parse(typeof(DataProvider), dataProvString);

else
Console.WriteLine("Sorry, no provider exists!");

// Get a specific connection.
IDbConnection myCn = GetConnection(dp);
if(myCn != null)
Console.WriteLine("Your connection is a {0}", myCn.GetType().Name);

// Open, use, and close connection...

Console.ReadLine();
}

At this point we have authored some ADO.NET code that allows us to specify the underlying
connection dynamically. One obvious problem, however, is that this abstraction is only used within
the MyConnectionFactory.exe application. If we were to rework this example within a .NET code
library (for example, MyConnectionFactory.dll), you would be able to build any number of clients
that could obtain various connection objects using layers of abstraction.

However, obtaining a connection object is only one aspect of working with ADO.NET. To make
a worthwhile data provider factory library, you would also have to account for command objects,
data readers, data adapters, transaction objects, and other data-centric types. While building such a
code library would not necessarily be difficult, it would require a good amount of code and a con-
siderable amount of time.

Thankfully, since the release of .NET 2.0, the kind folks in Redmond have built this very func-
tionality directly within the .NET base class libraries. We will examine this formal API in just a
moment, but first we need to create custom database for use throughout this chapter, as well as
many chapters to come.

■Source Code The MyConnectionFactory project is included under the Chapter 22 subdirectory.

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 743

8849CH22.qxd 10/19/07 9:27 AM Page 743

Creating the AutoLot Database
As we work through this chapter, we will execute queries against a simple SQL Server test database
named AutoLot. In keeping with the automotive theme used throughout this text, this database will
contain three interrelated tables (Inventory, Orders, and Customers) that contain various bits of
data representing order information for a fictional automobile sales company.

The assumption in this text is that you have a copy of Microsoft SQL Server (7.0 or higher) or a
copy of Microsoft SQL Server 2005 Express Edition (http://msdn.microsoft.com/vstudio/express/
sql). This lightweight database server is perfect for our needs, in that (a) it is free, (b) it provides a
GUI front end (the SQL Server Management Tool) to create and administer your databases, and (c)
it integrates with Visual Studio 2008/Visual C# Express Edition.

To illustrate the last point, the remainder of this section will walk you through the construction
of the AutoLot database using Visual Studio 2008. If you are using Visual C# Express, you can per-
form similar operations to what is explained here, using the Database Explorer window (which can
be loaded from the View ➤ Other Windows menu option).

■Note Do be aware that the AutoLot database will be used throughout the remainder of this text.

Creating the Inventory Table
To begin building our testing database, launch Visual Studio 2008 and open the Server Explorer per-
spective using the View menu of the IDE. Next, right-click the Data Connections node and select the
Create New SQL Server Database menu option. Within the resulting dialog box, connect to the SQL
Server installation on your local machine and specify AutoLot as the database name (Windows
Authentication should be fine—see Figure 22-3).

Figure 22-3. Creating a new SQL Server 2005 Express database using Visual Studio 2008

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER744

8849CH22.qxd 10/19/07 9:27 AM Page 744

http://msdn.microsoft.com/vstudio/express/sql
http://msdn.microsoft.com/vstudio/express/sql

■Note Rather than specifying the name of your machine (such as INTERUBER in Figure 22-3), you can simply
enter (local)\SQLEXPRESS in the Server name text box.

At this point, the AutoLot database is completely devoid of any database objects (tables, stored
procedures, etc.). To insert the Inventory table, simply right-click the Tables node and select Add
New Table (see Figure 22-4).

Figure 22-4. Adding the Inventory table

Using the table editor, add four data columns (CarID, Make, Color, and PetName). Ensure that
the CarID column has been set to the Primary Key (via right-clicking the CarID row and selecting
Set Primary Key). Figure 22-5 shows the final table settings.

Figure 22-5. Designing the Inventory table

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 745

8849CH22.qxd 10/19/07 9:27 AM Page 745

Save (and then close) your new table and be sure you name this new database object as Inven-
tory. At this point, you should see the Inventory table under the Tables node of the Server Explorer.
Right-click the Inventory table icon and select Show Table Data. Enter a handful of new automobiles
of your choosing (to make it interesting, be sure to have some cars that have identical colors and
makes). Figure 22-6 shows one possible list of inventory.

Figure 22-6. Populating the Inventory table

Authoring the GetPetName() Stored Procedure
Later in this chapter in the section “Executing a Stored Procedure,” we will examine how to make
use of ADO.NET to invoke stored procedures. As you may already know, stored procedures are rou-
tines stored within a particular database that operate often on table data to yield a return value. We
will add a single stored procedure that will return an automobile’s pet name based on the supplied
CarID value. To do so, simply right-click the Stored Procedures node of the AutoLot database within
the Server Explorer and select Add New Stored Procedure. Enter the following within the resulting
editor:

CREATE PROCEDURE GetPetName
@carID int,
@petName char(10) output
AS
SELECT @petName = PetName from Inventory where CarID = @carID

When you save your procedure, it will automatically be named GetPetName, based on your
CREATE PROCEDURE statement. Once you are done, you should see your new stored procedure within
the Server Explorer (see Figure 22-7).

■Note Stored procedures are not required to return data using output parameters as shown here; however,
doing so will set the stage for talking about the Direction property of the SqlParameter later in this chapter in
the section “Executing a Stored Procedure.”

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER746

8849CH22.qxd 10/19/07 9:27 AM Page 746

Figure 22-7. The GetPetName stored procedure

Creating the Customers and Orders Tables
Our testing database will have two additional tables. The Customers table (as the name suggests)
will contain a list of customers, which will be represented by three columns (CustID [which should
be set as the primary key], FirstName, and LastName). Taking the same steps you took to create the
Inventory table, create the Customers table using the following schema (see Figure 22-8).

Figure 22-8. Designing the Customers table

Once you have saved your table, add a handful of customer records (see Figure 22-9).

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 747

8849CH22.qxd 10/19/07 9:27 AM Page 747

Figure 22-9. Populating the Customers table

Our final table, Orders, will be used to represent the automobile a given customer is interested
in purchasing by mapping OrderID values to CarID/CustID values. Figure 22-10 shows the structure
of our final table (again note that OrderID is the primary key).

Figure 22-10. Designing the Orders table

Now, add data to your Orders table. Assuming that the OrderID value begins at 1000, select a
unique CarID for each CustID value (see Figure 22-11).

Figure 22-11. Populating the Orders table

Given the entries used in this text, we can see that Dave Brenner (CustID = 1) is interested in
the red Volkswagen (CarID = 2), while Pat Walton (CustID = 3) has her eye on the tan Volkswagen
(CarID = 8).

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER748

8849CH22.qxd 10/19/07 9:27 AM Page 748

Visually Creating Table Relationships
The final task is to establish parent/child table relationships between the Customers, Orders, and
Inventory tables. Doing so using Visual Studio 2008 is quite simple, as we can elect to insert a new
database diagram by right-clicking the Database Diagrams node of the AutoLot database in the
Server Explorer. Once you do so, be sure to select each of the tables from the resulting dialog box
before clicking the Add button.

To establish the relationships between the tables, begin by clicking the CarID key of the Inven-
tory table and (while holding down the mouse button) drag to the CarID field of the Orders table.
Once you release the mouse, accept all defaults from the resulting dialog boxes.

Now, repeat the same process to map the CustID key of the Customers table to the CustID field
of the Orders table. Once you are finished, you should find the class dialog box shown in Figure 22-12
(note that I enabled the display of the table relationships by right-clicking the designer and select-
ing Show Relationship Labels).

Figure 22-12. The interconnected Orders, Inventory, and Customers tables

With this, the AutoLot database is complete! While it is a far cry from a real-world corporate
database, it will most certainly serve our purposes over the remainder of this book. Now that we
have a database to test with, let’s dive into the details of the ADO.NET data provider factory model.

The ADO.NET Data Provider Factory Model
The .NET data provider factory pattern allows us to build a single code base using generalized data
access types. Furthermore, using application configuration files (and the <connectionStrings>
subelement), we are able to obtain providers and connection strings declaratively without the need
to recompile or redeploy the assembly.

To understand the data provider factory implementation, recall from Table 22-1 that the objects
within a data provider each derive from the same base classes defined within the System.Data.
Common namespace:

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 749

8849CH22.qxd 10/19/07 9:27 AM Page 749

• DbCommand: Abstract base class for all command objects

• DbConnection: Abstract base class for all connection objects

• DbDataAdapter: Abstract base class for all data adapter objects

• DbDataReader: Abstract base class for all data reader objects

• DbParameter: Abstract base class for all parameter objects

• DbTransaction: Abstract base class for all transaction objects

In addition, each of the Microsoft-supplied data providers contains a class type deriving from
System.Data.Common.DbProviderFactory. This base class defines a number of methods that retrieve
provider-specific data objects. Here is a snapshot of the relevant members of DbProviderFactory:

public abstract class DbProviderFactory
{
...
public virtual DbCommand CreateCommand();
public virtual DbCommandBuilder CreateCommandBuilder();
public virtual DbConnection CreateConnection();
public virtual DbConnectionStringBuilder CreateConnectionStringBuilder();
public virtual DbDataAdapter CreateDataAdapter();
public virtual DbDataSourceEnumerator CreateDataSourceEnumerator();
public virtual DbParameter CreateParameter();

}

To obtain the DbProviderFactory-derived type for your data provider, the System.Data.Common
namespace provides a class type named DbProviderFactories (note the plural in this type’s name).
Using the static GetFactory() method, you are able to obtain the specific DbProviderFactory object
of the specified data provider, for example:

static void Main(string[] args)
{
// Get the factory for the SQL data provider.
DbProviderFactory sqlFactory =
DbProviderFactories.GetFactory("System.Data.SqlClient");

...
// Get the factory for the Oracle data provider.
DbProviderFactory oracleFactory =
DbProviderFactories.GetFactory("System.Data.OracleClient");

...
}

Of course, rather than obtaining a factory using a hard-coded string literal, you could read in
this information from a client-side *.config file (much like the previous MyConnectionFactory
example). You will do so in just a bit. However, in any case, once you have obtained the factory for
your data provider, you are able to obtain the associated provider-specific data objects (connec-
tions, commands, data readers, etc.).

Registered Data Provider Factories
Before you build a full example of working with ADO.NET data provider factories, it is important to
note that the DbProviderFactories type is able to fetch factories for only a subset of all possible data
providers. The list of valid provider factories is recorded within the <DbProviderFactories> element
within the machine.config file for your .NET 3.5 installation (note that the value of the invariant
attribute is identical to the value passed into the DbProviderFactories.GetFactory() method):

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER750

8849CH22.qxd 10/19/07 9:27 AM Page 750

<system.data>
<DbProviderFactories>
<add name="Odbc Data Provider" invariant="System.Data.Odbc"
description=".Net Framework Data Provider for Odbc"
type="System.Data.Odbc.OdbcFactory,
System.Data, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" />

<add name="OleDb Data Provider" invariant="System.Data.OleDb"
description=".Net Framework Data Provider for OleDb"
type="System.Data.OleDb.OleDbFactory,
System.Data, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" />

<add name="OracleClient Data Provider" invariant="System.Data.OracleClient"
description=".Net Framework Data Provider for Oracle"
type="System.Data.OracleClient.OracleClientFactory, System.Data.OracleClient,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" />

<add name="SqlClient Data Provider" invariant="System.Data.SqlClient"
description=".Net Framework Data Provider for SqlServer"
type="System.Data.SqlClient.SqlClientFactory, System.Data,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" />

</DbProviderFactories>
</system.data>

■Note If you wish to leverage a similar data provider factory pattern for DMBSs not accounted for in the
machine.config file, it is technically possible to add new invariant values that point to shared assemblies in
the GAC. However, you must ensure that the data provider is ADO.NET 2.0 compliant and works with the data
provider factory model.

A Complete Data Provider Factory Example
For a complete example, let’s create a new C# Console Application (named DataProviderFactory)
that prints out the automobile inventory of the AutoLot database. For this initial example, we will
hard-code the data access logic directly within the DataProviderFactory.exe assembly (just to keep
things simple for the time being). However, once we begin to dig into the details of the ADO.NET
programming model, we will isolate our data logic to a specific .NET code library that will be used
throughout the remainder of this text.

First, add a reference to the System.Configuration.dll assembly and import the System.
Configuration namespace. Next, insert an App.config file to the current project and define an
empty <appSettings> element. Add a new key named provider that maps to the namespace name
of the data provider you wish to obtain (System.Data.SqlClient). As well, define a connection
string that represents a connection to the AutoLot database:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<!-- Which provider? -->
<add key="provider" value="System.Data.SqlClient" />
<!-- Which connection string? -->
<add key="cnStr" value=
"Data Source=(local)\SQLEXPRESS;Initial Catalog=AutoLot;Integrated Security=True"

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 751

8849CH22.qxd 10/19/07 9:27 AM Page 751

/>
</appSettings>
</configuration>

■Note We will examine connection strings in more detail in just a bit. However, be aware that if you select your
AutoLot database icon within the Server Explorer, you can copy and paste the correct connection string from the
Connection String property of the Visual Studio 2008 Properties Window.

Now that you have a proper *.config file, you can read in the provider and cnStr values
using the ConfigurationManager.AppSettings() method. The provider value will be passed to
DbProviderFactories.GetFactory() to obtain the data provider–specific factory type. The cnStr
value will be used to set the ConnectionString property of the DbConnection-derived type. Assuming
you have imported the System.Data and System.Data.Common namespaces, update your Main()
method as follows:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Data Provider Factories *****\n");

// Get Connection string/provider from *.config.
string dp =
ConfigurationManager.AppSettings["provider"];

string cnStr =
ConfigurationManager.AppSettings["cnStr"];

// Get the factory provider.
DbProviderFactory df = DbProviderFactories.GetFactory(dp);

// Now make connection object.
DbConnection cn = df.CreateConnection();
Console.WriteLine("Your connection object is a: {0}", cn.GetType().FullName);
cn.ConnectionString = cnStr;
cn.Open();

// Make command object.
DbCommand cmd = df.CreateCommand();
Console.WriteLine("Your command object is a: {0}", cmd.GetType().FullName);
cmd.Connection = cn;
cmd.CommandText = "Select * From Inventory";

// Print out data with data reader.
// Because we specified CommandBehavior.CloseConnection, we
// don't need to explicitly call Close() on the connection.
DbDataReader dr =
cmd.ExecuteReader(CommandBehavior.CloseConnection);

Console.WriteLine("Your data reader object is a: {0}", dr.GetType().FullName);

Console.WriteLine("\n***** Current Inventory *****");
while (dr.Read())
Console.WriteLine("-> Car #{0} is a {1}.",
dr["CarID"], dr["Make"].ToString().Trim());

dr.Close();
Console.ReadLine();

}

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER752

8849CH22.qxd 10/19/07 9:27 AM Page 752

■Note When you specify CommandBehavior.CloseConnection as a parameter to ExecuteReader(), the con-
nection will automatically be closed when you close the data reader object.

Notice that for diagnostic purposes, you are printing out the fully qualified name of the under-
lying connection, command, and data reader using reflection services. If you run this application,
you will find that the Microsoft SQL Server provider has been used to read data from the Inventory
table of the AutoLot database (see Figure 22-13).

Figure 22-13. Obtaining the SQL Server data provider factory

Now, if you change the *.config file to specify System.Data.OleDb as the data provider (and
update your connection string with a Provider segment) as follows:

<configuration>
<appSettings>
<!-- Which provider? -->
<add key="provider" value="System.Data.OleDb" />
<!-- Which connection string? -->
<add key="cnStr" value=
"Provider=SQLOLEDB;Data Source=(local)\SQLEXPRESS;
Integrated Security=SSPI;Initial Catalog=AutoLot"/>
</appSettings>
</configuration>

you will find the System.Data.OleDb types are used behind the scenes (see Figure 22-14).

Figure 22-14. Obtaining the OLE DB data provider factory

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 753

8849CH22.qxd 10/19/07 9:27 AM Page 753

Of course, based on your experience with ADO.NET, you may be a bit unsure exactly what the
connection, command, and data reader objects are actually doing. Don’t sweat the details for the
time being (quite a few pages remain in this chapter, after all!). At this point, just understand that
with the ADO.NET data provider factory model, it is possible to build a single code base that can
consume various data providers in a declarative manner.

A Potential Drawback with the Provide Factory Model
Although this is a very powerful model, you must make sure that the code base does indeed make
use only of types and methods that are common to all providers via the members of the abstract
base classes. Therefore, when authoring your code base, you will be limited to the members
exposed by DbConnection, DbCommand, and the other types of the System.Data.Common namespace.

Given this, you may find that this “generalized” approach will prevent you from directly access-
ing some of the bells and whistles of a particular DBMS. If you must be able to invoke specific
members of the underlying provider (SqlConnection for example), you can do so via an explicit cast.
When doing so, however, your code base will become a bit harder to maintain (and less flexible)
given that you must add a number of runtime checks.

The <connectionStrings> Element
Currently our connection string data is within the <appSettings> element of our *.config file.
Application configuration files may define an element named <connectionStrings>. Within this ele-
ment, you are able to define any number of name/value pairs that can be programmatically read
into memory using the ConfigurationManager.ConnectionStrings indexer. One advantage of this
approach (rather than using the <appSettings> element and the ConfigurationManager.AppSettings
indexer) is that you can define multiple connection strings for a single application in a consistent
manner.

To illustrate, update your current App.config file as follows (note that each connection string is
documented using the name and connectionString attributes rather than the key and value attrib-
utes as found in <appSettings>):

<configuration>
<appSettings>
<!-- Which provider? -->
<add key="provider" value="System.Data.SqlClient" />
</appSettings>

<!-- Here are the connection strings -->
<connectionStrings>
<add name ="AutoLotSqlProvider" connectionString =
"Data Source=(local)\SQLEXPRESS;
Integrated Security=SSPI;Initial Catalog=AutoLot"/>
<add name ="AutoLotOleDbProvider" connectionString =
"Provider=SQLOLEDB;Data Source=(local)\SQLEXPRESS;
Integrated Security=SSPI;Initial Catalog=AutoLot"/>
</connectionStrings>
</configuration>

With this, you can now update your Main() method as follows:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Data Provider Factories *****\n");
string dp =
ConfigurationManager.AppSettings["provider"];

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER754

8849CH22.qxd 10/19/07 9:27 AM Page 754

string cnStr =
ConfigurationManager.ConnectionStrings["AutoLotSqlProvider"].ConnectionString;

...
}

At this point, you have an application that is able to display the results of the Inventory table of
the AutoLot database using a neutral code base. As you have seen, by offloading the provider name
and connection string to an external *.config file, the data provider factory model will dynamically
load the correct provider in the background. With this first example behind us, we can now dive into
the details of working with the connected layer of ADO.NET.

■Note Now that you understand the role of ADO.NET data provider factories, the remaining examples in this
book will make explicit use of the types within the System.Data.SqlClient namespace just to keep focused on
the task at hand. If you are using a different database management system (such as Oracle), you will need to
update your code base accordingly.

■Source Code The DataProviderFactory project is included under the Chapter 22 subdirectory.

Understanding the Connected Layer of ADO.NET
Recall that the connected layer of ADO.NET allows you to interact with a database using the connec-
tion, command, and data reader objects of your data provider. Although you have already made use
of these objects in the previous DataProviderFactory application, let’s walk through the process
once again in detail using an expanded example. When you wish to connect to a database and read
the records using a data reader object, you need to perform the following steps:

1. Allocate, configure, and open your connection object.

2. Allocate and configure a command object, specifying the connection object as a construc-
tor argument or via the Connection property.

3. Call ExecuteReader() on the configured command object.

4. Process each record using the Read() method of the data reader.

To get the ball rolling, create a brand-new Console Application named AutoLotDataReader and
import the System.Data and System.Data.SqlClient namespaces. The goal is to open a connection
(via the SqlConnection object) and submit a SQL query (via the SqlCommand object) to obtain all
records within the Inventory table. At this point, you will use a SqlDataReader to print out the results
using the type indexer. Here is the complete code within Main(), with analysis to follow:

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Fun with Data Readers *****\n");

// Create an open a connection.
SqlConnection cn = new SqlConnection();
cn.ConnectionString =
@"Data Source=(local)\SQLEXPRESS;Integrated Security=SSPI;" +

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 755

8849CH22.qxd 10/19/07 9:27 AM Page 755

"Initial Catalog=AutoLot";
cn.Open();

// Create a SQL command object.
string strSQL = "Select * From Inventory";
SqlCommand myCommand = new SqlCommand(strSQL, cn);

// Obtain a data reader a la ExecuteReader().
SqlDataReader myDataReader;
myDataReader = myCommand.ExecuteReader(CommandBehavior.CloseConnection);

// Loop over the results.
while (myDataReader.Read())
{
Console.WriteLine("-> Make: {0}, PetName: {1}, Color: {2}.",
myDataReader["Make"].ToString().Trim(),
myDataReader["PetName"].ToString().Trim(),
myDataReader["Color"].ToString().Trim());

}

// Because we specified CommandBehavior.CloseConnection, we
// don't need to explicitly call Close() on the connection.
myDataReader.Close();
Console.ReadLine();

}
}

Working with Connection Objects
The first step to take when working with a data provider is to establish a session with the data
source using the connection object (which, as you recall, derives from DbConnection). .NET connec-
tion objects are provided with a formatted connection string, which contains a number of name/value
pairs separated by semicolons. This information is used to identify the name of the machine you
wish to connect to, required security settings, the name of the database on that machine, and other
data provider–specific information.

As you can infer from the preceding code, the Initial Catalog name refers to the database
you are attempting to establish a session with. The Data Source name identifies the name of the
machine that maintains the database. Here, (local) allows you to define a single token to specify
the current local machine (regardless of the literal name of said machine) while the \SQLEXPRESS
token informs the SQL server provider you are connecting to the default SQL Server Express edition
installation (if you created AutoLot on a full version of SQL Server 2005 or earlier, simply specify
Data Source=(local)).

Beyond this you are able to supply any number of tokens that represent security credentials.
Here, we are setting the Integrated Security to SSPI (which is the equivalent to true), which uses
the current Windows account credentials for user authentication.

■Note Look up the ConnectionString property of your data provider’s connection object in the .NET Frame-
work 3.5 SDK documentation to learn about each name/value pair for your specific DBMS. As you will quickly
notice, a single segment (such as Integrated Security) can be set to multiple, redundant values (e.g., SSPI,
true, and yes behave identically for the Integrated Security value). Furthermore, you may find multiple
terms for the same task (for example, Initial Catalog and Database are interchangeable).

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER756

8849CH22.qxd 10/19/07 9:27 AM Page 756

Once your construction string has been established, a call to Open() establishes your connection
with the DBMS. In addition to the ConnectionString, Open(), and Close() members, a connection
object provides a number of members that let you configure additional settings regarding your con-
nection, such as timeout settings and transactional information. Table 22-5 lists some (but not all)
members of the DbConnection base class.

Table 22-5. Members of the DbConnection Type

Member Meaning in Life

BeginTransaction() This method is used to begin a database transaction.

ChangeDatabase() This method changes the database on an open connection.

ConnectionTimeout This read-only property returns the amount of time to wait while
establishing a connection before terminating and generating an error
(the default value is 15 seconds). If you wish to change the default, specify
a “Connect Timeout” segment in the connection string (e.g., Connect
Timeout=30).

Database This property gets the name of the database maintained by the connection
object.

DataSource This property gets the location of the database maintained by the
connection object.

GetSchema() This method returns a DataSet that contains schema information from the
data source.

State This property sets the current state of the connection, represented by the
ConnectionState enumeration.

As you can see, the properties of the DbConnection type are typically read-only in nature and are
only useful when you wish to obtain the characteristics of a connection at runtime. When you wish
to override default settings, you must alter the construction string itself. For example, the connec-
tion string sets the connection timeout setting from 15 seconds to 30 seconds:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Data Readers *****\n");

SqlConnection cn = new SqlConnection();
cn.ConnectionString =
@"Data Source=(local)\SQLEXPRESS;" +
"Integrated Security=SSPI;Initial Catalog=AutoLot;Connect Timeout=30";

cn.Open();

// New helper function (see below).
ShowConnectionStatus(cn);

...
}

In the preceding code, notice you have now passed your connection object as a parameter to a
new static helper method in the Program class named ShowConnectionStatus(), implemented as fol-
lows (be sure to import the System.Data.Common namespace to get the definition of DbConnection):

static void ShowConnectionStatus(DbConnection cn)
{
// Show various stats about current connection object.
Console.WriteLine("***** Info about your connection *****");
Console.WriteLine("Database location: {0}", cn.DataSource);

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 757

8849CH22.qxd 10/19/07 9:27 AM Page 757

Console.WriteLine("Database name: {0}", cn.Database);
Console.WriteLine("Timeout: {0}", cn.ConnectionTimeout);
Console.WriteLine("Connection state: {0}\n", cn.State.ToString());

}

While most of these properties are self-explanatory, the State property is worth special men-
tion. Although this property may be assigned any value of the ConnectionState enumeration:

public enum ConnectionState
{
Broken, Closed,
Connecting, Executing,
Fetching, Open

}

the only valid ConnectionState values are ConnectionState.Open and ConnectionState.Closed (the
remaining members of this enum are reserved for future use). Also, understand that it is always safe
to close a connection whose connection state is currently ConnectionState.Closed.

Working with ConnectionStringBuilder Objects
Working with connection strings programmatically can be a bit cumbersome, given that they are
often represented as string literals, which are difficult to maintain and error-prone at best. The
Microsoft-supplied ADO.NET data providers support connection string builder objects, which allow
you to establish the name/value pairs using strongly typed properties. Consider the following
update to the current Main() method:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Data Readers *****\n");

// Create a connection string via the builder object.
SqlConnectionStringBuilder cnStrBuilder =
new SqlConnectionStringBuilder();

cnStrBuilder.InitialCatalog = "AutoLot";
cnStrBuilder.DataSource = @"(local)\SQLEXPRESS";
cnStrBuilder.ConnectTimeout = 30;
cnStrBuilder.IntegratedSecurity = true;

SqlConnection cn = new SqlConnection();
cn.ConnectionString = cnStrBuilder.ConnectionString;
cn.Open();

ShowConnectionStatus(cn);
...
}

In this iteration, you create an instance of SqlConnectionStringBuilder, set the properties
accordingly, and obtain the internal string via the ConnectionString property. Also note that you
make use of the default constructor of the type. If you so choose, you can also create an instance of
your data provider’s connection string builder object by passing in an existing connection string as
a starting point (which can be helpful when you are reading these values dynamically from an
App.config file). Once you have hydrated the object with the initial string data, you can change
specific name/value pairs using the related properties, for example:

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER758

8849CH22.qxd 10/19/07 9:27 AM Page 758

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Data Readers *****\n");

// Assume you really obtained the cnStr value from a *.config file.
string cnStr = @"Data Source=(local)\SQLEXPRESS;" +

"Integrated Security=SSPI;Initial Catalog=AutoLot";

SqlConnectionStringBuilder cnStrBuilder =
new SqlConnectionStringBuilder(cnStr);

// Change timeout value.
cnStrBuilder.ConnectTimeout = 5;

...
}

Working with Command Objects
Now that you better understand the role of the connection object, the next order of business is to
check out how to submit SQL queries to the database in question. The SqlCommand type (which
derives from DbCommand) is an OO representation of a SQL query, table name, or stored procedure.
The type of command is specified using the CommandType property, which may take any value from
the CommandType enum:

public enum CommandType
{
StoredProcedure,
TableDirect,
Text // Default value.

}

When creating a command object, you may establish the SQL query as a constructor parame-
ter or directly via the CommandText property. Also when you are creating a command object, you
need to specify the connection to be used. Again, you may do so as a constructor parameter or via
the Connection property:

static void Main(string[] args)
{
...
SqlConnection cn = new SqlConnection();

...
// Create command object via ctor args.
string strSQL = "Select * From Inventory";
SqlCommand myCommand = new SqlCommand(strSQL, cn);

// Create another command object via properties.
SqlCommand testCommand = new SqlCommand();
testCommand.Connection = cn;
testCommand.CommandText = strSQL;

...
}

Realize that at this point, you have not literally submitted the SQL query to the AutoLot data-
base, but rather prepared the state of the command object for future use. Table 22-6 highlights
some additional members of the DbCommand type.

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 759

8849CH22.qxd 10/19/07 9:27 AM Page 759

Table 22-6. Members of the DbCommand Type

Member Meaning in Life

CommandTimeout Gets or sets the time to wait while executing the command before
terminating the attempt and generating an error. The default is 30 seconds.

Connection Gets or sets the DbConnection used by this instance of the DbCommand.

Parameters Gets the collection of DbParameter types used for a parameterized query.

Cancel() Cancels the execution of a command.

ExecuteReader() Returns the data provider’s DbDataReader object, which provides forward-
only, read-only access to the underlying data.

ExecuteNonQuery() Issues the command text to the data store where no results are expected or
desired.

ExecuteScalar() A lightweight version of the ExecuteNonQuery() method, designed
specifically for singleton queries (such as obtaining a record count).

ExecuteXmlReader() Microsoft SQL Server (2000 and higher) is capable of returning result sets as
XML. As you might suspect, this method returns a System.Xml.XmlReader
that allows you to process the incoming stream of XML.

Prepare() Creates a prepared (or compiled) version of the command on the data
source. As you may know, a prepared query executes slightly faster and is
useful when you wish to execute the same query multiple times.

■Note As illustrated later in this chapter, the SqlCommand object defines additional members that facilitate
asynchronous database interactions.

Working with Data Readers
Once you have established the active connection and SQL command, the next step is to submit the
query to the data source. As you might guess, you have a number of ways to do so. The DbDataReader
type (which implements IDataReader) is the simplest and fastest way to obtain information from a
data store. Recall that data readers represent a read-only, forward-only stream of data returned one
record at a time. Given this, it should stand to reason that data readers are useful only when submit-
ting SQL selection statements to the underlying data store.

Data readers are useful when you need to iterate over large amounts of data very quickly and
have no need to maintain an in-memory representation. For example, if you request 20,000 records
from a table to store in a text file, it would be rather memory-intensive to hold this information in a
DataSet. A better approach is to create a data reader that spins over each record as rapidly as possi-
ble. Be aware, however, that data reader objects (unlike data adapter objects, which you’ll examine
later) maintain an open connection to their data source until you explicitly close the session.

Data reader objects are obtained from the command object via a call to ExecuteReader(). When
invoking this method, you may optionally instruct the reader to automatically close down the related
connection object by specifying CommandBehavior.CloseConnection.

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER760

8849CH22.qxd 10/19/07 9:27 AM Page 760

The following use of the data reader leverages the Read() method to determine when you have
reached the end of your records (via a false return value). For each incoming record, you are mak-
ing use of the type indexer to print out the make, pet name, and color of each automobile. Also note
that you call Close() as soon as you are finished processing the records, to free up the connection
object:

static void Main(string[] args)
{
...
// Obtain a data reader via ExecuteReader().
SqlDataReader myDataReader;
myDataReader = myCommand.ExecuteReader(CommandBehavior.CloseConnection);

// Loop over the results.
while (myDataReader.Read())
{
Console.WriteLine("-> Make: {0}, PetName: {1}, Color: {2}.",
myDataReader["Make"].ToString().Trim(),
myDataReader["PetName"].ToString().Trim(),
myDataReader["Color"].ToString().Trim());

}
myDataReader.Close();
Console.ReadLine();

}

■Note The trimming of the string data shown here is only used to remove trailing blank spaces in the database
entries; it is not directly related to ADO.NET! Whether this is necessary or not depends on the column definitions
and the data placed in the table and isn’t always required.

The indexer of a data reader object has been overloaded to take either a string (representing
the name of the column) or an int (representing the column’s ordinal position). Thus, you could
clean up the current reader logic (and avoid hard-coded string names) with the following update
(note the use of the FieldCount property):

while (myDataReader.Read())
{
Console.WriteLine("***** Record *****");
for (int i = 0; i < myDataReader.FieldCount; i++)
{
Console.WriteLine("{0} = {1} ",
myDataReader.GetName(i),
myDataReader.GetValue(i).ToString().Trim());

}
Console.WriteLine();

}

If you compile and run your project, you should be presented with a list of all automobiles in
the Inventory table of the AutoLot database (see Figure 22-15).

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 761

8849CH22.qxd 10/19/07 9:27 AM Page 761

Figure 22-15. Fun with data reader objects

Obtaining Multiple Result Sets Using a Data Reader
Data reader objects are able to obtain multiple result sets using a single command object. For
example, if you are interested in obtaining all rows from the Inventory table as well as all rows
from the Customers table, you are able to specify both SQL select statements using a semicolon
delimiter:

string strSQL = "Select * From Inventory;Select * from Customers";

Once you obtain the data reader, you are able to iterate over each result set via the NextResult()
method. Do be aware that you are always returned the first result set automatically. Thus, if you
wish to read over the rows of each table, you will be able to build the following iteration construct:

do
{
while (myDataReader.Read())
{
Console.WriteLine("***** Record *****");
for (int i = 0; i < myDataReader.FieldCount; i++)
{
Console.WriteLine("{0} = {1}",
myDataReader.GetName(i),
myDataReader.GetValue(i).ToString().Trim());

}
Console.WriteLine();

}
} while (myDataReader.NextResult());

So, at this point, you should be more aware of the functionality data reader objects bring to the
table. Always remember that a data reader can only process SQL Select statements and cannot be
used to modify an existing database table via Insert, Update, or Delete requests. To understand how
to modify an existing database requires a further investigation of command objects.

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER762

8849CH22.qxd 10/19/07 9:27 AM Page 762

■Source Code The AutoLotDataReader project is included under the Chapter 22 subdirectory.

Building a Reusable Data Access Library
As you have just seen, the ExecuteReader() method extracts a data reader object that allows you to
examine the results of a SQL Select statement using a forward-only, read-only flow of information.
However, when you wish to submit SQL statements that result in the modification of a given table,
you will call the ExecuteNonQuery() method of your command object. This single method will per-
form inserts, updates, and deletes based on the format of your command text.

■Note Technically speaking, a nonquery is a SQL statement that does not return a result set. Thus, Select
statements are queries, while Insert, Update, and Delete statements are not. Given this, ExecuteNonQuery()
returns an int that represents the number of rows affected, not a new set of records.

To illustrate how to modify an existing database using nothing more than a call to
ExecuteNonQuery(), your next goal is to build a custom data access library that will encapsulate the
process of operating upon the AutoLot database. In a production-level environment, your ADO.NET
logic will almost always be isolated to a .NET *.dll assembly for one simple reason: code reuse! The
first examples of this chapter have not done so just to keep focused on the task at hand; however, as
you might imagine, it is would be a waste of time to author the same connection logic, the same
data reading logic, and the same command logic for every application that needs to interact with
the AutoLot database.

By isolating data access logic to a .NET code library, multiple applications using any sort of
front end (console based, desktop based, web based, etc.) can reference the library at hand in a
language-independent manner. Thus, if you author your data library using C#, other .NET program-
mers would be able to build a UI in his or her language of choice (VB, C++/CLI, etc.).

In this chapter, our data library (AutoLotDAL.dll) will contain a single namespace
(AutoLotConnectedLayer) that interacts with AutoLot using the connected types of ADO.NET. The
next chapter will add a new namespace (AutoLotDisconnectionLayer) to this same *.dll that con-
tains types to communicate with AutoLot using the disconnected layer. This library will then be
used by numerous applications over the remainder of the text.

To begin, create a new C# Class Library project named AutoLotDAL (short for AutoLot Data
Access Layer) and rename your initial C# code file to AutoLotConnDAL.cs. Next, rename your name-
space scope to AutoLotConnectedLayer and change the name of your initial class to InventoryDAL, as
this class will define various members to interact with the Inventory table of the AutoLot database.
Finally, import the following .NET namespaces:

using System;
using System.Collections.Generic;
using System.Text;

// We will make use of the SQL server
// provider; however, it would also be
// permissible to make use of the ADO.NET
// factory pattern for greater flexibility.
using System.Data;
using System.Data.SqlClient;

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 763

8849CH22.qxd 10/19/07 9:27 AM Page 763

namespace AutoLotConnectedLayer
{
public class InventoryDAL
{
}

}

■Note Recall from Chapter 8 that when objects make use of types managing raw resources (such as a database
connection), it is a good practice to implement IDisposable and author a proper finalizer. In a production environ-
ment, classes such as InventoryDAL would do the same; however, I’ll avoid doing so to stay focused on the
particulars of ADO.NET.

Adding the Connection Logic
The first task we must attend to is to define some methods that allow the caller to connect to and
disconnect from the data source using a valid connection string. Because our AutoLotDAL.dll
assembly will be hard-coded to make use of the types of System.Data.SqlClient, define a private
member variable of SqlConnection that is allocated at the time the InventoryDAL object is created.
As well, define a method named OpenConnection() and another named CloseConnection() that
interact with this member variable as follows:

public class InventoryDAL
{
// This member will be used by all methods.
private SqlConnection sqlCn = new SqlConnection();

public void OpenConnection(string connectionString)
{
sqlCn.ConnectionString = connectionString;
sqlCn.Open();

}

public void CloseConnection()
{
sqlCn.Close();

}
}

For the sake of brevity, our InventoryDAL type will not test for possible exceptions nor will it
throw custom exceptions under various circumstances (such as a malformed connection string). If
you were to build an industrial-strength data access library, you would most certainly want to make
use of structured exception handling techniques to account for any runtime anomalies.

Adding the Insertion Logic
Inserting a new record into the Inventory table is as simple as formatting the SQL Insert statement
(based on user input) and calling the ExecuteNonQuery() using your command object. To illustrate,
add a public method to your InventoryDAL type named InsertAuto() that takes four parameters
which map to the four columns of the Inventory table (CarID, Color, Make, and PetName). Using
the arguments, format a string type to insert the new record. Finally, using your SqlConnection
object, execute the SQL statement:

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER764

8849CH22.qxd 10/19/07 9:27 AM Page 764

public void InsertAuto(int id, string color, string make, string petName)
{
// Format and execute SQL statement.
string sql = string.Format("Insert Into Inventory" +
"(CarID, Make, Color, PetName) Values" +
"('{0}', '{1}', '{2}', '{3}')", id, make, color, petName);

// Execute using our connection.
using(SqlCommand cmd = new SqlCommand(sql, this.sqlCn))
{
cmd.ExecuteNonQuery();

}
}

■Note As you may know, building a SQL statement using string concatenation can be risky from a security point
of view (think SQL injection attacks). The preferred way to build command text is using a parameterized query,
which I describe shortly.

Adding the Deletion Logic
Deleting an existing record is just as simple as inserting a new record. Unlike the code listing for
InsertAuto(), I will show one important try/catch scope that handles the possibility of attempting
to delete a car that is currently on order for an individual in the Customers table. Add the following
method to the InventoryDAL class type:

public void DeleteCar(int id)
{
// Get ID of car to delete, then do so.
string sql = string.Format("Delete from Inventory where CarID = '{0}'",
id);

using(SqlCommand cmd = new SqlCommand(sql, this.sqlCn))
{
try
{
cmd.ExecuteNonQuery();

}
catch(SqlException ex)
{
Exception error = new Exception("Sorry! That car is on order!", ex);
throw error;

}
}

}

Adding the Updating Logic
When it comes to the act of updating an existing record in the Inventory table, the first obvious
question is what exactly do we wish to allow the caller to change? The car’s color? The pet name or
make? All of the above? Of course one way to allow the caller complete flexibility is to simply define
a method that takes a string type to represent any sort of SQL statement, but that is risky at best.
Ideally, we would have a set of methods that allow the caller to update a record in a variety of

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 765

8849CH22.qxd 10/19/07 9:27 AM Page 765

manners. However, for our simple data access library, we will define a single method that allows the
caller to update the pet name of a given automobile:

public void UpdateCarPetName(int id, string newPetName)
{
// Get ID of car to modify and new pet name.
string sql =
string.Format("Update Inventory Set PetName = '{0}' Where CarID = '{1}'",
newPetName, id);

using(SqlCommand cmd = new SqlCommand(sql, this.sqlCn))
{
cmd.ExecuteNonQuery();

}
}

Adding the Selection Logic
The next method to add is a selection method. As seen earlier in this chapter, a data provider’s data
reader object allows for a selection of records using a read-only, forward-only server-side cursor. As
you call the Read() method, you are able to process each record in a fitting manner. While this is all
well and good, we need to contend with the issue of how to return these records to the calling tier of
our application.

One approach would be to populate and return a multidimensional array (or other such object,
like a generic List<T>) with the data obtained by the Read() method. Another approach (which we
will opt for in the current example) is to return a System.Data.DataTable object, which is actually
part of the disconnected layer of ADO.NET.

Full coverage of the DataTable type can be found in the next chapter; however, for the time
being, simply understand that a DataTable is a class type that represents a tabular block of data (like
a grid on a spreadsheet). To do so, the DataTable type maintains a collection of rows and columns.
While these collections can be filled programmatically, the DataTable type provides a method
named Load(), which will automatically populate these collections using a data reader object!
Consider the following:

public DataTable GetAllInventory()
{
// This will hold the records.
DataTable inv = new DataTable();

// Prep command object.
string sql = "Select * From Inventory";
using(SqlCommand cmd = new SqlCommand(sql, this.sqlCn))
{
SqlDataReader dr = cmd.ExecuteReader();
// Fill the DataTable with data from the reader and clean up.
inv.Load(dr);
dr.Close();

}
return inv;

}

Working with Parameterized Command Objects
Currently, the insert, update, and delete logic for the InventoryDAL type uses hard-coded string
literals for each SQL query. As you may know, a parameterized query can be used to treat SQL

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER766

8849CH22.qxd 10/19/07 9:27 AM Page 766

parameters as objects, rather than a simple blob of text. Treating SQL queries in a more object-
oriented manner not only helps reduce the number of typos (given strongly typed properties), but
parameterized queries typically execute much faster than a literal SQL string, in that they are parsed
exactly once (rather than each time the SQL string is assigned to the CommandText property). Fur-
thermore, parameterized queries also help protect against SQL injection attacks (a well-known data
access security issue).

To support parameterized queries, ADO.NET command objects maintain a collection of indi-
vidual parameter objects. By default, this collection is empty, but you are free to insert any number
of parameter objects that map to a “placeholder parameter” in the SQL query. When you wish to
associate a parameter within a SQL query to a member in the command object’s parameters collec-
tion, prefix the SQL text parameter with the @ symbol (at least when using Microsoft SQL Server; not
all DBMSs support this notation).

Specifying Parameters Using the DbParameter Type
Before you build a parameterized query, let’s get to know the DbParameter type (which is the base
class to a provider’s specific parameter object). This class maintains a number of properties that
allow you to configure the name, size, and data type of the parameter, as well as other characteris-
tics such as the parameter’s direction of travel. Table 22-7 describes some key properties of the
DbParameter type.

Table 22-7. Key Members of the DbParameter Type

Property Meaning in Life

DbType Gets or sets the native data type from the data source, represented as a CLR
data type

Direction Gets or sets whether the parameter is input-only, output-only, bidirectional, or a
return value parameter

IsNullable Gets or sets whether the parameter accepts null values

ParameterName Gets or sets the name of the DbParameter

Size Gets or sets the maximum parameter size of the data (only truly useful for
textual data)

Value Gets or sets the value of the parameter

To illustrate how to populate a command object’s collection of DBParameter-compatible
objects, let’s rework the previous InsertAuto() method to make use of parameter objects (a similar
reworking could also be performed for your remaining SQL-centric methods; however, it is not nec-
essary for this example):

public void InsertAuto(int id, string color, string make, string petName)
{
// Note the "placeholders" in the SQL query.
string sql = string.Format("Insert Into Inventory" +

"(CarID, Make, Color, PetName) Values" +
"(@CarID, @Make, @Color, @PetName)");

// This command will have internal parameters.
using(SqlCommand cmd = new SqlCommand(sql, this.sqlCn))
{
// Fill params collection.
SqlParameter param = new SqlParameter();
param.ParameterName = "@CarID";

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 767

8849CH22.qxd 10/19/07 9:27 AM Page 767

param.Value = id;
param.SqlDbType = SqlDbType.Int;
cmd.Parameters.Add(param);

param = new SqlParameter();
param.ParameterName = "@Make";
param.Value = make;
param.SqlDbType = SqlDbType.Char;
param.Size = 10;
cmd.Parameters.Add(param);

param = new SqlParameter();
param.ParameterName = "@Color";
param.Value = color;
param.SqlDbType = SqlDbType.Char;
param.Size = 10;
cmd.Parameters.Add(param);

param = new SqlParameter();
param.ParameterName = "@PetName";
param.Value = petName;
param.SqlDbType = SqlDbType.Char;
param.Size = 10;
cmd.Parameters.Add(param);

cmd.ExecuteNonQuery();
}

}

Again, notice that our SQL query consists of four embedded placeholder symbols, each of
which is prefixed with the @ token. Using the SqlParameter type, we are able to map each place-
holder using the ParameterName property and specify various details (its value, data type, size, etc.)
in a strongly typed matter. Once each parameter object is hydrated, it is added to the command
object’s collection via a call to Add().

■Note Here, I made use of various properties to establish a parameter object. Do know, however, that parameter
objects support a number of overloaded constructors that allow you to set the values of various properties (which
will result in a more compact code base). Also be aware that Visual Studio 2008 provides numerous graphical
designers that will generate a good deal of this grungy parameter-centric code on your behalf (see Chapter 23).

While building a parameterized query often requires a larger amount of code, the end result is
a more convenient way to tweak SQL statements programmatically as well as better overall per-
formance. While you are free to make use of this technique whenever a SQL query is involved,
parameterized queries are most helpful when you wish to trigger a stored procedure.

Executing a Stored Procedure
Recall that a stored procedure is a named block of SQL code stored in the database. Stored proce-
dures can be constructed to return a set of rows or scalar data types and may take any number of
optional parameters. The end result is a unit of work that behaves like a typical function, with the
obvious difference of being located on a data store rather than a binary business object. Currently
our AutoLot database defines a single stored procedure named GetPetName, which was formatted as
follows:

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER768

8849CH22.qxd 10/19/07 9:27 AM Page 768

CREATE PROCEDURE GetPetName
@carID int,
@petName char(10) output
AS
SELECT @petName = PetName from Inventory where CarID = @carID

Now, consider the following final method of the InventoryDAL type, which invokes our stored
procedure:

public string LookUpPetName(int carID)
{
string carPetName = string.Empty;

// Establish name of stored proc.
using (SqlCommand cmd = new SqlCommand("GetPetName", this.sqlCn))
{
cmd.CommandType = CommandType.StoredProcedure;

// Input param.
SqlParameter param = new SqlParameter();
param.ParameterName = "@carID";
param.SqlDbType = SqlDbType.Int;
param.Value = carID;
param.Direction = ParameterDirection.Input;
cmd.Parameters.Add(param);

// Output param.
param = new SqlParameter();
param.ParameterName = "@petName";
param.SqlDbType = SqlDbType.Char;
param.Size = 10;
param.Direction = ParameterDirection.Output;
cmd.Parameters.Add(param);

// Execute the stored proc.
cmd.ExecuteNonQuery();

// Return output param.
carPetName = ((string)cmd.Parameters["@petName"].Value).Trim();

}
return carPetName;

}

The first important aspect of invoking a stored procedure is to recall that a command object
can represent a SQL statement (the default) or the name of a stored procedure. When you wish to
inform a command object that it will be invoking a stored procedure, you pass in the name of the
procedure (as a constructor argument or via the CommandText property) and must set the CommandType
property to the value CommandType.StoredProcedure (if you fail to do so, you will receive a runtime
exception, as the command object is expecting a SQL statement by default):

SqlCommand cmd = new SqlCommand("GetPetName", this.sqlCn);
cmd.CommandType = CommandType.StoredProcedure;

Next, notice that the Direction property of a parameter object allows you to specify the direc-
tion of travel for each parameter passed to the stored procedure (e.g., input parameters and the
output parameter). As before, each parameter object is added to the command object’s parameters
collection:

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 769

8849CH22.qxd 10/19/07 9:27 AM Page 769

mailto:Parameters["@petName"].Value).Trim
mailto:Parameters["@petName"].Value).Trim

// Input param.
SqlParameter param = new SqlParameter();
param.ParameterName = "@carID";
param.SqlDbType = SqlDbType.Int;
param.Value = carID;
param.Direction = ParameterDirection.Input;
cmd.Parameters.Add(param);

Finally, once the stored procedure completes via a call to ExecuteNonQuery(), you are able to
obtain the value of the output parameter by investigating the command object’s parameter collec-
tion and casting accordingly:

// Return output param.
carPetName = (string)cmd.Parameters["@petName"].Value;

■Source Code The AutoLotDAL project is included under the Chapter 22 subdirectory.

Creating a Console UI–Based Front End
At this point, our first iteration of the AutoLotDAL.dll data access library is complete. Using this
assembly, we can build any sort of front end to display and edit our data (console based, Windows
Forms based, Windows Presentation Foundation applications, or an HTML-based web application).
Given that we have not yet examined how to build graphical user interfaces, we will test our data
library from a new Console Application named AutoLotCUIClient. Once you create your new proj-
ect, be sure to add a reference to your AutoLotDAL.dll assembly as well as System.Configuration.
dll and update your using statements as follows:

using AutoLotConnectedLayer;
using System.Configuration;
using System.Data;

Next, insert a new App.config file into your project that contains a <connectionString> element
used to connect to your instance of the AutoLot database, for example:

<configuration>
<connectionStrings>
<add name ="AutoLotSqlProvider" connectionString =
"Data Source=(local)\SQLEXPRESS;" +
"Integrated Security=SSPI;Initial Catalog=AutoLot"/>

</connectionStrings>
</configuration>

Implementing the Main() Method
The Main() method is responsible for prompting the user for a specific course of action and execut-
ing that request via a switch statement. This program will allow the user to enter the following
commands:

• I: Inserts a new record into the Inventory table

• U: Updates an existing record in the Inventory table

• D: Deletes an existing record from the Inventory table

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER770

8849CH22.qxd 10/19/07 9:27 AM Page 770

mailto:Parameters["@petName"].Value

• L: Displays the current inventory using a data reader

• S: Shows these options to the user

• P: Look up pet name from car ID

• Q: Quits the program

Each possible option is handled by a unique static method within the Program class. Here is the
complete implementation of Main(). Notice that each method invoked from the do/while loop (with
the exception of the ShowInstructions() method) takes an InventoryDAL object as its sole parameter:

static void Main(string[] args)
{
Console.WriteLine("***** The AutoLot Console UI *****\n");

// Get connection string from App.config.
string cnStr =
ConfigurationManager.ConnectionStrings["AutoLotSqlProvider"].ConnectionString;

bool userDone = false;
string userCommand = "";

// Create our InventoryDAL object.
InventoryDAL invDAL = new InventoryDAL();
invDAL.OpenConnection(cnStr);

// Keep asking for input until user presses the Q key.
try
{
ShowInstructions();
do
{
Console.Write("Please enter your command: ");
userCommand = Console.ReadLine();
Console.WriteLine();
switch (userCommand.ToUpper())
{
case "I":
InsertNewCar(invDAL);
break;

case "U":
UpdateCarPetName(invDAL);
break;

case "D":
DeleteCar(invDAL);
break;

case "L":
ListInventory(invDAL);
break;

case "S":
ShowInstructions();
break;

case "P":
LookUpPetName(invDAL);
break;

case "Q":
userDone = true;
break;

default:

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 771

8849CH22.qxd 10/19/07 9:27 AM Page 771

Console.WriteLine("Bad data! Try again");
break;

}
} while (!userDone);

}
catch (Exception ex)
{
Console.WriteLine(ex.Message);

}
finally
{
invDAL.CloseConnection();

}
}

Implementing the ShowInstructions() Method
The ShowInstructions() method does what you would expect:

private static void ShowInstructions()
{
Console.WriteLine("I: Inserts a new car.");
Console.WriteLine("U: Updated an existing car.");
Console.WriteLine("D: Deletes an existing car.");
Console.WriteLine("L: List current inventory.");
Console.WriteLine("S: Show these instructions.");
Console.WriteLine("P: Look up pet name.");
Console.WriteLine("Q: Quits program.");

}

Implementing the ListInventory() Method
The ListInventory() method obtains the DataTable returned from the GetAllInventory()
method of the InventoryDAL object. After this point, we call a (yet to be created) function named
DisplayTable():

private static void ListInventory(InventoryDAL invDAL)
{
// Get the list of inventory.
DataTable dt = invDAL.GetAllInventory();
DisplayTable(dt);

}

The DisplayTable() helper method displays the table data using the Rows and Columns proper-
ties of the incoming DataTable (again, full details of the DataTable object appear in the next chapter,
so don’t fret over the details):

private static void DisplayTable(DataTable dt)
{
// Print out the column names.
for (int curCol = 0; curCol < dt.Columns.Count; curCol++)
{
Console.Write(dt.Columns[curCol].ColumnName.Trim() + "\t");

}
Console.WriteLine("\n----------------------------------");

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER772

8849CH22.qxd 10/19/07 9:27 AM Page 772

// Print the DataTable.
for (int curRow = 0; curRow < dt.Rows.Count; curRow++)
{
for (int curCol = 0; curCol < dt.Columns.Count; curCol++)
{
Console.Write(dt.Rows[curRow][curCol].ToString().Trim() + "\t");

}
Console.WriteLine();

}
}

Implementing the DeleteCar() Method
Deleting an existing automobile is as simple as asking the user for the ID of the car to blow out of
the data table and passing this to the DeleteCar() method of the InventoryDAL type:

private static void DeleteCar(InventoryDAL invDAL)
{
// Get ID of car to delete.
Console.Write("Enter ID of Car to delete: ");
int id = int.Parse(Console.ReadLine());

// Just in case we have a primary key
// violation!
try
{
invDAL.DeleteCar(id);

}
catch(Exception ex)
{
Console.WriteLine(ex.Message);

}
}

Implementing the InsertNewCar() Method
Inserting a new record into the Inventory table is simply a matter of asking the user for the new
bits of data (via Console.ReadLine() calls) and passing this data into the InsertAuto() method of
InventoryDAL:

private static void InsertNewCar(InventoryDAL invDAL)
{
// First get the user data.
int newCarID;
string newCarColor, newCarMake, newCarPetName;

Console.Write("Enter Car ID: ");
newCarID = int.Parse(Console.ReadLine());
Console.Write("Enter Car Color: ");
newCarColor = Console.ReadLine();
Console.Write("Enter Car Make: ");
newCarMake = Console.ReadLine();
Console.Write("Enter Pet Name: ");
newCarPetName = Console.ReadLine();

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 773

8849CH22.qxd 10/19/07 9:27 AM Page 773

// Now pass to data access library.
invDAL.InsertAuto(newCarID, newCarColor, newCarMake, newCarPetName);

}

Implementing the UpdateCarPetName() Method
The implementation of UpdateCarPetName() is very similar:

private static void UpdateCarPetName(InventoryDAL invDAL)
{
// First get the user data.
int carID;
string newCarPetName;

Console.Write("Enter Car ID: ");
carID = int.Parse(Console.ReadLine());
Console.Write("Enter New Pet Name: ");
newCarPetName = Console.ReadLine();

// Now pass to data access library.
invDAL.UpdateCarPetName(carID, newCarPetName);

}

Invoking Our Stored Procedure
Obtaining the pet name of a given automobile is also very similar to the previous methods, given
that the data access library has encapsulated all of the lower-level ADO.NET calls:

private static void LookUpPetName(InventoryDAL invDAL)
{
// Get ID of car to look up.
Console.Write("Enter ID of Car to look up: ");
int id = int.Parse(Console.ReadLine());
Console.WriteLine("Petname of {0} is {1}.",
id, invDAL.LookUpPetName(id));

}

With this, our console-based front end is finished. Figure 22-16 shows a test run.

■Source Code The AutoLotCUIClient application is included under the Chapter 22 subdirectory.

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER774

8849CH22.qxd 10/19/07 9:27 AM Page 774

Figure 22-16. Inserting, updating, and deleting records via command objects

Asynchronous Data Access Using SqlCommand
Currently, all of our data access logic is happening on a single thread of execution. However, allow
me to point out that since the release of .NET 2.0, the SQL data provider has been enhanced to sup-
port asynchronous database interactions via the following new members of SqlCommand:

• BeginExecuteReader()/EndExecuteReader()

• BeginExecuteNonQuery()/EndExecuteNonQuery()

• BeginExecuteXmlReader()/EndExecuteXmlReader()

Given your work in Chapter 18, the naming convention of these method pairs may ring a bell.
Recall that the .NET asynchronous delegate pattern makes use of a “begin” method to execute a task
on a secondary thread, whereas the “end” method can be used to obtain the result of the asynchro-
nous invocation using the members of IAsyncResult and the optional AsyncCallback delegate.
Because the process of working with asynchronous commands is modeled after the standard

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 775

8849CH22.qxd 10/19/07 9:27 AM Page 775

delegate patterns, a simple example should suffice (so be sure to consult Chapter 18 for full details
of asynchronous delegates).

Assume you wish to select the records from the Inventory table on a secondary thread of exe-
cution using a data reader object. Here is a completely new Console Application (which does not
make use of our InventoryDAL.dll assembly) named AsyncCmdObjectApp:

■Note When you wish to enable access data in an asynchronous manner, you must update your connection
string with Asynchronous Processing=true (the default value is in fact, false).

static void Main(string[] args)
{
Console.WriteLine("***** Fun with ASNYC Data Readers *****\n");

// Create and open a connection that is async-aware.
SqlConnection cn = new SqlConnection();
cn.ConnectionString =
@"Data Source=(local)\SQLEXPRESS;Integrated Security=SSPI;" +
"Initial Catalog=AutoLot;Asynchronous Processing=true";

cn.Open();

// Create a SQL command object that waits for approx 2 seconds.
string strSQL = "WaitFor Delay '00:00:02';Select * From Inventory";
SqlCommand myCommand = new SqlCommand(strSQL, cn);

// Execute the reader on a second thread.
IAsyncResult itfAsynch;
itfAsynch = myCommand.BeginExecuteReader(CommandBehavior.CloseConnection);

// Do something while other thread works.
while (!itfAsynch.IsCompleted)
{
Console.WriteLine("Working on main thread...");
Thread.Sleep(1000);

}
Console.WriteLine();

// All done! Get reader and loop over results.
SqlDataReader myDataReader = myCommand.EndExecuteReader(itfAsynch);
while (myDataReader.Read())
{
Console.WriteLine("-> Make: {0}, PetName: {1}, Color: {2}.",
myDataReader["Make"].ToString().Trim(),
myDataReader["PetName"].ToString().Trim(),
myDataReader["Color"].ToString().Trim());

}
myDataReader.Close();

}

The first point of interest is the fact that you need to enable asynchronous activity using the
new Asynchronous Processing segment of the connection string. Also note that you have padded
into the command text of your SqlCommand object a WaitFor Delay segment simply to simulate a
long-running database interaction.

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER776

8849CH22.qxd 10/19/07 9:27 AM Page 776

Beyond these points, notice that the call to BeginExecuteDataReader() returns the expected
IAsyncResult-compatible type, which is used to synchronize the calling thread (via the IsCompleted
property) as well as obtain the SqlDataReader once the query has finished executing.

■Source Code The AsyncCmdObjectApp application is included under the Chapter 22 subdirectory.

Understanding Database Transactions
To wrap up our examination of the connected layer of ADO.NET, we will take a look at the concept
of a database transaction. Simply put, a transaction is a set of database operations that must either
all work or all fail as a collective whole. As you would imagine, transactions are quite important to
ensure that table data is safe, valid, and consistent.

Transactions are very important when a database operation involves interacting with multiple
tables or multiple stored procedures (or a combination of database atoms). The classic transaction
example involves the process of transferring monetary funds between two bank accounts. For
example, if you were to transfer $500.00 from your savings account into your checking account,
the following steps should occur in a transactional manner:

• The bank should remove $500.00 from your savings account.

• The bank should then add $500.00 from to your checking account.

It would be a very bad thing indeed if the money was removed from the savings account, yet
was not transferred to the checking account (due to some error on the bank’s part), as you are now
out $500.00! However, if these steps were wrapped up into a database transaction, the DBMS would
ensure that all related steps occur as a single unit. If any part of the transaction fails, the entire oper-
ation is “rolled back” to the original state. On the other hand, if all steps succeed, the transaction is
“committed.”

■Note You may have heard of the acronym ACID when examining transactional literature. This represents the
four key properties of a prim-and-proper transaction, specifically Atomic (all or nothing), Consistent (data remains
stable throughout the transaction), Isolated (transactions do not step on each other’s feet) and Durable (transac-
tions are saved and logged).

As it turns out, the .NET platform supports transactions in a variety of ways. Most importantly
for this chapter is the transaction object of your ADO.NET data provider (SqlTransaction in the case
of System.Data.SqlClient). In addition, the .NET base class libraries provide transactional supports
within numerous APIs, including the following:

• System.EnterpriseServices: This namespace provides types that allow you to integrate with
the COM+ runtime layer, including its support for distributed transactions.

• System.Transactions: This namespace contains classes that allow you to write your own
transactional applications and resource managers for a variety of services (MSMQ,
ADO.NET, COM+, etc.).

• Windows Communication Foundation: The WCF API provides services to facilitate
transactions.

• Windows Workflow Foundations: The WF API provides transactional support for workflow
activities.

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 777

8849CH22.qxd 10/19/07 9:27 AM Page 777

In addition to the baked-in transactional support found within the .NET base class libraries, it
is also possible to make use of the SQL language itself of your database management system. For
example, you could author a stored procedure that makes use of the BEGIN TRANSACTION, ROLLBACK,
and COMMIT statements.

Key Members of an ADO.NET Transaction Object
While transactional-aware types exist throughout the base class libraries, we will focus on transac-
tion objects found within an ADO.NET data provider, all of which derive from DBTransaction
and implement the IDbTransaction interface. Recall from the beginning of this chapter that
IDbTransaction defines a handful of members:

public interface IDbTransaction : IDisposable
{
IDbConnection Connection { get; }
IsolationLevel IsolationLevel { get; }
void Commit();
void Rollback();

}

Notice first of all that the Connection property, which will return to you a reference to the con-
nection object that initiated the current transaction (as you’ll see, you obtain a transaction object
from a given connection object). The Commit() method is called when each of your database opera-
tions have succeeded. By doing so, each of the pending changes will be persisted in the data store.
Conversely, the Rollback() method can be called in the event of a runtime exception, which will
inform the DMBS to disregard any pending changes, leaving the original data intact.

■Note The IsolationLevel property of a transaction object allows you to specify how aggressively a transac-
tion should be guarded against the activities of other parallel transactions. By default, transactions are isolated
completely until committed. Consult the .NET Framework 3.5 SDK documentation for full details regarding the
values of the IsolationLevel enumeration.

Beyond the members defined by the IDbTransaction interface, the SqlTransaction type defines
an additional member named Save(), which allows you to define save points. This concept allows
you to roll back a failed transaction up until a named point, rather than rolling back the entire
transaction. Essentially, when you call Save() using a SqlTransaction object, you are able to specify
a friendly string moniker. When calling Rollback(), you are able to specify this same moniker as an
argument to effectively do a “partial rollback.” When calling Rollback() with no arguments, all of
the pending changes will indeed be rolled back.

Adding a Transaction Method to InventoryDAL
To illustrate the use of the ADO.NET transactions, begin by using the Server Explorer of Visual
Studio 2008 to add a new table named CreditRisks to the AutoLot database, which has the same
exact columns (CustID [which is the primary key], FirstName, and LastName) as the Customers
table created earlier in this chapter. As suggested by the name, CreditRisks is where the undesirable
customers are banished if they fail a credit check.

■Note We will be using this new transactional functionality in Chapter 26 when we examine the Windows Work-
flow Foundation API, so be sure to add the CreditRisks table to the AutoLot database as just described.

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER778

8849CH22.qxd 10/19/07 9:27 AM Page 778

Much like the savings-to-checking money transfer example described previously, the act of
moving a risky customer from the Customers table into the CreditRisks table should occur under
the watchful eye of a transactional scope (after all, we will want to remember the ID and names of
those who are not creditworthy). Specifically, we need to ensure that either we successfully delete
the current credit risks from the Customers table and add them to the CreditRisks table or neither of
these database operations occurs.

To illustrate how to programmatically work with ADO.NET transactions, open the AutoLotDAL
Code Library project you created earlier in this chapter. Add a new public method named
ProcessCreditRisk() to the InventoryDAL class that will deal with a perceived a credit risk as
follows:

// A new member of the InventoryDAL class.
public void ProcessCreditRisk(bool throwEx, int custID)
{
// First, look up current name based on customer ID.
string fName = string.Empty;
string lName = string.Empty;
SqlCommand cmdSelect = new SqlCommand(
string.Format("Select * from Customers where CustID = {0}", custID), sqlCn);

using (SqlDataReader dr = cmdSelect.ExecuteReader())
{
while (dr.Read())
{
fName = (string)dr["FirstName"];
lName = (string)dr["LastName"];

}
}

// Create command objects that represent each step of the operation.
SqlCommand cmdRemove = new SqlCommand(
string.Format("Delete from Customers where CustID = {0}", custID), sqlCn);

SqlCommand cmdInsert = new SqlCommand(string.Format("Insert Into CreditRisks" +
"(CustID, FirstName, LastName) Values" +
"({0}, '{1}', '{2}')", custID, fName, lName), sqlCn);

// We will get this from the connection object.
SqlTransaction tx = null;
try
{
tx = sqlCn.BeginTransaction();

// Enlist the commands into this transaction.
cmdInsert.Transaction = tx;
cmdRemove.Transaction = tx;

// Execute the commands.
cmdInsert.ExecuteNonQuery();
cmdRemove.ExecuteNonQuery();

// Simulate error.
if (throwEx)
{
throw new ApplicationException("Sorry! Database error! Tx failed...");

}

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 779

8849CH22.qxd 10/19/07 9:27 AM Page 779

// Commit it!
tx.Commit();

}
catch (Exception ex)
{
Console.WriteLine(ex.Message);
// Any error will roll back transaction.
tx.Rollback();

}
}

Here, we are using an incoming bool parameter to represent whether we will throw an arbitrary
exception when attempting to process the offending customer. This will allow us to easily simulate
an unforeseen circumstance that will cause the database transaction to fail. Obviously, this is only
done here for illustrative purposes; a true database transaction method would certainly not want to
allow the caller to force the logic to fail on a whim!

Once we obtain the customer’s first and last name based on the incoming custID parameter,
note that we are using two SqlCommand objects that represent each step in the transaction we will
be kicking off, and we obtain a valid SqlTransaction object from the connection object via
BeginTransaction(). Next, and most importantly, we must enlist each command object by assigning
the Transaction property to the transaction object we have just obtained. If you fail to do so, the
Insert/Delete logic will not be under a transactional context.

After we call ExecuteNonQuery() on each command, we will throw an exception if (and only if)
the value of the bool parameter is true. In this case, all pending database operations are rolled back.
If we do not throw an exception, both steps will be committed to the database tables once we call
Commit(). Compile your modified AutoLotDAL project to ensure you do not have any typos.

Testing Our Database Transaction
While you could update your previous AutoLotCUIClient application with a new option to invoke
the ProcessCreditRisk() method, let’s create a new Console Application named AdoNetTransaction
to do so. Set a reference to your AutoLotDAL.dll assembly, and import the AutoLotConnectedLayer
namespace.

Next, open your Customers table for data entry by right-clicking the table icon from the Server
Explorer and selecting Show Table Data. Add a new customer who will be the victim of a low credit
score, for example:

• CustID: 333

• FirstName: Homer

• LastName: Simpson

Now, update your Main() method as follows:

static void Main(string[] args)
{
Console.WriteLine("***** Simple Transaction Example *****\n");

// A simple way to allow the tx to succeed or not.
bool throwEx = true;
string userAnswer = string.Empty;

Console.Write("Do you want to throw an exception (Y or N): ");
userAnswer = Console.ReadLine();
if (userAnswer.ToLower() == "n")

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER780

8849CH22.qxd 10/19/07 9:27 AM Page 780

{
throwEx = false;

}

InventoryDAL dal = new InventoryDAL();
dal.OpenConnection(@"Data Source=(local)\SQLEXPRESS;Integrated Security=SSPI;" +
"Initial Catalog=AutoLot");

// Process customer 333.
dal.ProcessCreditRisk(throwEx, 333);
Console.ReadLine();

}

If you were to run your program and elect to throw an exception, you would find that Homer is
not removed from the Customers table, as the entire transaction has been rolled back. However, if
you did not throw an exception, you would find that Customer ID 333 is no longer in the Customers
table and has been placed in the CreditRisks table (see Figure 22-17).

Figure 22-17. The result of our database transaction

■Source Code The AdoNetTransaction project is included under the Chapter 22 subdirectory.

Summary
ADO.NET is the native data access technology of the .NET platform, which can be used in two dis-
tinct manners: connected or disconnected. In this chapter, you examined the connected layer and
came to understand the role of data providers, which are essentially concrete implementations of
several abstract base classes (in the System.Data.Common) namespace and interface types (in the
System.Data namespace). As you have seen, it is possible to build a provider-neutral code base
using the ADO.NET data provider factory model.

Using connection objects, transaction objects, command objects, and data reader objects of
the connected layer, you are able to select, update, insert, and delete records. Also recall that com-
mand objects support an internal parameter collection, which can be used to add some type safety
to your SQL queries and are quite helpful when triggering stored procedures.

CHAPTER 22 ■ ADO.NET PART I : THE CONNECTED LAYER 781

8849CH22.qxd 10/19/07 9:27 AM Page 781

8849CH22.qxd 10/19/07 9:27 AM Page 782

ADO.NET Part II: The Disconnected
Layer

This chapter picks up where the previous one left off and digs deeper into the .NET database APIs.
Here, you will be introduced to the disconnected layer of ADO.NET. When you use this facet of
ADO.NET, you are able to model database data in memory within the calling tier using numerous
members of the System.Data namespace (most notably, DataSet, DataTable, DataRow, DataColumn,
DataView, and DataRelation). By doing so, you are able to provide the illusion that the calling tier is
continuously connected to an external data source, while in reality it is simply operating on a local
copy of relational data.

While it is completely possible to use this “disconnected” aspect of ADO.NET without ever
making a literal connection to a relational database, you will most often obtain populated DataSet
objects using the data adapter object of your data provider. As you will see, data adapter objects
function as a bridge between the client tier and a relational database. Using these objects, you are
able to obtain DataSet objects, manipulate their contents, and send modified rows back for process-
ing. The end result is a highly scalable data-centric .NET application.

To showcase the usefulness of the disconnected layer, you will be updating the AutoLotDAL.dll
data library created in Chapter 22 with new namespaces that make use of disconnected types. As
well, you will come to understand the role of data binding and various UI elements within the Win-
dows Forms API that allow you to display and update client-side local data. We wrap things up by
examining the role of strongly typed DataSet objects and see how they can be used to expose data
using a more object-oriented model.

Understanding the Disconnected Layer of ADO.NET
As you saw in the previous chapter, working with the connected layer allows you to interact with a
database using the primary connection, command, and data reader objects. With this handful of
types, you are able to select, insert, update, and delete records to your heart’s content (as well as
invoke stored procedures). However, you have seen only half of the ADO.NET story. Recall that the
ADO.NET object model can be used in a disconnected manner.

Using the disconnected types, it is possible to model relational data via an in-memory object
model. Far beyond simply modeling a tabular block of rows and columns, the types within System.
Data allow you to represent table relationships, column constraints, primary keys, views, and other
database primitives. Furthermore, once you have modeled the data, you are able to apply filters,
submit in-memory queries, and persist (or load) your data in XML and binary formats. You can do
all of this without ever making a literal connection to a DBMS (hence the term disconnected layer).

While you could indeed use the disconnected types without ever connecting to a database, you
will most often still make use of connection and command objects. In addition, you will leverage a
specific object, the data adapter (which extends the abstract DbDataAdapter), to fetch and update

783

C H A P T E R 2 3

8849CH23.qxd 10/22/07 1:54 PM Page 783

data. Unlike the connected layer, data obtained via a data adapter is not processed using data
reader objects. Rather, data adapter objects make use of DataSet objects to move data between the
caller and data source. The DataSet type is a container for any number of DataTable objects, each of
which contains a collection of DataRow and DataColumn objects.

The data adapter object of your data provider handles the database connection automatically.
In an attempt to increase scalability, data adapters keep the connection open for the shortest
amount of time possible. Once the caller receives the DataSet object, the calling tier is completely
disconnected from the database and left with a local copy of the remote data. The caller is free to
insert, delete, or update rows from a given DataTable, but the physical database is not updated until
the caller explicitly passes the DataSet to the data adapter for updating. In a nutshell, DataSets allow
the clients to pretend they are indeed always connected, when in fact they are operating on an in-
memory database (see Figure 23-1).

Figure 23-1. Data adapter objects move DataSets to and from the client tier.

Given that the centerpiece of the disconnected layer is the DataSet type, the first task of this
chapter is to learn how to manipulate a DataSet manually. Once you understand how to do so, you
will have no problem manipulating the contents of a DataSet retrieved from a data adapter object.

Understanding the Role of the DataSet
As said, a DataSet is an in-memory representation of relational data. More specifically, a DataSet is a
class type that maintains three internal strongly typed collections (see Figure 23-2).

Figure 23-2. The anatomy of a DataSet

The Tables property of the DataSet allows you to access the DataTableCollection that
contains the individual DataTables. Another important collection used by the DataSet is the
DataRelationCollection. Given that a DataSet is a disconnected version of a database schema, it
can be used to programmatically represent the parent/child relationships between its tables. For
example, a relation can be created between two tables to model a foreign key constraint using the
DataRelation type. This object can then be added to the DataRelationCollection through the

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER784

8849CH23.qxd 10/22/07 1:54 PM Page 784

Relations property. At this point, you can navigate between the connected tables as you search for
data. You will see how this is done a bit later in the chapter.

The ExtendedProperties property provides access to the PropertyCollection object, which
allows you to associate any extra information to the DataSet as name/value pairs. This information
can literally be anything at all, even if it has no bearing on the data itself. For example, you can asso-
ciate your company’s name to a DataSet, which can then function as in-memory metadata. Other
examples of extended properties might include time stamps, an encrypted password that must be
supplied to access the contents of the DataSet, a number representing a data refresh rate, and so
forth.

■Note The DataTable class also supports extended properties via the ExtendedProperties property.

Key Properties of the DataSet
Before exploring too many other programmatic details, let’s take a look at some core members of
the DataSet. Beyond the Tables, Relations, and ExtendedProperties properties, Table 23-1
describes some additional properties of interest.

Table 23-1. Properties of the Mighty DataSet

Property Meaning in Life

CaseSensitive Indicates whether string comparisons in DataTable objects are case
sensitive (or not).

DataSetName Represents the friendly name of this DataSet. Typically this value is
established as a constructor parameter.

EnforceConstraints Gets or sets a value indicating whether constraint rules are followed when
attempting any update operation.

HasErrors Gets a value indicating whether there are errors in any of the rows in any of
the DataTables of the DataSet.

RemotingFormat Allows you to define how the DataSet should serialize its content (binary
or XML).

Key Methods of the DataSet
The methods of the DataSet work in conjunction with some of the functionality provided by the
aforementioned properties. In addition to interacting with XML streams, the DataSet provides
methods that allow you to copy the contents of your DataSet, navigate between the internal tables,
and establish the beginning and ending points of a batch of updates. Table 23-2 describes some
core methods.

Table 23-2. Methods of the Mighty DataSet

Methods Meaning in Life

AcceptChanges() Commits all the changes made to this DataSet since it was loaded or the
last time AcceptChanges() was called.

Clear() Completely clears the DataSet data by removing every row in each
DataTable.

Continued

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 785

8849CH23.qxd 10/22/07 1:54 PM Page 785

Table 23-2. Continued

Methods Meaning in Life

Clone() Clones the structure of the DataSet, including all DataTables, as well as all
relations and any constraints.

Copy() Copies both the structure and data for this DataSet.

GetChanges() Returns a copy of the DataSet containing all changes made to it since it
was last loaded or since AcceptChanges() was called.

GetChildRelations() Returns the collection of child relations that belong to a specified table.

GetParentRelations() Gets the collection of parent relations that belong to a specified table.

HasChanges() Gets a value indicating whether the DataSet has changes, including new,
deleted, or modified rows.

Merge() Merges this DataSet with a specified DataSet.

ReadXml() Allow you to read XML data from a valid stream (file based, memory
ReadXmlSchema() based, or network based) into the DataSet.

RejectChanges() Rolls back all the changes made to this DataSet since it was created or the
last time AcceptChanges() was called.

WriteXml() Allow you to write out the contents of a DataSet into a valid stream.
WriteXmlSchema()

Building a DataSet
Now that you have a better understanding of the role of the DataSet (and some idea of what you can
do with one), create a new Console Application named SimpleDataSet. Within the Main() method,
define a new DataSet object that contains three extended properties representing your company
name, a unique identifier (represented as a System.Guid type), and a time stamp (don’t forget to
import the System.Data namespace):

static void Main(string[] args)
{
Console.WriteLine("***** Fun with DataSets *****\n");

// Create the DataSet object and add a few properties.
DataSet carsInventoryDS = new DataSet("Car Inventory");

carsInventoryDS.ExtendedProperties["TimeStamp"] = DateTime.Now;
carsInventoryDS.ExtendedProperties["DataSetID"] = Guid.NewGuid();
carsInventoryDS.ExtendedProperties["Company"] = "Intertech Training";
Console.ReadLine();

}

If you are unfamiliar with the concept of a globally unique identifier (GUID), simply under-
stand that it is a statically unique 128-bit number. While GUIDs are used throughout the COM
framework to identify numerous COM-atoms (classes, interfaces, applications, etc.), the System.
Guid type is still very helpful under .NET when you need to quickly generate a unique identifier.

In any case, a DataSet object is not terribly interesting until you insert any number of
DataTables. Therefore, the next task is to examine the internal composition of the DataTable,
beginning with the DataColumn type.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER786

8849CH23.qxd 10/22/07 1:54 PM Page 786

Working with DataColumns
The DataColumn type represents a single column within a DataTable. Collectively speaking, the set
of all DataColumn types bound to a given DataTable represents the foundation of a table’s schema
information. For example, if you were to model the Inventory table of the AutoLot database (see
Chapter 22), you would create four DataColumns, one for each column (CarID, Make, Color, and
PetName). Once you have created your DataColumn objects, they are typically added into the
columns collection of the DataTable type (via the Columns property).

Based on your background, you may know that a given column in a database table can be
assigned a set of constraints (e.g., configured as a primary key, assigned a default value, configured
to contain read-only information, etc.). Also, every column in a table must map to an underlying
data type. For example, the Inventory table’s schema requires that the CarID column map to an
integer, while Make, Color, and PetName map to an array of characters. The DataColumn class has
numerous properties that allow you to configure these very things. Table 23-3 provides a rundown
of some core properties.

Table 23-3. Properties of the DataColumn

Properties Meaning in Life

AllowDBNull This property is used to indicate if a row can specify null values in this
column. The default value is true.

AutoIncrement These properties are used to configure the autoincrement behavior for a
AutoIncrementSeed given column. This can be helpful when you wish to ensure unique values
AutoIncrementStep in a given DataColumn (such as a primary key). By default, a DataColumn does

not support autoincrement behavior.

Caption This property gets or sets the caption to be displayed for this column. This
allows you to define a user-friendly version of a literal database column
name.

ColumnMapping This property determines how a DataColumn is represented when a DataSet
is saved as an XML document using the DataSet.WriteXml() method.

ColumnName This property gets or sets the name of the column in the Columns collection
(meaning how it is represented internally by the DataTable). If you do not
set the ColumnName explicitly, the default values are Column with (n+1)
numerical suffixes (i.e., Column1, Column2, Column3, etc.).

DataType This property defines the data type (Boolean, string, float, etc.) stored in the
column.

DefaultValue This property gets or sets the default value assigned to this column when
inserting new rows. This is used if not otherwise specified.

Expression This property gets or sets the expression used to filter rows, calculate a
column’s value, or create an aggregate column.

Ordinal This property gets the numerical position of the column in the Columns
collection maintained by the DataTable.

ReadOnly This property determines if this column can be modified once a row has
been added to the table. The default is false.

Table This property gets the DataTable that contains this DataColumn.

Unique This property gets or sets a value indicating whether the values in each row
of the column must be unique or if repeating values are permissible. If a
column is assigned a primary key constraint, the Unique property should be
set to true.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 787

8849CH23.qxd 10/22/07 1:54 PM Page 787

Building a DataColumn
To continue with the SimpleDataSet project (and illustrate the use of the DataColumn), assume you
wish to model the columns of the Inventory table. Given that the CarID column will be the table’s
primary key, you will configure the DataColumn object as read-only, unique, and non-null (using the
ReadOnly, Unique, and AllowDBNull properties). Update the Main() method to build four DataColumn
objects:

static void Main(string[] args)
{
...
// Create data columns that map to the
// 'real' columns in the Inventory table
// of the AutoLot database.
DataColumn carIDColumn = new DataColumn("CarID", typeof(int));
carIDColumn.Caption = "Car ID";
carIDColumn.ReadOnly = true;
carIDColumn.AllowDBNull = false;
carIDColumn.Unique = true;

DataColumn carMakeColumn = new DataColumn("Make", typeof(string));
DataColumn carColorColumn = new DataColumn("Color", typeof(string));
DataColumn carPetNameColumn = new DataColumn("PetName", typeof(string));
carPetNameColumn.Caption = "Pet Name";
Console.ReadLine();

}

Notice that when configuring the carIDColumn object, you have assigned a value to the Caption
property. This property is very helpful in that it allows you to define a string value for display pur-
poses, which can be distinct from the literal column name (column names in a literal database table
are typically better suited for programming purposes [e.g., au_fname] than display purposes [e.g.,
Author First Name]).

Enabling Autoincrementing Fields
One aspect of the DataColumn you may choose to configure is its ability to autoincrement. Simply
put, an autoincrementing column is used to ensure that when a new row is added to a given table,
the value of this column is assigned automatically, based on the current step of the increase. This
can be helpful when you wish to ensure that a column has no repeating values (such as a primary
key).

This behavior is controlled using the AutoIncrement, AutoIncrementSeed, and AutoIncrementStep
properties. The seed value is used to mark the starting value of the column, whereas the step value
identifies the number to add to the seed when incrementing. Consider the following update to the
construction of the carIDColumn DataColumn:

static void Main(string[] args)
{
...
DataColumn carIDColumn = new DataColumn("CarID", typeof(int));
carIDColumn.ReadOnly = true;
carIDColumn.Caption = "Car ID";
carIDColumn.AllowDBNull = false;
carIDColumn.Unique = true;
carIDColumn.AutoIncrement = true;

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER788

8849CH23.qxd 10/22/07 1:54 PM Page 788

carIDColumn.AutoIncrementSeed = 0;
carIDColumn.AutoIncrementStep = 1;

...
}

Here, the carIDColumn object has been configured to ensure that as rows are added to the
respective table, the value for this column is incremented by 1. Because the seed has been set at 0,
this column would be numbered 0, 1, 2, 3, and so forth.

Adding DataColumn Objects to a DataTable
The DataColumn type does not typically exist as a stand-alone entity, but is instead inserted into a
related DataTable. To illustrate, create a new DataTable type (fully detailed in just a moment) and
insert each DataColumn object in the columns collection using the Columns property:

static void Main(string[] args)
{
...
// Now add DataColumns to a DataTable.
DataTable inventoryTable = new DataTable("Inventory");
inventoryTable.Columns.AddRange(new DataColumn[]
{ carIDColumn, carMakeColumn, carColorColumn, carPetNameColumn });

Console.ReadLine();
}

At this point, the DataTable object contains four DataColumn objects that represent the schema
of the in-memory Inventory table. However, the table is currently devoid of data, and the table is
currently outside of the table collection maintained by the DataSet. We will deal with both of these
shortcomings, beginning with populating the table with data via DataRow objects.

Working with DataRows
As you have seen, a collection of DataColumn objects represents the schema of a DataTable. In con-
trast, a collection of DataRow types represents the actual data in the table. Thus, if you have 20
listings in the Inventory table of the AutoLot database, you can represent these records using 20
DataRow types. Using the members of the DataRow class, you are able to insert, remove, evaluate, and
manipulate the values in the table. Table 23-4 documents some (but not all) of the members of the
DataRow type.

Table 23-4. Key Members of the DataRow Type

Members Meaning in Life

HasErrors The HasErrors property returns a Boolean value indicating if there are
GetColumnsInError() errors. If so, the GetColumnsInError() method can be used to obtain the
GetColumnError() offending members, and GetColumnError() can be used to obtain the
ClearErrors() error description, while the ClearErrors() method removes each error
RowError listing for the row. The RowError property allows you to configure a textual

description of the error for a given row.

ItemArray This property gets or sets all of the values for this row using an array of
objects.

RowState This property is used to pinpoint the current “state” of the DataRow using
values of the RowState enumeration.

Continued

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 789

8849CH23.qxd 10/22/07 1:54 PM Page 789

Table 23-4. Continued

Members Meaning in Life

Table This property is used to obtain a reference to the DataTable containing this
DataRow.

AcceptChanges() These methods commit or reject all changes made to this row since the
RejectChanges() last time AcceptChanges() was called.

BeginEdit() These methods begin, end, or cancel an edit operation on a DataRow
EndEdit() object.
CancelEdit()

Delete() This method marks this row to be removed when the AcceptChanges()
method is called.

IsNull() This method gets a value indicating whether the specified column
contains a null value.

Working with a DataRow is a bit different from working with a DataColumn, because you cannot
create a direct instance of this type, as there is no public constructor:

// Error! No public constructor!
DataRow r = new DataRow();

Rather, you obtain a DataRow reference from a given DataTable. For example, assume you wish
to insert two rows in the Inventory table. The DataTable.NewRow() method allows you to obtain the
next slot in the table, at which point you can fill each column with new data via the type indexer.
When doing so, you can specify either the string name assigned to the DataColumn or its ordinal
position:

static void Main(string[] args)
{
...
// Now add some rows to the Inventory Table.
DataRow carRow = inventoryTable.NewRow();
carRow["Make"] = "BMW";
carRow["Color"] = "Black";
carRow["PetName"] = "Hamlet";
inventoryTable.Rows.Add(carRow);

carRow = inventoryTable.NewRow();
// Column 0 is the autoincremented ID field,
// so start at 1.
carRow[1] = "Saab";
carRow[2] = "Red";
carRow[3] = "Sea Breeze";
inventoryTable.Rows.Add(carRow);
Console.ReadLine();

}

■Note If you pass the DataRow’s indexer method an invalid column name or ordinal position, you will receive a
runtime exception.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER790

8849CH23.qxd 10/22/07 1:54 PM Page 790

At this point, you have a single DataTable containing two rows. Of course, you can repeat this
general process to create a number of DataTables to define the schema and data content. Before you
insert the inventoryTable object into your DataSet object, let’s check out the all-important RowState
property.

Understanding the RowState Property
The RowState property is useful when you need to programmatically identify the set of all rows in
a table that have changed from their original value, have been newly inserted, and so forth. This
property may be assigned any value from the DataRowState enumeration, as shown in Table 23-5.

Table 23-5. Values of the DataRowState Enumeration

Value Meaning in Life

Added The row has been added to a DataRowCollection, and AcceptChanges() has not been
called.

Deleted The row has been marked for deletion via the Delete() method of the DataRow.

Detached The row has been created but is not part of any DataRowCollection. A DataRow is in
this state immediately after it has been created and before it is added to a collection,
or if it has been removed from a collection.

Modified The row has been modified, and AcceptChanges() has not been called.

Unchanged The row has not changed since AcceptChanges() was last called.

While you are programmatically manipulating the rows of a given DataTable, the RowState
property is set automatically. By way of example, add a new method to your Program class, which
operates on a local DataRow object, printing out its row state along the way:

private static void ManipulateDataRowState()
{
// Create a temp DataTable for testing.
DataTable temp = new DataTable("Temp");
temp.Columns.Add(new DataColumn("TempColumn", typeof(int)));

// RowState = Detached.
DataRow row = temp.NewRow();
Console.WriteLine("After calling NewRow(): {0}", row.RowState);

// RowState = Added.
temp.Rows.Add(row);
Console.WriteLine("After calling Rows.Add(): {0}", row.RowState);

// RowState = Added.
row["TempColumn"] = 10;
Console.WriteLine("After first assignment: {0}", row.RowState);

// RowState = Unchanged.
temp.AcceptChanges();
Console.WriteLine("After calling AcceptChanges: {0}", row.RowState);

// RowState = Modified.
row["TempColumn"] = 11;
Console.WriteLine("After first assignment: {0}", row.RowState);

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 791

8849CH23.qxd 10/22/07 1:54 PM Page 791

// RowState = Deleted.
temp.Rows[0].Delete();
Console.WriteLine("After calling Delete: {0}", row.RowState);

}

As you can see, the ADO.NET DataRow is smart enough to remember its current state of affairs.
Given this, the owning DataTable is able to identify which rows have been modified. This is a key
feature of the DataSet, as when it comes time to send updated information to the data store, only
the modified data is submitted.

Understanding the DataRowVersion Property
Beyond maintaining the current state of a row via the RowState property, a DataRow object maintains
three possible versions of the data it contains via the DataRowVersion property. When a DataRow
object is first constructed, it contains only a single copy of data, represented as the “current version.”
However, as you programmatically manipulate a DataRow object (via various method calls), addi-
tional versions of the data spring to life. Specifically, the DataRowVersion can be set to any value of
the related DataRowVersion enumeration (see Table 23-6).

Table 23-6. Values of the DataRowVersion Enumeration

Value Meaning in Life

Current Represents the current value of a row, even after changes have been made.

Default The default version of DataRowState. For a DataRowState value of Added, Modified, or
Deleted, the default version is Current. For a DataRowState value of Detached, the
version is Proposed.

Original Represents the value first inserted into a DataRow, or the value the last time
AcceptChanges() was called.

Proposed The value of a row currently being edited due to a call to BeginEdit().

As suggested in Table 23-6, the value of the DataRowVersion property is dependent on the value
of the DataRowState property in a good number of cases. As mentioned, the DataRowVersion prop-
erty will be changed behind the scenes when you invoke various methods on the DataRow (or, in
some cases, the DataTable) object. Here is a breakdown of the methods that can affect the value of
a row’s DataRowVersion property:

• If you call the DataRow.BeginEdit() method and change the row’s value, the Current and
Proposed values become available.

• If you call the DataRow.CancelEdit() method, the Proposed value is deleted.

• After you call DataRow.EndEdit(), the Proposed value becomes the Current value.

• After you call the DataRow.AcceptChanges() method, the Original value becomes identical
to the Current value. The same transformation occurs when you call DataTable.
AcceptChanges().

• After you call DataRow.RejectChanges(), the Proposed value is discarded, and the version
becomes Current.

Yes, this is a bit convoluted—especially due to the fact that a DataRow may or may not have all
versions at any given time (you’ll receive runtime exceptions if you attempt to obtain a row version
that is not currently tracked). Regardless of the complexity, given that the DataRow maintains three
copies of data, it becomes very simple to build a front end that allows an end user to alter values,

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER792

8849CH23.qxd 10/22/07 1:54 PM Page 792

change his or her mind and “roll back” values, or commit values permanently. You’ll see various
examples of manipulating these methods over the remainder of this chapter.

Working with DataTables
The DataTable type defines a good number of members, many of which are identical in name and
functionality to those of the DataSet. Table 23-7 describes some core members of the DataTable type
beyond Rows and Columns.

Table 23-7. Key Members of the DataTable Type

Member Meaning in Life

CaseSensitive Indicates whether string comparisons within the table are case sensitive
(or not). The default value is false.

ChildRelations Returns the collection of child relations for this DataTable (if any).

Constraints Gets the collection of constraints maintained by the table.

Copy() A method that copies the schema and data of a given DataTable into a new
instance.

DataSet Gets the DataSet that contains this table (if any).

DefaultView Gets a customized view of the table that may include a filtered view or a cursor
position.

MinimumCapacity Gets or sets the initial number of rows in this table (the default is 25).

ParentRelations Gets the collection of parent relations for this DataTable.

PrimaryKey Gets or sets an array of columns that function as primary keys for the data
table.

RemotingFormat Allows you to define how the DataSet should serialize its content (binary or
XML) for the .NET remoting layer.

TableName Gets or sets the name of the table. This same property may also be specified as
a constructor parameter.

To continue with our current example, let’s set the PrimaryKey property of the DataTable to the
carIDColumn DataColumn object. Be aware that the PrimaryKey property is assigned a collection of
DataColumn objects, to account for a multicolumned key. In our case, however, we need to specify
only the CarID column (being the first ordinal position in the table):

static void Main(string[] args)
{
...
// Mark the primary key of this table.
inventoryTable.PrimaryKey = new DataColumn[] { inventoryTable.Columns[0] };

...
}

Inserting DataTables into DataSets
At this point, our DataTable object is complete. The final step is to insert the DataTable into the
carsInventoryDS DataSet object using the Tables collection. Assume that you have updated Main()
to do so, and pass the DataSet object into a new (yet to be written) helper method named
PrintDataSet():

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 793

8849CH23.qxd 10/22/07 1:54 PM Page 793

static void Main(string[] args)
{
...
// Finally, add our table to the DataSet.
carsInventoryDS.Tables.Add(inventoryTable);

// Now print the DataSet.
PrintDataSet(carsInventoryDS);
Console.ReadLine();

}

The PrintDataSet() method simply iterates over the DataSet metadata (via the
ExtendedProperties collection) and each DataTable in the DataSet, printing out the column
names and row values using the type indexers:

static void PrintDataSet(DataSet ds)
{
// Print out any name and extended properties.
Console.WriteLine("DataSet is named: {0}", ds.DataSetName);
foreach (System.Collections.DictionaryEntry de in ds.ExtendedProperties)
{
Console.WriteLine("Key = {0}, Value = {1}", de.Key, de.Value);

}
Console.WriteLine();

foreach (DataTable dt in ds.Tables)
{
Console.WriteLine("=> {0} Table:", dt.TableName);

// Print out the column names.
for (int curCol = 0; curCol < dt.Columns.Count; curCol++)
{
Console.Write(dt.Columns[curCol].ColumnName + "\t");

}
Console.WriteLine("\n----------------------------------");

// Print the DataTable.
for (int curRow = 0; curRow < dt.Rows.Count; curRow++)
{
for (int curCol = 0; curCol < dt.Columns.Count; curCol++)
{
Console.Write(dt.Rows[curRow][curCol].ToString() + "\t");

}
Console.WriteLine();

}
}

}

Figure 23-3 shows the program’s output.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER794

8849CH23.qxd 10/22/07 1:54 PM Page 794

Figure 23-3. Contents of the example’s DataSet object

Processing DataTable Data Using DataTableReader Objects
Given your work in the previous chapter, you are sure to notice that the manner in which you
process data using the connected layer (e.g., data reader objects) and the disconnected layer (e.g.,
DataSet objects) is quite different. Working with a data reader typically involves establishing a while
loop, calling the Read() method, and using an indexer to pluck out the name/value pairs. On the
other hand, DataSet processing typically involves a series of iteration constructs to drill into the
data within the tables, rows, and columns.

Since the release of .NET 2.0, DataTables were provided with a method named
CreateDataReader(). This method allows you to obtain the data within a DataTable using a data
reader–like navigation scheme (forward-only, read-only). The major benefit of this approach is that
you now use a single model to process data, regardless of which “layer” of ADO.NET you use to
obtain it. Assume you have authored the following helper function named PrintTable(), imple-
mented as so:

static void PrintTable(DataTable dt)
{
// Get the DataTableReader type.
DataTableReader dtReader = dt.CreateDataReader();

// The DataTableReader works just like the DataReader.
while (dtReader.Read())
{
for (int i = 0; i < dtReader.FieldCount; i++)
{
Console.Write("{0}\t", dtReader.GetValue(i).ToString().Trim());

}
Console.WriteLine();

}
dtReader.Close();

}

Notice that the DataTableReader works identically to the data reader object of your data
provider. Using a DataTableReader can be an ideal choice when you wish to quickly pump out the
data within a DataTable without needing to traverse the internal row and column collections. Now,
assume you have updated the previous PrintDataSet() method to invoke PrintTable(), rather than
drilling into the Rows and Columns collections:

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 795

8849CH23.qxd 10/22/07 1:54 PM Page 795

static void PrintDataSet(DataSet ds)
{
// Print out any name and extended properties.
Console.WriteLine("DataSet is named: {0}", ds.DataSetName);
foreach (System.Collections.DictionaryEntry de in ds.ExtendedProperties)
{
Console.WriteLine("Key = {0}, Value = {1}", de.Key, de.Value);

}
Console.WriteLine();

foreach (DataTable dt in ds.Tables)
{
Console.WriteLine("=> {0} Table:", dt.TableName);

// Print out the column names.
for (int curCol = 0; curCol < dt.Columns.Count; curCol++)
{
Console.Write(dt.Columns[curCol].ColumnName.Trim() + "\t");

}
Console.WriteLine("\n----------------------------------");

// Call our new helper method.
PrintTable(dt);

}
}

When you run the application, the output is identical to that of Figure 23-3. The only difference
is how you are internally accessing the DataTable’s contents.

Serializing DataTable/DataSet Objects As XML
DataSets and DataTables both support the WriteXml() and ReadXml() methods. WriteXml() allows
you to persist the object’s content to a local file (as well as into any System.IO.Stream-derived type)
as an XML document. ReadXml() allows you to hydrate the state of a DataSet (or DataTable) from a
given XML document. In addition, DataSets and DataTables both support WriteXmlSchema() and
ReadXmlSchema() to save or load an *.xsd file.

To test this out for yourself, update your Main() method to call the following final helper func-
tion (notice you will pass in a DataSet as the sole parameter):

static void DataSetAsXml(DataSet carsInventoryDS)
{
// Save this DataSet as XML.
carsInventoryDS.WriteXml("carsDataSet.xml");
carsInventoryDS.WriteXmlSchema("carsDataSet.xsd");

// Clear out DataSet.
carsInventoryDS.Clear();

// Load DataSet from XML file.
carsInventoryDS.ReadXml("carsDataSet.xml");

}

If you open the carsDataSet.xml file (which will be located under the \bin\Debug folder of
your project), you will find that each column in the table has been encoded as an XML element:

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER796

8849CH23.qxd 10/22/07 1:54 PM Page 796

<?xml version="1.0" standalone="yes"?>
<Car_x0020_Inventory>
<Inventory>
<CarID>0</CarID>
<Make>BMW</Make>
<Color>Black</Color>
<PetName>Hamlet</PetName>

</Inventory>
<Inventory>
<CarID>1</CarID>
<Make>Saab</Make>
<Color>Red</Color>
<PetName>Sea Breeze</PetName>

</Inventory>
</Car_x0020_Inventory>

Serializing DataTable/DataSet Objects in a Binary Format
It is also possible to persist the contents of a DataSet (or an individual DataTable) as a compact
binary format. This can be especially helpful when a DataSet object needs to be passed across a
machine boundary (in the case of a distributed application); one drawback of XML data representa-
tion is that its very descriptive nature can result in a good deal of overhead.

In order to persist DataTables or DataSets in a binary format, simply set the RemotingFormat
property to SerializationFormat.Binary. After this point, you can make use of the BinaryFormatter
type (see Chapter 21) as expected. Consider the following final method of the SimpleDataSet project
(don’t forget to import the System.IO and System.Runtime.Serialization.Formatters.Binary name-
spaces):

static void DataSetAsBinary(DataSet carsInventoryDS)
{
// Set binary serialization flag.
carsInventoryDS.RemotingFormat = SerializationFormat.Binary;

// Save this DataSet as binary.
FileStream fs = new FileStream("BinaryCars.bin", FileMode.Create);
BinaryFormatter bFormat = new BinaryFormatter();
bFormat.Serialize(fs, carsInventoryDS);
fs.Close();

// Clear out DataSet.
carsInventoryDS.Clear();

// Load DataSet from binary file.
fs = new FileStream("BinaryCars.bin", FileMode.Open);
DataSet data = (DataSet)bFormat.Deserialize(fs);

}

Figure 23-4 shows the contents of the BinaryCars.bin file.

■Source Code The SimpleDataSet application is included under the Chapter 23 subdirectory.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 797

8849CH23.qxd 10/22/07 1:54 PM Page 797

Figure 23-4. Serializing a DataSet in a binary format

Binding DataTable Objects to User Interfaces
At this point in the chapter, you have examined how to manually create, hydrate, and iterate over
the contents of a DataSet object using the inherit object model of ADO.NET. While understanding
how to do so is quite important, the .NET platform ships with numerous APIs that have the ability
to “bind” data to user interface elements automatically.

For example, the original GUI toolkit of .NET, Windows Forms, supplies a control named
DataGridView that has the built-in ability to display the contents of a DataSet or DataTable object
using just a few lines of code. ASP.NET (.NET’s web development API) and the Windows Presenta-
tion Foundation API (the new, supercharged GUI API introduced with .NET 3.0) also support the
notion of data binding in one form or another.

To continue our investigation of the disconnected layer of ADO.NET, our next task is to build a
Windows Forms application that will display the contents of a DataTable object within its user inter-
face. Along the way, we will also examine how to filter and change table data, and we’ll come to
know the role of the DataView object. To begin, create a brand-new Windows Forms project work-
space named WindowsFormsDataTableViewer, as shown in Figure 23-5.

■Note The current example assumes you have some experience using Windows Forms to build graphical user
interfaces. If this is not the case, you may wish to simply open the solution and follow along, or return to this sec-
tion once you have read Chapter 27, where you will formally investigate the Windows Forms API.

Rename your initial Form1.cs file to the more fitting MainForm.cs. Next, using the Visual Studio
2008 Toolbox drag a DataGridView control (renamed to carInventoryGridView via the Name property
of the Properties window) onto the designer surface. Notice that when you do, you activate a con-
text menu that allows you to connect to a physical data source. For the time being, completely
ignore this aspect of the designer, as you will be binding your DataTable object programmatically.
Finally, add a descriptive Label to your designer for information purposes. Figure 23-6 shows one
possible look and feel.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER798

8849CH23.qxd 10/22/07 1:54 PM Page 798

Figure 23-5. Creating a Windows Forms application

Figure 23-6. The initial UI

Hydrating a DataTable from a Generic List<T>
Similar to the previous SimpleDataSet example, the WindowsFormsDataTableViewer application
will construct a DataTable that contains a set of DataColumns representing various columns and rows
of data. This time, however, you will fill the rows using your generic List<T> member variable. First,
insert a new C# class into your project (named Car), defined as follows:

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 799

8849CH23.qxd 10/22/07 1:54 PM Page 799

class Car
{
// Use C# automatic properties.
public string carPetName { get; set; }
public string carMake { get; set; }
public string carColor { get; set; }

public Car(string petName, string make, string color)
{
carPetName = petName;
carColor = color;
carMake = make;

}
}

Now, within the default constructor, populate a List<T> member variable (named listCars)
with a set of new Car objects:

public partial class MainForm : Form
{
// A collection of Car objects.
List<Car> listCars = new List<Car>();

public MainForm()
{
InitializeComponent();

// Fill the list with some cars.
listCars.Add(new Car("Chucky", "BMW", "Green"));
listCars.Add(new Car("Tiny", "Yugo", "White"));
listCars.Add(new Car("Ami", "Jeep", "Tan"));
listCars.Add(new Car("Pain Inducer", "Caravan", "Pink"));
listCars.Add(new Car("Fred", "BMW", "Pea Soup Green"));
listCars.Add(new Car("Sidd", "BMW", "Black"));
listCars.Add(new Car("Mel", "Firebird", "Red"));
listCars.Add(new Car("Sarah", "Colt", "Black"));

}
}

Next, add a new member variable named inventoryTable of type DataTable to your MainForm
class type. Add a new helper function to your class named CreateDataTable(), and call this method
within the default constructor of the MainForm class:

void CreateDataTable()
{
// Create table schema.
DataColumn carMakeColumn = new DataColumn("Make", typeof(string));
DataColumn carColorColumn = new DataColumn("Color", typeof(string));
DataColumn carPetNameColumn = new DataColumn("PetName", typeof(string));
carPetNameColumn.Caption = "Pet Name";
inventoryTable.Columns.AddRange(new DataColumn[] { carMakeColumn,
carColorColumn, carPetNameColumn });

// Iterate over the array list to make rows.
foreach (Car c in listCars)
{
DataRow newRow = inventoryTable.NewRow();
newRow["Make"] = c.carMake;

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER800

8849CH23.qxd 10/22/07 1:54 PM Page 800

newRow["Color"] = c.carColor;
newRow["PetName"] = c.carPetName;
inventoryTable.Rows.Add(newRow);

}

// Bind the DataTable to the carInventoryGridView.
carInventoryGridView.DataSource = inventoryTable;

}

The method implementation begins by creating the schema of the DataTable by creating three
DataColumn objects (for simplicity, I did not bother to add the autoincrementing CarID field), after
which point they are added to the DataTable member variable. The row data is mapped from the
List<T> field into the DataTable using a foreach iteration construct and the native ADO.NET object
model.

However, notice that the final code statement within the CreateDataTable() method assigns
the inventoryTable to the DataSource property. This single property is all you need to set to bind a
DataTable to a DataGridView object. Under the hood, this GUI control is reading the row and col-
umn collections internally, much like you did with the PrintDataSet() method of the SimpleDataSet
example. At this point, you should be able to run your application and see the DataTable within the
DataGridView control, as shown in Figure 23-7.

Figure 23-7. Binding a DataTable to a Windows Forms DataGridView

Programmatically Deleting Rows
Now, assume you wish to update your graphical interface to allow the user to delete a row from the
DataTable that is bound to the DataGridView. One approach is to call the Delete() method of the
DataRow object that represents the row to terminate. Simply specify the index (or DataRow object)
representing the row to remove. To allow the user to specify which row to delete, add a TextBox
(named txtRowToRemove) and a Button control (named btnRemoveRow) to the current designer, as
shown in Figure 23-8.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 801

8849CH23.qxd 10/22/07 1:54 PM Page 801

Figure 23-8. Updating the UI to enable removal of rows from the underlying DataTable

The following logic behind the new Button’s Click event handler removes the user-specified
row from your in-memory DataTable. Note that we are wrapping the deletion logic within a try
scope, to account for the possibility the user has entered a row number not currently in the
DataGridView:

// Remove this row from the DataRowCollection.
private void btnRemoveRow_Click (object sender, EventArgs e)
{
try
{
inventoryTable.Rows[(int.Parse(txtRowToRemove.Text))].Delete();
inventoryTable.AcceptChanges();

}
catch(Exception ex)
{
MessageBox.Show(ex.Message);

}
}

The Delete() method might have been better named MarkedAsDeletable(), as the row is not
literally removed until the DataTable.AcceptChanges() method is called. In effect, the Delete()
method simply sets a flag that says, “I am ready to die when my table tells me to.” Also understand
that if a row has been marked for deletion, a DataTable may reject the delete operation via
RejectChanges(). We have no need to do so for this example; however, we could update our code
base as follows:

// Mark a row as deleted, but reject the changes.
private void btnRemoveRow_Click (object sender, EventArgs e)
{
...
inventoryTable.Rows[(int.Parse(txtRemove.Text))].Delete();

// Do more work
...

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER802

8849CH23.qxd 10/22/07 1:54 PM Page 802

// Restore previous RowState value.
inventoryTable.RejectChanges();
...

}

You should now be able to run your application and specify a row to delete from the DataTable,
based on a given row of the DataGridView (note the internal row collection is zero based). As you
remove DataRow objects from the DataTable, you will notice that the grid’s UI is updated immedi-
ately, as it is bound to the state of the object. Recall, however, that the row is still literally in the
DataTable, but the grid chooses not to display it because of the RowState value.

Selecting Rows Based on Filter Criteria
Many data-centric applications require the need to view a small subset of a DataTable’s data, as
specified by some sort of filtering criteria. For example, what if you wish to see only a certain make
of automobile from the in-memory DataTable (such as only BMWs)? The Select() method of the
DataTable class provides this very functionality. Using the Select() method, you are able to specify
a search criteria that supports a syntax intentionally designed to model a normal SQL query. This
method will return an array of DataRow objects that represent each entry that matches the criteria.

To illustrate, update your UI once again, this time allowing users to specify a string that repre-
sents the make of the automobile they are interested in viewing (see Figure 23-9) using a new
TextBox (named txtMakeToView) and a new Button (named btnDisplayMakes).

Figure 23-9. Updating the UI to enable row filtering

The Select() method has been overloaded a number of times to provide different selection
semantics. At its most basic level, the parameter sent to Select() is a string that contains some con-
ditional operation. To begin, observe the following logic for the Click event handler of your new
button:

private void btnDisplayMakes_Click(object sender, EventArgs e)
{
// Build a filter based on user input.
string filterStr = string.Format("Make= '{0}'", txtMakeToView.Text);

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 803

8849CH23.qxd 10/22/07 1:54 PM Page 803

// Find all rows matching the filter.
DataRow[] makes = inventoryTable.Select(filterStr);

// Show what we got!
if (makes.Length == 0)
MessageBox.Show("Sorry, no cars...", "Selection error!");

else
{
string strMake = null;
for (int i = 0; i < makes.Length; i++)
{
DataRow temp = makes[i];
strMake += temp["PetName"] + "\n";

}
// Now show all matches in a message box.
MessageBox.Show(strMake,
string.Format("{0} type(s):", txtMakeToView.Text));

}
}

Here, you first build a simple filter based on the value in the associated TextBox. If you specify
BMW, your filter is Make = 'BMW'. When you send this filter to the Select() method, you get back an
array of DataRow types that represent each row that matches the filter (see Figure 23-10).

Figure 23-10. Displaying filtered data

Again, filtering logic is based on standard SQL syntax. To illustrate, assume you wish to obtain
the results of the previous Select() invocation alphabetically based on pet name. In terms of SQL,
this translates into a sort based on the PetName column. Luckily, the Select() method has been
overloaded to send in a sort criterion, as shown here:

// Sort by PetName.
makes = inventoryTable.Select(filterStr, "PetName");

If you want the results in descending order, call Select() as so:

// Return results in descending order.
makes = inventoryTable.Select(filterStr, "PetName DESC");

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER804

8849CH23.qxd 10/22/07 1:54 PM Page 804

In general, the sort string contains the column name followed by ASC (ascending, which is the
default) or DESC (descending). If need be, multiple columns can be separated by commas. Finally,
understand that a filter string can be composed of any number of relational operators. For example,
what if you want to find all cars with an ID greater than 5? Here is a helper function that does this
very thing:

private void ShowCarsWithIdGreaterThanFive()
{
// Now show the pet names of all cars with ID greater than 5.
DataRow[] properIDs;
string newFilterStr = "ID > 5";
properIDs = inventoryTable.Select(newFilterStr);
string strIDs = null;
for(int i = 0; i < properIDs.Length; i++)
{
DataRow temp = properIDs[i];
strIDs += temp["PetName"]

+ " is ID " + temp["ID"] + "\n";
}
MessageBox.Show(strIDs, "Pet names of cars where ID > 5");

}

Updating Rows
The final aspect of the DataTable you should be aware of is the process of updating an existing row
with new values. One approach is to first obtain the row(s) that match a given filter criterion using
the Select() method. Once you have the DataRow(s) in question, modify them accordingly. For
example, assume you have a new Button on your form-derived type named btnChangeBeemersToYugos
that (when clicked) searches the DataTable for all rows where Make is equal to BMW. Once you identify
these items, you change the Make from BMW to Yugo:

// Find the rows you want to edit with a filter.
private void btnChangeBeemersToYugos_Click(object sender, EventArgs e)
{
// Make sure user has not lost his or her mind.
if (DialogResult.Yes ==
MessageBox.Show("Are you sure?? BMWs are much nicer than Yugos!",
"Please Confirm!", MessageBoxButtons.YesNo))

{
// Build a filter.
string filterStr = "Make='BMW'";
string strMake = string.Empty;

// Find all rows matching the filter.
DataRow[] makes = inventoryTable.Select(filterStr);

// Change all Beemers to Yugos!
for (int i = 0; i < makes.Length; i++)
{
makes[i]["Make"] = "Yugo";

}
}

}

The DataRow class also provides the BeginEdit(), EndEdit(), and CancelEdit() methods, which
allow you to edit the content of a row while temporarily suspending any associated validation rules.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 805

8849CH23.qxd 10/22/07 1:54 PM Page 805

In the previous logic, each row was validated with each assignment. (Also, if you handle any events
from the DataRow, they fire with each modification.) When you call BeginEdit() on a given DataRow,
the row is placed in edit mode. At this point you can make your changes as necessary and call either
EndEdit() to commit these changes or CancelEdit() to roll back the changes to the original version,
for example:

private void UpdateSomeRow()
{
// Assume you have obtained a row to edit.
// Now place this row in edit mode.
rowToUpdate.BeginEdit();

// Send the row to a helper function, which returns a Boolean.
if(ChangeValuesForThisRow(rowToUpdate))
rowToUpdate.EndEdit(); // OK!

else
rowToUpdate.CancelEdit(); // Forget it.

}

Although you are free to manually call these methods on a given DataRow, these members are
automatically called when you edit a DataGridView widget that has been bound to a DataTable. For
example, when you select a row to edit from a DataGridView, that row is automatically placed in edit
mode. When you shift focus to a new row, EndEdit() is called automatically.

Working with the DataView Type
In database nomenclature, a view object is an alternative representation of a table (or set of tables).
For example, using Microsoft SQL Server, you could create a view for your Inventory table that
returns a new table containing automobiles only of a given color. In ADO.NET, the DataView type
allows you to programmatically extract a subset of data from the DataTable into a stand-alone object.

One great advantage of holding multiple views of the same table is that you can bind these
views to various GUI widgets (such as the DataGridView). For example, one DataGridView might be
bound to a DataView showing all autos in the Inventory, while another might be configured to dis-
play only green automobiles.

To illustrate, update the current UI with an additional DataGridView type named
dataGridColtsView and a descriptive Label. Next, define a member variable named coltsOnlyView
of type DataView:

public partial class MainForm : Form
{
// View of the DataTable.
DataView coltsOnlyView;

...
}

Now, create a new helper function named CreateDataView(), and call this method within the
form’s default constructor directly after the DataTable has been fully constructed, as shown here:

public MainForm()
{
...
// Make a data table.
CreateDataTable();

// Make a view.
CreateDataView();

}

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER806

8849CH23.qxd 10/22/07 1:54 PM Page 806

Here is the implementation of this new helper function. Notice that the constructor of each
DataView has been passed the DataTable that will be used to build the custom set of data rows.

private void CreateDataView()
{
// Set the table that is used to construct this view.
coltsOnlyView = new DataView(inventoryTable);

// Now configure the views using a filter.
coltsOnlyView.RowFilter = "Make = 'Colt'";

// Bind to the new grid.
dataGridColtsView.DataSource = coltsOnlyView;

}

As you can see, the DataView class supports a property named RowFilter, which contains the
string representing the filtering criteria used to extract matching rows. Once you have your view
established, set the grid’s DataSource property accordingly. Figure 23-11 shows the completed appli-
cation in action.

Figure 23-11. Displaying a unique view of our data

One Final UI Enhancement: Rendering Row Numbers
Before wrapping up this section, let’s add one small enhancement to the current application. Cur-
rently, the grids on this window do not provide any sort of visual cue to the end user about which
row number he or she is editing (or possibly deleting). If you wish to display row numbers on a
DataGridView, your first step is to handle the RowPostPaint event on the grid itself. This event will
fire after all of the data in the grid’s cells have been rendered in the UI, and it gives you a chance to
finalize the graphical look and feel of the rows before they are presented to the user.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 807

8849CH23.qxd 10/22/07 1:54 PM Page 807

Once you have handled this event, you are able to take the incoming
DataGridViewRowPostPaintEventArgs parameter to obtain a Graphics object. As you will see in
Chapter 27, the Graphics type is part of the GDI+ API, which is the native Windows Forms 2D
rendering toolkit. Using this Graphics object, you are able invoke various methods (such as
DrawString(), which is appropriate for this example) to render content. Again, Chapter 27 will
examine GDI+; however, here is an implementation of the RowPostPaint event that will paint the
numbers of each row on the carInventoryGridView object (you could, of course, handle the same
event on the dataGridColtsView object for a similar effect):

void carInventoryGridView_RowPostPaint(object sender,
DataGridViewRowPostPaintEventArgs e)

{
// Paint row numbers using a solid brush, in the
// native font on the current row style.
using (SolidBrush b = new SolidBrush(Color.Black))
{
e.Graphics.DrawString((e.RowIndex).ToString(),
e.InheritedRowStyle.Font, b,
e.RowBounds.Location.X + 15,
e.RowBounds.Location.Y + 4);

}
}

■Source Code The WindowsFormsDataTableViewer project is included under the Chapter 23 subdirectory.

Filling DataSet/DataTable Objects Using
Data Adapters
Now that you understand the ins and outs of manipulating ADO.NET DataSets manually, let’s turn
our attention to the topic of data adapter objects. Recall that data adapter objects are used to fill a
DataSet with DataTable objects, and they can also send modified DataTables back to the database
for processing. Table 23-8 documents the core members of the DbDataAdapter base class, the com-
mon parent to every data adapter object.

Table 23-8. Core Members of the DbDataAdapter Class

Members Meaning in Life

Fill() Fills a given table in the DataSet with some number of records based on the
command object–specified SelectCommand.

SelectCommand Establish SQL commands that will be issued to the data store when the Fill()
InsertCommand and Update() methods are called.
UpdateCommand
DeleteCommand

Update() Updates a DataTable using command objects within the InsertCommand,
UpdateCommand, or DeleteCommand property. The exact command that is executed
is based on the RowState value for a given DataRow in a given DataTable (of a
given DataSet).

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER808

8849CH23.qxd 10/22/07 1:54 PM Page 808

First of all, notice that a data adapter defines four properties (SelectCommand, InsertCommand,
UpdateCommand, and DeleteCommand), each of which operates upon discrete command objects. When
you create the data adapter object for your particular data provider (e.g., SqlDataAdapter), you are
able to pass in a string type that represents the command text used by the SelectCommand’s com-
mand object. However, the remaining three command objects (used by the InsertCommand,
UpdateCommand, and DeleteCommand properties) must be configured manually.

Assuming each of the four command objects has been properly configured, you are then able
to call the Fill() method to obtain a DataSet (or a single DataTable, if you wish). To do so, the data
adapter will use whichever command object is found via the SelectCommand property. In a similar
manner, when you wish to pass a modified DataSet (or DataTable) object back to the database for
processing, you can call the Update() method, which will make use of any of the remaining com-
mand objects based on the state of each row in the DataTable (more details in just a bit).

One of the strangest aspects of working with a data adapter object is the fact that you are never
required to open or close a connection to the database. Rather, the underlying connection to the
database is managed on your behalf. However, you will still need to supply the data adapter with a
valid connection object or a connection string (which will be used to build a connection object
internally) to inform the data adapter exactly which database you wish to communicate with.

A Simple Data Adapter Example
Before we add new functionality to the AutoLotDAL.dll assembly created in Chapter 22, let’s begin
with a very simple example that fills a DataSet with a single table using an ADO.NET data adapter
object. Create a new Console Application named FillDataSetWithSqlDataAdapter, and import the
System.Data and System.Data.SqlClient namespaces into your initial C# code file.

Now, update your Main() method as follows (for reasons of simplicity, feel free to make use of a
hard-coded connection string, as shown here):

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Data Adapters *****\n");

// Hard-coded connection string.
string cnStr = "Integrated Security = SSPI;Initial Catalog=AutoLot;" +
@"Data Source=(local)\SQLEXPRESS";

// Caller creates the DataSet object.
DataSet ds = new DataSet("AutoLot");

// Inform adapter of the Select command text and connection.
SqlDataAdapter dAdapt =
new SqlDataAdapter("Select * From Inventory", cnStr);

// Fill our DataSet with a new table, named Inventory.
dAdapt.Fill(ds, "Inventory");

// Display contents of DataSet.
PrintDataSet(ds);
Console.ReadLine();

}

Notice that the data adapter has been constructed by specifying a string literal that will map to
the SQL Select statement. This value will be used to build a command object internally, which can
be later obtained via the SelectCommand property.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 809

8849CH23.qxd 10/22/07 1:54 PM Page 809

Next, notice that it is the job of the caller to create an instance of the DataSet type, which is
passed into the Fill() method. Optionally, the Fill() method can be passed as a second argument
a string name that will be used to set the TableName property of the new DataTable (if you do not
specify a table name, the data adapter will simply name the table Table). While in most cases the
name you assign a DataTable will be identical to the name of the physical table in the relational
database, this is not required.

■Note The Fill() method returns an integer that represents the number of rows returned by the SQL query.

Finally, notice that nowhere in the Main() method are you explicitly opening or closing the con-
nection to the database. The Fill() method of a given data adapter has been preprogrammed to
open and then close the underlying connection before returning from the Fill() method. There-
fore, when you pass the DataSet to the PrintDataSet() method (implemented earlier in this
chapter), you are operating on a local copy of disconnected data, incurring no round-trips to
fetch the data.

Mapping Database Names to Friendly Names
As mentioned earlier, database administrators tend to create table and column names that can be
less than friendly to end users (e.g., au_id, au_fname, au_lname, etc.). The good news is that data
adapter objects maintain an internal strongly typed collection (named DataTableMappingCollection)
of System.Data.Common.DataTableMapping types. This collection can be accessed via the
TableMappings property of your data adapter object.

If you so choose, you may manipulate this collection to inform a DataTable which “display
names” it should use when asked to print its contents. For example, assume that you wish to map
the table name Inventory to Current Inventory for display purposes. Furthermore, say you wish to
display the CarID column name as Car ID (note the extra space) and the PetName column name as
Name of Car. To do so, add the following code before calling the Fill() method of your data adapter
object (and be sure to import the System.Data.Common namespace to gain the definition of the
DataTableMapping type):

static void Main(string[] args)
{
...
// Now map DB column names to user-friendly names.
DataTableMapping custMap =
dAdapt.TableMappings.Add("Inventory", "Current Inventory");

custMap.ColumnMappings.Add("CarID", "Car ID");
custMap.ColumnMappings.Add("PetName", "Name of Car");
dAdapt.Fill(myDS, "Inventory");

...
}

If you were to run this program once again, you would find that the PrintDataSet() method
now displays the “friendly names” of the DataTable and DataRow objects, rather than the names
established by the database schema. Figure 23-12 shows the output of the current example.

■Source Code The FillDataSetWithSqlDataAdapter project is included under the Chapter 23 subdirectory.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER810

8849CH23.qxd 10/22/07 1:54 PM Page 810

Figure 23-12. DataTable objects with custom mappings

Revisiting AutoLotDAL.dll
To illustrate the process of using a data adapter to push modifications in a DataTable back to the
database for processing, we will now update the AutoLotDAL.dll assembly created back in Chapter 22
to include a new namespace (named AutoLotDisconnectedLayer). This namespace will contain a
new class, InventoryDALDisLayer, that will make use of a data adapter to interact with a DataTable.

Defining the Initial Class Type
Open the AutoLotDAL project in Visual Studio 2008, insert a new class type named
InventoryDALDisLayer using the Project ➤ Add New Item menu option, and ensure you have a
public class type in your new code file. Unlike the connection-centric InventoryDAL type, this new
class will not need to provide custom open/close methods, as the data adapter will handle the
details automatically.

To begin, add a custom constructor that sets a private string variable representing the connec-
tion string. As well, define a private SqlDataAdapter member variable, which will be configured by
calling a (yet to be created) helper method called ConfigureAdapter(), which takes a
SqlDataAdapter output parameter:

public class InventoryDALDisLayer
{
// Field data.
private string cnString = string.Empty;
private SqlDataAdapter dAdapt = null;

public InventoryDALDisLayer(string connectionString)
{
cnString = connectionString;

// Configure the SqlDataAdapter.
ConfigureAdapter(out dAdapt);

}
}

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 811

8849CH23.qxd 10/22/07 1:54 PM Page 811

Configuring the Data Adapter Using the SqlCommandBuilder
When you are using a data adapter to modify tables in a DataSet, the first order of business is to
assign the UpdateCommand, DeleteCommand, and InsertCommand properties with valid command
objects (until you do so, these properties return null references). By “valid” command objects, I am
referring to the set of command objects used in conjunction with the table you are attempting to
update (the Inventory table in our example).

To fill up our adapter with the necessary data can entail a good amount of code, especially if we
make use of parameterized queries. Recall from Chapter 22 that a parameterized query allows us to
build a SQL statement using a set of parameter objects. Thus, if we were to take the long road, we
could implement ConfigureAdapter() to manually create three new SqlCommand objects, each of
which contains a set of SqlParameter objects. After this point, we could set each object to the
UpdateCommand, DeleteCommand, and InsertCommand properties of the adapter.

Thankfully, Visual Studio 2008 provides a number of designer tools to take care of this mun-
dane and tedious code on our behalf. You’ll see some of these shortcuts in action at the conclusion
of this chapter. Rather than forcing you to author the numerous code statements to fully configure a
data adapter, let’s take a massive shortcut by implementing ConfigureAdapter() as so:

private void ConfigureAdapter(out SqlDataAdapter dAdapt)
{
// Create the adapter and set up the SelectCommand.
dAdapt = new SqlDataAdapter("Select * From Inventory", cnString);

// Obtain the remaining command objects dynamically at runtime
// using the SqlCommandBuilder.
SqlCommandBuilder builder = new SqlCommandBuilder(dAdapt);

}

To help simplify the construction of data adapter objects, each of the Microsoft-supplied
ADO.NET data providers provides a command builder type. The SqlCommandBuilder automatically
generates the values contained within the SqlDataAdapter’s InsertCommand, UpdateCommand, and
DeleteCommand properties based on the initial SelectCommand. Clearly, the benefit is that you have no
need to build all the SqlCommand and SqlParameter types by hand.

An obvious question at this point is how a command builder is able to build these SQL com-
mand objects on the fly. The short answer is metadata. At runtime, when you call the Update()
method of a data adapter, the related command builder will read the database’s schema data to
autogenerate the underlying insert, delete, and update command objects.

Obviously, doing so requires additional round-trips to the remote database, and therefore it
will certainly hurt performance if you use the SqlCommandBuilder numerous times in a single appli-
cation. Here, we are minimizing the negative effect by calling our ConfigureAdapter() method at
the time the InventoryDALDisLayer object is constructed, and retaining the configured
SqlDataAdapter for use throughout the object’s lifetime.

In the previous code, notice that we made no use of the command builder object
(SqlCommandBuilder in this case) beyond passing in the data adapter object as a constructor
parameter. As odd as this may seem, this is all we are required to do (at a minimum). Under the
hood, this type will configure the data adapter with the remaining command objects.

Now, while you may love the idea of getting something for nothing, do understand that com-
mand builders come with some critical restrictions. Specifically, a command builder is only able to
autogenerate SQL commands for use by a data adapter if all of the following conditions are true:

• The SQL Select command interacts with only a single table (e.g., no joins).

• The single table has been attributed with a primary key.

• The table must have a column(s) representing the primary key that is included in your SQL
Select statement.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER812

8849CH23.qxd 10/22/07 1:54 PM Page 812

Based on the way we constructed our AutoLot database, these restrictions pose no problem.
However, in a more industrial-strength database, you will need to consider if this type is at all useful
(if not, remember that Visual Studio 2008 will autogenerate a good deal of the required code, as
you’ll see at the end of this chapter).

Implementing GetAllInventory()
Now that our data adapter is ready to go, the first method of our new class type will simply use the
Fill() method of the SqlDataAdapter object to fetch a DataTable representing all records in the
Inventory table of the AutoLot database:

public DataTable GetAllInventory()
{
DataTable inv = new DataTable("Inventory");
dAdapt.Fill(inv);
return inv;

}

Implementing UpdateInventory()
The UpdateInventory() method is very simple:

public void UpdateInventory(DataTable modifiedTable)
{
dAdapt.Update(modifiedTable);

}

Here, the data adapter object will examine the RowState value of each row of the incoming
DataTable. Based on this value (RowState.Added, RowState.Deleted, or RowState.Modified), the cor-
rect command object will be leveraged behind the scenes.

■Source Code The AutoLotDAL (Part 2) project is included under the Chapter 23 subdirectory.

Building a Windows Forms Front End
At this point we can build a front end to test our new InventoryDALDisLayer object, which will be a
Windows Forms application named WindowsFormsInventoryUI. Once you have created the proj-
ect, set a reference to your updated AutoLotDAL.dll assembly and import the following namespace:

using AutoLotDisconnectedLayer;

The design of the form consists of a single Label, DataGridView (named inventoryGrid), and
Button type (named btnUpdateInventory), which has been configured to handle the Click event.
Here is the definition of the form (which does not contain error-handling logic for simplicity; feel
free to add try/catch logic if you so choose):

public partial class MainForm : Form
{
InventoryDALDisLayer dal = null;

public MainForm()
{
InitializeComponent();

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 813

8849CH23.qxd 10/22/07 1:54 PM Page 813

// Assume we have an App.config file
// storing the connection string.
string cnStr =
ConfigurationManager.ConnectionStrings["AutoLotSqlProvider"].ConnectionString;

// Create our data access object.
dal = new InventoryDALDisLayer(cnStr);

// Fill up our grid!
inventoryGrid.DataSource = dal.GetAllInventory();

}

private void btnUpdateInventory_Click(object sender, EventArgs e)
{
// Get modified data from the grid.
DataTable changedDT = (DataTable)inventoryGrid.DataSource;

// Commit our changes.
dal.UpdateInventory(changedDT);

}
}

Notice that in this example, I am assuming you have added an App.config file to store the con-
nection string data, within a <connectionStrings> section. To make use of the ConnectionStrings
indexer of the ConfigurationManager type, be sure to set a reference to the System.Configuration.dll
assembly. Once we create the InventoryDALDisLayer object, we bind the DataTable returned from
GetAllInventory() to the DataGridView object. When the end user clicks the Update button, we
extract out the modified DataTable from the grid (via the DataSource property) and pass it into our
UpdateInventory() method.

That’s it! Once you run this application, add a set of new rows to the grid and update/delete a
few others. Assuming you click the Button control, you will see your changes have persisted into the
AutoLot database.

■Source Code The updated WindowsFormsInventoryUI project is included under the Chapter 23 subdirectory.

Navigating Multitabled DataSet Objects
So far, all of this chapter’s examples have operated on a single DataTable object. However, the power
of the disconnected layer really comes to light when a DataSet object contains numerous interre-
lated DataTables. In this case, you are able to insert any number of DataRelation objects into the
DataSet’s DataRelation collection to account for the interdependencies of the tables. Using these
objects, the client tier is able to navigate between the table data without incurring network
round-trips.

■Note Rather than updating AutoLotDAL.dll yet again in order to account for the Customers and Orders
tables, this example isolates all of the data access logic within a new Windows Forms project. However, intermix-
ing UI and data logic in a production-level application is certainly not recommended. The final examples of this
chapter leverage various database design tools to decouple the UI and data logic code.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER814

8849CH23.qxd 10/22/07 1:54 PM Page 814

Begin this example by creating a new Windows Forms application named
MultitabledDataSetApp. The GUI is simple enough. In Figure 23-13 you can see three DataGridView
widgets that hold the data retrieved from the Inventory, Orders, and Customers tables of the
AutoLot database. In addition, the initial Button (named btnUpdateDatabase) submits any and all
changes entered within the grids back to the database for processing via data adapter objects.

Figure 23-13. The initial UI will display data from each table of the AutoLot database.

Prepping the Data Adapters
To keep the data access code as simple as possible, the MainForm will make use of command builder
objects to autogenerate the SQL commands for each of the three SqlDataAdapters (one for each
table). Here is the initial update to the Form-derived type:

public partial class MainForm : Form
{
// Form wide DataSet.
private DataSet autoLotDS = new DataSet("AutoLot");

// Make use of command builders to simplify data adapter configuration.
private SqlCommandBuilder sqlCBInventory;
private SqlCommandBuilder sqlCBCustomers;
private SqlCommandBuilder sqlCBOrders;

// Our data adapters (for each table).
private SqlDataAdapter invTableAdapter;
private SqlDataAdapter custTableAdapter;
private SqlDataAdapter ordersTableAdapter;

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 815

8849CH23.qxd 10/22/07 1:54 PM Page 815

// Form wide connection string.
private string cnStr = string.Empty;

...
}

The constructor does the grunge work of creating your data-centric member variables and fill-
ing the DataSet. Here, I am assuming you have authored an App.config file that contains the correct
connection string data (and that you have referenced System.Configuration.dll and imported the
System.Configuration namespace). Also note that there is a call to a private helper function,
BuildTableRelationship(), as shown here:

public MainForm()
{
InitializeComponent();

// Get connection string from *.config file.
cnStr =
ConfigurationManager.ConnectionStrings["AutoLotSqlProvider"].ConnectionString;

// Create adapters.
invTableAdapter = new SqlDataAdapter("Select * from Inventory", cnStr);
custTableAdapter = new SqlDataAdapter("Select * from Customers", cnStr);
ordersTableAdapter = new SqlDataAdapter("Select * from Orders", cnStr);

// Autogenerate commands.
sqlCBInventory = new SqlCommandBuilder(invTableAdapter);
sqlCBOrders = new SqlCommandBuilder(ordersTableAdapter);
sqlCBCustomers = new SqlCommandBuilder(custTableAdapter);

// Add tables to DS.
invTableAdapter.Fill(autoLotDS, "Inventory");
custTableAdapter.Fill(autoLotDS, "Customers");
ordersTableAdapter.Fill(autoLotDS, "Orders");

// Build relations between tables.
BuildTableRelationship();

// Bind to grids
dataGridViewInventory.DataSource = autoLotDS.Tables["Inventory"];
dataGridViewCustomers.DataSource = autoLotDS.Tables["Customers"];
dataGridViewOrders.DataSource = autoLotDS.Tables["Orders"];

}

Building the Table Relationships
The BuildTableRelationship() helper function does the grunt work to add two DataRelation
objects into the autoLotDS object. Recall from Chapter 22 that the AutoLot database expresses a
number of parent/child relationships, accounted for with the following code:

private void BuildTableRelationship()
{
// Create CustomerOrder data relation object.
DataRelation dr = new DataRelation("CustomerOrder",
autoLotDS.Tables["Customers"].Columns["CustID"],
autoLotDS.Tables["Orders"].Columns["CustID"]);

autoLotDS.Relations.Add(dr);

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER816

8849CH23.qxd 10/22/07 1:54 PM Page 816

// Create InventoryOrder data relation object.
dr = new DataRelation("InventoryOrder",
autoLotDS.Tables["Inventory"].Columns["CarID"],
autoLotDS.Tables["Orders"].Columns["CarID"]);

autoLotDS.Relations.Add(dr);
}

Note that when creating a DataRelation object, you establish a friendly string moniker with the
first parameter (you’ll see the usefulness of doing so in just a minute) as well as the keys used to
build the relationship itself. Notice that the parent table (the second constructor parameter) is
specified before the child table (the third constructor parameter).

Updating the Database Tables
Now that the DataSet has been filled and disconnected from the data source, you can manipulate
each DataTable locally. To do so, simply insert, update, or delete values from any of the three
DataGridViews. When you are ready to submit the data back for processing, click the Update button.
The code behind the related Click event should be clear at this point:

private void btnUpdateDatabase_Click(object sender, EventArgs e)
{
try
{
invTableAdapter.Update(carsDS, "Inventory");
custTableAdapter.Update(carsDS, "Customers");
ordersTableAdapter.Update(carsDS, "Orders");

}
catch (Exception ex)
{
MessageBox.Show(ex.Message);

}
}

Now run your application and perform various updates. When you rerun the application, you
should find that your grids are populated with the recent changes.

Navigating Between Related Tables
To illustrate how a DataRelation allows you to move between related tables programmatically,
extend your UI to include a new Button type (named btnGetOrderInfo), a related TextBox (named
txtCustID), and a descriptive Label (I grouped these controls within a GroupBox simply for visual
appeal). Figure 23-14 shows one possible UI of the application.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 817

8849CH23.qxd 10/22/07 1:54 PM Page 817

Figure 23-14. The updated UI allows the user to look up customer order information.

Using this updated UI, the end user is able to enter the ID of a customer and retrieve all the
relevant information about that customer’s order (name, order ID, car order, etc.), which will be
formatted into a string type that is eventually displayed within a message box. Ponder the code
behind the new Button’s Click event handler:

private void btnGetOrderInfo_Click(object sender, System.EventArgs e)
{
string strOrderInfo = string.Empty;
DataRow[] drsCust = null;
DataRow[] drsOrder = null;

// Get the customer ID in the text box.
int custID = int.Parse(this.txtCustID.Text);

// Now based on custID, get the correct row in Customers table.
drsCust = autoLotDS.Tables["Customers"].Select(
string.Format("CustID = {0}", custID));

strOrderInfo += string.Format("Customer {0}: {1} {2}\n",
drsCust[0]["CustID"].ToString(),
drsCust[0]["FirstName"].ToString().Trim(),
drsCust[0]["LastName"].ToString().Trim());

// Navigate from Customers table to Orders table.
drsOrder = drsCust[0].GetChildRows(autoLotDS.Relations["CustomerOrder"]);

// Get order number.
foreach (DataRow r in drsOrder)
strOrderInfo += string.Format("Order Number: {0}\n", r["OrderID"]);

// Now navigate from Orders table to Inventory table.
DataRow[] drsInv =
drsOrder[0].GetParentRows(autoLotDS.Relations["InventoryOrder"]);

// Get car info.
foreach (DataRow r in drsInv)
{
strOrderInfo += string.Format("Make: {0}\n", r["Make"]);

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER818

8849CH23.qxd 10/22/07 1:54 PM Page 818

strOrderInfo += string.Format("Color: {0}\n", r["Color"]);
strOrderInfo += string.Format("Pet Name: {0}\n", r["PetName"]);

}
MessageBox.Show(strOrderInfo, "Order Details");

}

Let’s break down this code step by step. First, you obtain the correct customer ID from the text
box and use it to select the correct row in the Customers table, via the Select() method. Given that
Select() returns an array of DataRow objects, you must use double indexing to ensure you fetch the
data for the first (and only) member of this array:

// Get the customer ID in the text box.
int custID = int.Parse(this.txtCustID.Text);

// Now based on custID, get the correct row in Customers table.
drsCust = autoLotDS.Tables["Customers"].Select(
string.Format("CustID = {0}", custID));

strOrderInfo += string.Format("Customer {0}: {1} {2}\n",
drsCust[0]["CustID"].ToString(),
drsCust[0]["FirstName"].ToString().Trim(),
drsCust[0]["LastName"].ToString().Trim());

Next, you navigate from the Customers table to the Orders table, using the CustomerOrder data
relation. Notice that the DataRow.GetChildRows() method allows you to grab rows from your child
table. Once you do, you can read information out of the table:

// Navigate from Customers table to Orders table.
drsOrder = drsCust[0].GetChildRows(autoLotDS.Relations["CustomerOrder"]);

// Get order number.
foreach (DataRow r in drsOrder)
strOrderInfo += string.Format("Order Number: {0}\n", r["OrderID"]);

The final step is to navigate from the Orders table to its parent table (Inventory), using the
GetParentRows() method. At this point, you can read information from the Inventory table using
the Make, PetName, and Color columns, as shown here:

// Now navigate from Orders table to Inventory table.
DataRow[] drsInv =
drsOrder[0].GetParentRows(autoLotDS.Relations["InventoryOrder"]);

// Get car info.
foreach (DataRow r in drsInv)
{
strOrderInfo += string.Format("Make: {0}\n", r["Make"]);
strOrderInfo += string.Format("Color: {0}\n", r["Color"]);
strOrderInfo += string.Format("Pet Name: {0}\n", r["PetName"]);

}

Figure 23-15 shows one possible output when specifying a customer ID with the value of 2
(Matt Walton in my copy of the AutoLot database).

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 819

8849CH23.qxd 10/22/07 1:54 PM Page 819

Figure 23-15. Navigating data relations

Hopefully, this last example has you convinced of the usefulness of the DataSet type. Given that
a DataSet is completely disconnected from the underlying data source, you can work with an in-
memory copy of data and navigate around each table to make any necessary updates, deletes, or
inserts. Once you’ve finished, you can submit your changes to the data store for processing. The end
result is a very scalable and robust application.

■Source Code The MultitabledDataSetApp project is included under the Chapter 23 subdirectory.

The Data Access Tools of Visual Studio 2008
All of the ADO.NET examples in this text thus far have involved a fair amount of elbow grease, in
that we were authoring all data access logic by hand. While we did offload a good amount of said
code to a .NET code library (AutoLotDAL.dll) for reuse in later chapters of the book, we were still
required to manually create the various objects of our data provider before interacting with the
relational database.

To wrap up our examination of the disconnected layer of ADO.NET, we will now take a look at a
number of services provided by Visual Studio 2008 that can assist you in authoring data access logic.
As you might suspect, this IDE supports a number of visual designers and code generation tools
(aka wizards) that can produce a good deal of starter code.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER820

8849CH23.qxd 10/22/07 1:54 PM Page 820

■Note Don’t get lulled into the belief that you will never be required to author ADO.NET logic by hand, or that the
wizard-generated code will always fit the bill 100 percent for your current project. While these tools can save you a
significant amount of time, the more you know about the ADO.NET programming model, the better, as this enables
you to customize and tweak the generated code as required.

Visually Designing the DataGridView
The first data access shortcut can be found via the DataGridView designer. While we have used this
widget in previous examples for display and editing purposes, we have not used the associated wiz-
ard that will generate data access code on our behalf. To begin, create a brand-new Windows Forms
application project named VisualDataGridViewApp. Add a descriptive Label control and an
instance of the DataGridView control. When you do, note that an inline editor opens to the right of
the UI widget. From the Choose Data Source drop-down box, select the Add Project Data Source
link (see Figure 23-16).

Figure 23-16. The DataGridView editor

The Data Source Configuration Wizard launches. This tool will guide you through a series
of steps that allow you to select and configure a data source, which will then be bound to the
DataGridView using a custom data adapter type. The first step of the wizard simply asks you to
identify the type of data source you wish to interact with. Select Database (see Figure 23-17) and
click the Next button.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 821

8849CH23.qxd 10/22/07 1:54 PM Page 821

Figure 23-17. Selecting the type of data source

■Note This step of the wizard also allows you to connect data that comes from an external XML web service or
a custom business object within a separate .NET assembly.

The second step (which will differ slightly based on your selection in step 1) allows you to con-
figure your database connection. If you have a database currently added to Server Explorer, you
should find it automatically listed in the drop-down list. If this is not the case (or if you ever need to
connect to a database you have not previously added to Server Explorer), click the New Connection
button. Figure 23-18 shows the result of selecting the local instance of AutoLot.

The third step asks you to confirm that you wish to save your connection string within an
external App.config file, and if so, the name to use within the <connectionStrings> element. Keep
the default settings for this step of the wizard and click the Next button.

The final step of the wizard is where you are able to select the database objects that will be
accounted for by the autogenerated DataSet and related data adapters. While you could select each
of the data objects of the AutoLot database, here you will only concern yourself with the Inventory
table. Given this, change the suggested name of the DataSet to InventoryDataSet (see Figure 23-19),
check the Inventory table, and click the Finish button.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER822

8849CH23.qxd 10/22/07 1:54 PM Page 822

Figure 23-18. Selecting the AutoLot database

Figure 23-19. Selecting the Inventory table

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 823

8849CH23.qxd 10/22/07 1:55 PM Page 823

Once you do so, you will notice the visual designer has been updated in a number of ways.
Most noticeable is the fact that the DataGridView displays the schema of the Inventory table, as illus-
trated by the column headers. Also, on the bottom of the form designer (in a region dubbed the
component tray), you will see three components: a DataSet component, a BindingSource
component, and a TableAdapter component (see Figure 23-20).

Figure 23-20. Our Windows Forms project, after running the Data Source Configuration Wizard

At this point you can run your application, and lo and behold, the grid is filled with the records
of the Inventory table, as shown in Figure 23-21.

Figure 23-21. A populated DataGridView—no manual coding required!

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER824

8849CH23.qxd 10/22/07 1:55 PM Page 824

The App.config File and the Settings.Settings File
If you examine your Solution Explorer, you will find your project now contains an App.config file. If
you open this file, you will notice the name attribute of the <connectionStrings> element used in
previous examples:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<configSections>
</configSections>
<connectionStrings>
<add name="VisualDataGridViewApp.Properties.Settings.AutoLotConnectionString"
connectionString=
"Data Source=(local)\SQLEXPRESS;
Initial Catalog=AutoLot;Integrated Security=True"
providerName="System.Data.SqlClient" />

</connectionStrings>
</configuration>

Specifically, the lengthy "VisualDataGridViewApp.Properties.Settings.
AutoLotConnectionString" value has been set as the name of the connection string. Even stranger
is the fact that if you scan all of the generated code, you will not find any reference to the
ConfigurationManager type to read the value from the <connectionStrings> element. However, you
will find that the autogenerated data adapter object (which you will examine in more detail in just a
moment) is constructed in part by calling the following private helper function:

private void InitConnection()
{
this._connection = new global::System.Data.SqlClient.SqlConnection();
this._connection.ConnectionString = global::
VisualDataGridViewApp.Properties.Settings.Default.AutoLotConnectionString;

}

As you can see, the ConnectionString property is set via a call to Settings.Default. As it turns
out, every Visual Studio 2008 project type maintains a set of application-wide settings that are
burned into your assembly as metadata when you compile the application. The short answer is that
if you open your compiled application using reflector.exe (see Chapter 2), you can view this inter-
nal type (see Figure 23-22).

Given the previous point, it would be possible to deploy your application without shipping the
*.config file, as the embedded value will be used by default if a client-side *.config file is not
present.

■Note The Visual Studio 2008 settings programming model is really quite interesting; however, full coverage is
outside of the scope of this chapter (and this edition of the text, for that matter). If you are interested in learning
more, look up the topic “Managing Application Settings” in the .NET Framework 3.5 SDK documentation.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 825

8849CH23.qxd 10/22/07 1:55 PM Page 825

Figure 23-22. The Settings object contains an embedded connection string value.

Examining the Generated DataSet
Now let’s take a look at some of the core aspects of this generated code. First of all, insert a new class
diagram type into your project by selecting the project icon in Solution Explorer and clicking the
View Class Diagram button. Notice that the wizard has created a new DataSet type based on your
input, which in this case is named InventoryDataSet. As you can see, this class defines a handful of
members, the most important of which is a property named Inventory (see Figure 23-23).

Figure 23-23. The Data Source Configuration Wizard created a strongly typed DataSet.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER826

8849CH23.qxd 10/22/07 1:55 PM Page 826

If you double-click the InventoryDataSet.xsd file within Solution Explorer, you will load the
Visual Studio 2008 Dataset Designer (more details on this designer in just a bit). If you right-click
anywhere within this designer and select the View Code option, you will notice a fairly empty partial
class definition:

public partial class InventoryDataSet {
partial class InventoryDataTable
{
}

}

The real action is taking place within the designer-maintained file, InventoryDataSet.
Designer.cs. If you open this file using Solution Explorer, you will notice that InventoryDataSet is
actually extending the DataSet class type. When you (or a wizard) create a class extending DataSet,
you are building what is termed a strongly typed DataSet. One benefit of using strongly typed
DataSet objects is that they contain a number of properties that map directly to the database tables
names. Thus, rather than having to drill into the collection of tables using the Tables property, you
can simply use the Inventory property. Consider the following partial code, commented for clarity:

// This is all designer-generated code!
public partial class InventoryDataSet : global::System.Data.DataSet
{
// A member variable of type InventoryDataTable.
private InventoryDataTable tableInventory;

// Each constructor calls a helper method named InitClass().
public InventoryDataSet()
{
...
this.InitClass();

}

// InitClass() preps the DataSet and adds the InventoryDataTable
// to the Tables collection.
private void InitClass()
{
this.DataSetName = "InventoryDataSet";
this.Prefix = "";
this.Namespace = "http://tempuri.org/InventoryDataSet.xsd";
this.EnforceConstraints = true;
this.SchemaSerializationMode =
global::System.Data.SchemaSerializationMode.IncludeSchema;

this.tableInventory = new InventoryDataTable();
base.Tables.Add(this.tableInventory);

}

// The read-only Inventory property returns
// the InventoryDataTable member variable.
public InventoryDataTable Inventory
{
get { return this.tableInventory; }

}
}

In addition to wrapping the details of maintaining a DataTable object, the designer-generated
strongly typed DataSet could contain similar logic to expose any DataRelation objects (which we do
not currently have) that represent the connections between each of the tables.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 827

8849CH23.qxd 10/22/07 1:55 PM Page 827

http://tempuri.org/InventoryDataSet.xsd

Examining the Generated DataTable and DataRow
In a similar fashion, the wizard created a strongly typed DataTable class and a strongly typed DataRow
class, both of which have been nested within the InventoryDataSet class. The InventoryDataTable
class (which is the same type as the member variable of the strongly typed DataSet we just exam-
ined) defines a set of properties that are based on the column names of the physical Inventory table
(CarIDColumn, ColorColumn, MakeColumn, and PetNameColumn) as well as a custom indexer and a Count
property to obtain the current number of records.

More interestingly, this strongly typed DataTable class defines a set of methods (see Figure 23-24)
that allow you to insert, locate, and delete rows within the table using strongly typed members (an
attractive alternative to manually navigating the Rows and Columns indexers).

Figure 23-24. The custom DataTable type

■Note The strongly typed DataTable also defines a handful of events you can handle to monitor changes to
your table data.

The custom DataRow type is far less exotic than the generated DataSet or DataTable. As shown in
Figure 23-25, this class extends DataRow and exposes properties that map directly to the schema of
the Inventory table (also be aware that the columns are appropriately typed).

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER828

8849CH23.qxd 10/22/07 1:55 PM Page 828

Figure 23-25. The custom DataRow type

Examining the Generated Data Adapter
Having some strong typing for our disconnected types is a solid benefit of using the Data Source
Configuration Wizard, given that adding strongly typed classes by hand would be tedious (but
entirely possible). This same wizard was kind enough to generate a custom data adapter object that
is able to fill and update the InventoryDataSet and InventoryDataTable class types (see Figure 23-26).

Figure 23-26. A customized data adapter that operates on the strongly typed types

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 829

8849CH23.qxd 10/22/07 1:55 PM Page 829

The autogenerated InventoryTableAdapter type maintains a collection of SqlCommand objects,
each of which has a fully populated set of SqlParameter objects (this alone is a massive time-saver).
Furthermore, this custom data adapter provides a set of properties to extract the underlying con-
nection, transaction, and data adapter objects, as well as a property to obtain an array representing
each command type. The obvious benefit is you did not have to author the code!

Using the Generated Types in Code
If you were to examine the Load event handler of the form-derived type, you will find that the Fill()
method of the custom data adapter is called upon startup, passing in the custom DataTable main-
tained by the custom DataSet:

private void MainForm_Load(object sender, EventArgs e)
{
this.inventoryTableAdapter.Fill(this.inventoryDataSet.Inventory);

}

You can use this same custom data adapter object to update changes to the grid. Update the UI
of your form with a single Button control (named btnUpdateInventory). Handle the Click event, and
author the following code within the event handler:

private void btnUpdateInventory_Click(object sender, EventArgs e)
{
// This will push any changes within the Inventory table back to
// the database for processing.
this.inventoryTableAdapter.Update(this.inventoryDataSet.Inventory);

// Get fresh copy for grid.
this.inventoryTableAdapter.Fill(this.inventoryDataSet.Inventory);

}

Run your application once again; add, delete, or update the records displayed in the grid; and
click the Update button. When you run the program again, you will find your changes are present
and accounted for.

Understand that you are able to make use of each of these strongly typed classes directly in
your code, in (more or less) the same way you have been doing throughout this chapter. For exam-
ple, assume you have updated your form with a new chunk of UI real estate (see Figure 23-27) that
allows the user to enter a new record using a series of text boxes (granted, this is a bit redundant for
this example, as the DataGridView will do so on your behalf).

Within the Click event handler of the new Button, you could author the following code:

private void btnAddRow_Click(object sender, EventArgs e)
{
// Get data from widgets
int id = int.Parse(txtCarID.Text);
string make = txtMake.Text;
string color = txtColor.Text;
string petName = txtPetName.Text;

// Use custom adapter to add row.
inventoryTableAdapter.Insert(id, make, color, petName);

// Refill table data.
this.inventoryTableAdapter.Fill(this.inventoryDataSet.Inventory);

}

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER830

8849CH23.qxd 10/22/07 1:55 PM Page 830

Figure 23-27. A simple update to the form type

Or, if you so choose, you can manually add a new row:

private void btnAddRow_Click(object sender, EventArgs e)
{
// Get new Row.
InventoryDataSet.InventoryRow newRow =
inventoryDataSet.Inventory.NewInventoryRow();

newRow.CarID = int.Parse(txtCarID.Text);
newRow.Make = txtMake.Text;
newRow.Color = txtColor.Text;
newRow.PetName = txtPetName.Text;
inventoryDataSet.Inventory.AddInventoryRow(newRow);

// Use custom adapter to add row.
inventoryTableAdapter.Update(inventoryDataSet.Inventory);

// Refill table data.
this.inventoryTableAdapter.Fill(this.inventoryDataSet.Inventory);

}

■Source Code The VisualDataGridViewApp project is included under the Chapter 23 subdirectory.

Decoupling Autogenerated Code from the UI Layer
To close, allow me to point out that while the Data Source Configuration Wizard launched by the
DataGridView has done a fantastic job of authoring a ton of grungy code on our behalf, the previous
example hard-coded the data access logic directly within the user interface layer—a major design
faux pas. Ideally, this sort of code belongs in our AutoLotDAL.dll assembly (or some other data

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 831

8849CH23.qxd 10/22/07 1:55 PM Page 831

access library). However, you may wonder how to harvest the code generated via the DataGridView’s
associated wizard in a Class Library project, given that there certainly is no form designer by
default.

Thankfully, you can activate the data design tools of Visual Studio 2008 from any sort of project
(UI based or otherwise) without the need to copy and paste massive amounts of code between proj-
ects. To illustrate some of your options, open your AutoLotDAL project once again and insert into
your project a new DataSet type (named AutoLotDataSet) via the Project ➤ Add New Item menu
option (see Figure 23-28).

Figure 23-28. Inserting a new DataSet

This will open a blank Dataset Designer surface. At this point, use Server Explorer to connect to
a given database (you should already have a connection to AutoLot), and drag and drop each data-
base object (here, I did not bother to drag over the CreditRisk table) you wish to generate onto the
surface. In Figure 23-29, you can see each of the custom aspects of AutoLot are now accounted for.

If you look at the generated code, you will find a new batch of strongly typed DataSets, DataTables,
and DataRows, and a custom data adapter object for each table. Because the AutoLotDataSet type
contains code to fill and update all of the tables of the AutoLot database, the amount of code auto-
generated is more than an eye-popping 3,000 lines! However, much of this is grungy infrastructure
you can remain blissfully unaware of. As you can see in Figure 23-30, the AutoLotDataSet type is
constructed in a way that is very close to the previous InventoryDataSet type.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER832

8849CH23.qxd 10/22/07 1:55 PM Page 832

Figure 23-29. Our custom strongly typed types, this time within a Class Library project

Figure 23-30. The AutoLotDataSet

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 833

8849CH23.qxd 10/22/07 1:55 PM Page 833

As well, you will find a custom data adapter object for each of the database objects you dragged
onto the Dataset Designer surface as well as a helpful type named TableAdapterManager that pro-
vides a single entry point to each object (see Figure 23-31).

Figure 23-31. The autogenerated data adapter objects

■Source Code The AutoLotDAL (Part 3) project is included under the Chapter 23 subdirectory.

A UI Front End: MultitabledDataSetApp (Redux)
Using these autogenerated types is quite simple, provided you are comfortable working with the
disconnected layer. The downloadable source code for this text contains a project named Multi-
tabledDataSetApp-Redux, which, as the name implies, is an update to the MultitabledDataSetApp
project you created earlier in this chapter.

Recall that the original example made use of a loosely typed DataSet and a batch of
SqlDataAdapter types to move the table data to and fro. This updated version makes use of the third
iteration of AutoLotDAL.dll and the wizard-generated types. While I won’t bother to list all of the
code here (as it is more or less the same as the first iteration of this project), here are the highlights:

• You no longer need to manually author an App.config file or use the ConfigurationManager
to obtain the connection string, as this is handled via the Settings object.

• You are now making use of the strongly typed classes within the AutoLotDAL and
AutoLotDAL.AutoLotDataSetTableAdapters namespaces.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER834

8849CH23.qxd 10/22/07 1:55 PM Page 834

• You are no longer required to manually create or configure the relationships between your
tables, as the Dataset Designer has done so automatically.

Regarding the last bullet point, be aware that the names the Dataset Designer gave the table
relationships are different from the names we gave to them in the first iteration of this project.
Therefore, the btnGetOrderInfo_Click() method must be updated to use the correct relationship
names (which can be seen on the designer surface of the Dataset Designer), for example:

private void btnGetOrderInfo_Click(object sender, System.EventArgs e)
{
...
// Need to update relationship name!
drsOrder = drsCust[0].GetChildRows(autoLotDS.Relations["FK_Orders_Customers"]);

...
// Need to update relationship name!
DataRow[] drsInv =

drsOrder[0].GetParentRows(autoLotDS.Relations["FK_Orders_Inventory"]);
...
}

■Source Code The MultitabledDataSetApp-Redux project is included under the Chapter 23 subdirectory.

Summary
This chapter dove into the details of the disconnected layer of ADO.NET. As you have seen, the
centerpiece of the disconnected layer is the DataSet. This type is an in-memory representation of
any number of tables and any number of optional interrelationships, constraints, and expressions.
The beauty of establishing relations on your local tables is that you are able to programmatically
navigate between them while disconnected from the remote data store.

You also examined the role of the data adapter type in this chapter. Using this type (and the
related SelectCommand, InsertCommand, UpdateCommand, and DeleteCommand properties), the adapter
can resolve changes in the DataSet with the original data store. As well, you learned how to navigate
the object model of a DataSet using the brute-force manual approach, as well as via strongly typed
objects, typically generated by the Dataset Designer tools of Visual Studio 2008.

CHAPTER 23 ■ ADO.NET PART I I : THE DISCONNECTED LAYER 835

8849CH23.qxd 10/22/07 1:55 PM Page 835

8849CH23.qxd 10/22/07 1:55 PM Page 836

Programming with the LINQ APIs

Now that you have spent the previous two chapters examining the ADO.NET programming
model, we are in a position to return to the topic of Language Integrated Query (LINQ). Here, you
will begin by examining the role of LINQ to ADO.NET. This particular term is used to describe two
related facets of the LINQ programming model, specifically LINQ to DataSet and LINQ to SQL. As
you would expect, these APIs allow you to apply LINQ queries to relational databases and ADO.NET
DataSet objects.

The remainder of this chapter will examine the role of LINQ to XML. This aspect of LINQ not
only allows you to extract data from an XML document using the expected set of query operators,
but also enables you to load, save, and generate XML documents in an extremely straightforward
manner (much more so than working with the types packaged in the System.Xml.dll assembly).

■Note This chapter assumes you are already comfortable with the LINQ programming model as described in
Chapter 14.

The Role of LINQ to ADO.NET
As explained in Chapter 14, LINQ is a programming model that allows programmers to build
strongly typed query expressions that can be applied to a wide variety of data stores (arrays, collec-
tions, databases, XML documents). While it is true that you always use the same query operators
regardless of the target of your LINQ query, the LINQ to ADO.NET API provides some additional
types and infrastructure to enable LINQ/database integration.

As mentioned, LINQ to ADO.NET is a blanket term that describes two database-centric aspects
of LINQ. First we have LINQ to DataSet. This API is essentially a set of extensions to the standard
ADO.NET DataSet programming model that allows DataSets, DataTables, and DataRows to be a natu-
ral target for a LINQ query expression. Beyond using the types of System.Core.dll, LINQ to DataSet
requires your projects to make use of auxiliary types within the System.Data.DataSetExtensions.dll
assembly.

The second component of LINQ to ADO.NET is LINQ to SQL. This API allows you to interact
with a relational database by abstracting away the underlying ADO.NET data types (connections,
commands, data adapters, etc.) through the use of entity classes. Through these entity classes, you
are able to represent relational data using an intuitive object model and manipulate the data using
LINQ queries. The LINQ to SQL functionality is contained within the System.Data.Linq.dll
assembly.

837

C H A P T E R 2 4

8849CH24.qxd 10/19/07 10:11 AM Page 837

■Note As of .NET 3.5, LINQ to SQL does not support a data provider factory model (see Chapter 22). Therefore,
when using this API, your data must be contained within Microsoft SQL Server. The LINQ to DataSet API, however,
is agnostic in nature, as the DataSet being manipulated can come from any relational database.

Programming with LINQ to DataSet
Recall from the previous chapter that the DataSet type is the centerpiece of the disconnected layer
and is used to represent a cached copy of interrelated DataTable objects and (optionally) the rela-
tionships between them. On a related note, you may also recall that the data within a DataSet can
be manipulated in three distinct manners:

• Indexers

• Data table readers

• Strongly typed data members

When you make use of the various indexers of the DataSet and DataTable type, you are able to
interact with the contained data in a fairly straightforward but very loosely typed manner. Recall
that this approach requires you to treat the data as a tabular block of cells. For example:

static void PrintDataWithIndxers(DataTable dt)
{
// Print the DataTable.
for (int curRow = 0; curRow < dt.Rows.Count; curRow++)
{
for (int curCol = 0; curCol < dt.Columns.Count; curCol++)
{
Console.Write(dt.Rows[curRow][curCol].ToString() + "\t");

}
Console.WriteLine();

}
}

The CreateDataReader() method of the DataTable type offers a second approach, where we are
able to treat the data in the DataSet as a linear set of rows to be processed in a sequential manner:

static void PrintDataWithDataTableReader(DataTable dt)
{
// Get the DataTableReader type.
DataTableReader dtReader = dt.CreateDataReader();
while (dtReader.Read())
{
for (int i = 0; i < dtReader.FieldCount; i++)
{
Console.Write("{0}\t", dtReader.GetValue(i));

}
Console.WriteLine();

}
dtReader.Close();

}

Finally, using a strongly typed DataSet yields a code base that allows you to interact with data
in the object using properties that map to the actual column names in the relational database.

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS838

8849CH24.qxd 10/19/07 10:11 AM Page 838

Recall from Chapter 23 that we used strongly typed objects to allow us to author code such as the
following:

static void AddRowWithTypedDataSet()
{
InventoryTableAdapter invDA = new InventoryTableAdapter();
AutoLotDataSet.InventoryDataTable inv = invDA.GetData();
inv.AddInventoryRow(999, "Ford", "Yellow", "Sal");
invDA.Update(inv);

}

While all of these approaches have their place, LINQ to DataSet provides yet another option to
manipulate the contained data using LINQ query expressions. Out of the box, the ADO.NET DataSet
(and related types such as DataTable and DataView) do not have the necessary infrastructure to be a
direct target for a LINQ query. For example, the following method would result in a compile-time
error:

static void LinqOverDataTable()
{
// Get a DataTable of data.
InventoryDALDisLayer dal = new InventoryDALDisLayer(
@"Data Source=(local)\SQLEXPRESS;" +
"Initial Catalog=AutoLot;Integrated Security=True");

DataTable data = dal.GetAllInventory();

// Get cars with CarID > 5?
var moreData = from c in data where (int)c["CarID"] > 5 select c;

}

If you were to compile the LinqOverDataTable() method, the compiler would inform you that
the DataTable type does provide a “query pattern implementation.” Similar to the process of apply-
ing LINQ queries to objects that do not implement IEnumerable<T> (such as the ArrayList),
ADO.NET objects must be transformed into a compatible type. To understand how to do so
requires examining the types of System.Data.DataSetExtensions.dll.

The Role of the DataSet Extensions
The System.Data.DataSetExtensions.dll assembly extends the System.Data namespace with a
handful of new members (see Figure 24-1).

Figure 24-1. The System.Data.DataSetExtensions.dll assembly

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS 839

8849CH24.qxd 10/19/07 10:11 AM Page 839

Far and away the two most useful members are DataTableExtensions and DataRowExtensions.
As their names imply, these types extend the functionality of DataTable and DataRow using a set of
extension methods. The other key type is TypedTableBaseExtensions, which defines extension
methods that can be applied to strongly typed DataSet objects to make the internal DataTable
objects LINQ aware. All of the remaining members within the System.Data.DataSetExtensions.dll
assembly are pure infrastructure and not intended to be used directly in your code base.

Obtaining a LINQ-Compatible DataTable
To illustrate using the DataSet extensions, assume you have a new C# Console Application named
LinqOverDataSet. Be aware that when you create projects that target .NET 3.5, you will automati-
cally be given a reference to System.Core.dll and System.Data.DataSetExtensions.dll; however, for
this example, add an additional assembly reference to the AutoLotDAL.dll assembly you created in
Chapter 23, and update your initial code file with the following logic:

using System.Data;
using AutoLotDisconnectedLayer;

namespace LinqOverDataSet
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** LINQ over DataSet *****\n");
// Get a DataTable containing the current Inventory
// of the AutoLot database.
InventoryDALDisLayer dal = new InventoryDALDisLayer(
@"Data Source=(local)\SQLEXPRESS;Initial Catalog=AutoLot;" +
"Integrated Security=True");

DataTable data = dal.GetAllInventory();

// Invoke the methods that follow here!

Console.ReadLine();
}

}
}

When you wish to transform an ADO.NET DataTable into a LINQ-compatible object, you sim-
ply need to call the AsEnumerable() extension method defined by the DataTableExtensions type.
This will return to you an EnumerableRowCollection object, which contains a collection of DataRows.
Using the EnumerableRowCollection type, you are then able to operate on each row as expected. By
way of a simple example:

static void PrintAllCarIDs(DataTable data)
{
// Get enumerable version of DataTable.
EnumerableRowCollection enumData = data.AsEnumerable();

// Print the car ID values.
foreach (DataRow r in enumData)
Console.WriteLine("Car ID = {0}", r["CarID"]);

}

Because EnumerableRowCollection implements IEnumerable<T>, it would also be permissible to
capture the return value using either of these code statements:

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS840

8849CH24.qxd 10/19/07 10:11 AM Page 840

// Store return value as IEnumerable<T>.
IEnumerable<DataRow> enumData = data.AsEnumerable();

// Store return value implicitly.
var enumData = data.AsEnumerable();

At this point, we have not actually applied a LINQ query; however, the point is that the
enumData object is now able to be the target of a LINQ query expression. Do notice that the
EnumerableRowCollection does indeed contain a collection of DataRow objects, as we are applying
a type indexer against each subobject to print out the value of the CarID column.

In most cases, you will not need to declare a variable of type EnumerableRowCollection to hold
the return value of AsEnumerable(). Rather, you can invoke this method from within the query
expression itself. Here is a more interesting method, which obtains a projection of CarID/Makes
from all entries in the DataTable where the CarID is greater than the value of 5:

static void ApplyLinqQuery(DataTable data)
{
// Project a new result set containing
// the ID/color for rows with a CarID > 5
var cars = from car in data.AsEnumerable()

where
(int)car["CarID"] > 5

select new
{
ID = (int)car["CarID"],
Color = (string)car["Color"]

};

Console.WriteLine("Cars with ID greater than 5:");
foreach (var item in cars)
{
Console.WriteLine("-> CarID = {0} is {1}", item.ID, item.Color);

}
}

The Role of the DataRowExtensions.Field<T>()
Extension Method
One undesirable aspect of the current LINQ query expression is that we are making use of numer-
ous casting operations and DataRow indexers to gather the result set, which could result in runtime
exceptions if we attempt to cast to an incompatible data type. To inject some strong typing into our
query, we can make use of the Field<T>() extension method of the DataRow type. By doing so, we
increase the type safety of our query, as the compatibility of data types is checked at compile time.
Consider the following update:

var cars = from car in data.AsEnumerable()
where
car.Field<int>("CarID") > 5

select new
{
ID = car.Field<int>("CarID"),
Color = car.Field<string>("Color")

};

Notice in this case we are able to invoke Field<T>() and specify a type parameter to represent
the underlying data type of the column. As an argument to this method, we pass in the column

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS 841

8849CH24.qxd 10/19/07 10:11 AM Page 841

name itself. Given the additional compile-time checking, consider it a best practice to make use
of Field<T>() when processing the roles of a EnumerableRowCollection, rather than the DataRow
indexer.

Beyond the fact that we call the AsEnumerable() method, the overall format of the LINQ query
is identical to what you have already seen in Chapter 14. Given this point, I won’t bother to repeat
the details of the various LINQ operators here. If you wish to see additional examples, look up the
topic “LINQ to DataSet Examples” using the .NET Framework 3.5 SDK documentation.

Hydrating New DataTables from LINQ Queries
It is also possible to easily populate the data of a new DataTable based on the results of a LINQ
query, provided that you are not using projections. When you have a result set where the underlying
type can be represented as IEnumerable<T>, you can call the CopyToDataTable<T>() extension
method on the result. For example:

static void BuildDataTableFromQuery(DataTable data)
{
var cars = from car in data.AsEnumerable()

where
car.Field<int>("CarID") > 5

select car;

// Use this result set to build a new DataTable.
DataTable newTable = cars.CopyToDataTable();

// Print the DataTable.
for (int curRow = 0; curRow < newTable.Rows.Count; curRow++)
{
for (int curCol = 0; curCol < newTable.Columns.Count; curCol++)
{
Console.Write(newTable.Rows[curRow][curCol].ToString().Trim() + "\t");

}
Console.WriteLine();

}
}

■Note It is also possible to transform a LINQ query to a DataView type, via the AsDataView<T>() extension
method.

This approach can be very helpful when you wish to use the result of a LINQ query as the
source of a data binding operation. For example, the DataGridView of Windows Forms (as well as the
GridView of ASP.NET) each support a property named DataSource. You could bind a LINQ result to
the grid as follows:

// Assume myDataGrid is a GUI-based grid object.
myDataGrid.DataSource = (from car in data.AsEnumerable()

where
car.Field<int>("CarID") > 5

select car).CopyToDataTable();

Now that you have seen the role of LINQ to DataSet, let’s turn our attention to LINQ to SQL.

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS842

8849CH24.qxd 10/19/07 10:11 AM Page 842

■Source Code The LinqOverDataSet example can be found under the Chapter 24 subdirectory.

Programming with LINQ to SQL
LINQ to SQL is an API that allows you to apply well-formed LINQ query expressions to data held
within relational databases. LINQ to SQL provides a number of types (within the System.Data.Linq.
dll assembly) that facilitate the communication between your code base and the physical database
engine.

The major goal of LINQ to SQL is to provide consistency between relational databases and the
programming logic used to interact with them. For example, rather than representing database
queries using a big clunky string, we can use strongly typed LINQ queries. As well, rather than
having to treat relational data as a stream of records, we are able to interact with the data using
standard object-oriented programming techniques. Given the fact that LINQ to SQL allows us to
integrate data access directly within our C# code base, the need to manually build dozens of custom
classes and data access libraries that hide ADO.NET grunge from view is greatly minimized.

When programming with LINQ to SQL, you see no trace of common ADO.NET types such as
SqlConnection, SqlCommand, or SqlDataAdapter. Using LINQ query expressions, entity classes
(defined shortly) and the DataContext type, you are able to perform all the expected database CRUD
(create, remove, update, and delete), as well as define transactional contexts, create new database
entities (or entire databases), invoke stored procedures, and perform other database-centric
activities.

Furthermore, the LINQ to SQL types (again, such as DataContext) have been developed to
integrate with standard ADO.NET data types. For example, one of the overloaded constructors of
DataContext takes as an input an IDbConnection-comparable object, which as you may recall is a
common interface supported by all ADO.NET connection objects. In this way, existing ADO.NET
data access libraries can integrate with C# 2008 LINQ query expressions (and vice versa). In reality,
as far as Microsoft is concerned, LINQ to SQL is simply a new member of the ADO.NET family.

The Role of Entity Classes
When you wish to make use of LINQ to SQL within your applications, the first step is to define entity
classes. In a nutshell, entity classes are types that represent the relational data you wish to interact
with. Programmatically speaking, entity classes are class definitions that are annotated with various
LINQ to SQL attributes (such as [Table] and [Column]) that map to a physical table in a specific
database. A majority of the LINQ to SQL attributes are defined with the System.Data.Linq.Mapping
namespace (see Figure 24-2).

As you will see in just a bit, the .NET Framework 3.5 SDK (as well as Visual Studio 2008) ships
with tools that automate the construction of the entity types required by your application. Until
that point, our first LINQ to SQL example will illustrate how to build entity classes by hand.

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS 843

8849CH24.qxd 10/19/07 10:11 AM Page 843

Figure 24-2. The System.Data.Linq.Mapping namespace defines numerous LINQ to SQL attributes.

The Role of the DataContext Type
Once you have defined your entity classes, you are then able to pass your query expressions to the
relational database using a DataContext type. This LINQ to SQL–specific class type is in charge of
translating your LINQ query expressions into proper SQL queries as well as communicating with
the specified database. In some ways, the DataContext looks and feels like an ADO.NET connection
object, in that it requires a connection string. However, unlike a typically connection object, the
DataContext type has numerous members that will map the results of your query expressions back
into the entity classes you define.

Furthermore, the DataContext type defines a factory pattern to obtain instances of the entity
classes used within your code base. Once you obtain an entity instance, you are free to change its
state in any way you desire (adding records, updating records, etc.) and submit the modified object
back for processing. In this way, the DataContext is similar to an ADO.NET data adapter type.

A Simple LINQ to SQL Example
Before we dive into too many details, let’s see a simple example of using LINQ to SQL to interact
with the Inventory table of the AutoLot database created in Chapter 22. In this example, we will not
be making use of our AutoLotDAL.dll library, but will instead author all the code by hand. Create a
new Console Application named SimpleLinqToSqlApp and reference the System.Data.Linq.dll
assembly.

Next, insert a new C# class file named Inventory.cs. This file will define our entity class, which
requires decorating the type with various LINQ-centric attributes; therefore, be sure to specify you
are using the System.Data.Linq.Mapping and System.Data.Linq namespaces. With this detail out of
the way, here is the definition of the Inventory type:

[Table]
public class Inventory
{

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS844

8849CH24.qxd 10/19/07 10:11 AM Page 844

[Column]
public string Make;
[Column]
public string Color;
[Column]
public string PetName;

// Identify the primary key.
[Column(IsPrimaryKey = true)]
public int CarID;

public override string ToString()
{
return string.Format("ID = {0}; Make = {1}; Color = {2}; PetName = {3}",
CarID, Make.Trim(), Color.Trim(), PetName.Trim());

}
}

First of all notice that our entity class has been adorned with the [Table] attribute, while each
public field has been marked with [Column]. In both cases, the names are a direct mapping to the
physical database table. However, this is not a strict requirement, as the TableAttribute and
ColumnAttribute types both support a Name property that allows you to decouple your program-
matic representation of the data table from the physical table itself. Also notice that the CarID field
has been further qualified by setting the IsPrimaryKey property of the ColumnAttribute type using
named property syntax.

Here, for simplicity, each field has been declared publicly. If you require stronger encapsula-
tion, you could most certainly define private fields wrapped by public properties (or automatic
properties if you so choose). If you do so, it will be the property, not the fields, that will be marked
with the [Column] attribute.

It is also worth pointing out that an entity class can contain any number of members that do
not map to the data table it represents. As far as the LINQ runtime is concerned, only items marked
with LINQ to SQL attributes will be used during the data exchange. For example, this Inventory
class definition provides a custom implementation of ToString() to allow the application to quickly
display its state.

Now that we have an entity class, we can make use of the DataContext type to submit (and
translate) our LINQ query expressions to the specified database. Ponder the following Main()
method, which will display the result of all items in the Inventory table maintained by the AutoLot
database:

class Program
{
const string cnStr =
@"Data Source=(local)\SQLEXPRESS;Initial Catalog=AutoLot;" +
"Integrated Security=True";

static void Main(string[] args)
{
Console.WriteLine("***** LINQ to SQL Sample App *****\n");

// Create a DataContext object.
DataContext db = new DataContext(cnStr);

// Now create a Table<> type.
Table<Inventory> invTable = db.GetTable<Inventory>();

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS 845

8849CH24.qxd 10/19/07 10:11 AM Page 845

// Show all data using a LINQ query.
Console.WriteLine("-> Contents of Inventory Table from AutoLot database:\n");
foreach (var car in from c in invTable select c)
Console.WriteLine(car.ToString());

Console.ReadLine();
}

}

Notice that when you create a DataContext type, you will feed in a proper connection string,
which is represented here as a simple string constant. Of course, you are free to store this in an
application configuration file and/or make use of the SqlConnectionStringBuilder type to treat
this string type in a more object-oriented manner.

Next up, we obtain an instance of our Inventory entity class by calling the generic
GetTable<T>() method of the DataContext type, specifying the entity class as the type parameter
when doing so. Finally, we build a LINQ query expression and apply it to the invTable object. As
you would expect, the end result is a display of each item in the Inventory table.

Building a Strongly Typed DataContext
While our first example is strongly typed as far as the database query is concerned, we do have a bit
of a disconnect between the DataContext and the Inventory entity class it is maintaining. To remedy
this situation, it is typically preferable to create a class that extends the DataContext type that
defines member variables for each table it operates upon. Insert a new class called AutoLotDatabase,
specify you are using the System.Core and System.Data.Linq namespaces, and implement the type
as follows:

class AutoLotDatabase : DataContext
{
public Table<Inventory> Inventory;

public AutoLotDatabase(string connectionString)
: base(connectionString){}

}

With this new class type, we are now able to simplify the code within Main() quite a bit:

static void Main(string[] args)
{
Console.WriteLine("***** LINQ to SQL Sample App *****\n");

// Create an AutoLotDatabase object.
AutoLotDatabase db = new AutoLotDatabase(cnStr);

// Note we can now use the Inventory field of AutoLotDatabase.
Console.WriteLine("-> Contents of Inventory Table from AutoLot database:\n");
foreach (var car in from c in db.Inventory select c)
Console.WriteLine(car.ToString());

Console.ReadLine();
}

One aspect of building a strongly typed data context that may surprise you is that the
DataContext-derived type (AutoLotDatabase in this example) does not directly create the Table<T>
member variables and has no trace of the expected GetTable() method call. At runtime, however,
when you iterate over your LINQ result set, the DataContext will create the Table<T> type transpar-
ently in the background.

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS846

8849CH24.qxd 10/19/07 10:11 AM Page 846

Of course, any LINQ query can be used to obtain a given result set. Assume we have authored
the following helper method that is called from Main() before exiting (note this method expects us
to pass in an AutoLotDatabase instance):

static void ShowOnlyBimmers(AutoLotDatabase db)
{
Console.WriteLine("***** Only BMWs *****\n");

// Get the BMWs.
var bimmers = from s in db.Inventory
where s.Make == "BMW"
orderby s.CarID
select s;

foreach (var c in bimmers)
Console.WriteLine(c.ToString());

}

Figure 24-3 shows the output of this first LINQ to SQL example.

Figure 24-3. A first look at LINQ to SQL

■Source Code The SimpleLinqToSqlApp example can be found under the Chapter 24 subdirectory.

The [Table] and [Column] Attributes: Further Details
As you have seen, entity classes are adorned with various attributes that are used by LINQ to SQL to
translate queries for your objects into SQL queries against the database. At absolute minimum, you
will make use of the [Table] and [Column] attributes; however, additional attributes exist to mark
the methods that perform SQL insert, update, and delete commands. As well, each of the LINQ to
SQL attributes defines a set of properties that further qualify to the LINQ to SQL runtime engine
how to process the annotated item.

The [Table] attribute is very simple, given that it only defines a single property of interest:
Name. As mentioned, this allows you to decouple the name of the entity class from the physical table.

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS 847

8849CH24.qxd 10/19/07 10:11 AM Page 847

If you do not set the Name property at the time you apply the [Table] attribute, LINQ to SQL assumes
the entity class and database table names are one and the same.

The [Column] attribute provides a bit more meat than [Table]. Beyond the IsPrimaryKey prop-
erty, ColumnAttribute defines additional members that allow you to fully qualify the details of each
field in the entity class and how it maps to a particular column in the physical database table.
Table 24-1 documents the additional properties of interest.

Table 24-1. Select Properties of the [Column] Attribute

ColumnAttribute Property Meaning in Life

CanBeNull This property indicates that the column can contain null values.

DbType LINQ to SQL will automatically infer the data types to pass to the
database engine based on declaration of your field data. Given this, it
is typically only necessary to set DbType directly if you are dynamically
creating databases using the CreateDatabase() method of the
DataContext type.

IsDbGenerated This property establishes that a field’s value is autogenerated by the
database.

IsVersion This property identifies that the column type is a database timestamp
or a version number. Version numbers are incremented and timestamp
columns are updated every time the associated row is updated.

UpdateCheck This property controls how LINQ to SQL should handle database
conflicts via optimistic concurrency.

Generating Entity Classes Using SqlMetal.exe
Our first LINQ to SQL example was fairly simplistic, partially due to the fact that our DataContext
was operating on a single data table. A production-level LINQ to SQL application may instead be
operating on multiple interrelated data tables, each of which could define dozens of columns. In
these cases, it would be very tedious to author each and every required entity class by hand. Thank-
fully, we do have two approaches to generate these types automatically.

The first option is to make use of the sqlmetal.exe command-line utility, which can be exe-
cuted using a Visual Studio 2008 command prompt. This tool automates the creation of entity
classes by generating an appropriate C# class type from the database metadata. While this tool has
numerous command-line options, Table 24-2 documents the major flags of interest.

Table 24-2. Options of the sqlmetal.exe Command

sqlmetal.exe Command-Line
Option Meaning in Life

/server Specifies the server hosting the database

/database Specifies the name of the database to read metadata from

/user Specifies user ID to log in to the server

/password Specifies password to log in to the server

/views Informs sqlmetal.exe to generate code based on existing database
views

/functions Informs sqlmetal.exe to extract database functions

/sprocs Informs sqlmetal.exe to extract stored procedures

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS848

8849CH24.qxd 10/19/07 10:11 AM Page 848

sqlmetal.exe Command-Line
Option Meaning in Life

/code Informs sqlmetal.exe to output results as C# code (or as VB, if you
set the /language flag)

/language Specifies the language used to defined the generated types

/namespace Specifies the namespace to define the generated types

By way of an example, the following command set will generate entity classes for each table
within the AutoLot database, expose the GetPetName stored procedure, and wrap all generated C#
code within a namespace named AutoLotDatabase (of course, this would be entered on a single line
within a Visual Studio 2008 command prompt):

sqlmetal /server:(local)\SQLEXPRESS /database:AutoLot /namespace:AutoLotDatabase
/code:autoLotDB.cs /sprocs

Once you have executed the command, create a new Console Application named
LinqWithSqlMetalGenedCode, reference the System.Data.Linq.dll assembly, and include the
autoLotDB.cs file into your project using the Project ➤ Add Existing Item menu option. As well,
insert a new class diagram into your project (via Project ➤ Add New Item) and expand each of the
generated classes (see Figure 24-4).

Figure 24-4. The sqlmetal.exe-generated entity classes

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS 849

8849CH24.qxd 10/19/07 10:11 AM Page 849

Notice that you have a new type extending DataContext that contains properties for each data
table in the specified database (as well, notice that the GetPetName() stored procedure is repre-
sented by a public method of the same name). Before we program against these new types, let’s
examine this autogenerated code in a bit more detail.

Examining the Generated Entity Classes
As you can see, sqlmetal.exe defined a separate entity class for each table in the AutoLot database
(Inventory, Customers, Orders, CreditRisks), with each column encapsulated by a type property. In
addition, notice that each entity class implements two interfaces (INotifyPropertyChanging and
INotifyPropertyChanged), each of which defines a single event:

namespace System.Data.Linq
{
public interface INotifyPropertyChanging
{
// This event fires when a property is being changed.
event PropertyChangedEventHandler PropertyChanging;

}
}

namespace System.ComponentModel
{
public interface INotifyPropertyChanged
{
// This event fires when a property value has changed.
event PropertyChangedEventHandler PropertyChanged;

}
}

Collectively, these interfaces define a total of two events named PropertyChanging and
PropertyChanged, both of which work in conjunction with the PropertyChangedEventHandler dele-
gate defined in the System.ComponentModel namespace. This delegate can call any method taking an
object as the first parameter and a PropertyChangedEventArgs as the second. Given the interface
contract, each entity class supports the following members:

[Table(Name="Inventory")]
public partial class Inventory : INotifyPropertyChanging, INotifyPropertyChanged
{
public event PropertyChangedEventHandler PropertyChanging;
public event PropertyChangedEventHandler PropertyChanged;

...
}

If you were to examine the implementation of the properties of any of the three entity classes,
you will note that the set scope fires each event to any interested listener. By way of an example,
here is the PetName property of the Inventory type:

[Column(Storage="_PetName", DbType="VarChar(50)")]
public string PetName
{
get
{
return this._PetName;

}
set
{

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS850

8849CH24.qxd 10/19/07 10:11 AM Page 850

if ((this._PetName != value))
{
this.OnPetNameChanging(value);
this.SendPropertyChanging();
this._PetName = value;
this.SendPropertyChanged("PetName");
this.OnPetNameChanged();

}
}

}

Notice that the set scope invokes the OnPetNameChanging() and OnPetNameChanged() methods
on the entity class type to actually fire the events themselves. However, these members are defined
as partial methods, which you may recall from Chapter 13 perform a type of lightweight event han-
dling, allowing interested callers to provide an implementation if they so choose (if not, they are
removed from the type definition at compile time):

partial void OnPetNameChanging(string value);
partial void OnPetNameChanged();

Defining Relationships Using Entity Classes
Beyond simply defining properties with backing fields to represent data table columns, the
sqlmetal.exe utility will also model the relationships between interrelated tables using the
EntitySet<T> type. Recall from Chapter 22 that the AutoLot database defined three interrelated
tables, connected by primary and foreign keys. Rather than forcing us to author SQL-centric join
syntax to navigate between these tables, LINQ to SQL allows us to navigate using the object-centric
C# dot operator.

To account for this sort of table relationship, the parent entity class may encode the child table
as property references. This property is marked with the [Association] attribute to establish an
association relationship made by matching column values between tables. For example, consider
the (partial) generated code for the Customer type, which can have any number of orders:

[Table(Name="Customers")]
public partial class Customers :
INotifyPropertyChanging, INotifyPropertyChanged

{
private EntitySet<Orders> _Orders;

[Association(Name="FK_Orders_Customers", Storage="_Orders",
OtherKey="CustID", DeleteRule="NO ACTION")]
public EntitySet<Orders> Orders
{

get { return this._Orders; }
set { this._Orders.Assign(value); }

}
...
}

Here, the Orders property is understood by the LINQ to SQL runtime engine as the member
that allows navigation from the Customers table to the Orders table via the column defined by the
OtherKey named property. The EntitySet<T> member variable is used to represent the one-to-many
nature of this particular relationship.

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS 851

8849CH24.qxd 10/19/07 10:11 AM Page 851

The Strongly Typed DataContext
The final aspect of the sqlmetal.exe-generated code to be aware of is the DataContext-derived type.
Like the AutoLotDatabase class we authored in the previous example, each table is represented by a
Table<T>-compatible property. As well, this class has a series of constructors, one of which takes an
object implementing IDbConnection, which represents an ADO.NET connection object (remember,
LINQ to SQL and ADO.NET types can be intermixed within a single application).

As well, this DataContext-derived class is how we are able to interact with the stored procedures
defined by the database. Given the fact that we supplied the /sprocs flag as part of our sqlmetal.exe
command set, we find a method named GetPetName():

[Function(Name="dbo.GetPetName")]
[return: Parameter(DbType="Int")]
public int GetPetName([Parameter(DbType="Int")] System.Nullable<int> carID,

[Parameter(DbType="Char(10)")] ref string petName)
{
IExecuteResult result = this.ExecuteMethodCall(this,
((MethodInfo)(MethodInfo.GetCurrentMethod())), carID, petName);

petName = ((string)(result.GetParameterValue(1)));
return ((int)(result.ReturnValue));

}

Notice that the GetPetName() method is marked with the [Function] attributes and [return:]
attribute qualifier, while each parameter is marked with the [Parameter] attribute. The implemen-
tation makes use of the inherited ExecuteMethodCall() method (and a bit of reflection services) to
take care of the details of invoking the stored proc and returning the result to the caller.

Programming Against the Generated Types
Now that you have a better idea regarding the code authored by sqlmetal.exe, consider the follow-
ing implementation of the Program type, which invokes our stored procedure:

class Program
{
const string cnStr =
@"Data Source=(local)\SQLEXPRESS;Initial Catalog=AutoLot;" +
"Integrated Security=True";

static void Main(string[] args)
{
Console.WriteLine("***** More Fun with LINQ to SQL *****\n");
AutoLot carsDB = new AutoLot(cnStr);
InvokeStoredProc(carsDB);
Console.ReadLine();

}

private static void InvokeStoredProc(AutoLot carsDB)
{
int carID = 0;
string petName = "";
Console.Write("Enter ID: ");
carID = int.Parse(Console.ReadLine());

// Invoke stored proc and print out the petname.
carsDB.GetPetName(carID, ref petName);

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS852

8849CH24.qxd 10/19/07 10:11 AM Page 852

Console.WriteLine("Car ID {0} has the petname: {1}",
carID, petName);

}
}

Notice that LINQ to SQL completely hides the underlying stored procedure logic from view.
Here, we have no need to manually create a SqlCommand object, fill the parameters collection, or call
ExecuteNonQuery(). Instead, we simply invoke the GetPetName() method of our DataContext-derived
type. Do note, however, that output parameters are represented as reference parameters, and there-
fore must be called using the C# ref keyword.

Now assume we have a second helper function (also called from within Main()) named
PrintOrderForCustomer(). This method will print out some order details for the specified customer
as well as the first and last name of the customer:

static void PrintOrderForCustomer(AutoLot carsDB)
{
int custID = 0;
Console.Write("Enter customer ID: ");
custID = int.Parse(Console.ReadLine());

var customerOrders =
from cust in carsDB.Customers
from o in cust.Orders
where cust.CustID == custID
select new { cust, o };

Console.WriteLine("***** Order Info for Customer ID: {0}. *****", custID);
foreach (var q in customerOrders)
{
Console.WriteLine("{0} {1} is order ID # {2}.",
q.cust.FirstName.Trim(),
q.cust.LastName.Trim(),
q.o.OrderID);

Console.WriteLine("{0} bought Car ID # {1}.",
q.cust.FirstName.Trim(), q.o.CarID);

}
}

Figure 24-5 shows the output when querying about the customer assigned the ID of 1.

Figure 24-5. Printing our order details for a specified customer

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS 853

8849CH24.qxd 10/19/07 10:11 AM Page 853

Again, the benefit of LINQ to SQL is that we are able to interact with relational databases using
a consistent, object-based model. Just to shed some more light on our LINQ query expression, add
the following code statement at the end of your PrintOrderForCustomer() method:

Console.WriteLine("\ncustomerOrders as a string: {0}", customerOrders);

When you run your program once again, you may be surprised to find that the stringified value
of your query expression reveals the underlying SQL query:

SELECT [t0].[FirstName], [t0].[LastName], [t0].[CustID],
[t1].[OrderID], [t1].[CarID], [t1].[CustID] AS [CustID2]

FROM [Customers] AS [t0], [Orders] AS [t1]
WHERE ([t0].[CustID] = @p0) AND ([t1].[CustID] = [t0].[CustID])

■Source Code The LinqWithSqlMetalGenedCode example can be found under the Chapter 24 subdirectory.

Building Entity Classes Using Visual Studio 2008
To wrap up our look at LINQ to SQL, create a new Console Application named LinqToSqlCrud and
reference the System.Data.Linq.dll assembly. This time, rather than running sqlmetal.exe to gen-
erate our entity classes, we will allow Visual Studio 2008 to do the grunt work. To do so, select
Project ➤ Add New Item, and add a new LINQ to SQL Classes item named AutoLotObjects (see
Figure 24-6).

Figure 24-6. The LINQ to SQL Classes item performs the same duties as sqlmetal.exe.

Open the Server Explorer, and ensure you have an active connection to the AutoLot database
(if not, right-click the Data Connections icon and select Add Connection). At this point, select each

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS854

8849CH24.qxd 10/19/07 10:11 AM Page 854

table and drag it onto the LINQ to SQL designer surface. Once you are done, your screen should
resemble Figure 24-7.

Figure 24-7. Creating entity classes using the LINQ to SQL designer

Once you perform your initial compile, go to the Solution Explorer and open the related *.cs
file (see Figure 24-8). As you look over the generated C# code, you’ll quickly notice it is the same
overall code generated by the sqlmetal.exe command-line utility. Also note that the visual LINQ to
SQL designer added an app.config file to your project to store the necessary connection string data.

Figure 24-8. The generated namespace with the contained types

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS 855

8849CH24.qxd 10/19/07 10:11 AM Page 855

Now that all the generated types are accounted for, here is a Program class that illustrates insert-
ing, updating, and deleting data on the Inventory table.

Inserting New Items
Adding new items to a relational database is as simple as creating a new instance of a given entity
class, adding into the Table<T> type maintained by the DataContext and calling SubmitChanges().
The following InsertNewCars() method adds two new listings to the Inventory table. The first
approach directly sets each field of the Inventory entity class, while the second approach makes
use of the more compact object initialization syntax:

static void InsertNewCars(AutoLotObjectsDataContext ctx)
{
Console.WriteLine("***** Adding 2 Cars *****");
int newCarID = 0;
Console.Write("Enter ID for Betty: ");
newCarID = int.Parse(Console.ReadLine());

// Add a new row using "longhand" notation.
Inventory newCar = new Inventory();
newCar.Make = "Yugo";
newCar.Color = "Pink";
newCar.PetName = "Betty";
newCar.CarID = newCarID;
ctx.Inventories.InsertOnSubmit(newCar);
ctx.SubmitChanges();

Console.Write("Enter ID for Henry: ");
newCarID = int.Parse(Console.ReadLine());

// Add another row using "shorthand" object init syntax.
newCar = new Inventory { Make = "BMW", Color = "Silver",
PetName = "Henry", CarID = newCarID };

ctx.Inventories.InsertOnSubmit(newCar);
ctx.SubmitChanges();

}

Updating Existing Items
Updating an item is also very straightforward. Based on your LINQ query, extract the first item that
meets the search criteria. Once you update the object’s state, once again call SubmitChanges().

static void UpdateCar(AutoLotObjectsDataContext ctx)
{
Console.WriteLine("***** Updating color of 'Betty' *****");

// Update Betty's color to light pink.
var betty = (from c in ctx.Inventories

where c.PetName == "Betty"
select c).First();

betty.Color = "Green";
ctx.SubmitChanges();

}

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS856

8849CH24.qxd 10/19/07 10:11 AM Page 856

Deleting Existing Items
And finally, if you wish to delete an item from the relational database table, simply build a LINQ
query to locate the item you are no longer interested in, and remove it from the correct Table<T>
member variable of the DataContext using the DeleteOnSubmit() method. Once you have done so,
again call SubmitChanges():

static void DeleteCar(AutoLotObjectsDataContext ctx)
{
int carToDelete = 0;
Console.Write("Enter ID of car to delete: ");
carToDelete = int.Parse(Console.ReadLine());

// Remove specified car.
ctx.Inventories.DeleteOnSubmit((from c in ctx.Inventories

where c.CarID == carToDelete
select c).First());

ctx.SubmitChanges();
}

At this point you can call each method from within Main() to verify the output:

static void Main(string[] args)
{
Console.WriteLine("***** CRUD with LINQ to SQL *****\n");
const string cnStr =
@"Data Source=(local)\SQLEXPRESS;Initial Catalog=AutoLot;" +
"Integrated Security=True";

AutoLotObjectsDataContext ctx = new AutoLotObjectsDataContext(cnStr);
InsertNewCars(ctx);
UpdateCar(ctx);
DeleteCar(ctx);
Console.ReadLine();

}

That wraps up our look at LINQ to SQL. Obviously, there is much more to the story than you
have seen here; however, hopefully at this point you feel you are better equipped to dive into further
details as you see fit.

■Source Code The LinqToSqlCrud example can be found under the Chapter 24 subdirectory.

Manipulating XML Documents Using LINQ to XML
The final section of this chapter is to introduce you to the role of LINQ to XML, which as you recall
allows you to apply LINQ query expressions against XML documents. Although this edition of this
book does not provide a chapter solely dedicated to programming with .NET’s XML APIs, by now
you have probably picked up on the fact of how deeply XML data representation has been inte-
grated into the .NET Framework.

Application and web-based configuration files store data as XML. ADO.NET DataSets can easily
save out (or load in) data as XML. Windows Presentation Foundation makes use of an XML-based
grammar (XAML) to represent desktop UIs and Windows Communication Foundation (as well as the
original .NET remoting APIs) also store numerous settings as the well-formatted string we call XML.

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS 857

8849CH24.qxd 10/19/07 10:11 AM Page 857

Although XML is indeed everywhere, programming with XML has historically been very
tedious, very verbose, and very complex if one is not well versed in a great number of XML tech-
nologies (XPath, XQuery, XSLT, DOM, SAX, etc.). Since the inception of the .NET platform, Microsoft
has provided a specific assembly devoted to programming with XML documents named System.
Xml.dll. Within this binary are a number of namespaces and types to various XML programming
techniques, as well as a few .NET-specific XML APIs such as the XmlReader/XmlWriter models.

LINQ to XML As a Better DOM
Just as LINQ to SQL intends to integrate relational database manipulation directly within .NET pro-
gramming languages, LINQ to XML aspires to the same goals for XML data processing. Not only can
you use LINQ to XML as a vehicle to obtain subsets of data from an existing XML document via
LINQ queries, this same API can be used to create, modify, and parse XML data. To this end, LINQ to
XML can be thought of as a “better DOM” programming model. As well, just as LINQ to SQL can
interoperate with ADO.NET types, LINQ to XML can also interoperate with many members of the
System.Xml.dll assemblies.

The System.Xml.XLinq Namespace
Somewhat surprisingly, the core LINQ to XML assembly (System.Xml.Linq.dll) defines a very small
number of types in three distinct namespaces, specifically System.Xml.Linq, System.Xml.Schema,
and System.Xml.XPath (see Figure 24-9).

Figure 24-9. The namespaces of System.Xml.Linq.dll

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS858

8849CH24.qxd 10/19/07 10:11 AM Page 858

The core namespace, System.Xml.Linq, contains a very manageable set of types that represents
various aspects of an XML document (its elements and their attributes, XML namespaces, XML
comments, and processing instructions, etc.). Table 24-3 documents the core members of
System.Xml.Linq.

Table 24-3. Select Members of the System.Xml.Linq Namespace

Member of System.Xml.Linq Meaning in Life

XAttribute Represents an XML attribute on a given XML element

XComment Represents an XML comment

XDeclaration Represents the opening declaration of an XML document

XDocument Represents the entirety of an XML document

XElement Represents a given element within an XML document

XName/XNamespace Provide a very simple manner to define and reference XML
namespaces

To begin our investigation of these (and other) types, create a new Console Application named
LinqToXmlBasics and import the System.Xml.Linq namespace in your initial code file.

Programmatically Creating XML Documents
Unlike the original .NET XML programming model (à la System.Xml.dll), manipulating an XML
document using LINQ can be achieved in a functional manner. Thus, rather than building a docu-
ment in memory using the very verbose DOM API, LINQ to XML allows you to do go “DOM free” if
you so choose.

Not only does this greatly reduce the amount of required code, but the programming model
maps almost directly to the format of well-formed XML data. To illustrate, add a method to your
Program class named CreateFunctionalXmlElement(), implemented as follows:

static void CreateFunctionalXmlElement()
{
// A "functional" approach to build an
// XML element in memory.
XElement inventory =
new XElement("Inventory",
new XElement("Car", new XAttribute("ID", "1"),
new XElement("Color", "Green"),
new XElement("Make", "BMW"),
new XElement("PetName", "Stan")

)
);

// Call ToString() on our XElement.
Console.WriteLine(inventory);

}

Here, notice that the constructor of the inventory XElement object is in fact a tree of additional
XElements and XAttributes. Also note that by mindfully indenting our code statements, our code
base has a similar look and feel to the XML document itself. If we call our method from within
Main(), we find the output shown in Figure 24-10.

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS 859

8849CH24.qxd 10/19/07 10:11 AM Page 859

Figure 24-10. A functional approach to XML document creation

To create an entire XML document in memory (with comments, processing instructions, open-
ing declarations, etc.), you can load the object tree into the constructor of an XDocument type.
Consider the following CreateFunctionalXmlDoc() method, which first creates an in-memory docu-
ment and then saves it to a local file:

static void CreateFunctionalXmlDoc()
{
XDocument inventoryDoc =
new XDocument(
new XDeclaration("1.0", "utf-8", "yes"),
new XComment("Current Inventory of AutoLot"),
new XElement("Inventory",
new XElement("Car", new XAttribute("ID", "1"),
new XElement("Color", "Green"),
new XElement("Make", "BMW"),
new XElement("PetName", "Stan")

),
new XElement("Car", new XAttribute("ID", "2"),
new XElement("Color", "Pink"),
new XElement("Make", "Yugo"),
new XElement("PetName", "Melvin")

)
)

);
// Display the document and save to disk.
Console.WriteLine(inventoryDoc);
inventoryDoc.Save("SimpleInventory.xml");

}

Figure 24-11 shows the SimpleInventory.xml file opened within Visual Studio 2008.
As you can see, the XElement and XDocument types each define a constructor that takes an

XName as the first parameter and a parameter array of objects as the second. The XName type is
used in LINQ to SQL to represent (obviously) the name of the item you are creating, while the
parameter array of objects can consist of any number of additional LINQ to XML types (XComment,
XProcessingInstruction, XElement, XAttribute, etc.), as well as simple strings (for element content)
or an object implementing IEnumerable.

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS860

8849CH24.qxd 10/19/07 10:11 AM Page 860

Figure 24-11. The persisted XML document

Generating Documents from LINQ Queries
As far as that last point is concerned, assume we have an anonymous array of anonymous types
that represent a simple Car class. We could now create an array of these objects and build a LINQ
query that will select each name/value pair to dynamically build a new XElement:

static void CreateXmlDocFromArray()
{
// Create an anonymous array of anonymous types.
var data = new [] {
new { PetName = "Melvin", ID = 10 },
new { PetName = "Pat", ID = 11 },
new { PetName = "Danny", ID = 12 },
new { PetName = "Clunker", ID = 13 }

};

// Now enumerate over the array to build
// an XElement.
XElement vehicles =
new XElement("Inventory",
from c in data
select new XElement("Car",
new XAttribute("ID", c.ID),
new XElement("PetName", c.PetName)
)

);
Console.WriteLine(vehicles);

}

Loading and Parsing XML Content
The XElement and XDocument types both support Load() and Parse() methods, which allow you to
hydrate an XML object model from string data or external files. Consider the following method,
which illustrates both approaches:

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS 861

8849CH24.qxd 10/19/07 10:11 AM Page 861

static void LoadExistingXml()
{
// Build an XElement from string.
string myElement =
@"<Car ID ='3'>
<Color>Yellow</Color>
<Make>Yugo</Make>

</Car>";
XElement newElement = XElement.Parse(myElement);
Console.WriteLine(newElement);
Console.WriteLine();

// Load the SimpleInventory.xml file.
XDocument myDoc = XDocument.Load("SimpleInventory.xml");
Console.WriteLine(myDoc);

}

■Source Code The LinqToXmlBasics example can be found under the Chapter 24 subdirectory.

Navigating an In-Memory Document
So, that this point you have seen various ways in which LINQ to XML can be used to create, save,
parse, and load XML data. The next aspect of LINQ to XML we need to examine is how to navigate a
given document to locate specific elements/attributes. While the LINQ to XML object model pro-
vides a number of methods that can be used to programmatically navigate a document, not too
surprisingly LINQ query expressions can also be used for this very purpose.

Since you have already seen numerous examples of building query expressions, the next
example will be short and sweet. First, create a new Console Application named
NavigationWithLinqToXml and import the System.Xml.Linq namespace. Next, add a new XML
document into your current project named Inventory.xml, which supports a small set of entries
within the root <Inventory> element. Here is one possibility:

<?xml version="1.0" encoding="utf-8"?>
<Inventory>
<Car carID ="0">
<Make>Ford</Make>
<Color>Blue</Color>
<PetName>Chuck</PetName>

</Car>
<Car carID ="1">
<Make>VW</Make>
<Color>Silver</Color>
<PetName>Mary</PetName>

</Car>
<Car carID ="2">
<Make>Yugo</Make>
<Color>Pink</Color>
<PetName>Gipper</PetName>

</Car>
<Car carID ="55">
<Make>Ford</Make>
<Color>Yellow</Color>

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS862

8849CH24.qxd 10/19/07 10:11 AM Page 862

<PetName>Max</PetName>
</Car>
<Car carID ="98">
<Make>BMW</Make>
<Color>Black</Color>
<PetName>Zippy</PetName>

</Car>
</Inventory>

Now, select this file within the Solution Explorer and use the Properties window to set the Copy
to Output Directory property to Copy Always (to ensure a copy of the file ends up in your Bin
folder). Finally, update your Main() method to load this file into memory using XElement.Load().
The local doc variable will be passed into various helper methods to modify the data in various
manners:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with LINQ to XML *****\n");

// Load the Inventory.xml document into memory.
XElement doc = XElement.Load("Inventory.xml");

// We will author each of these next...
PrintAllPetNames(doc);
Console.WriteLine();
GetAllFords(doc);
Console.ReadLine();

}

The PrintAllPetNames() method illustrates the use of the XElement.Descendants() method,
which allows you to directly specify a given subelement you wish to navigate to in order to apply a
LINQ query expression. Here we are selecting each PetName value and printing out the contents to
the console:

static void PrintAllPetNames(XElement doc)
{
var petNames = from pn in doc.Descendants("PetName")

select pn.Value;

foreach (var name in petNames)
Console.WriteLine("Name: {0}", name);

}

The GetAllFords() method is very similar in nature. Given the incoming XElement, we define a
where operator and select the all XElements where the Make element is equal to the value "Ford":

static void GetAllFords(XElement doc)
{
var fords = from c in doc.Descendants("Make")

where c.Value == "Ford"
select c;

foreach (var f in fords)
Console.WriteLine("Name: {0}", f);

}

Figure 24-12 shows the output of this program.

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS 863

8849CH24.qxd 10/19/07 10:11 AM Page 863

Figure 24-12. LINQ to XML in action

Modifying Data in an XML Document
Finally, as you would hope, LINQ to XML provides numerous ways to insert, delete, copy, and
update XML content. Adding new XElements to an existing XElement (or XDocument) is no harder than
calling the Add() method, which adds the data to the end of the element/document. As an alterna-
tive, you can call AddFirst() to add the item to the top of the element/document or AddAfterThis()/
AddBeforeThis() to insert data at a specific location.

Updating or deleting content is also very straightforward. After constructing a LINQ query
statement to identify the item (or items) you wish to tinker with, simply call ReplaceContent() (for
updating) or Remove()/RemoveContent() (for deletion of data). By way of a simple example, consider
the following code, which adds a set of new <Car> elements to the incoming XElement parameter:

static void AddNewElements(XElement doc)
{
// Add 5 new purple Fords to the incoming document.
for (int i = 0; i < 5; i++)
{
// Create a new XElement
XElement newCar =
new XElement("Car", new XAttribute("ID", i + 1000),
new XElement("Color", "Green"),
new XElement("Make", "Ford"),
new XElement("PetName", "")

);

// Add to doc.
doc.Add(newCar);

}
// Show the updates.
Console.WriteLine(doc);

}

That wraps up our look at the major LINQ APIs that ship with .NET 3.5, and this chapter as
well! Over the remainder of this book, you will find various LINQ queries where appropriate; how-
ever, be aware that each of the APIs examined here (LINQ to DataSet, LINQ to SQL, and LINQ to
XML) are extensively documented in the .NET Framework 3.5 SDK documentation.

■Source Code The NavigationWithLinqToXml to XML example can be found under the Chapter 24
subdirectory.

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS864

8849CH24.qxd 10/19/07 10:11 AM Page 864

Summary
This chapter extended your understanding of LINQ by introducing three LINQ-centric APIs. We
began by examining how to transform an ADO.NET DataSet into a LINQ-compatible container
using the AsEnumerable() extension method. Once you have extracted an IEnumerable<T> type, you
are able to apply any flavor of LINQ query.

Closely related to LINQ to DataSet is the LINQ to SQL API. This aspect of LINQ not only allows
you to apply query expressions to data held within relational databases, it also provides infrastruc-
ture that essentially encapsulates all trace of the underlying ADO.NET data types. As you have seen,
the DataContext type can be used to perform all of the expected database operations, including
invoking stored procedures.

We wrapped up by examining LINQ to XML. Similar to LINQ to SQL, this API can be used either
to apply LINQ queries to data within an XML document or to build XML documents in a functional
manner. The end result is an extreme simplification of how the .NET platform supports the manipu-
lation of XML documents.

CHAPTER 24 ■ PROGRAMMING WITH THE L INQ APIS 865

8849CH24.qxd 10/19/07 10:11 AM Page 865

8849CH24.qxd 10/19/07 10:11 AM Page 866

Introducing Windows Communication
Foundation

.NET 3.0 introduced an API specifically for the process of building distributed systems named
Windows Communication Foundation (WCF). Unlike other distributed APIs you may have used in
the past (DCOM, .NET remoting, XML web services, etc.), WCF provides a single, unified, and
extendable programming object model that can be used to interact with a number of previously
diverse distributed technologies.

This chapter begins by framing the need for WCF and examining the problems it intends to
solve by way of a quick review of previous distributed computing APIs. After we look at the services
provided by WCF, we’ll turn to examine the .NET assemblies (and core types) that represent this
programming model. Over the remainder of this chapter, we’ll build several WCF services, hosts,
and clients using various WCF development tools.

■Note This chapter will provide you with a firm foundation in WCF development. However, if you require a com-
prehensive treatment of the subject, check out Pro WCF: Practical Microsoft SOA Implementation by Chris Peiris
and Dennis Mulder (Apress, 2007).

A Potpourri of Distributed Computing APIs
The Windows operating system has historically provided a number of APIs for building distributed
systems. While it is true that most people consider a “distributed system” to involve at the very least
two networked computers, this term in the broader sense can simply refer to two executables that
need to exchange data, even if they happen to be running on the same physical machine. Using this
definition, selecting a distributed API for your current programming task typically involves asking
the following pivotal question:

Will this system be used exclusively “in house,” or will external users require access to the
application’s functionality?

If you are building a distributed system for in-house use, you have a far greater chance of
ensuring that each connected computer is running the same operating system, using the same pro-
gramming framework (.NET, COM, J2EE, etc.), and you will be able to leverage your existing security
system for purposes of authentication, authorization, and so forth. In this situation, you may be
willing to select a particular distributed API that will tie you to a specific operating system/
programming framework for the purposes of performance.

867

C H A P T E R 2 5

8849CH25.qxd 10/16/07 10:51 AM Page 867

In contrast, if you are building a system that must be reached by those outside of your walls,
you have a whole other set of issues to contend with. First of all, you will most likely not be able to
dictate to external users which operating system they make use of, which programming framework
they use to build their software, or how they configure their security settings.

Furthermore, if you happen to work for a larger company or in a university setting that makes
use of numerous operating systems and programming technologies, an in-house application sud-
denly faces the same challenges as an outward-facing application. In either of these cases, you need
to limit yourself to a more flexible distributed API to ensure the furthest “reach” of your application.

Based on the answer to this key distributed computing question, the next task is to pinpoint
exactly which API (or set of APIs) to make use of. By way of a painless overview, the following sec-
tions present a quick recap of some of the major distributed APIs historically used by Windows
software developers. Once you finish this brief history lesson, you will easily be able to see the use-
fulness of Windows Communication Foundation.

■Note Just to make sure we are all on the same page here, I feel compelled to point out that WCF (and the tech-
nologies it encompasses) has nothing to do with building an HTML-based web application. While it is true that web
applications can be considered “distributed” in that two machines are typically involved in the exchange, WCF is
about establishing connections to machines to share the functionality of remote components—not for displaying
HTML in a web browser. Chapter 31 will begin your examination of building websites with the .NET platform.

The Role of DCOM
Prior to the release of the .NET platform, Distributed Component Object Model (DCOM) was the
remoting API of choice for Microsoft-centric development endeavors. Using DCOM, it was possible
to build distributed systems using COM objects, the system registry, and a good amount of elbow
grease. One benefit of DCOM was that it allowed for location transparency of components. Simply
put, this allowed client software to be programmed in such a way that the physical locations of the
remote objects were not hard-coded. Regardless of whether the remote object was on the same
machine or a secondary networked machine, the code base could remain neutral, as the actual
location was recorded externally in the system registry.

While DCOM did enjoy some degree of success, for all practical purposes it was a Windows-
centric API. Even though DCOM was ported to a few other operating systems, DCOM alone did not
provide a fabric to build comprehensive solutions involving multiple operating systems (Windows,
Unix, Mac) or promote sharing of data between diverse architectures (COM, J2EE, CORBA, etc.).

■Note There were some attempts to port DCOM to run on various flavors of Unix/Linux, but the end result was
lackluster and eventually became a technology footnote.

By and large, DCOM was best suited for in-house application development, as exposing COM
types outside company walls entailed a set of additional complications (firewalls and so forth). With
the release of the .NET platform, DCOM quickly became a legacy programming model, and unless
you are maintaining legacy DCOM systems, you can consider it a deprecated technology.

The Role of COM+/Enterprise Services
DCOM alone did little more than define a way to establish a communication channel between two
pieces of COM-based software. To fill in the missing pieces required for building a feature-rich

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION868

8849CH25.qxd 10/16/07 10:51 AM Page 868

distributed computing solution, Microsoft eventually released Microsoft Transaction Server (MTS),
which was subsequently renamed to COM+ at a later release.

Despite its name, COM+ is not only used by COM programmers—it is completely accessible to
.NET professionals. Since the first release of the .NET platform, the base class libraries provided a
namespace named System.EnterpriseServices. Here, .NET programmers could build managed
libraries that could be installed into the COM+ runtime in order to access the same set of services as
a traditional COM+-aware COM server. In either case, once a COM+-aware library was installed into
the COM+ runtime, it was termed a serviced component.

COM+ provides a number of features that serviced components can leverage, including trans-
action management, object lifetime management, pooling services, a role-based security system, a
loosely coupled event model, and so on. This was a major benefit at the time, given that most dis-
tributed systems require the same set of services. Rather than forcing developers to code them by
hand, COM+ provided an out-of-the-box solution.

One of the very compelling aspects of COM+ was the fact that all of these settings could be
configured in a declarative manner using administrative tools. Thus, if you wished to ensure an
object was monitored under a transactional context or belonged to a particular security role, you
simply needed to select the correct check boxes.

While COM+/Enterprise Services is still in use today, this technology is a Windows-only solu-
tion that is best suited for in-house application development or as a back-end service indirectly
manipulated by more agonistic front ends (e.g., a public website that makes calls on serviced com-
ponents [aka COM+ objects] in the background).

■Note WCF does not currently provide a way to build serviced components. However, it does provide a manner
for WCF services to communicate with existing COM+ objects. If you need to build serviced components using C#,
you will need to make direct use of the System.EnterpriseServices namespace. Consult the .NET Framework
3.5 SDK documentation for details.

The Role of MSMQ
The Microsoft Message Queuing (MSMQ) API allows developers to build distributed systems that
need to ensure reliable delivery of message data on the network. As we all know too well, in any dis-
tributed system there is the risk that a network server is down, a database is offline, or connections
are lost for mysterious reasons. Furthermore, a number of applications need to be constructed in
such a way that they hold message data for delivery at a later time (known as queuing data).

At first, MSMQ was packaged as a set of low-level C-based APIs and COM objects. As well, using
the System.Messaging namespace, .NET programmers could hook into MSMQ and build software
that communicated with intermittently connected applications in a dependable fashion. Last but
not least, the COM+ layer incorporated MSMQ functionality into the runtime (in a simplified for-
mat) using a technology termed Queued Components (QC).

Regardless of which programming model you used to interact with the MSMQ runtime, the
end result ensured that applications could deliver messages in a reliable and timely fashion. Like
COM+, MSMQ is still certainly part of the fabric of building distributed software on the Windows
operating system.

The Role of .NET Remoting
As mentioned, with the release of the .NET platform, DCOM quickly became a legacy distributed
API. In its place, the .NET base class libraries shipped with the .NET remoting layer, represented by
the System.Runtime.Remoting namespaces. This API allows multiple computers to distribute
objects, provided they are all running the applications under the .NET platform.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 869

8849CH25.qxd 10/16/07 10:51 AM Page 869

The .NET remoting APIs provided a number of very useful features. Most important was the
use of XML-based configuration files to declaratively define the underlying plumbing used by the
client and the server software. Using *.config files, it was very simple to radically alter the function-
ality of your distributed system simply by changing the content of the configuration files and
restarting the application.

As well, given the fact that this API is useable only by .NET applications, you can gain various
performance benefits, as data can be encoded in a compact binary format, and you can make use of
the Common Type System (CTS) when defining parameters and return values. While it is possible to
make use of .NET remoting to build distributed systems that span multiple operating systems (via
Mono, briefly mentioned in Chapter 1 and detailed in Appendix B), interoperability between other
programming architectures (such as J2EE) was still not directly possible.

■Note Previous editions of this text included an entire chapter devoted to the topic of the .NET remoting APIs.
With the release of WCF, however, I have decided not to include this chapter in this edition. The chapter on .NET
remoting APIs (titled “The .NET Remoting Layer”) can be obtained free of charge from the Apress website
(http://www.apress.com) by those who have purchased this text.

The Role of XML Web Services
Each of the previous distributed APIs provided little (if any) support to allow external callers to
access the supplied functionality in an agnostic manner. When you need to expose the services of
remote objects to any operating system and any programming model, XML web services provide
the most straightforward way of doing so.

Unlike a traditional browser-based web application, a web service is simply a way to expose the
functionality of remote components via standard web protocols. Since the initial release of .NET,
programmers have been provided with superior support for building and consuming XML web
services via the System.Web.Services namespace. In fact, in many cases, building a feature-com-
plete web service is no more complicated than applying the [WebMethod] attribute to each public
method you wish to provide access to. Furthermore, Visual Studio 2008 allows you to connect to a
remote web service with the click of a button (or two).

Web services allow developers to build .NET assemblies containing types that can be accessed
via simple HTTP. Furthermore, a web service encodes its data as simple XML. Given the fact that
web services are based on open industry standards (HTTP, XML, SOAP, etc.) rather than proprietary
type systems and proprietary wire formats (as is the case with DCOM or .NET remoting), they allow
for a high degree of interoperability and data exchange. Figure 25-1 illustrates the agnostic nature of
XML web services.

Of course, no distributed API is perfect. One potential drawback of web services is the fact that
they can suffer from some performance issues (given the use of HTTP and XML data representa-
tion), and they may not be an ideal solution for in-house applications where a TCP-based protocol
and binary formatting of data could be used without penalty.

A .NET Web Service Example
For many years now, .NET programmers have created web services using the ASP.NET Web Service
project template of Visual Studio, which can be accessed using the File ➤ New ➤ Web Site dialog
box. This particular project template creates a commonly used directory structure and a handful of
initial files to represent the web service itself. While this project template is very helpful to get you
up and running, you are able to build a .NET XML web service using a simple text editor and test it
immediately using the ASP.NET development web server, WebDev.WebServer.exe (Chapter 31 exam-
ines this utility in more detail).

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION870

8849CH25.qxd 10/16/07 10:51 AM Page 870

http://www.apress.com

Figure 25-1. XML web services allow for a very high degree of interoperability.

By way of a quick example, assume you have authored the following programming logic in a
new file named HelloWebService.asmx (*.asmx is the default file extension for a .NET XML web serv-
ice file). Once you have done so, save it into C:\HelloWebService.

<%@ WebService Language="C#" Class="HelloWebService" %>
using System;
using System.Web.Services;

public class HelloWebService
{
[WebMethod]
public string HelloWorld()
{
return "Hello World";

}
}

While this simple service is hardly doing anything terribly useful, notice that the file opens with
the WebService directive, which is used to specify which .NET programming language is used in the
file, and the name of the class type representing the service. Beyond this, the only point of interest is
that the HelloWorld() method has been decorated with the [WebMethod] attribute. In many cases,
this is all you need to do to expose a method to external callers via HTTP. Finally, notice that you do
not need to do anything special to encode the return value into XML, as this is done automatically
by the runtime.

If you wish to test this web service, simply open up a Visual Studio 2008 command prompt and
enter the following command (if you’d like to see each option you can use with this development
web server, simply enter the -? argument):

webdev.webserver /port:8080 /path:"C:\HelloWebService"

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 871

8849CH25.qxd 10/16/07 10:51 AM Page 871

At this point, your browser should launch, showing you the directory contents. Once you click
the HelloWorld.asmx file, you will see each “web method” exposed from this endpoint. At this point,
you can click the HelloWorld link to invoke the method via HTTP. Once you do, the browser will dis-
play the return value encoded as XML:

<?xml version="1.0" encoding="utf-8" ?>
<string xmlns="http://tempuri.org/">
Hello World

</string>

Simple stuff, huh? Even better, when you wish to generate a client-side proxy file that can be
used to invoke web methods, you can make use of the wsdl.exe command-line tool or Visual
Studio’s Add Service Reference option under the Project menu. These same tools can be used to
generate a client-side *.config file, which contains various configuration settings for the proxy
(such as the web service endpoint) in a declarative manner.

This proxy code will hide the details of manually working with HTTP connections and the
translation of XML data back into .NET data types. Assuming you have generated a proxy for this
simple web service (there is no need to do so here), the client application is able to invoke the web
method in a painfully simple manner, for example:

static void Main(string[] args)
{
// The proxy type contains code to read the *.config file
// to resolve the location of the web service.
HelloWebServiceProxy proxy = new HelloWebServiceProxy();
Console.WriteLine(proxy.HelloWorld());

}

■Note Previous editions of this text included an entire chapter devoted to the topic of .NET XML web services.
With the release of WCF, however, I have decided not to include this chapter in this edition. This chapter on .NET
XML web services (titled “Understanding XML Web Services”) can be obtained free of charge from the Apress
website (http://www.apress.com) by those who have purchased this text.

While it is still perfectly possible to build this “traditional” flavor of XML web service under
.NET 3.5, most new service projects will benefit from instead making use of the WCF templates. As
you will see, you have many HTTP-based bindings to choose from, which allow you to essentially
build a web service without selecting a specific “web service” project template.

■Source Code The HelloWorldWebService project is located under the Chapter 25 subdirectory.

Web Service Standards
A major problem that web services faced early on was the fact that all of the big industry players
(Microsoft, IBM, and Sun Microsystems) created web service implementations that were not 100
percent compatible with other web service implementations. Obviously, this was an issue, given
that the whole point of web services was to achieve a very high degree of interoperability across
platforms and operating systems!

In order to ensure the interoperability of web services, groups such as the World Wide Web
Consortium (W3C; http://www.w3.org) and the Web Services Interoperability Organization (WS-I;
http://www.ws-i.org) began to author several specifications that laid out the details of how a

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION872

8849CH25.qxd 10/16/07 10:51 AM Page 872

http://tempuri.org
http://www.apress.com
http://www.w3.org
http://www.ws-i.org
http://tempuri.org

software vendor (again, such as IBM, Microsoft, or Sun Microsystems) should build web service–
centric software libraries to ensure compatibility.

Collectively all of these specifications are given the blanket name WS-* and cover the issues of
security, attachments, the description of web services (via the Web Service Description Language, or
WSDL), policies, SOAP formats, and a slew of other important details.

As you may know, Microsoft’s implementation of most of these standards (for both managed
and unmanaged code) is embodied in the Web Services Enhancements (WSE) 3.0 toolkit, which can
be downloaded free of charge from the supporting website: http://msdn2.microsoft.com/en-us/
webservices.

When you are building WCF service applications, you will not need to make direct use of the
assemblies that are part of the WSE 3.0 toolkit. Rather, if you build a WCF service that makes use of
an HTTP-based binding, these same WS-* specifications will be given to you out of the box (exactly
which ones will be based on the binding you choose).

Named Pipes, Sockets, and P2P
As if choosing among DCOM, .NET remoting, web services, COM+, and MSMQ was not challenging
enough, the list of distributed APIs continues. Programmers can also make use of additional inter-
process communication APIs such as named pipes, sockets, and peer-to-peer (P2P) services. These
lower-level APIs typically provide better performance (especially for machines on the same LAN);
however, using these APIs becomes more complex (if not impossible) for outward-facing applica-
tions.

If you are building a distributed system involving a set of applications running on the same
physical machine, you can make use of the named pipes API via the System.IO.Pipes namespace
(which is new to .NET 3.5). This approach can provide the absolute fastest way to push data
between applications on the same machine.

As well, if you are building an application that requires absolute control over how network
access is obtained and maintained, sockets and P2P functionality can be achieved under the .NET
platform using the System.Net.Sockets and System.Net.PeerToPeer namespaces, respectively.

The Role of WCF
As I am sure you already figured out from the previous few pages, the wide array of distributed tech-
nologies makes it very difficult to pick the right tool for the job. This is further complicated by the
fact that several of these technologies overlap in the services they provide (most notably in the areas
of transactions and security).

Even when a .NET developer has selected what appear to be the “correct” technologies for the
task at hand, building, maintaining, and configuring such an application is complex at best. Each
API has its own programming model, its own unique set of configuration utilities, and so forth.

Because of this, prior to .NET 3.0, it was very difficult to “plug and play” distributed APIs with-
out authoring a considerable amount of custom infrastructure. For example, if you build your
system using the .NET remoting APIs, and you later decide that XML web services are a more appro-
priate solution, you need to reengineer your code base.

WCF is a distributed computing toolkit introduced with .NET 3.0 that integrates these previous
independent distributed technologies into a streamlined API represented primarily via the System.
ServiceModel namespace. Using WCF, you are able to expose services to callers using a wide variety
of techniques. For example, if you are building an in-house application where all connected
machines are Windows based, you can make use of various TCP protocols to ensure the fastest
possible performance. This same service can also be exposed using the XML web service–based
protocol to allow external callers to leverage its functionality regardless of the programming lan-
guage or operating system.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 873

8849CH25.qxd 10/16/07 10:51 AM Page 873

http://msdn2.microsoft.com/en-us

Given the fact that WCF allows you to pick the correct protocol for the job (using a common
programming model), you will find that it becomes quite easy to plug and play the underlying
plumbing of your distributed application. In most cases, you can do so without being required to
recompile or redeploy the client/service software, as the grungy details are often relegated to appli-
cation configuration files (much like the older .NET remoting APIs).

An Overview of WCF Features
Interoperability and integration of diverse APIs are only two (very important) aspects of WCF. In
addition, WCF provides a rich software fabric that complements the remoting technologies it
exposes. Consider the following list of major WCF features:

• Support for strongly typed as well as untyped messages. This approach allows .NET applica-
tions to share custom types efficiently, while software created using other platforms (such as
J2EE) can consume streams of loosely typed XML.

• Support for several bindings (raw HTTP, TCP, MSMQ, and named pipes) to allow you to
choose the most appropriate plumbing to transport message data to and fro.

• Support for the latest and greatest web service specifications (WS-*).

• A fully integrated security model encompassing both native Win32/.NET security protocols
and numerous neutral security techniques built upon web service standards.

• Support for sessionlike state management techniques, as well as support for one-way state-
less messages.

As impressive as this list of features may be, it really only scratches the surface of the function-
ality WCF provides. WCF also offers tracing and logging facilities, performance counters, a publish
and subscribe event model, and transactional support, among other features.

An Overview of Service-Oriented Architecture
Yet another benefit of WCF is that it is based on the design principles established by service-oriented
architecture (SOA). To be sure, SOA is a major buzzword in the industry, and like most buzzwords,
SOA can be defined in numerous ways. Simply put, SOA is a way to design a distributed system
where several autonomous services work in conjunction by passing messages across boundaries
(either networked machines or simply two processes on the same machine) using well-defined
interfaces.

In the world of WCF, these “well-defined interfaces” are typically created using actual CLR
interface types (see Chapter 9). In a more general sense, however, the interface of a service simply
describes the set of members that may be invoked by external callers.

When WCF was designed, the WCF team did so by observing four tenets of SOA design princi-
ples. While these tenets are typically honored automatically simply by building a WCF application,
understanding these four cardinal design rules of SOA can help put WCF in further perspective. The
sections that follow provide a brief overview of each tenet.

Tenet 1: Boundaries Are Explicit
This tenet reiterates the fact that the functionality of a WCF service is expressed using well-defined
interfaces (e.g., descriptions of each member, its parameters, and its return values). The only way
that an external caller is able to communicate with a WCF service is via the interface, and the exter-
nal caller remains blissfully unaware of the underlying implementation details.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION874

8849CH25.qxd 10/16/07 10:51 AM Page 874

Tenet 2: Services Are Autonomous
When speaking of services as “autonomous” entities, we are referring to the fact that a given WCF
service is (as much as possible) an island unto itself. An autonomous service should be independ-
ent with regard to version issues, deployment issues, and installation issues. To help promote this
tenet, we yet again fall back on a key aspect of interface-based programming. Once an interface is
in production, it should never be changed (or you will risk breaking existing clients). When you
need to extend the functionality of your WCF service, simply author new interfaces that model the
desired functionality.

Tenet 3: Services Communicate via Contract, Not Implementation
The third tenet is yet another byproduct of interface-based programming in that the implementa-
tion details of a WCF service (which language it was written in, how it gets its work accomplished,
etc.) are of no concern to the external caller. WCF clients interact with services solely through their
exposed public interfaces. Furthermore, if the members of a service interface expose custom com-
plex types, they need to be fully detailed as a data contract to ensure all callers can map the content
into a particular data structure.

Tenet 4: Service Compatibility Is Based on Policy
Because CLR interfaces provide strongly typed contracts for all WCF clients (and may also be used
to generate a related WSDL document based on your choice of binding), it is important to point out
that interfaces/WSDL alone is not expressive enough to detail aspects of what the service is capable
of doing. Given this, SOA allows us to define “policies” that further qualify the semantics of the serv-
ice (e.g., the expected security requirements used to talk to the service). Using these policies, we are
able to basically separate the low-level syntactic description of our service (the exposed interfaces)
from the semantic details of how they work and how they need to be invoked.

WCF: The Bottom Line
Hopefully this little history lesson has illustrated that WCF is the preferred approach for building
distributed applications under .NET 3.0 and higher. Whether you are attempting to build an in-
house application using TCP protocols, are moving data between programs on the same machine
using named pipes, or are exposing data to the world at large using web service protocols, WCF is
the recommended API to do so.

This is not to say you cannot use the original .NET distributed-centric namespaces
(System.Runtime.Remoting, System.Messaging, System.EnterpriseServices, System.Web.Services,
etc.) in new development efforts. In fact, in some cases (specifically if you need to build COM+
objects), you will be required to do so. In any case, if you have used these APIs in previous projects,
you will find learning WCF straightforward. Like the technologies that preceded it, WCF makes con-
siderable use of XML-based configuration files, .NET attributes, and proxy generation utilities.

With this introductory foundation behind us, we can now turn to the topic of actually building
WCF applications. Again, do understand that full coverage of WCF would require a entire book, as
each of the supported services (MSMQ, COM+, P2P, named pipes, etc.) could easily be a chapter
unto itself. Here, you will learn the overall process of building WCF programs using both TCP- and
HTTP-based (e.g., web service) protocols. This should put you in a good position for future study as
you see fit.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 875

8849CH25.qxd 10/16/07 10:51 AM Page 875

Investigating the Core WCF Assemblies
As you would expect, the programming fabric of WCF is represented by a set of .NET assemblies
installed into the GAC. Table 25-1 describes the overall role of the core WCF assemblies you will
need to make use of in just about any WCF application.

Table 25-1. Core WCF Assemblies

Assembly Meaning in Life

System.Runtime.Serialization.dll Defines namespaces and types that can be used for
serializing and deserializing objects within the WCF
framework

System.ServiceModel.dll The core assembly that contains the types used to build any
sort of WCF application

These two assemblies define a number of new namespaces and types. While you should con-
sult the .NET Framework 3.5 SDK documentation for complete details, Table 25-2 documents the
roles of some of the important namespaces to be aware of.

Table 25-2. Core WCF Namespaces

Namespace Meaning in Life

System.Runtime.Serialization Defines numerous types used to control how data is
serialized and deserialized within the WCF framework

System.ServiceModel The primary WCF namespace that defines binding and
hosting types, as well as basic security and transactional
types

System.ServiceModel.Configuration Defines numerous types that provide programmatic
access to WCF configuration files

System.ServiceModel.Description Defines types that provide an object model to the
addresses, bindings, and contracts defined within WCF
configuration files

System.ServiceModel.MsmqIntegration Contains types to integrate with the MSMQ service

System.ServiceModel.Security Defines numerous types to control aspects of the WCF
security layers

A BRIEF WORD REGARDING CARDSPACE

In addition to System.ServiceModel.dll and System.Runtime.Serialization.dll, WCF provides a third
WCF assembly named System.IdentityModel.dll. Here you will find a number of additional namespaces and
types that support the WCF CardSpace API. This technology allows you to establish and manage digital identities
within a WCF application. Essentially, the CardSpace API provides a unified programming model to account for vari-
ous security-related details for WCF applications, such as caller identity, user authentication/authorization services,
and whatnot.

We will not examine CardSpace further in this edition of the text, so be sure to consult the .NET Framework
3.5 SDK documentation if you are interested in learning more.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION876

8849CH25.qxd 10/16/07 10:51 AM Page 876

The Visual Studio WCF Project Templates
As will be explained in more detail later in this chapter, a WCF application is typically represented
by three interrelated assemblies, one of which is a *.dll that contains the types that external callers
can communicate with (in other words, the WCF service itself). When you wish to build a WCF serv-
ice, it is perfectly permissible to select a standard Class Library project template (see Chapter 15) as
a starting point and manually reference the WCF assemblies.

Alternatively, you can create a new WCF service by selecting the WCF Service Library project
template of Visual Studio 2008 (see Figure 25-2). This project type automatically sets references to
the required WCF assemblies; however, it also generates a good deal of “starter code,” which you will
more likely than not simply delete.

Figure 25-2. The Visual Studio 2008 WCF Service Library project template

One benefit of selecting the WCF Service Library project template is that it also supplies you
with an App.config file, which may seem strange since we are building a .NET *.dll, not a .NET
*.exe. This file, however, is very useful in that when you debug or run your WCF Service Library
project, the Visual Studio IDE will automatically launch the WCF Test Client application. This pro-
gram (WcfTestClient.exe) will read the settings in the App.config file in order to host your service
for testing purposes. You’ll learn more about the WCF Test Client later in this chapter.

■Note The App.config file of the WCF Service Library project is also useful in that it shows you the bare-bones
settings used to configure a WCF host application. In fact, you can copy and paste much of this code into your
host’s actual configuration file.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 877

8849CH25.qxd 10/16/07 10:51 AM Page 877

In addition to the basic WCF Service Library template, the WCF project category of the New
Project dialog box defines two WCF library projects that integrate Windows Workflow Foundation
functionality into a WCF service as well as a template to build an RSS library (all of which are also
seen in Figure 25-2). The next chapter will introduce you to the Windows Workflow Foundation, so
I’ll ignore these particular WCF project templates for the time being (and I’ll leave it to the inter-
ested reader to dig into the RSS feed project template).

The WCF Service Website Project Template
Truth be told, there is yet another Visual Studio 2008 WCF-centric project template that you will
find in the New Web Site dialog box, activated via the File ➤ New ➤ Web Site menu option (see
Figure 25-3).

Figure 25-3. The Visual Studio 2008 web-based WCF Service project template

This WCF Service project template is useful when you know from the outset that your WCF
service will make use of web service–based protocols rather than, for example, named pipes. This
option can automatically create a new Internet Information Services (IIS) virtual directory to con-
tain your WCF program files, create a proper Web.config file to expose the service via HTTP, and
author the necessary *.svc file (more about *.svc files later in this chapter). In this light, the web-
based WCF Service project is simply a time-saver, as the IDE will automatically set up the required
IIS infrastructure.

In contrast, if you build a new WCF service using the WCF Service Library option, you have the
ability to host the service in a variety of ways (custom host, Windows service, manually built IIS vir-
tual directory, etc.). This option is more appropriate when you wish to build a custom host for your
WCF service.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION878

8849CH25.qxd 10/16/07 10:51 AM Page 878

The Basic Composition of a WCF Application
When you are building a WCF distributed system, you will typically do so by creating three interre-
lated assemblies:

• The WCF Service assembly: This *.dll contains the classes and interfaces that represent the
overall functionality you are exposing to external callers.

• The WCF Service host: This software module is the entity that hosts your WCF service assembly.

• The WCF client: This is the application that accesses the service’s functionality through an
intervening proxy.

As mentioned, the WCF service assembly is a .NET class library that contains a number of WCF
contracts and their implementations. The one key difference is that the interface contracts are
adorned with various attributes that control data type representation, how the WCF runtime inter-
acts with the exposed types, and so forth.

The second assembly, the WCF host, can literally be any .NET executable. As you will see in this
chapter, WCF was set up in such a way that services can be easily exposed from any type of applica-
tion (Windows Forms, a Windows service, WPF applications, etc.). When you are building a custom
host, you will make use of the ServiceHost type and a related *.config file, which contains details
regarding the server-side plumbing you wish to make use of. However, if you are using IIS as the
host for your WCF service, there is no need to programmatically build a custom host, as IIS will
make use of the ServiceHost type behind the scenes.

■Note It is also possible to host a WCF service using the Vista-specific Windows Activation Service (WAS).
Consult the .NET Framework 3.5 SDK documentation for details.

The final assembly represents the client that is making calls into the WCF service. As you might
expect, this client could be any type of .NET application. Similar to the host, client applications also
typically make use of a client-side *.config file that defines the client-side plumbing.

Figure 25-4 illustrates (from a very high level) the relationship between these three interrelated
WCF assemblies. As you would assume, behind the scenes are several lower-level details used to
represent the required plumbing (factories, channels, listeners, etc.). These low-level details are
most often hidden from view; however, they can be extended or customized if required. Thankfully,
in most cases, the default plumbing will fit the bill.

Figure 25-4. A high-level look at a typical WCF application

It is also worth pointing out that the use of a server-side or client-side *.config file is techni-
cally optional. If you wish, you can hard-code the host (as well as the client) to specify the necessary

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 879

8849CH25.qxd 10/16/07 10:51 AM Page 879

plumbing (endpoints, binding, addresses, etc.). The obvious problem with this approach is that if
you need to change the plumbing details, you will be required to recode, recompile, and redeploy a
number of assemblies. Using a *.config file keeps your code base much more flexible, as changing
the plumbing is as simple as updating the file’s content and restarting the application.

The ABCs of WCF
Hosts and clients communicate with each other by agreeing on the ABCs, a friendly mnemonic for
remembering the core building blocks of a WCF application, specifically address, binding, and
contract.

• Address: The location of the service. In code, this is represented with a System.Uri type;
however, the value is typically stored in *.config files.

• Binding: WCF ships with a number of different bindings that specify network protocols,
encoding mechanisms, and the transport layer.

• Contract: A description of each method exposed from the WCF service.

Do understand that the ABC abbreviation does not imply that a developer must define the
address first, followed by binding, and ending with the contract. In many cases, a WCF developer
begins by defining a contract for the service, followed by establishing an address and bindings (but
any order will do, so long as each aspect is accounted for). Before we build our first WCF applica-
tion, here is a more detailed walk-through of the ABCs.

Understanding WCF Contracts
The notion of a contract is the key to building a WCF service. While not mandatory, the vast majority
of your WCF applications will begin by defining a set of .NET interface types that are used to repre-
sent the set of members a given WCF type will support. Specifically, interfaces that represent a WCF
contract are termed service contracts. The classes (or structures) that implement them are termed
service types.

WCF service contracts are adorned with various attributes, the most common of which are
defined in the System.ServiceModel namespace. When the members of a service contract contain
only simple data types (such as numerical data, Booleans, and string data) you can build a com-
plete WCF service using nothing more than the [ServiceContract] and [OperationContract]
attributes.

However, if your members expose custom types, you will need to make use of types in the
System.Runtime.Serialization namespace (see Figure 25-5) of the System.Runtime.Serialization.
dll assembly. Here you will find additional attributes (such as [DataMember] and [DataContract]) to
fine-tune the process of defining your interface types.

Strictly speaking, you are not required to use CLR interfaces to define a WCF contract. Many of
these same attributes can be applied on public members of a public class (or structure). However,
given the many benefits of interface-based programming (polymorphism, elegant versioning, etc.),
it is safe to consider using CLR interfaces to describe a WCF contract as a best practice.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION880

8849CH25.qxd 10/16/07 10:51 AM Page 880

Figure 25-5. System.Runtime.Serialization defines a number of attributes used when building WCF
data contracts.

Understanding WCF Bindings
Once a contract (or a set of contracts) has been defined and implemented within your service
library, the next logical step is to build a hosting agent for the WCF service itself. As mentioned, you
have a variety of possible hosts to choose from, all of which must specify the bindings used by
remote callers to gain access to the service type’s functionality.

Choosing a set of bindings is one area that makes WCF development quite different from .NET
remoting and/or XML web service development in that WCF ships with a number of binding
choices, each of which is tailored to a specific need. If none of the out-of-the-box bindings fits the
bill, it is possible to create your own by extending the CustomBinding type (something we will not do
in this chapter). Simply put, a WCF binding can specify the following characteristics:

• The contracts implemented by the service

• The transport layer used to move data (HTTP, MSMQ, named pipes, TCP)

• The channels used by the transport (one-way, request-reply, duplex)

• The encoding mechanism used to deal with the data itself (XML, binary, etc.)

• Any supported web service protocols (if permitted by the binding) such as WS-Security, WS-
Transactions, WS-Reliability, and so on

Let’s take a look at our choices.

HTTP-Based Bindings
The BasicHttpBinding, WSHttpBinding, WSDualHttpBinding, and WSFederationHttpBinding options
are geared toward exposing contract types via XML web service protocols. Clearly, if you require the
furthest reach possible for your service (multiple operating systems and multiple programming
architectures), these are the bindings to focus on, because all of these binding types encode data
based on XML representation and use HTTP on the wire.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 881

8849CH25.qxd 10/16/07 10:51 AM Page 881

In Table 25-3, note that a WCF binding can be represented in code (via class types within the
System.ServiceModel namespace) or as XML attributes defined within *.config files.

Table 25-3. The HTTP-Centric WCF Bindings

Binding Class Binding Element Meaning in Life

BasicHttpBinding <basicHttpBinding> Used to build a WS-Basic Profile (WS-I
Basic Profile 1.1)–conformant WCF
service. This binding uses HTTP as the
transport and Text/XML as the default
message encoding.

WSHttpBinding <wsHttpBinding> Similar to BasicHttpBinding, but
provides more web service features.
This binding adds support for
transactions, reliable messaging,
and WS-Addressing.

WSDualHttpBinding <wsDualHttpBinding> Similar to WSHttpBinding, but for use
with duplex contracts (e.g., the service
and client can send messages back
and forth). This binding supports only
SOAP security and requires reliable
messaging.

WSFederationHttpBinding <wsFederationHttpBinding> A secure and interoperable binding
that supports the WS-Federation
protocol, enabling organizations that
are in a federation to efficiently
authenticate and authorize users.

As the name suggests, BasicHttpBinding is the simplest of all web service–centric protocols.
Specifically, this binding will ensure that your WCF service conforms to a specification named WS-I
Basic Profile 1.1 defined by WS-I. The main reason to use this binding is to maintain backward com-
patibility with applications that were previously built to communicate with ASP.NET web services
(which have been part of the .NET libraries since version 1.0).

The WSHttpBinding protocol not only incorporates support for a subset of the WS-* specifica-
tion (transactions, security, and reliable sessions), but also supports the ability to handle binary
data encoding using Message Transmission Optimization Mechanism (MTOM).

The main benefit of WSDualHttpBinding is that it adds the ability to allow the caller and sender
to communicate using duplex messaging, which is just a fancy way of saying they can engage in a
two-way conversation. When selecting WSDualHttpBinding, you can hook into the WCF publish/
subscribe event model.

Finally, WSFederationHttpBinding is the web service–based protocol you may wish to consider
when security is of the utmost importance. This binding supports the WS-Trust, WS-Security, and
WS-SecureConversation specifications, which are represented by the WCF CardSpace APIs.

TCP-Based Bindings
If you are building a distributed application involving machines that are configured with the .NET
3.0/3.5 libraries (in other words, all machines are running Windows XP, Windows Server 2003, or
Windows Vista), you can gain performance benefits bypassing web service bindings and opting for a
TCP binding, which ensures all data is encoded in a compact binary format rather than XML. Again,
when using the bindings shown in Table 25-4, the client and host must be .NET applications.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION882

8849CH25.qxd 10/16/07 10:51 AM Page 882

Table 25-4. The TCP-Centric WCF Bindings

Binding Class Binding Element Meaning in Life

NetNamedPipeBinding <netNamedPipeBinding> A secure, reliable, optimized binding for on-
the-same-machine communication between
.NET applications

NetPeerTcpBinding <netPeerTcpBinding> Provides a secure binding for P2P network
applications

NetTcpBinding <netTcpBinding> A secure and optimized binding suitable for
cross-machine communication between .NET
applications

The NetTcpBinding class uses TCP to move binary data between the client and WCF service. As
mentioned, this will result in higher performance than the web service protocols, but you are lim-
ited to an in-house Windows solution. On the plus side, NetTcpBinding does support transactions,
reliable sessions, and secure communications.

Like NetTcpBinding, NetNamedPipeBinding supports transactions, reliable sessions, and secure
communications, but it has no ability to make cross-machine calls. If you are looking for the fastest
way to push data between WCF applications on the same machine (e.g., cross-application domain
communications), NetNamedPipeBinding is the binding choice of champions. As far as
NetPeerTcpBinding is concerned, consult the .NET Framework 3.5 documentation for details
regarding P2P networking.

MSMQ-Based Bindings
Finally, if you are attempting to integrate with a Microsoft MSMQ server, the NetMsmqBinding and
MsmqIntegrationBinding bindings are of immediate interest. We will not examine the details of
using MSMQ bindings in this chapter, but Table 25-5 documents the basic role of each.

Table 25-5. The MSMQ-Centric WCF Bindings

Binding Class Binding Element Meaning in Life

MsmqIntegrationBinding <msmqIntegrationBinding> This binding can be used to enable
WCF applications to send and receive
messages to and from existing MSMQ
applications that use COM, native C++,
or the types defined in the System.
Messaging namespace.

NetMsmqBinding <netMsmqBinding> This queued binding is suitable for
cross-machine communication between
.NET applications.

A BRIEF NOTE ON COMMUNICATING WITH COM+ OBJECTS

Notice that there is not a specific binding to interact with COM+ objects. Communicating with COM+ components
via WCF is entirely possible; however, doing so involves exposing the COM+ types through an XML web service
binding via the ComSvcConfig.exe command-line tool that ships with the .NET Framework 3.5 SDK or by using
the SvcConfigEditor.exe utility (which we will examine later in this chapter).

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 883

8849CH25.qxd 10/16/07 10:51 AM Page 883

Understanding WCF Addresses
Once the contracts and bindings have been established, the final piece of the puzzle is to specify an
address for the WCF service. This is obviously quite important, in that remote callers will be unable
to communicate with the remote types if they cannot locate them! Like most aspects of WCF, an
address can be hard-coded in an assembly (via the System.Uri type) or offloaded to a *.config file.

In either case, the exact format of the WCF address will differ based on your choice of binding
(HTTP based, named pipes, TCP based, or MSMQ based). From a high level, WCF addresses can
specify the following bits of information:

• Scheme: The transport protocol (HTTP, etc.).

• MachineName: Fully qualified domain of the machine.

• Port: This is optional in many cases. For example, the default for HTTP bindings is port 80.

• Path: The path to the WCF service.

This information can be represented by the following generalized template (the Port value is
optional, as some bindings make no use of them):

scheme://<MachineName>[:Port]/Path

When you are using a web service–based binding (basicHttpBinding, wsHttpBinding,
wsDualHttpBinding, or wsFederationHttpBinding), the address breaks down as so (recall that if
you do not specify a port number, HTTP-based protocols will default to port 80):

http://localhost:8080/MyWCFService

■Note If you wish to make use of Secure Sockets Layer (SSL), simply replace http with https.

If you are making use of TCP-centric bindings (such as NetTcpBinding or NetPeerTcpBinding),
the URI takes the following format:

net.tcp://localhost:8080/MyWCFService

The MSMQ-centric bindings (NetMsmqBinding and MsmqIntegrationBinding) are a bit unique in
their URI format, given that MSMQ can make use of public or private queues (which are available
only on the local machine) and port numbers have no meaning within an MSMQ-centric URI.
Consider the following URI, which describes a private queue named MyPrivateQ:

net.msmq://localhost/private$/MyPrivateQ

Last but not least, the address format used for the named-pipe binding, NetNamedPipeBinding,
breaks down as so (recall that named pipes allow for interprocess communication for applications
on the same physical machine):

net.pipe://localhost/MyWCFService

While a single WCF service might expose only a single address (based on a single binding), it is
possible to configure a collection of unique addresses (with different bindings). This can be done
within a *.config file by defining multiple <endpoint> elements. Here, you can specify any number
of ABCs for the same service. This approach can be helpful when you want to allow callers to select
which protocol they would like to use when communicating with the service.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION884

8849CH25.qxd 10/16/07 10:51 AM Page 884

http://localhost:8080/MyWCFService
tcp://localhost:8080/MyWCFService
msmq://localhost/private$/MyPrivateQ
pipe://localhost/MyWCFService

Building a WCF Service
Now that you have a better understanding about the building blocks of a WCF application, let’s cre-
ate our first sample application to see how the ABCs are accounted for in code. Our first step is to
define our WCF service library consisting of the contracts and their implementations.

This first example will not use the Visual Studio WCF project templates, in order to keep
focused on the specific steps involved in making a WCF service. To begin, create a new C# Class
Library project named MagicEightBallServiceLib. Once you have done so, rename your initial file
from Class1.cs to MagicEightBallService.cs and add a reference to the System.ServiceModel.dll
assembly. In the initial code file, specify that you are using the System.ServiceModel namespace. At
this point, your C# file should look like so:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

// The key WCF namespace.
using System.ServiceModel;

namespace MagicEightBallServiceLib
{
public class MagicEightBallService
{
}

}

Our class type will implement a single WCF service contract represented by a strongly typed
CLR interface named IEightBall. As you most likely know, the Magic 8-Ball is a toy that allows you
to view one of a handful of fixed answers to a question you may ask. Our interface will define a sin-
gle method that allows the caller to pose a question to the Magic 8-Ball to obtain a random answer.

WCF service interfaces are adorned with the [ServiceContract] attribute, while each interface
member is decorated with the [OperationContract] attribute (more details regarding these two
attributes in just a moment). Here is the definition of the IEightBall interface:

[ServiceContract]
public interface IEightBall
{
// Ask a question, receive an answer!
[OperationContract]
string ObtainAnswerToQuestion(string userQuestion);

}

■Note It is permissible to define a service contract interface that contains methods not adorned with the
[OperationContract] attribute. However, such members will not be exposed through the WCF runtime.

As you know from your study of the interface type (see Chapter 9), interfaces are quite useless
until they are implemented by a class or structure, in order to flesh out their functionality. Like a
real Magic 8-Ball, the implementation of our service type (MagicEightBallService) will randomly
return a canned answer from an array of strings. Also, our default constructor will display an infor-
mation message that will be (eventually) displayed within the host’s console window (for diagnostic
purposes):

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 885

8849CH25.qxd 10/16/07 10:51 AM Page 885

public class MagicEightBallService : IEightBall
{
// Just for display purposes on the host.
public MagicEightBallService()
{
Console.WriteLine("The 8-Ball awaits your question...");

}

public string ObtainAnswerToQuestion(string userQuestion)
{
string[] answers = { "Future Uncertain", "Yes", "No",
"Hazy", "Ask again later", "Definitely" };

// Return a random response.
Random r = new Random();
return string.Format("{0}? {1}.",
userQuestion, answers[r.Next(answers.Length)]);

}
}

At this point, our WCF service library is complete. However, before we construct a host for this
service, let’s examine some additional details of the [ServiceContract] and [OperationContract]
attributes.

The [ServiceContract] Attribute
In order for a CLR interface to participate in the services provided by WCF, it must be adorned with
the [ServiceContract] attribute. Like many other .NET attributes, the ServiceContractAttribute
type supports a number of properties to further qualify its intension. Two properties, Name and
Namespace, can be set to control the name of the service type and the name of the XML namespace
defining the service type. If you are using a web service–specific binding, these values are used to
define the <portType> elements of the related WSDL document.

Here, we have not bothered to assign a Name value, given that the default name of the service
type is directly based on the C# class name. However, the default name for the underlying XML
namespace is simply http://tempuri.org (which really should be changed for all of your WCF
services).

When you are building a WCF service that will send and receive custom data types (which we
are currently not doing), it is important to establish a meaningful value to the underlying XML
namespace, as this will make sure that your custom types are unique. As you may know from your
experience building XML web services, XML namespaces provide a way to wrap your custom types
in a unique container to ensure that your types do not clash with types in another organization.

For this reason, we can update our interface definition with a more fitting definition, which,
much like the process of defining an XML namespace in a .NET Web Service project, is typically the
URI of the service’s point of origin, for example:

[ServiceContract(Namespace = "http://Intertech.com")]
public interface IEightBall
{
...

}

Beyond Namespace and Name, the [ServiceContract] attribute can be configured with the
additional properties shown in Table 25-6. Be aware that some of these settings will be ignored
depending on your selection of binding.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION886

8849CH25.qxd 10/16/07 10:51 AM Page 886

http://tempuri.org
http://Intertech.com
http://Intertech.com

Table 25-6. Various Named Properties of the [ServiceContract] Attribute

Property Meaning in Life

CallbackContract Establishes if this service contract requires callback functionality for two-
way message exchange.

ConfigurationName The name used to locate the service element in an application configuration
file. The default is the name of the service implementation class.

ProtectionLevel Allows you to specify the degree to which the contract binding requires
encryption, digital signatures, or both for endpoints that expose the
contract.

SessionMode Used to establish if sessions are allowed, not allowed, or required by this
service contract.

The [OperationContract] Attribute
Methods that you wish to be used within the WCF framework must be attributed with the
[OperationContract] attribute, which may also be configured with various named properties.
Using the properties shown in Table 25-7, you are able to declare that a given method is intended
to be one-way in nature, supports asynchronous invocation, requires encrypted message data,
and so forth (again, many of these values may be ignored based on your binding selection).

Table 25-7. Various Named Properties of the [OperationContract] Attribute

Property Meaning in Life

Action Gets or sets the WS-Addressing action of the request message.

AsyncPattern Indicates if the operation is implemented asynchronously using a Begin/End
method pair on the service. This allows the service to offload processing to
another server-side thread; this has nothing to do with the client calling the
method asynchronously!

IsInitiating Specifies if this operation can be the initial operation in a session.

IsOneWay Indicates if the operation consists of only a single input message (and no
associated output).

IsTerminating Specifies if the WCF runtime should attempt to terminate the current session
after the operation completes.

For this initial example, we don’t need to configure the ObtainAnswerToQuestion() method with
additional traits, so the [OperationContract] attribute can be used as currently defined.

Service Types As Operational Contracts
Finally, recall that the use of interfaces is not required when building WCF service types. It is in fact
possible to apply the [ServiceContract] and [OperationContract] attributes directly on the service
type itself:

// This is only for illustrative purposes
// and not used for the current example.
[ServiceContract(Namespace = "http://Intertech.com")]
public class ServiceTypeAsContract
{
[OperationContract]
void SomeMethod() { }

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 887

8849CH25.qxd 10/16/07 10:51 AM Page 887

http://Intertech.com
http://Intertech.com

[OperationContract]
void AnotherMethod() { }

}

Although this approach is possible, there are many benefits to explicitly defining an interface
type to represent the service contract. The most obvious benefit is that a given interface can be
applied to multiple service types (authored in a variety of languages and architectures) to achieve a
high degree of polymorphism. Another benefit is that a service contract interface can be used as the
basis of new contracts (via interface inheritance), without having to carry any implementation bag-
gage.

In any case, at this point our first WCF service library is complete. Compile your project to
ensure you do not have any typos.

■Source Code The MagicEightBallServiceLib project is located under the Chapter 25 subdirectory.

Hosting the WCF Service
We are now ready to define a host. Although a production-level service would be hosted from a
Windows service or an IIS virtual directory, our first host will be a simple console named
MagicEightBallServiceHost.

Once you have created this new Console Application project, add a reference to the System.
ServiceModel.dll and MagicEightBallServiceLib.dll assemblies, and update your initial code file
by importing the System.ServiceModel and MagicEightBallServiceLib namespaces:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using System.ServiceModel;
using MagicEightBallServiceLib;

namespace MagicEightBallServiceHost
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Console Based WCF Host *****");
Console.ReadLine();

}
}

}

The first step you must take when building a host for a WCF service type is to decide whether
you want to define the necessary hosting logic completely in code or to relegate several low-level
details to an application configuration file. As mentioned, the benefit of *.config files is that the
host is able to change the underlying plumbing without requiring you to recompile and redeploy
the executable. However, always remember this is strictly optional, as you can hard-code the
hosting logic using the types within the System.ServiceModel.dll assembly.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION888

8849CH25.qxd 10/16/07 10:51 AM Page 888

This console-based host will indeed make use of an application configuration file, so insert a
new Application Configuration File into your current project using the Project ➤ Add New Item
menu option.

Establishing the ABCs Within an App.config File
When you are building a host for a WCF service type, you will follow a very predictable set of steps—
some via configuration and some via code:

1. Define the endpoint for the WCF service being hosted within the host’s configuration file.

2. Programmatically make use of the ServiceHost type to expose the service types available
from this endpoint.

3. Ensure the host remains running to service incoming client requests. Obviously, this step is
not required if you are hosting your service types using a Windows service or IIS.

In the world of WCF, the term “endpoint” simply represents the address, binding, and contract
rolled together in a nice tidy package. In XML, an endpoint is expressed using the <endpoint>
element and the address, binding, and contract elements. Update your *.config file to specify a
single endpoint (reachable via port 8080) exposed by this host:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<services>
<service name="MagicEightBallServiceLib.MagicEightBallService">
<endpoint address ="http://localhost:8080/MagicEightBallService"

binding="basicHttpBinding"
contract="MagicEightBallServiceLib.IEightBall"/>

</service>
</services>

</system.serviceModel>
</configuration>

Notice that the <system.serviceModel> element is the root for all of a host’s WCF settings. Each
service exposed by the host is represented by a <service> element, wrapped within the <services>
base element. Here, our single <service> element makes use of the (optional) name attribute to spec-
ify the friendly name of the service type.

The nested <endpoint> element handles the task of defining the address, the binding model
(basicHttpBinding in this example), and the fully qualified name of the interface type defining the
WCF service contract (IEightBall). Because we are using an HTTP-based binding, we make use of
the http:// scheme, specifying an arbitrary port ID.

Coding Against the ServiceHost Type
With the current configuration file in place, the actual programming logic required to complete
the host is painfully simple. When our executable starts up, we will create an instance of the
ServiceHost type. At runtime, this object will automatically read the data within the scope of the
<system.serviceModel> element of the host’s *.config file to determine the correct address, bind-
ing, and contract, and create the necessary plumbing:

static void Main(string[] args)
{
Console.WriteLine("***** Console Based WCF Host *****");

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 889

8849CH25.qxd 10/16/07 10:51 AM Page 889

http://localhost:8080/MagicEightBallService
http://scheme

using (ServiceHost serviceHost = new ServiceHost(typeof(MagicEightBallService)))
{
// Open the host and start listening for incoming messages.
serviceHost.Open();

// Keep the service running until the Enter key is pressed.
Console.WriteLine("The service is ready.");
Console.WriteLine("Press the Enter key to terminate service.");
Console.ReadLine();

}
}

If you now run this application, you will find that the host is alive in memory, ready to take
incoming requests from remote clients (see Figure 25-6).

Figure 25-6. Our host, ready for external calls via basic HTTP binding

Host Coding Options
Currently, we are creating our ServiceHost using a constructor that simply requires the service’s
type information. However, it is also possible to pass in an array of System.Uri types as a construc-
tor argument to represent the collection of addresses this service is accessible from. Currently, the
address is found via the *.config file; however, if we were to update the using scope as so:

using (ServiceHost serviceHost = new ServiceHost(typeof(MagicEightBallService),
new Uri[]{new Uri("http://localhost:8080/MagicEightBallService")}))

{
...

}

we would be able to define our endpoint as so:

<endpoint address =""
binding="basicHttpBinding"
contract="MagicEightBallServiceLib.IEightBall"/>

Of course, too much hard-coding within a host’s code base decreases flexibility, so for the pur-
poses of this current host example, I’ll assume you are creating the service host simply by supplying
the type information as we did before:

using (ServiceHost serviceHost = new ServiceHost(typeof(MagicEightBallService)))
{
...

}

One of the (slightly frustrating) aspects of authoring host *.config files is that you have a num-
ber of ways to construct the XML descriptors, based on the amount of hard-coding you have in the
code base (as you have just seen in the case of the optional Uri array). To show yet another way to
author *.config files, consider the following reworking:

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION890

8849CH25.qxd 10/16/07 10:51 AM Page 890

http://localhost:8080/MagicEightBallService

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<services>
<service name="MagicEightBallServiceLib.MagicEightBallService">

<!-- Address obtained from <baseAddresses> -->
<endpoint address =""

binding="basicHttpBinding"
contract="MagicEightBallServiceLib.IEightBall"/>

<!-- List all of the base addresses in a dedicated section-->
<host>
<baseAddresses>
<add baseAddress ="http://localhost:8080/MagicEightBallService"/>

</baseAddresses>
</host>

</service>
</services>

</system.serviceModel>
</configuration>

In this case, the address attribute of the <endpoint> element is still empty, and regardless of the
fact that we are not specifying an array of Uri objects in code when creating the ServiceHost, the
application runs as before as the value is pulled from the baseAddresses scope. The benefit of stor-
ing the base address in a <host>’s <baseAddresses> region is that other parts of a *.config file (such
as MEX, described shortly) also need to know the address of the service’s endpoint. Thus, rather
than having to copy and pass address values within a single *.config file, we can isolate the single
value as shown here.

■Note In a later example, I’ll introduce you to a graphical configuration tool that allows you to author configura-
tion files in a less tedious manner.

In any case, before we build a client application to communicate with our service, let’s dig a bit
deeper into the role of the ServiceHost class type and <service.serviceModel> element as well as
the role of metadata exchange (MEX) services.

Details of the ServiceHost Type
The ServiceHost class type is used to configure and expose a WCF service from the hosting exe-
cutable. However, be aware that you will only make direct use of this type when building a custom
*.exe to host your services. If you are using IIS (or the Vista-specific WAS) to expose a service, the
ServiceHost object is created automatically on your behalf.

As you have seen, this type requires a complete service description, which is obtained dynami-
cally through the configuration settings of the host’s *.config file. While this happens automatically
upon object creation, it is possible to manually configure the state of your ServiceHost object using
a number of members. In addition to Open() and Close() (which communicate with your service in
a synchronous manner), Table 25-8 illustrates some further members of interest.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 891

8849CH25.qxd 10/16/07 10:51 AM Page 891

http://localhost:8080/MagicEightBallService
http://localhost:8080/MagicEightBallService

Table 25-8. Select Members of the ServiceHost Type

Members Meaning in Life

Authorization This property gets the authorization level for the service being hosted.

AddServiceEndpoint() This method allows you to programmatically register an endpoint to the
host.

BaseAddresses This property obtains the list of registered base addresses for the current
service.

BeginOpen() These methods allow you to asynchronously open and close a
BeginClose() ServiceHost object, using the standard asynchronous .NET delegate

syntax.

CloseTimeout This property allows you to set and get the time allowed for the service to
close down.

Credentials This property obtains the security credentials used by the current
service.

EndOpen() These methods are the asynchronous counterparts to BeginOpen()
EndClose() and BeginClose().

OpenTimeout This property allows you to set and get the time allowed for the service to
start up.

State This property gets a value that indicates the current state of the
communication object, represented by the CommunicationState enum
(opened, closed, created, etc.).

To illustrate some additional aspects of ServiceHost, update your Program class with a new
static method that prints out various aspects of the current host:

static void DisplayHostInfo(ServiceHost host)
{
Console.WriteLine();
Console.WriteLine("***** Host Info *****");

Console.WriteLine("Name: {0}",
host.Description.ConfigurationName);

Console.WriteLine("Port: {0}",
host.BaseAddresses[0].Port);

Console.WriteLine("LocalPath: {0}",
host.BaseAddresses[0].LocalPath);

Console.WriteLine("Uri: {0}",
host.BaseAddresses[0].AbsoluteUri);

Console.WriteLine("Scheme: {0}",
host.BaseAddresses[0].Scheme);

Console.WriteLine("**********************");
Console.WriteLine();

}

Assuming you call this new method from within Main() after opening your host:

using (ServiceHost serviceHost = new ServiceHost(typeof(MagicEightBallService)))
{
// Open the host and start listening for incoming messages.
serviceHost.Open();
DisplayHostInfo(serviceHost);

...
}

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION892

8849CH25.qxd 10/16/07 10:51 AM Page 892

you will see the statistics shown in Figure 25-7.

Figure 25-7. Details of our host

Details of the <system.serviceModel> Element
Like any XML element, <system.serviceModel> can define a set of subelements, each of which can
be qualified via numerous attributes. While you should consult the .NET Framework 3.5 SDK docu-
mentation for full details regarding the set of possible attributes, here is a skeleton that lists the
valid subelements:

<system.serviceModel>
<behaviors>
</behaviors>
<client>
</client>
<commonBehaviors>
</commonBehaviors>
<diagnostics>
</diagnostics>
<serviceHostingEnvironment>
</serviceHostingEnvironment>
<comContracts>
</comContracts>
<services>
</services>
<bindings>
</bindings>

</system.serviceModel>

You’ll see more exotic configuration files as you move through the chapter; however, the crux of
each subelement can be discovered in Table 25-9.

Table 25-9. Subelements of <service.serviceModel>

Subelement Meaning in Life

behaviors WCF supports various endpoint and service behaviors. In a
nutshell, a behavior allows you to further qualify the functionality
of a host or client.

bindings This element allows you to fine-tune each of the WCF-supplied
bindings (basicHttpBinding, netMsmqBinding, etc.) as well as specify
any custom bindings used by the host.

Continued

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 893

8849CH25.qxd 10/16/07 10:51 AM Page 893

Table 25-9. Continued

Subelement Meaning in Life

client This element contains a list of endpoints a client uses to connect to
a service. Obviously, this is not terribly useful in a host’s *.config
file.

comContracts This element defines COM contracts enabled for WCF and COM
interoperability.

commonBehaviors This element can only be set within a machine.config file. It can be
used to define all of the behaviors used by each WCF service on a
given machine.

diagnostics This element contains settings for the diagnostic features of WCF.
The user can enable/disable tracing, performance counters, and
the WMI provider, and can add custom message filters.

serviceHostingEnvironment This element specifies if this operation can be the initial operation
in a session.

services This element contains a collection of WCF services exposed from
the host.

Enabling Metadata Exchange
Recall that WCF client applications communicate with the WCF service via an intervening proxy
type. While you could most certainly author the proxy code completely by hand, doing so would
be tedious and error-prone. Ideally, a tool could be used to generate the necessary grunge code
(including the client-side *.config file). Thankfully, the .NET Framework 3.5 SDK provides a com-
mand-line tool (svcutil.exe) for this very purpose. As well, Visual Studio 2008 provides similar
functionality via the Project ➤ Add Service Reference menu option.

However, in order for these tools to generate the necessary proxy code/*.config file, they must
be able to discover the format of the WCF service interfaces and any defined data contracts (the
method names, type of parameters, etc.).

Metadata exchange (MEX) is a WCF service behavior that can be specified to fine-tune how the
WCF runtime handles your service. Simply put, each <behavior> element can define a set of activi-
ties a given service can subscribe to. WCF provides numerous behaviors out of the box, and it is
possible to build your own.

The MEX behavior (which is disabled by default) will intercept any metadata requests sent via
HTTP GET. If you want to allow svcutil.exe or Visual Studio 2008 to automate the creation of the
required client-side proxy *.config file, you must enable MEX.

Enabling MEX is a matter of tweaking the host’s *.config file with the proper settings (or
authoring the corresponding C# code). First, you must add a new <endpoint> just for MEX. Second,
you need to define a WCF behavior to allow HTTP GET access. Third, you need to associate this
behavior by name to your service via the behaviorConfiguration attribute on the opening <service>
element. Finally, you need to add a <host> element to define the base address of this service (MEX
will look here to figure out the locations of the types to describe).

■Note This final step can be bypassed if you pass in a System.Uri object to represent the base address as a
parameter to the ServiceHost constructor.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION894

8849CH25.qxd 10/16/07 10:51 AM Page 894

Consider the following updated host *.config file, which creates a custom <behavior> element
(named EightBallMEXBehavior) that is associated to our service via the behaviorConfiguration
attribute within the <service> definition:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<services>
<service name="MagicEightBallServiceLib.MagicEightBallService"

behaviorConfiguration = "EightBallServiceMEXBehavior">
<endpoint address =""

binding="basicHttpBinding"
contract="MagicEightBallServiceLib.IEightBall"/>

<!-- Enable the MEX endpoint -->
<endpoint address="mex"

binding="mexHttpBinding"
contract="IMetadataExchange" />

<!-- Need to add this so MEX knows the address of our service -->
<host>
<baseAddresses>
<add baseAddress ="http://localhost:8080/MagicEightBallService"/>
</baseAddresses>

</host>
</service>

</services>

<!-- A behavior definition for MEX -->
<behaviors>
<serviceBehaviors>
<behavior name="EightBallServiceMEXBehavior" >
<serviceMetadata httpGetEnabled="true" />

</behavior>
</serviceBehaviors>

</behaviors>
</system.serviceModel>

</configuration>

You are now able to restart the service and view its metadata description using the web browser
of your choice. To do so, while the host is still running simply enter the address as the URL:

http://localhost:8080/MagicEightBallService

Once you are at the homepage for your WCF service (see Figure 25-7), you are provided with
basic details regarding how to interact with this service programmatically as well as a way to view
the WSDL contract by clicking the hyperlink at the top of the page. Recall that Web Service Descrip-
tion Language (WSDL) is a grammar that describes the structure of web services at a given
endpoint.

■Source Code The MagicEightBallServiceHost project is located under the Chapter 25 subdirectory.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 895

8849CH25.qxd 10/16/07 10:51 AM Page 895

http://localhost:8080/MagicEightBallService
http://localhost:8080/MagicEightBallService
http://localhost:8080/MagicEightBallService

Figure 25-8. Ready to view metadata, via MEX

Building the WCF Client Application
Now that our host is in place, the final task is to build a piece of software to communicate with this
WCF service type. While we could take the long road and build the necessary infrastructure by hand
(a feasible but labor-intensive task), the .NET Framework 3.5 SDK provides several approaches to
quickly generate a client-side proxy. To begin, create a new Console Application named
MagicEightBallServiceClient.

Generating Proxy Code Using svcutil.exe
The first way you can build a client-side proxy is to make use of the svcutil.exe command-line
tool. Using svcutil.exe, you can generate a new C# language file that represents the proxy code
itself as well as a client-side configuration file. To do so, simply specify the service’s endpoint as the
first parameter. The /out: flag is used to define the name of the *.cs file containing the proxy, while
the /config: option specifies the name of the generated client-side *.config file.

Assuming your service is currently running, the following command set passed into svcutil.
exe will generate two new files in the working directory (which should, of course, be entered as a
single line within a Visual Studio 2008 command prompt):

svcutil http://localhost:8080/MagicEightBallService
/out:myProxy.cs /config:app.config

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION896

8849CH25.qxd 10/16/07 10:51 AM Page 896

http://localhost:8080/MagicEightBallService

If you open the myProxy.cs file, you will find a client-side representation of the IEightBall
interface, as well as a new class named EightBallClient, which is the proxy class itself. This class
derives from the generic class, System.ServiceModel.ClientBase<T>, where T is the registered serv-
ice interface.

In addition to a number of custom constructors, each method adorned with the
[OperationContract] attribute will be implemented to delegate to the parent class’s Channels
property to invoke the correct external method. Here is a partial snapshot of the proxy type:

[System.Diagnostics.DebuggerStepThroughAttribute()]
[System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel", "3.0.0.0")]
public partial class EightBallClient :
System.ServiceModel.ClientBase<IEightBall>, IEightBall

{
...
public string ObtainAnswerToQuestion(string userQuestion)
{
return base.Channel.ObtainAnswerToQuestion(userQuestion);

}
}

When you create an instance of the proxy type, the base class will establish a connection to the
endpoint using the settings specified in the client-side application configuration file. Much like the
server-side configuration file, the generated client-side App.config file contains an <endpoint>
element and details regarding the basicHttpBinding used to communicate with the service.

In addition, you will find the following <client> element, which (once again) establishes the
ABCs from the client’s perspective:

<client>
<endpoint
address="http://localhost:8080/MagicEightBallService"
binding="basicHttpBinding" bindingConfiguration="BasicHttpBinding_IEightBall"
contract="ServiceReference.IEightBall" name="BasicHttpBinding_IEightBall" />

</client>

At this point, you could include these two files into a client project (and reference the System.
ServiceModel.dll assembly) and use the proxy type to communicate with the remote WCF service.
However, rather than doing so, let’s see how Visual Studio can help to further automate the creation
of client-side proxy files.

Generating Proxy Code Using Visual Studio 2008
Like any good command-line tool, svcutil.exe provides a great number of options that can be used
to control how the client proxy is generated. If you do not require these advanced options, you are
able to generate the same two files using the Visual Studio 2008 IDE. Simply select the Add Service
Reference option from the Project menu.

Once you activate this menu option, you will be prompted to enter the service URI. At this
point click the Go button to see the service description (see Figure 25-9).

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 897

8849CH25.qxd 10/16/07 10:51 AM Page 897

http://localhost:8080/MagicEightBallService

Figure 25-9. Generating the proxy files using Visual Studio 2008

Beyond creating and inserting the proxy files into your current project, this tool is kind enough
to reference the WCF assemblies automatically on your behalf. As a naming convention, the proxy
class is defined within a namespace called ServiceReference, which is nested in the client’s name-
space (to avoid possible name clashes). Here, then, is the complete client code:

// Location of the proxy.
using MagicEightBallServiceClient.ServiceReference;

namespace MagicEightBallServiceClient
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Ask the Magic 8 Ball *****\n");

using (EightBallClient ball = new EightBallClient())
{
Console.Write("Your question: ");
string question = Console.ReadLine();
string answer =
ball.ObtainAnswerToQuestion(question);

Console.WriteLine("8-Ball says: {0}", answer);
}
Console.ReadLine();

}
}

}

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION898

8849CH25.qxd 10/16/07 10:51 AM Page 898

Now, assuming your WCF host is currently running, you can execute the client. Figure 25-10
shows one possible response (apologies to Grace Wong at Apress).

Figure 25-10. The completed WCF client host

■Source Code The MagicEightBallServiceClient project is located under the Chapter 25 subdirectory.

Configuring a TCP-Based Binding
At this point, the host and client applications are both configured to make use of the simplest of the
HTTP-based bindings, basicHttpBinding. Recall that the benefit of offloading settings to configura-
tion files is that we can change the underlying plumbing in a declarative manner.

To illustrate, let’s try a little experiment. Create a new folder on your C drive (or wherever you
happen to be saving your code) named EightBallTCP, and within this new folder create two subdi-
rectories named Host and Client.

Next, using Windows Explorer, navigate to the \bin\Debug folder of the host project and
copy MagicEightBallServiceHost.exe, MagicEightBallServiceHost.exe.config, and
MagicEightBallServiceLib.dll to the C:\EightBallTCP\Host folder. Open the *.config file for
editing using a simple text editor, and modify the existing contents as follows:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<services>
<service name="MagicEightBallServiceLib.MagicEightBallService">
<endpoint address =""

binding="netTcpBinding"
contract="MagicEightBallServiceLib.IEightBall"/>

<host>
<baseAddresses>
<add baseAddress ="net.tcp://localhost:8080/MagicEightBallService"/>

</baseAddresses>
</host>

</service>
</services>

</system.serviceModel>
</configuration>

Essentially, this host’s *.config file has stripped out all the MEX settings (as we already built
the proxy) and established that it is using the netTcpBinding binding type. Now run the application
by double-clicking the *.exe. If all is well, you should find the host output shown in Figure 25-11.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 899

8849CH25.qxd 10/16/07 10:51 AM Page 899

tcp://localhost:8080/MagicEightBallService
tcp://localhost:8080/MagicEightBallService

Figure 25-11. Hosting the WCF service using TCP bindings

To complete the test, copy the MagicEightBallServiceClient.exe and
MagicEightBallServiceClient.exe.config files from the \bin\Debug folder of the client appli-
cation into the C:\EightBallTCP\Client folder. Update the client configuration file as so:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<client>
<endpoint address="net.tcp://localhost:8080/MagicEightBallService"

binding="netTcpBinding"
contract="ServiceReference.IEightBall"
name="netTcpBinding_IEightBall" />

</client>
</system.serviceModel>

</configuration>

This client-side configuration file is a massive simplification from what the Visual Studio proxy
generator authored. Notice how we have completely removed the existing <bindings> element.
Originally, the *.config file contained a <bindings> element with a <basicHttpBinding> subelement
that supplied numerous details of the client’s binding settings (timeouts, etc.).

In reality, we never needed that detail for our example, as we automatically obtain the default
values of the underlying BasicHttpBinding object. If we needed to, we could of course update the
existing <bindings> element to define details of the <netTcpBinding> subelement, but doing so is
not required if we are happy with the default values of the NetTcpBinding object.

In any case, you should now be able to run your client application, and assuming the host is
still running in the background, you are able to move data between your assemblies using TCP.

■Source Code The MagicEightBallTCP project is located under the Chapter 25 subdirectory.

Using the WCF Service Library Project Template
Before we build a more exotic WCF service that communicates with our AutoLot database created
in Chapter 22, the next example will illustrate a number of important topics, including the benefits
of the WCF Service Library project template, the WCF Test Client, the WCF configuration editor,
hosting WCF services within a Windows service, and asynchronous client calls. To stay focused on
these new concepts, this WCF service will also be intentionally simple.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION900

8849CH25.qxd 10/16/07 10:51 AM Page 900

tcp://localhost:8080/MagicEightBallService

Building a Simple Math Service
To begin, create a brand-new WCF Service Library project named MathServiceLibrary, being sure to
select the correct option under the WCF node of the New Project dialog box (see Figure 25-2 if you
need a nudge). Now change the name of the initial IService1.cs file to IBasicMath.cs. Once you
have done so, delete all of the example code within the MathServiceLibrary namespace and replace
it with the following:

namespace MathServiceLibrary
{
[ServiceContract(Namespace="www.Intertech.com")]
public interface IBasicMath
{
[OperationContract]
int Add(int x, int y);

}
}

Next, change the name of the Service1.cs file to MathService.cs, and (once again) delete all
the example code within the MathServiceLibrary namespace and implement your service contract
as so:

namespace MathServiceLibrary
{
public class MathService : IBasicMath
{
public int Add(int x, int y)
{
// To simulate a lengthy request.
System.Threading.Thread.Sleep(5000);
return x + y;

}
}

}

Finally, open the supplied App.config file and replace all occurrences of IService1 with
IBasicMath, and all occurrences of Service1 with MathService. As well, take a moment to notice that
this *.config file has already been enabled to support MEX, and by default it is making use of the
wsHttpBinding protocol.

Testing the WCF Service with WcfTestClient.exe
One benefit of using the WCF Service Library project is that when you debug or run your library, it
will read the settings in the *.config file and use them to load the WCF Test Client application
(WcfTestClient.exe). This GUI-based application allows you to test each member of your service
interface as you build the WCF service, rather than having to manually build a host/client as you
did previously simply for testing purposes.

Figure 25-12 shows the testing environment for MathService. Notice that when you double-
click an interface method, you are able to specify input parameters and invoke the member.

While this utility works out of the box when you have created a WCF Service Library project, be
aware that you can use this tool to test any WCF service when you start it at the command line by
specifying a MEX endpoint. For example, if you were to start the MagicEightBallServiceHost.exe
application, you would be able to specify the following command within a Visual Studio 2008 com-
mand prompt:

wcftestclient http://localhost:8080/MagicEightBallService

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 901

8849CH25.qxd 10/16/07 10:51 AM Page 901

http://www.Intertech.com
http://localhost:8080/MagicEightBallService

Figure 25-12. Testing the WCF service using WcfTestClient.exe

Once you do, you will be able to invoke ObtainAnswerToQuestion() in a similar manner.

Altering Configuration Files Using SvcConfigEditor.exe
Another benefit of making use of the WCF Service Library project is that you are able to right-click
on the App.config file within the Solution Explorer to activate the GUI-based Service Configuration
Editor, SvcConfigEditor.exe (see Figure 29-13). This same technique can be used from a client
application that has referenced a WCF service.

Figure 25-13. GUI-based *.config file editing starts here.

Once you activate this tool, you are able to change the XML-based data using a friendly user
interface. There are many obvious benefits of using a tool such as this to maintain your *.config
files. First and foremost, you can rest assured that the generated markup conforms to the expected
format and is typo-free. Next, it is a great way to see the valid values that could be assigned to a
given attribute. Last but not least, you no longer need to manually author tedious XML data.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION902

8849CH25.qxd 10/16/07 10:51 AM Page 902

Figure 25-14 shows the overall look and feel of the Service Configuration Editor. Truth be told,
an entire chapter could be written describing all of the interesting options SvcConfigEditor.exe
supports (COM+ integration, creation of new *.config files, etc.). Be sure to take time to investigate
this tool, and be aware that you can access a fairly detailed help system by pressing F1.

■Note The SvcConfigEditor.exe utility can edit (or create) configuration files even if you do not select an ini-
tial WCF Service Library project. Using a Visual Studio 2008 command window, launch the tool and make use of
the File ➤ Open menu option to load an existing *.config file for editing.

Figure 25-14. Working with the WCF Service Configuration Editor

We have no need to further configure our WCF MathService, so at this point we can move on to
the task of building a custom host.

Hosting the WCF Service As a Windows Service
As you might agree, hosting a WCF service from within a console application (or within a GUI desk-
top application, for that matter) is not an ideal choice for a production-level server, given that the
host must remain running visibly in the background to service clients. Even if you were to minimize
the hosting application to the Windows taskbar, it would still be far too easy to accidentally shut
down the host, thereby terminating the connection with any client applications.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 903

8849CH25.qxd 10/16/07 10:51 AM Page 903

■Note While it is true that a desktop Windows application does not have to show a main window, a typical
*.exe does require user interaction to load the executable. A Windows service (described next) can be configured
to run even if no users are currently logged on to the workstation.

If you are building an in-house WCF application, another alternative is to host your WCF serv-
ice library from within a dedicated Windows service. One benefit of doing so is that a Windows
service can be configured to automatically start when the target machine boots up. Another benefit
is that Windows services run invisibly in the background (unlike our console application) and do
not require user interactivity.

To illustrate how to build such a host, begin by creating a new Windows service project named
MathWindowsServiceHost (see Figure 25-15). Once you have done so, rename your initial Service1.
cs file to MathWinService.cs using Solution Explorer.

Figure 25-15. Creating a Windows service to host our WCF service

Specifying the ABCs in Code
Now, assuming you have set a reference to your MathServiceLibrary.dll and System.ServiceModel.
dll assemblies, all you need to do is make use of the ServiceHost type within the OnStart() and
OnStop() methods of your Windows service type. Open the code file for your service host class (by
right-clicking the designer and selecting View Code), and add the following logic:

// Be sure to import these namespaces:
using MathServiceLibrary;
using System.ServiceModel;

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION904

8849CH25.qxd 10/16/07 10:51 AM Page 904

public partial class MathWinService: ServiceBase
{
// A member variable of type ServiceHost.
private ServiceHost myHost;

public MathWinService()
{
InitializeComponent();

}

protected override void OnStart(string[] args)
{
// Just to be really safe.
if (myHost != null)
{
myHost.Close();
myHost = null;

}

// Create the host.
myHost = new ServiceHost(typeof(MathService));

// The ABCs in code!
Uri address = new Uri("http://localhost:8080/MathServiceLibrary");
WSHttpBinding binding = new WSHttpBinding();
Type contract = typeof(IBasicMath);

// Add this endpoint.
myHost.AddServiceEndpoint(contract, binding, address);

// Open the host.
myHost.Open();

}

protected override void OnStop()
{
// Shut down the host.
if(myHost != null)
myHost.Close();

}
}

While nothing is preventing you from using a configuration file when building a Windows
service host for a WCF service, here (for a change of pace) notice that you are programmatically
establishing the endpoint using the Uri, WSHttpBinding, and Type classes, rather than making use of
a *.config file. Once you have created each aspect of the ABCs, you inform the host programmati-
cally by calling AddServiceEndpoint().

Enabling MEX
While we could enable MEX programmatically as well, we will opt for a configuration file. Insert a
new App.config file into your Windows service project that contains the following MEX settings:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<services>

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 905

8849CH25.qxd 10/16/07 10:51 AM Page 905

http://localhost:8080/MathServiceLibrary

<service name="MathServiceLibrary.MathService"
behaviorConfiguration = "MathServiceMEXBehavior">

<!-- Enable the MEX endpoint -->
<endpoint address="mex"

binding="mexHttpBinding"
contract="IMetadataExchange" />

<!-- Need to add this so MEX knows the address of our service -->
<host>
<baseAddresses>
<add baseAddress ="http://localhost:8080/MathService"/>

</baseAddresses>
</host>

</service>
</services>

<!-- A behavior definition for MEX -->
<behaviors>
<serviceBehaviors>
<behavior name="MathServiceMEXBehavior" >
<serviceMetadata httpGetEnabled="true" />

</behavior>
</serviceBehaviors>

</behaviors>
</system.serviceModel>

</configuration>

Creating a Windows Service Installer
In order to register your Windows service with the operating system, you need to add an installer to
your project that will contain the necessary code to allow you to register the service. To do so, sim-
ply right-click the Windows service designer surface and select Add Installer (see Figure 25-16).

Figure 25-16. Adding an installer for the Windows service

Once you have done so, you will see two components have been added to a new designer sur-
face. The first component (named serviceProcessInstaller1 by default) represents a type that is
able to install a new Windows service on the target machine. Select this type on the designer and
use the Properties window to set the Account property to LocalSystem.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION906

8849CH25.qxd 10/16/07 10:51 AM Page 906

http://localhost:8080/MathService
http://localhost:8080/MathService

The second component (named serviceInstaller1) represents a type that will install your
particular Windows service. Again, using the Properties window, change the ServiceName property
to Math Order Service (as you might have guessed, this represents the friendly display name of
the registered Windows service), set the StartType property to Automatic, and add a friendly
description of your Windows service via the Description property. At this point you can compile
your application.

Installing the Windows Service
A Windows service can be installed on the host machine using a traditional setup program (such as
an *.msi installer) or via the installutil.exe command-line tool. Using a Visual Studio 2008 com-
mand prompt, change into the \bin\Debug folder of your MathWindowsServiceHost project. Now,
enter the following command:

installutil MathWindowsServiceHost.exe

Assuming the installation succeeded, you can now open the Services applet located under the
Administrative Tools folder of your Control Panel. You should see the friendly name of your Windows
service listed alphabetically. Once you locate it, you can start the service on your local machine (see
Figure 25-17).

Figure 25-17. Viewing our Windows service, which is hosting our WCF service

Now that the service is alive and kicking, the last step is to build a client application to con-
sume its services.

■Source Code The MathWindowsServiceHost project is located under the Chapter 25 subdirectory.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 907

8849CH25.qxd 10/16/07 10:51 AM Page 907

Invoking a Service Asynchronously
Create a new Console Application named MathClient and set a Service Reference to your running
WCF service that is current hosted by the Windows service running in the background using the
Add Service Reference option of Visual Studio. Don’t click the OK button yet, however (see
Figure 25-18).

Figure 25-18. Referencing our MathService

Notice that the Add Service Reference dialog box has an Advanced button in the lower-left cor-
ner. Click this button now to view the additional proxy configuration settings (see Figure 25-19).

Using this dialog box, we can elect to generate code that allows us to call the remote methods
in an asynchronous manner, provided we check the Generate Asynchronous Operators check box.
Go ahead and check this option for the time being.

The other option on this dialog box you should be aware of is the Add Web Reference button. If
you have a background in building XML web services in Visual Studio 2005 or earlier, you may recall
that you had an Add Web Reference option rather than an Add Service Reference option. If you click
this particular button, you will be able to receive proxy code that will allow you to communicate
with a traditional web service described within an *.asmx file.

The remaining options of this dialog box are used to control the generation of data contracts,
which we will examine a bit later in this chapter. In any case, be sure you did indeed check the
Generate Asynchronous Operators check box and click OK on each dialog box to return to the Visual
Studio IDE.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION908

8849CH25.qxd 10/16/07 10:51 AM Page 908

Figure 25-19. Advanced client-side proxy configuration options

At this point, the proxy code will contain additional methods that allow you to invoke each
member of the service contract using the expected Begin/End asynchronous invocation pattern
described in Chapter 18. Here is a simple implementation that makes use of a lambda expression
rather than a strongly typed AsyncCallback delegate.

using System;
using MathClient.ServiceReference;
using System.Threading;

namespace MathClient
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** The Async Math Client *****\n");

using (BasicMathClient proxy = new BasicMathClient())
{
proxy.Open();

// Add numbers in an async manner, using a lambda expression.
IAsyncResult result = proxy.BeginAdd(2, 3,
ar =>

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 909

8849CH25.qxd 10/16/07 10:51 AM Page 909

{
Console.WriteLine("2 + 5 = {0}", proxy.EndAdd(ar));

}, null);

while (!result.IsCompleted)
{
Thread.Sleep(200);
Console.WriteLine("Client working...");

}
}
Console.ReadLine();

}
}

}

■Source Code The MathClient project is located under the Chapter 25 subdirectory.

Designing WCF Data Contracts
This chapter’s final example involves the construction of WCF data contracts. The previous WCF
services defined very simple methods that operate on primitive CLR data types. When you are mak-
ing use of any of the web service–centric binding types (basicHttpBinding, wsHttpBinding, etc.),
incoming and outgoing data types are automatically formatted into XML elements using the
System.Runtime.Serialization.XmlFormatter type defined within the System.Runtime.
Serialization.dll assembly. On a related note, if you make use of a TCP-based binding (such as
netTcpBinding), the parameters and return values of simple data types are transmitted using a
compact binary format.

■Note The WCF runtime will also automatically encode any type marked with the [Serializable] attribute.

However, when you define service contracts that make use of custom types as parameters or
return values, these types must be defined using a data contract. Simply put, a data contract is a
type adorned with the [DataContract] attribute. Each field you expect to be used as part of the pro-
posed contract is likewise marked with the [DataMember] attribute.

■Note If a data contract contains fields not marked with the [DataMember] attribute, it will not be serialized by
the WCF runtime.

To illustrate the construction of data contracts, let’s create a brand-new WCF service that inter-
acts with the AutoLot database created back in Chapter 22. As well, this final WCF service will be
created using the web-based WCF Service template. Recall that this type of WCF service will auto-
matically be placed into an IIS virtual directory, and it will function in a similar fashion to a
traditional .NET XML web service. Once you understand the composition of such a WCF service,
you should have little problem porting an existing WCF service into a new IIS virtual directory.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION910

8849CH25.qxd 10/16/07 10:51 AM Page 910

■Note This example assumes you are somewhat comfortable with the structure of an IIS virtual directory (and
IIS itself). If this is not the case, Chapter 31 will examine the details.

Using the Web-Centric WCF Service Project Template
Using the File ➤ New ➤ Web Site menu option, create a new WCF service named AutoLotWCFService,
exposed from the following URI: http://localhost/AutoLotWCFService (see Figure 25-20). Be sure
the Location drop-down list has HTTP as the active selection.

Figure 25-20. Creating a web-centric WCF service

Once you have done so, set a reference to the AutoLotDAL.dll assembly you created in
Chapter 22 (via the Website ➤ Add Reference menu option). Much like a WCF Service Library proj-
ect, you have been given some example starter code (located under the App_Code folder), which
you will obviously want to delete. To begin, rename the initial IService.cs file to IAutoLotService.
cs, and define the initial service contract within your newly named file:

[ServiceContract]
public interface IAutoLotService
{
[OperationContract]
void InsertCar(int id, string make, string color, string petname);

[OperationContract]
void InsertCar(InventoryRecord car);

[OperationContract]
InventoryRecord[] GetInventory();

}

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 911

8849CH25.qxd 10/16/07 10:51 AM Page 911

http://localhost/AutoLotWCFService

This interface defines three methods, one of which returns an array of the (yet-to-be-created)
InventoryRecord type. You may recall that the GetInventory() method of InventoryDAL simply
returned a DataTable object, which might make you question why our service’s GetInventory()
method does not do the same.

While it would work to return a DataTable from a WCF service method, recall that WCF was
built to honor the use of SOA principles, one of which is to program against contracts, not imple-
mentations. Therefore, rather than returning the .NET-specific DataTable type to an external caller,
we will return a custom data contract (InventoryRecord) that will be correctly expressed in the con-
tained WSDL document in an agnostic manner.

Also note that this interface defines an overloaded method named InsertCar(). The first ver-
sion takes four incoming parameters, while the second version takes an InventoryRecord type as
input. This data contract can be defined as so:

[DataContract]
public class InventoryRecord
{
[DataMember]
public int ID;
[DataMember]
public string Make;
[DataMember]
public string Color;
[DataMember]
public string PetName;

}

If you were to implement this interface as it now stands, build a host, and attempt to call these
methods from a client, you might be surprised to find a runtime exception. The reason has to do
with the fact that one of the requirements of a WSDL description is that each method exposed from
a given endpoint is uniquely named. Thus, while method overloading works just fine as far as C# is
concerned, the current web service specifications do not permit two identically named InsertCar()
methods.

Thankfully, the [OperationContract] attribute supports a named property (Name) that allows
you to specify how the C# method will be represented within a WSDL description. Given this,
update the second version of InsertCar() as so:

public interface IAutoLotService
{
...
[OperationContract(Name = "InsertCarWithDetails")]
void InsertCar(InventoryRecord car);

}

Implementing the Service Contract
The AutoLotService type implements this interface as follows (be sure to import the
AutoLotConnectedLayer and System.Data namespaces in this code file):

using AutoLotConnectedLayer;
using System.Data;

public class AutoLotService : IAutoLotService
{
private const string ConnString =
@"Data Source=(local)\SQLEXPRESS;Initial Catalog=AutoLot"+
";Integrated Security=True";

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION912

8849CH25.qxd 10/16/07 10:51 AM Page 912

public void InsertCar(int id, string make, string color, string petname)
{
InventoryDAL d = new InventoryDAL();
d.OpenConnection(ConnString);
d.InsertAuto(id, color, make, petname);
d.CloseConnection();

}

public void InsertCar(InventoryRecord car)
{
InventoryDAL d = new InventoryDAL();
d.OpenConnection(ConnString);
d.InsertAuto(car.ID, car.Color, car.Make, car.PetName);
d.CloseConnection();

}

public InventoryRecord[] GetInventory()
{
// First, get the DataTable from the database.
InventoryDAL d = new InventoryDAL();
d.OpenConnection(ConnString);
DataTable dt = d.GetAllInventory();
d.CloseConnection();

// Now make a List<T> to contain the records.
List<InventoryRecord> records = new List<InventoryRecord>();

// Copy the data table into List<> of custom contracts.
DataTableReader reader = dt.CreateDataReader();
while (reader.Read())
{
InventoryRecord r = new InventoryRecord();
r.ID = (int)reader["CarID"];
r.Color = ((string)reader["Color"]).Trim();
r.Make = ((string)reader["Make"]).Trim();
r.PetName = ((string)reader["PetName"]).Trim();
records.Add(r);

}

// Transform List<T> to array of InventoryRecord types.
return (InventoryRecord[])records.ToArray();

}
}

Not too much to say here. For simplicity, we are hard-coding the connection string value
(which you may need to adjust based on your machine settings) rather than storing it in our
Web.config file. Given that our data access library does all the real work of communicating with the
AutoLot database, all we need to do is pass the incoming parameters to the InsertAuto() method of
the InventoryDAL class type. The only other point of interest is the act of mapping the DataTable
object’s values into a generic list of InventoryRecord types (using a DataTableReader to do so) and
then transforming the List<T> into an array of InventoryRecord types.

The Role of the *.svc File
When you create a web-centric WCF service, you will find your project contains a specific file with a
*.svc file extension. This particular file is required for any WCF service hosted by IIS; it describes

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 913

8849CH25.qxd 10/16/07 10:51 AM Page 913

the name and location of the service implementation within the install point. Because we have
changed the names of our starter files and WCF types, we must now update the contents of the
Service.svc file as so:

<%@ ServiceHost Language="C#" Debug="true"
Service="AutoLotService" CodeBehind="~/App_Code/AutoLotService.cs" %>

Updating the Web.config File
Before we can take this service out for a test drive, the final task is to update the <system.
serviceModel> section of the Web.config file. As described in more detail during our examination of
ASP.NET later in this book, the Web.config file serves a similar purpose to an executable’s *.config
file; however, it also controls a number of web-specific settings. For this example, all we need to do
is update the WCF-specific section of the file as follows:

<system.serviceModel>
<services>
<service name="AutoLotService" behaviorConfiguration="ServiceBehavior">
<endpoint address="" binding="wsHttpBinding" contract="IAutoLotService"/>

<endpoint address="mex" binding="mexHttpBinding"
contract="IMetadataExchange"/>

</service>
</services>
<behaviors>
<serviceBehaviors>
<behavior name="ServiceBehavior">
<serviceMetadata httpGetEnabled="true"/>
<serviceDebug includeExceptionDetailInFaults="false"/>

</behavior>
</serviceBehaviors>

</behaviors>
</system.serviceModel>

Testing the Service
Now you are free to build any sort of client to test your service, including passing in the endpoint of
the *.svc file to the WcfTestClient.exe application:

WcfTestClient http://localhost/AutoLotWCFService/Service.svc

Consider Figure 25-21, which illustrates the result of invoking GetInventory().

■Source Code The AutoLotService project is located under the Chapter 25 subdirectory.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION914

8849CH25.qxd 10/16/07 10:51 AM Page 914

http://localhost/AutoLotWCFService/Service.svc

Figure 25-21. Creating a web-centric WCF service

If you wish to build a custom client application, simply use the Add Service Reference dialog
box as you did for the MagicEightBallServiceClient and MathClient project examples earlier in this
chapter.

Summary
This chapter introduced you to the Windows Communication Foundation (WCF) API, which has
been part of the base class libraries since .NET 3.0. As explained, the major motivation behind WCF
is to provide a unified object model that exposes a number of (previously unrelated) distributed
computing APIs under a single umbrella. Furthermore, as you saw at the onset of this chapter, a
WCF service is represented by specified addresses, bindings, and contracts (easily remembered by
the friendly abbreviation ABC).

As you have seen, a typical WCF application involves the use of three interrelated assemblies.
The first assembly defines the service contracts and service types that represent the services func-
tionality. This assembly is then hosted by a custom executable, an IIS virtual directory, or a Windows
service. Finally, the client assembly makes use of a generated code file defining a proxy type (and
settings within the application configuration file) to communicate with the remote type.

The chapter also examined using a number of WCF programming tools such as
SvcConfigEditor.exe (which allows you to modify *.config files), the WcfTestClient.exe applica-
tion (to quickly test a WCF service), and various Visual Studio 2008 WCF project templates.

CHAPTER 25 ■ INTRODUCING WINDOWS COMMUNICATION FOUNDATION 915

8849CH25.qxd 10/16/07 10:51 AM Page 915

8849CH25.qxd 10/16/07 10:51 AM Page 916

Introducing Windows Workflow
Foundation

.NET 3.0 shipped with a particular programming framework named Windows Workflow Founda-
tion (WF). This API allows you to model, configure, monitor, and execute the workflows (which, for
the time being, can simply be regarded as a collection of related tasks) used internally by a given
application. The out-of-the-box solution provided by WF is a huge benefit when building software,
as we are no longer required to manually develop complex infrastructure to support workflow-
enabled applications.

This chapter begins by defining the role of business processes and describes how they relate to
the WF API. As well, you will be exposed to the concept of a WF “activity,” the two major flavors of
workflows (sequential and state machine), and various WF assemblies, project templates, and pro-
gramming tools. Once we’ve covered the basics, we’ll build several example programs that illustrate
how to leverage the WF programming model to establish business processes that execute under the
watchful eye of the WF runtime engine.

■Note The entirety of WF cannot be covered in a single introductory chapter. If you require a deeper treatment of
the topic than presented here, check out Pro WF: Windows Workflow in .NET 3.0 by Bruce Bukovics (Apress, 2007).

Defining a Business Process
Any real-world application must be able to model various business processes. Simply put, a
business process is a conceptual grouping of tasks that logically work as a collective whole. For
example, assume you are building an application that allows a user to purchase an automobile
online. Once the user submits the order, a large number of activities are set in motion. We might
begin by performing a credit check. If the user passes our credit verification, we might start a data-
base transaction in order to remove the entry from an Inventory table, add a new entry to an Orders
table, and update the customer account information. After the database transaction has completed,
we still might need to send a confirmation e-mail to the buyer, and then invoke a remote XML web
service to place the order at the dealership. Collectively, all of these tasks could represent a single
business process.

Historically speaking, modeling a business process was yet another detail that programmers
had to account for, often by authoring custom code to ensure that a business process was not only
modeled correctly, but also executed correctly within the application itself. For example, you may
need to author code to account for points of failure, tracing, and logging support (to see what a
given business process is up to); persistence support (to save the state of long-running processes);

917

C H A P T E R 2 6

8849CH26.qxd 10/10/07 11:46 AM Page 917

and whatnot. As you may know firsthand, building this sort of infrastructure from scratch entails a
great deal of time and manual labor.

Assuming that a development team did, in fact, build a custom business process framework for
their applications, their work was not yet complete. Simply put, a raw C# code base cannot be easily
explained to nonprogrammers on the team who also need to understand the business process. The
truth of the matter is that subject matter experts (SMEs), managers, salespeople, and members of a
graphical design team often do not speak the language of code. Given this, we were required to
make use of other modeling tools (such as Microsoft Visio) to graphically represent our processes
using skill set–neutral terms. The obvious problem here is we now have two entities to keep in sync:
If we change the code, we need to update the diagram. If we change the diagram, we need to update
the code.

Furthermore, when building a sophisticated software application using the 100% code
approach, the code base has very little trace of the internal “flow” of the application. For example, a
typical .NET program might be composed of hundreds of custom types (not to mention the numer-
ous types used by the base class libraries). While programmers may have a feel for which objects are
making calls on other objects, the code itself is a far cry from a living document that explains the
overall sequence of activity. While the development team may build external documentation and
workflow charts, again we run into the problem of multiple representations of the same process.

The Role of WF
Since the release of .NET 3.0, we were provided with the Windows Workflow Foundation API. In
essence, WF allows programmers to declaratively design business processes using a prefabricated
set of activities. Thus, rather than building a custom set of assemblies to represent a given business
activity and the necessary infrastructure, we can make use of the WF designers of Visual Studio 2008
to create our business process at design time. In this respect, WF allows us to build the skeleton of a
business process, which can be fleshed out through code.

When programming with the WF API, a single entity can then be used to represent the overall
business process as well as the code that defines it. Since a single WF document is used to represent
the code driving the process in addition to being a friendly visual representation of the process, we
no longer need to worry about multiple documents falling out of sync. Better yet, this WF document
will clearly illustrate the process itself.

The Building Blocks of WF
As you build a workflow-enabled application, you will undoubtedly notice that it “feels different”
from building a typical .NET application. For example, up until this point in the text, every code
example began by creating a new project workspace (most often a Console Application project) and
involved authoring code to represent the program at large. A WF application also consists of custom
code; however, in addition, you are building directly into the assembly the business process itself.
Consider Figure 26-1, which illustrates the initial workflow diagram generated by Visual Studio 2008
when selecting a new Sequential Workflow Console Application project workspace.

Using this designer (and the various WF-centric tools integrated into Visual Studio) you are
able to model your process and eventually author code to execute it under the appropriate circum-
stances. You’ll examine these tools in more detail a bit later in this chapter.

Understand that WF is far more than a pretty designer that allows you to model the activities of
a business process. As you are building your WF diagram, the designer tools are authoring code to
represent the skeleton of your process. Thus, the first thing to be aware of is that a visual WF dia-
gram is executable code, not just simply a Visio-like static image. As such, WF is represented by a set
of .NET assemblies, namespaces, and types, just like any other .NET technology.

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION918

8849CH26.qxd 10/10/07 11:46 AM Page 918

Figure 26-1. An empty sequential workflow diagram designer

The WF Runtime
Given the fact that a WF diagram equates to real types and custom code, the next thing to under-
stand is that the WF API also consists of a runtime engine to load, execute, unload, and in other
ways manipulate a workflow process. The WF runtime engine can be hosted within any .NET appli-
cation domain; however, be aware that a single application domain can only have one running
instance of the WF engine.

Recall from Chapter 17 that an AppDomain is a partition within a Win32 process that plays
host to a .NET application and any external code libraries. As such, the WF engine can be embed-
ded within a simple console program, a GUI desktop application (Windows Forms or Windows
Presentation Foundation [WPF]), or exposed from a WCF service or XML web service.

If you are modeling a business process that needs to be used by a wide variety of systems, you
also have the option of authoring your WF within a C# Class Library project. In this way, new appli-
cations can simply reference your *.dll to reuse a predefined collection of business processes. This
is obviously helpful in that you would not want to have to re-create the same WF multiple times.

In any case, at this point understand that the WF API provides a full-blown object model that
allows you to programmatically interact with the runtime engine as well as the workflows you have
designed.

The Core Services of WF
In addition to designer tools, activities, and a runtime engine, WF provides a set of out-of-the-box
services that complete the overall framework of a workflow-enabled application. Using these serv-
ices we can “inherit” a good deal of commonly required WF infrastructure, rather than having to
commit time and resources to build this infrastructure by hand. Table 26-1 documents the intrinsic
services baked into the WF API.

Collectively, the four intrinsic services seen in Table 26-1 are termed the core services. The WF
APIs provide default implementations of each of these services, two of which are mandatory (sched-
uling and transactions), while tracking and persistence services are optional and not registered with
the runtime by default. While the .NET base class libraries do provide types that support each core
service, you are able to exchange them with your own custom implementations. Thus, if you wish to
customize the way in which a long-running workflow should be persisted, you can do so. As well, if
you wish to extend the basic functionality of a service with new functionality, it is possible to do so.

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION 919

8849CH26.qxd 10/10/07 11:46 AM Page 919

Table 26-1. Intrinsic Services of WF

Services Meaning in Life

Persistence services This feature allows you to save a WF instance to an external source (such
as a database). This can be useful if a long-running business process will
be idle for some amount of time.

Transaction services WF instances can be monitored in a transactional context, to ensure that
each aspect of your workflow—or a subset of a workflow—completes (or
fails) as a singular atomic unit.

Tracking services This feature is primarily used for debugging and optimizing a WF activity;
it allows you to monitor the activities of a given workflow.

Scheduling services This feature allows you to control how the WF runtime engine manages
threads for your workflows.

When you create an instance of the WF runtime engine in order to execute one of your work-
flows, you have the option of calling the AddService() method to plug in tracking or persistence
service objects (such as SqlWorkflowPersistanceService and SqlTrackingService) as well as any
customized service you may have designed. At this point you are able to execute a given WF
instance and allow these auxiliary services to further monitor its lifetime.

In this introductory chapter, we will not build custom implementations of the core services,
nor will we dive too deeply into the default functionality of them. Here, we will focus on the build-
ing blocks of a workflow-enabled application, and we will examine numerous WF activities. Be sure
to check out the .NET Framework 3.5 SDK documentation for further details of the core services.

A First Look at WF Activities
Recall that the purpose of WF is to allow you to model a business process in a declarative manner,
which is then executed by the WF runtime engine. In the vernacular of WF, a business process is
composed of any number of activities. Simply put, a WF activity is an atomic “step” in the overall
process. When you create a new WF-enabled application using Visual Studio 2008, you will find a
Windows Workflow area of the Toolbox that contains iconic representations of the built-in activities
(see Figure 26-2).

Figure 26-2. The Windows Workflow Toolbox

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION920

8849CH26.qxd 10/10/07 11:46 AM Page 920

■Note Visual Studio 2008 divides the Activities Toolbox into .NET 3.0 and .NET 3.5 activity categories. The activi-
ties under the Windows Workflow v3.5 node allow you to interact with Windows Communication Foundation (WCF)
services.

.NET 3.5 provides numerous out-of-the-box activities that you can use to model your business
process, each of which maps to real types within the System.Workflow.Activities namespace and
therefore can be represented by, and driven from, code. You’ll make use of several of these baked-in
activities over the course of this chapter. Table 26-2 describes the high-level functionality of some
useful activities, grouped by related functionality.

Table 26-2. A Sampling of Intrinsic WF Activities

Activities Meaning in Life

CodeActivity This activity represents a unit of custom code to execute
within the workflow.

IfElseActivity, WhileActivity These activities provide basic looping and decision
support within a workflow.

InvokeWebServiceActivity, These activities allow your workflow to interact with
WebServiceInputActivity, XML web services.
WebServiceOutputActivity,
WebServiceFaultActivity

SendActivity, ReceiveActivity These activities allow you to interact with Windows
Communication Foundation services. Be aware that these
two activities are .NET 3.5 specific.

ConditionedActivity, GroupActivity These activities allow you to define a group of related
activities that execute when a given condition is true.

DelayActivity, SuspendActivity, These activities allow you to define wait periods as well
TerminateActivity as pause or terminate a course of action within a

workflow.

EventDrivenActivity, These activities allow you to associate CLR events to a
EventHandlingScopeActivity given activity within the workflow.

ThrowActivity, FaultHandlerActivity These activities allow you to raise and handle exceptions
within a workflow.

ParallelActivity, SequenceActivity These activities allow you to execute a set of activities in
parallel or in sequence.

While the current number of intrinsic activities is impressive and provides a solid foundation
for many WF-enabled applications, you are also able to create custom activities that seamlessly
integrate into the Visual Studio IDE and the WF runtime engine.

Sequential and State Machine Workflows
The WF API provides support for modeling two flavors of business process workflows: sequential
workflows and state machine workflows. Ultimately, both categories are constructed by piecing
together any number of related activities; however, exactly how they execute is what sets them
apart.

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION 921

8849CH26.qxd 10/10/07 11:46 AM Page 921

The most straightforward workflow type is sequential. As its name implies, a sequential work-
flow allows you to model a business process where each activity executes in sequence until the final
activity completes. This is not to say that a sequential workflow is necessarily linear or predictable
in nature—it is entirely possible to build a sequential workflow that contains various branching and
looping activities, as well as a set of activities that execute in parallel on separate threads.

The key aspect of a sequential workflow is that it has a crystal-clear beginning and ending
point. Within the Visual Studio 2008 workflow designer, the path of execution begins at the top of
the WF diagram and proceeds downward to the end point. Figure 26-3 shows a simple sequential
workflow that models a partial business process for verifying a given automobile is in stock.

Figure 26-3. Sequential workflows have a clear starting point and ending point.

Sequential workflows work well when the workflow models interactions with various system-
level entities, and when there is no requirement for backtracking in the process. For example, the
business process modeled in Figure 26-3 has two possible outcomes: the car is in stock or it isn’t. If
the car is indeed in stock, the order is processed using some block of custom code (whatever that
may be). If the car isn’t in stock, we send a notification e-mail, provided that we have the client’s
e-mail address at our disposal.

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION922

8849CH26.qxd 10/10/07 11:46 AM Page 922

In contrast to sequential workflows, state machine workflows do not model activities using a
simple linear path. Instead, the workflow defines a number of request states and a set of related
events that trigger transitions between these states. Figure 26-4 illustrates a simple state machine
WF diagram that represents the processing of an order. Don’t worry about the details of what each
activity is doing behind the scenes, but do notice that each request state in the workflow can flow
across various states based on some internal event.

Figure 26-4. State machine workflows do not follow a fixed, linear path.

State machine workflows can be very helpful when you need to model a business process that
can be in various states of completion, typically due to the fact that human interaction is involved
to move between states. Here, we have a request state that is waiting for an order to be created.
Once that occurs, an event forces the flow of activity to the order open state, which may trigger an
order processed state (or loop back to the previous open state), and so forth.

■Note In this introductory chapter, I don’t dig into the details of building state machine workflows. Consult the
.NET Framework 3.5 SDK documentation for further information if you are interested.

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION 923

8849CH26.qxd 10/10/07 11:46 AM Page 923

WF Assemblies, Namespaces, and Projects
From a programmer’s point of view, WF is represented by three core assemblies:

• System.Workflow.Activities.dll: Defines the intrinsic activities and the rules that drive
them

• System.Workflow.Runtime.dll: Defines types that represent the WF runtime engine and
instances of your custom workflows

• System.Workflow.ComponentModel.dll: Defines numerous types that allow for design-time
support of WF applications, including construction of custom designer hosts

While these assemblies define a number of .NET namespaces, many of them are used behind
the scenes by various WF visual design tools. Table 26-3 documents some key WF-centric name-
spaces to be aware of.

Table 26-3. Core WF Namespaces

Namespace Meaning in Life

System.Workflow.Activities This is the core activity-centric namespace, which defines
type definitions for each of the items on the Windows
Workflow Toolbox. Additional subnamespaces define the
rules that drive these activities as well as types to configure
them.

System.Workflow.Runtime This namespace defines types that represent the WF
runtime engine (such as WorkflowRuntime) and an instance
of a given workflow (via WorkflowInstance).

System.Workflow.Runtime.Hosting This namespace provides types to build a host for the WF
runtime, which make use of custom WF services (tracking,
logging, etc.). As well, this namespace provides types to
represent the out-of-the-box core WF services.

.NET 3.5 WF Support
With the release of .NET 3.5, the base class libraries now ship with a fourth WF-centric assembly
named System.WorkflowServices.dll. Here you will find additional types that allow you to build
WF-enabled applications that integrate with the Windows Communications Foundation APIs. The
most important aspect of this assembly is that it augments the System.Workflow.Activities name-
space with new types to support WCF integration.

■Note When you build any WF-aware Visual Studio 2008 project, the IDE will automatically set references to
each of the Windows Workflow Foundation assemblies.

Visual Studio Workflow Project Templates
As you would expect, the Visual Studio 2008 IDE provides a good number of WF project templates.
First and foremost, when you select the File ➤ New ➤ Project dialog box, you will find a Workflow
node under the C# programming category (see Figure 26-5). Here you will find projects that allow
you to build sequential and state machine workflows contained within a simple console or custom
*.dll assembly.

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION924

8849CH26.qxd 10/10/07 11:46 AM Page 924

Figure 26-5. The core WF project templates

In addition, you may recall from Chapter 26 that the Windows Communication Foundation
(WCF) node of the New Project dialog box also provides a set of WF templates. Here you will find
two project templates (Sequential Workflow Service Library and State Machine Workflow Service
Library), which allow you to build a WCF service that internally makes use of workflows. We will not
make use of this group of WF project templates in this chapter; however, do remember that when
you are building WCF services, you can elect to integrate WF functionality when creating a new
project.

Getting into the Flow of Workflow
Before we dive into our first code example, allow me to point out a few final thoughts regarding the
“workflow mind-set.” When programming with the WF API, you must keep in mind that you are
ultimately attempting to model a business process; therefore, the first step is to investigate the busi-
ness process itself, including all the substeps within the process and each of the possible outcomes.
For example, assume you are modeling the process of registering for a training class online. When a
request comes in, what should you do if the salesperson is out of the office? What if the class is cur-
rently full? What if the class has been canceled or moved to a new date? How can you determine if
the trainer is available, is not on vacation, is not teaching a class that same week, or whatnot?

Depending on your current background, the process of gathering these requirements may be a
very new task, as figuring out a business process may be “someone else’s problem.” However, in
small companies, the act of determining the necessary business processes may fall on the shoulders
of the developers themselves. Larger organizations typically have business analysts who take on the
role of discovering (and often modeling) the business processes.

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION 925

8849CH26.qxd 10/10/07 11:46 AM Page 925

In any case, do be aware that working with WF is not simply a “jump in and start coding”
endeavor. If you do not take the time to clearly analyze the business problem you are attempting to
solve before coding, you will most certainly create a good amount of unnecessary pain. In this
chapter, you will concentrate on the basic mechanics of workflow design, the use of activities, and
how to work with the visual WF designers. However, don’t be too surprised when your real-world
workflows become substantially more complex.

Building a Simple Workflow-Enabled Application
To get your feet wet with the process of building workflow-enabled applications, this first WF exam-
ple will model a very simple sequential process. The goal is to build a workflow that prompts the
user for his or her name and validates the results. If the results do not jibe with our business rules,
we will prompt for input again until we reach success.

To begin, create a Sequential Workflow Console Application project named UserDataWFApp.
Once the project has been created, use Solution Explorer to rename the initial WF designer file from
Workflow1.cs to the more fitting ProcessUsernameWorkflow.cs.

Examining the Initial Workflow Code
Before we add activities to represent our business process, let’s take a look at how this initial dia-
gram is represented internally. If you examine the ProcessUsernameWorkflow.cs file using Solution
Explorer, you will notice that much like other designer-maintained files (forms, windows, web
pages), a WF diagram consists of partial class definitions. When you open the core *.cs file, you will
find a class type that extends the SequentialWorkflowActivity type and a default constructor that
makes a call to the InitializeComponent() method:

public sealed partial class ProcessUsernameWorkflow : SequentialWorkflowActivity
{
public ProcessUsernameWorkflow()
{
InitializeComponent();

}
}

■Note One of the tenets of WF development is that workflows are singular, atomic entities. Given this fact, notice
that the workflow class type is explicitly sealed, thereby preventing it from functioning as a parent class for derived
types.

If you now open the related *.Designer.cs file, you will find that InitializeComponent() has set
the Name property accordingly:

partial class ProcessUsernameWorkflow
{
[System.Diagnostics.DebuggerNonUserCode]
private void InitializeComponent()
{
this.Name = "ProcessUsernameWorkflow";

}
}

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION926

8849CH26.qxd 10/10/07 11:46 AM Page 926

As you make use of the Windows Workflow Toolbox to drag various activities onto the designer
surface and configure them using the Properties window (or the inline smart tags), the *.Designer.
cs file will be updated automatically. Like other IDE-maintained files, you can typically ignore the
code within this file completely and keep focused on authoring code within the primary *.cs file.

Adding a Code Activity
The first activity you will add in the sequence is a Code activity. To do so, drag a Code activity
component from the Windows Workflow Toolbox and drop it onto the line connecting the starting
and ending points of the workflow. Next, use the Properties window to rename this activity as
ShowInstructionsActivity. At this point, your designer should look like Figure 26-6.

Figure 26-6. A (not quite ready for prime time) Code activity

As you can see, the designer is currently reporting an error, which you can view by clicking
the red exclamation point on top of the Code activity. The error informs you that the ExecuteCode
value has not been set, which is a mandatory step for all Code activity types. Not too surprisingly,
ExecuteCode establishes the name of the method to execute when this task is encountered by the
WF runtime engine.

Using the Properties window, set the value of ExecuteCode to a method named
ShowInstructions. Once you press the Enter key, the IDE will update the primary *.cs code file
with the following stub code:

public sealed partial class ProcessUsernameWorkflow : SequentialWorkflowActivity
{
public ProcessUsernameWorkflow()
{
InitializeComponent();

}

private void ShowInstructions(object sender, EventArgs e)
{

}
}

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION 927

8849CH26.qxd 10/10/07 11:46 AM Page 927

Truth be told, ExecuteCode is an event of the CodeActivity class type. When the WF engine
encounters this phase of the sequential workflow, the ExecuteCode event will fire and be handled by
the ShowInstructions() method. Implement this method with a handful of Console.WriteLine()
statements that display some basic instructions to the end user:

private void ShowInstructions(object sender, EventArgs e)
{
ConsoleColor previousColor = Console.ForegroundColor;
Console.ForegroundColor = ConsoleColor.Yellow;
Console.WriteLine("***");
Console.WriteLine("***** Welcome to the first WF Example *****");
Console.WriteLine("***\n");
Console.WriteLine("I will now ask for your name and validate the data...\n");
Console.ForegroundColor = previousColor;

}

Adding a While Activity
Recall that our sequential process will prompt the end user for his or her name until the input can
be validated against a custom business rule (that is yet to be defined). Such looping behavior can be
represented using the While activity. Specifically, a While activity allows us to define a set of related
activities that will continuously execute until a specified condition is true.

To illustrate, begin by dragging a While activity from the Windows Workflow Toolbox directly
below the previous Code activity and rename this new activity to AskForNameLoopActivity. The
next step is to define the condition that will be used to exit the loop itself by setting the Condition
value from the Properties window.

The Condition value (which is a common property of many activities) can be set in two key
ways. First of all, you can establish a code condition. As the name implies, this option allows you to
specify a method in your class that will be called by the activity in order to determine if it should
proceed. To inform the activity of this fact, the method specified will eventually need to return a
Boolean value (true to repeat, false to exit).

The second way the Condition value can be set is by establishing a declarative rule condition.
This option can be useful in that you are able to specify a single code statement that evaluates to
true or false; however, this statement is not hard-coded in your assembly, but is instead offloaded
to a *.rules file. One benefit of this approach is that it makes it possible to modify rules in a declar-
ative manner.

Our condition will be based on some custom code that we have yet to author; however, the first
step is to select the Code Condition option from the Condition value, and then specify the name of
the method that will perform the test. Again using the Properties window, name this method
GetAndValidateUserName (see Figure 26-7).

As soon as you specify the name of the code condition used to test the While activity, the IDE
will generate a method stub where the second parameter is of type ConditionalEventArgs. This type
contains a property named Result, which can be set to true or false based on the success or failure
of the condition you are modeling.

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION928

8849CH26.qxd 10/10/07 11:46 AM Page 928

Figure 26-7. The configured While activity

Add a new automatic property of type string named UserName to your ProcessUsernameWorkflow
class. Within the scope of the GetAndValidateUserName() method, ask the user to enter his or her
name, and if the name consists of fewer than ten characters, set the Result property accordingly.
Here are the updates in question:

public sealed partial class ProcessUsernameWorkflow : SequentialWorkflowActivity
{
// Use C# automatic property.
public string UserName { get; set; }

private void GetAndValidateUserName(object sender, ConditionalEventArgs e)
{
Console.Write("Please enter name, which must be less than 10 chars: ");
UserName = Console.ReadLine();

// See if name is correct length, and set the result.
e.Result = (UserName.Length >= 10);

}
...
}

The final task to complete the While activity involves adding at least a single activity within the
scope of the While logic. Here we will add a new Code activity named NameNotValidActivity, which
has been connected to a method named NameNotValid via the ExecuteCode value. Figure 26-8 shows
the final workflow diagram. The implementation of NameNotValid() is intentionally simple:

private void NameNotValid(object sender, EventArgs e)
{
Console.WriteLine("Sorry, try again...");

}

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION 929

8849CH26.qxd 10/10/07 11:46 AM Page 929

Figure 26-8. The final workflow design

At this point, you may compile and run this workflow-enabled application. When you execute
the program, purposely enter more than ten characters a few times. You will notice that the runtime
engine forces the user to reenter data until the business rule (a name of fewer than ten characters)
is honored. Figure 26-9 shows one possible output.

Figure 26-9. The workflow-enabled application in action

Examining the WF Engine Hosting Code
While our first example executes as expected, we have yet to examine the code that actually
instructs the WF runtime engine to execute the tasks that represent the current workflow. To under-
stand this aspect of WF, open the Program.cs file that was created when you defined your initial
project. Within the Main() method, you will find code that makes use of two primary types,
WorkflowRuntime and WorkflowInstance.

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION930

8849CH26.qxd 10/10/07 11:46 AM Page 930

As the names suggest, the WorkflowRuntime type represents the WF runtime engine itself, while
WorkflowInstance is used to represent an instance of a given (pardon the redundancy) workflow
instance. Here is the Main() method in question, annotated with my various code comments:

static void Main(string[] args)
{
// Ensure the runtime shuts down when we are finished.
using(WorkflowRuntime workflowRuntime = new WorkflowRuntime())
{
AutoResetEvent waitHandle = new AutoResetEvent(false);

// Handle events that capture when the engine completes
// the workflow process and if the engine shuts down with an error.
workflowRuntime.WorkflowCompleted
+= delegate(object sender, WorkflowCompletedEventArgs e)

{
waitHandle.Set();

};

workflowRuntime.WorkflowTerminated
+= delegate(object sender, WorkflowTerminatedEventArgs e)

{
Console.WriteLine(e.Exception.Message);
waitHandle.Set();

};

// Now, create a WF instance that represents our type.
WorkflowInstance instance =
workflowRuntime.CreateWorkflow(typeof(UserDataWFApp.ProcessUsernameWorkflow));
instance.Start();

waitHandle.WaitOne();
}

}

First of all, notice that the WorkflowCompleted and WorkflowTerminated events of
WorkflowRuntime are handled using C# anonymous method syntax. The WorkflowCompleted event
fires when the WF engine has completed executing a workflow instance, while WorkflowTerminated
fires if the engine terminates with an error.

Strictly speaking, you are not required to handle these events, although the IDE-generated
code does so in order to inform the waiting thread these events have occurred using the
AutoResetEvent type. This is especially important for a console-based application, as the WF engine
is operating on a secondary thread of execution. If the workflow logic did not make use of some sort
of wait handle, the main thread might terminate before the WF instance was able to perform its
work.

The next point of interest regarding the code within Main() is the creation of the
WorkflowInstance type. Notice that the WorkflowRuntime type exposes a method named
CreateWorkflow(), which expects type information representing the workflow to be created. At this
point, we simply call Start() from the returned object reference. This is all that is required to fire up
the WF runtime engine and begin the processing of our custom workflow.

Adding Custom Startup Parameters
Before we move on to a more interesting workflow example, allow me to address how to define
application-wide parameters. If you examine the signature of the designer-generated methods

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION 931

8849CH26.qxd 10/10/07 11:46 AM Page 931

used by our Code activities (ShowInstructions() and NameNotValid() specifically), you may have
noticed that they are called via WF events that are making use of the System.EventHandler delegate
(given the incoming parameters of type object and System.EventArgs).

Because this .NET delegate demands the registered event handler and takes System.Object and
System.EventArgs as arguments, you may wonder how to pass in custom parameters to be used by a
Code activity. In fact, you may be wondering how to define custom arguments that can be used by
any activity within the current workflow instance.

As it turns out, the WF engine supports the use of custom parameters using a generic
Dictionary<string, object> type. The name/value pairs added to the Dictionary object must then
be associated to (identically named) properties on your workflow instance. Once you’ve done this,
you can pass these arguments into the WF runtime engine when you start your workflow instance.
Using this approach, you are able to get and set custom parameters throughout a particular work-
flow instance.

■Note The names defined within a Dictionary object must map to public properties, not public member vari-
ables! If you attempt to do so, you will generate a runtime exception.

To try this out firsthand, begin by updating the code within Main() to define a
Dictionary<string, object> containing two data items. The first item is a string that represents
the error message to display if the name is too long; the second item is a numeric value that will be
used to specify the maximum length of the user name. To register these parameters with the WF
runtime engine, pass in your Dictionary object as a second parameter to the CreateWorkflow()
method. Here are the relevant updates:

using (WorkflowRuntime workflowRuntime = new WorkflowRuntime())
{
...
// Define two parameters for use by our workflow.
// Remember! These must be mapped to identically named
// properties in our workflow class type.
Dictionary<string, object> parameters = new Dictionary<string, object>();
parameters.Add("ErrorMessage", "Ack! Your name is too long!");
parameters.Add("NameLength", 5);

// Now, create a WF instance that represents our type
// and pass in parameters.
WorkflowInstance instance =
workflowRuntime.CreateWorkflow(
typeof(UserDataWFApp.ProcessUsernameWorkflow), parameters);

instance.Start();
waitHandle.WaitOne();

}

■Note In the preceding code, the values assigned to the ErrorMessage and NameLength dictionary items are
hard-coded. A more dynamic approach is to read these values from a related *.config file, or perhaps from
incoming command-line arguments.

If you try running your program at this point, you will encounter a runtime exception, as you
have yet to associate these incoming values to public properties on your workflow type. Once you
have done so, however, the runtime will invoke them upon workflow creation. After this point,

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION932

8849CH26.qxd 10/10/07 11:46 AM Page 932

you can use these properties to get and set the underlying data values. Here are the relevant updates
to the ProcessUsernameWorkflow class type:

public sealed partial class ProcessUsernameWorkflow : SequentialWorkflowActivity
{
...
// These properties map to the names within the Dictionary object.
public string ErrorMessage { get; set; }
public int NameLength { get; set; }

private void GetAndValidateUserName(object sender, ConditionalEventArgs e)
{
Console.Write("Please enter name, which much be less than {0} chars: ",
NameLength);

UserName = Console.ReadLine();

// See if name is correct length, and set the result.
e.Result = (UserName.Length >= NameLength);

}

private void NameNotValid(object sender, EventArgs e)
{
Console.WriteLine(ErrorMessage);

}
...
}

Beyond the fact that you have added two new automatic properties, notice that the
GetAndValidateUserName() method is now checking for the length specified by the NameLength prop-
erty, while the error message prints out the value found within the ErrorMessage property. In both
cases, these values are determined via the Dictionary object passed in at the time the workflow
instance was created. Figure 26-10 shows some possible output for this modified example.

Figure 26-10. The workflow in action, now with custom parameters

■Source Code The UserDataWFApp example is included under the Chapter 26 subdirectory.

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION 933

8849CH26.qxd 10/10/07 11:46 AM Page 933

Invoking Web Services Within Workflows
WF provides several activities that allow you to interact with XML web services during the lifetime
of your workflow-enabled application. When you wish to simply call an existing web service, you
can make use of the InvokeWebService activity.

■Note Given that WCF is the preferred API to build services, this edition of the text does not cover the construc-
tion of XML web services in any great detail (Chapter 25 broached the topic in passing); therefore the web service
we will be calling here is intentionally simple.

Creating the MathWebService
The first task is to build an XML web service that can be utilized by a workflow-enabled application.
To do so, create a brand-new XML web service project by accessing the File ➤ New Web Site menu
option. Select the ASP.NET Web Service icon and be sure to select the HTTP location option in order
to create this web service within a new IIS virtual directory mapped to http://localhost/
MathWebService (see Figure 26-11).

Figure 26-11. Adding an XML web service project to the WF application

This XML web service will allow external callers to perform basic mathematical operations on
two integers using the following [WebMethod]-adorned public members:

[WebService(Namespace = "http://intertech.com/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class MathService : System.Web.Services.WebService
{
[WebMethod]

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION934

8849CH26.qxd 10/10/07 11:46 AM Page 934

http://localhost
http://intertech.com
http://intertech.com

public int Add(int x, int y)
{ return x + y; }
[WebMethod]
public int Subtract(int x, int y)
{ return x - y; }
[WebMethod]
public int Multiply(int x, int y)
{ return x * y; }
[WebMethod]
public int Divide(int x, int y)
{
if (y == 0)
return 0;

else
return x / y;

}
}

Notice that we have accounted for a division by zero error by simply returning 0 if the y value is
in fact zero. Also notice that we have renamed this service to MathService, and therefore we must
also update the Class attribute in the *.asmx file as so:

<%@ WebService Language="C#" CodeBehind="~/App_Code/Service.cs"
Class="MathService" %>

At this point you can test your XML web service by running (Ctrl+F5) or debugging (F5) the
project. When you do so, you will find a web-based testing front end that allows you to invoke each
web method (see Figure 26-12).

Figure 26-12. Testing our MathWebService

At this point you can close down the web service project.

■Source Code The MathWebService example is included under the Chapter 26 subdirectory.

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION 935

8849CH26.qxd 10/10/07 11:46 AM Page 935

Building the WF Web Service Consumer
Now create a new Sequential Workflow Console Application project named WFMathClient and
rename your initial C# file to MathWF.cs. This application will ask the user for data to process and
which operation they wish to perform (addition, subtraction, etc.). To begin, open your code file
and define a new enum type named MathOperation:

public enum MathOperation
{
Add, Subtract, Multiply, Divide

}

Next, define four automatic properties in your class, two of which represent the numerical
data to process, one of which represents the result of the operation, and one of which represents the
mathematical operation itself (note the default constructor of MathWF sets the value of the Operation
property to MathOperation.Add):

public sealed partial class MathWF : SequentialWorkflowActivity
{
// Properties.
public int FirstNumber { get; set; }
public int SecondNumber { get; set; }
public int Result { get; set; }
public MathOperation Operation { get; set; }

public MathWF()
{
InitializeComponent();

// Set default Operation to addition.
Operation = MathOperation.Add;

}
...
}

Now, using the WF designer, add a new Code activity named GetNumericalInput that is
mapped to a method named GetNumbInput(), by setting the ExecuteCode value via the Properties
window. Within this method, prompt the user to enter two numerical values that are assigned to
your FirstNumber and SecondNumber properties:

public sealed partial class MathWF : SequentialWorkflowActivity
{
...
private void GetNumbInput(object sender, EventArgs e)
{
// For simplicity, we are not bothering to verify that
// the input values are indeed numerical.
Console.Write("Enter first number: ");
FirstNumber = int.Parse(Console.ReadLine());

Console.Write("Enter second number: ");
SecondNumber = int.Parse(Console.ReadLine());

}
}

Add a second Code activity named GetMathOpInput mapped to a method named
GetOpInput() in order to ask the user how he or she wishes to process the numerical data. To do so,

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION936

8849CH26.qxd 10/10/07 11:46 AM Page 936

we will assume the user will specify the letters A, S, M, or D, and based on this character value, set
the MathOperation property to the correct enumeration value. Here is one possible implementation:

private void GetOpInput(object sender, EventArgs e)
{
Console.WriteLine("Do you wish to A[dd], S[ubtract],");
Console.Write("Do you wish to M[ultiply] or D[ivide]: ");
string option = Console.ReadLine();

switch (option.ToUpper())
{
case "A":
Operation = MathOperation.Add;
break;

case "S":
Operation = MathOperation.Subtract;
break;

case "M":
Operation = MathOperation.Multiply;
break;

case "D":
Operation = MathOperation.Divide;
break;

default:
numericalOp = MathOperation.Add;
break;

}
}

At this point we have the necessary data. Now let’s check out how to pass it to our XML web
service for processing.

Configuring the IfElse Activity
Given that fact that our numerical data can be processed in four unique manners, we will use an
IfElse activity to determine which web method of the service to invoke. When you drag an IfElse
activity onto your designer, you will automatically be given two branches. To add additional
branches to an IfElse activity, right-click the IfElse activity icon and select the Add Branch menu
option. Figure 26-13 shows the current WF designer (note that each branch and the entire IfElse
activity have been given proper names).

Each branch of an IfElse activity can contain any number of internal activities that represent
what should take place if the decision logic results in moving the flow of the application down a
given path. Before we add these subactivities, however, we first need to add the logic that allows the
WF engine to determine which branch to take by setting the Condition value to each IfElseBranch
activity.

Recall that the Condition event can be configured to establish a code condition or a declarative
rule condition. The first example project in this chapter already illustrated how to create a code
condition, so in this example we will opt for rule conditions. Starting with the AddBranch, set the
Condition value to Declarative Rule Condition using the Visual Studio Properties window. Next,
click the ellipsis button for the ConditionName subnode, and click the New button from the result-
ing dialog box. Here, you are able to author a code expression that will determine the truth or falsity
of the current branch. For this first branch, the expression is as follows:

this.Operation == MathOperation.Add

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION 937

8849CH26.qxd 10/10/07 11:46 AM Page 937

Figure 26-13. A multibranching IfElse activity

You’ll notice that this dialog box supports IntelliSense, which is always a welcome addition (see
Figure 26-14).

Figure 26-14. Defining a declarative rule condition

Once you have set each rule, you will now notice that a new file with a *.rules extension has
been added to your project (see Figure 26-15).

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION938

8849CH26.qxd 10/10/07 11:46 AM Page 938

Figure 26-15. *.rules files hold each declarative rule you have established for a WF.

If you were to open this file, you would find a number of <RuleExpressionCondition> elements
that describe the conditions you have established.

Configuring the InvokeWebService Activities
The final tasks are to pass the incoming data to the correct web method and print out the result.
Drag an InvokeWebService activity into the leftmost branch. Doing so will automatically open the
Add Web Reference dialog box, where you can specify the URL of the web service (which for this
example is http://localhost/MathWebService/Service.asmx) and click the Add Reference button
(see Figure 26-16).

Figure 26-16. Referencing our XML web service

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION 939

8849CH26.qxd 10/10/07 11:46 AM Page 939

http://localhost/MathWebService/Service.asmx

When you do so, the IDE will generate a proxy to your web service and use it as the value to the
InvokeWebService’s ProxyClass property. At this point, you can use the Properties window to specify
the web method to invoke via the MethodName property (which is the Add method for this branch),
and map the two input parameters to your FirstNumber and SecondNumber properties and the return
value to the Result property. Figure 26-17 shows the full configuration of the first InvokeWebService
activity.

Figure 26-17. A fully configured InvokeWebService activity

You can now repeat this process for the remaining three IfElse branches, specifying the remain-
ing web methods. Do be aware that even though the Add Web Reference dialog box will appear for
each InvokeWebService activity, the IDE is smart enough to reuse the existing proxy, as each activity
is communicating with the same endpoint.

Last but not least, we will add one final Code activity after the IfElse logic that will display the
result of the user-selected operation. Name this activity DisplayResult, and set the ExecuteCode
value to a method named ShowResult(), which is implemented as so:

private void ShowResult(object sender, EventArgs e)
{
Console.WriteLine("{0} {1} {2} = {3}",
FirstNumber, Operation.ToString().ToUpper(), SecondNumber, Result);

}

For simplicity, we are using the textual value of the Operation property to represent the selected
mathematical operator, rather than adding additional code to map MathOperation.Add to a + sign

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION940

8849CH26.qxd 10/10/07 11:46 AM Page 940

and MathOperation.Subtract to a - sign, and so on. In any case, Figure 26-18 shows the final design
of our workflow; Figure 26-19 shows one possible output.

Figure 26-18. The completed web service–centric workflow

Figure 26-19. Communicating with XML web services from a WF application

Communicating with WCF Services Using SendActivity
To complete this example, let’s examine how a workflow-enabled application can communicate
with WCF services. The .NET 3.5–centric SendActivity and ReceiveActivity types allow you to build
workflow-enabled applications that communicate with WCF services. As the name implies, the
SendActivity type can be used to make calls on WCF service operations, while ReceiveActivity
provides a way for the WCF service to make calls back on the WF (in the case of a duplex calling
contract).

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION 941

8849CH26.qxd 10/10/07 11:46 AM Page 941

Recall that in Chapter 25 we defined a WCF service contract that also manipulated two num-
bers via an addition operation, using the following service interface:

namespace MathServiceLibrary
{
[ServiceContract(Namespace = "www.intertech.com")]
public interface IBasicMath
{
[OperationContract]
int Add(int x, int y);

}
}

Also recall that this interface was implemented on a type named MathService and hosted by a
Windows service named MathWindowsServiceHost.exe. The Windows service exposed said function-
ality from the following endpoint:

http://localhost:8080/MathService

Assuming you created and installed this service (see Chapter 25 for details), you can update
your current WFMathClient project to communicate with it using the SendActivity type. The first
step is to add a reference to the service in the expected manner, using the Add Service Reference
dialog box (see Figure 26-20). This will generate a client-side proxy and update your App.config file
with WCF-specific settings.

Figure 26-20. Referencing the WCF MathService

Now, drag a SendActivity type onto your WF designer surface (named WCFSendAddActivity),
directly after the final Code activity. Using the Properties window, click the ellipsis button of the
ServiceOperationInfo property and from the resulting dialog box click Import. This will present you
with a secondary dialog box where you are able to associate a SendActivity type with a metadata

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION942

8849CH26.qxd 10/10/07 11:46 AM Page 942

http://www.intertech.com
http://localhost:8080/MathService

description for a given WCF service contract. Select the only contract available at this endpoint,
IBasicMath (see Figure 26-21).

Figure 26-21. Associating a service method to a SendActivity type

Once you do so, you will then be able to pick which operation on the selected contract the
SendActivity should invoke. In our case, the only option is the Add() method (see Figure 26-22).

We have a few additional configuration steps to take before the SendActivity is ready to pass
the values maintained by the FirstNumber and SecondNumber properties to the MathService for pro-
cessing. Specifically, we need to inform the SendActivity which binding will be used during the
invocation by setting a value to the ChannelToken property (recall that a single WCF service can be
configured in such a way that it is exposed from several bindings). If you open the updated App.
config file and locate the <client> section, you will find that the name of the generated binding is
WSHttpBinding_IBasicMath:

<client>
<endpoint address="http://localhost:8080/MathServiceLibrary"

binding="wsHttpBinding"
bindingConfiguration="WSHttpBinding_IBasicMath"
contract="WFMathClient.ServiceReference.IBasicMath"
name="WSHttpBinding_IBasicMath"

>
<identity>
<servicePrincipalName value="host/InterUber.intertech-inc.com" />

</identity>
</endpoint>

</client>

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION 943

8849CH26.qxd 10/10/07 11:46 AM Page 943

http://localhost:8080/MathServiceLibrary

Figure 26-22. Selecting the Add() operation

Copy this value to your clipboard and paste it into the ChannelToken property using the IDE’s
Properties window. Once you have done so, you will notice that the ChannelToken property has two
subnodes named EndpointName and OwnerActivityName. Because the MathService exposes only a
single endpoint, copy the same value set to ChannelToken (WSHttpBinding_IBasicMath) to the
EndpointName, and select the name of your workflow instance (WCFSendAddActivity) as the owner.

Last but not least, we need to connect the x and y parameters of the Add() method to our
FirstNumber and SecondNumber properties, and the return value to our Result property. The process
of doing so is identical to configuring the InvokeWebService activity (click the ellipsis buttons to pick
the property name). Figure 26-23 shows the fully configured SendActivity.

To view the result, place a final Code activity on your workflow designer and assign the
ExecuteCode value to a method named WCFResult(), which is implemented like so:

private void WCFResult(object sender, EventArgs e)
{
Console.WriteLine("***** WCF Service Addition *****");
Console.WriteLine("{0} + {1} = {2}",
FirstNumber, SecondNumber, Result);

}

Figure 26-24 shows the final output.

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION944

8849CH26.qxd 10/10/07 11:46 AM Page 944

Figure 26-23. The fully configured SendActivity

Figure 26-24. Communicating with a WCF service

■Source Code The WFMathClient example is included under the Chapter 26 subdirectory.

Building a Reusable WF Code Library
These first examples allowed you to play around with various WF activities at design time, interact
with the workflow runtime engine (by passing custom parameters), and get into the overall WF
mind-set using console-based WF hosts. While this is great from a learning point of view, I bet you
can easily envision building workflow-enabled Windows Forms applications, WPF applications, or

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION 945

8849CH26.qxd 10/10/07 11:46 AM Page 945

ASP.NET web applications. Furthermore, I am sure you can imagine the need to reuse a workflow
across numerous applications by packaging the functionality within a reusable .NET code library.

The next WF example illustrates how to package workflows into *.dll assemblies and make use
of them from a hosting Windows Forms application (which, by the way, is the same process as host-
ing an external workflow within any executable, such as a WPF application). We will design a
workflow that models the basic process of checking credit to place an order to purchase an auto-
mobile from the AutoLot database created in Chapter 22.

Begin by selecting a Sequential Workflow Library project named CreditCheckWFLib (see
Figure 26-25) and rename your initial file to CreditCheckWF.cs.

Figure 26-25. Creating a Sequential Workflow Library project

At this point, you will be provided with an initial workflow designer. Be aware that a single
workflow code library can contain multiple workflows, each of which can be inserted using the
Project ➤ Add New Item dialog box. In any case, add a reference to your AutoLotDAL.dll assembly
created in Chapter 22, and update your initial code file to import the AutoLotConnectedLayer name-
space:

// Add the following import.
using AutoLotConnectedLayer;

namespace CreditCheckWFLib
{
...

}

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION946

8849CH26.qxd 10/10/07 11:46 AM Page 946

Next, add an automatic property to represent the customer’s ID:

public sealed partial class CreditCheckWF : SequentialWorkflowActivity
{
// ID of customer to run credit check against.
public int ID { get; set; }
...

}

When we build the client application at a later step, this property will be set using an incoming
Dictionary<string, object> object passed to the workflow runtime.

Performing a Credit Check
Modify your class with an addition automatic property (CreditOK), which represents if the customer
has passed our “rigorous” credit validation process:

public sealed partial class CreditCheckWF : SequentialWorkflowActivity
{
// We will use this to determine if the credit check
// has passed or failed.
public bool CreditOK { get; set; }
...

}

Now place a Code activity onto your WF designer named ValidateCreditActivity and set the
ExecuteCode value to a new method named ValidateCredit. Obviously, a production-level credit
check could involve a good number of subactivities, database lookups, and so forth. Here, we will
generate a random number to represent the chance the caller passes our credit test:

private void ValidateCredit(object sender, EventArgs e)
{
// Pretend that we have preformed some exotic
// credit validation here...
Random r = new Random();
int value = r.Next(500);
if (value > 300)
CreditOK = true;

else
CreditOK = false;

}

Next, add an IfElse activity named CreditCheckPassedActivity with two branches named
CreditCheckOK and CreditCheckFailed. Configure the left branch to be evaluated using a new
declarative rule condition using the following conditional expression:

this.CreditOK == true

If the user fails the credit check, our goal is to remove them from the Customers table and add
them to the CreditRisks table. Given that Chapter 22 already accounted for this possibility using the
ProcessCreditRisk() method of the InventoryDAL type, add a new CodeActivity type within the
CreditCheckFailed branch named ProcessCreditRiskActivity mapped to a method named
ProcessCreditRisk(). Implement this method as so:

■Note Recall that we added a bool parameter to the InventoryDAL.ProcessCreditRisk() method to force
the transaction to fail for testing purposes. Be sure to pass the value false as the first parameter.

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION 947

8849CH26.qxd 10/10/07 11:46 AM Page 947

private void ProcessCreditRisk(object sender, EventArgs e)
{
// Ideally we would store the connection string externally.
InventoryDAL dal = new InventoryDAL();
dal.OpenConnection(@"Data Source=(local)\SQLEXPRESS;Integrated Security=SSPI;" +
"Initial Catalog=AutoLot");

try
{
dal.ProcessCreditRisk(false, ID);

}
finally
{
dal.CloseConnection();

}
}

If the credit check succeeds, we will simply display an informational message box to inform
the caller that the credit check succeeded. In a real workflow, the next steps might involve placing
an order, sending out an order verification e-mail, and so on. Assuming you have referenced the
System.Windows.Forms.dll assembly, place a Code activity in the leftmost branch of your IfElse
activity named PurchaseCarActivity, which is mapped to a method name PurchaseCar() imple-
mented as so:

private void PurchaseCar(object sender, EventArgs e)
{
// Here, we will opt for simplicity. However, we could easily update
// AutoLotDAL.dll with a new method to place a new order within the Orders table.
System.Windows.Forms.MessageBox.Show("Your credit has been approved!");

}

To complete your workflow, add a final CodeActivity to the rightmost branch directly after the
ProcessCreditRiskActitity. Name this new activity ShowDenyMessageActivity, which is mapped to
the following method:

private void CreditDenied(object sender, EventArgs e)
{
System.Windows.Forms.MessageBox.Show("You are a CREDIT RISK!",
"Order Denied!");

}

At this point, your workflow looks something like Figure 26-26.

■Source Code The CreditCheckWFLib example is included under the Chapter 26 subdirectory.

Creating a Windows Forms Client Application
Now that you have authored a reusable .NET code library that contains a custom workflow, you are
able to build any sort of .NET application to make use of it. Although we have not yet examined the
details of building GUIs using the Windows Forms API, here we will build a very crude UI just to test
our workflow logic (Chapter 27 will begin your investigation of GUI-based .NET applications). To
begin, create a new Windows Forms Application project named CreditCheckApp (see Figure 26-27).

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION948

8849CH26.qxd 10/10/07 11:46 AM Page 948

Figure 26-26. The completed Sequential Workflow Library project

Figure 26-27. Building a Windows Forms Application project to test our workflow library

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION 949

8849CH26.qxd 10/10/07 11:46 AM Page 949

Once you have done so, rename your initial Form1.cs file to the more fitting MainForm.cs by
right-clicking the Form1.cs icon in Solution Explorer and selecting the Rename option. Next, add a
reference to each of the following .NET assemblies:

• CreditCheckWFLib.dll

• System.Workflow.Runtime.dll

• System.Workflow.Activities.dll

• System.Workflow.ComponentModel.dll

The user interface of our application will consist of a descriptive Label, a TextBox (named
txtCustomerID), and a single Button type (named btnExecuteWorkflow) on the initial form.
Figure 26-28 shows one possible design.

Figure 26-28. A simple UI to test our workflow library

Once you place these UI elements on the designer, handle the Click event of the Button type by
double-clicking the button icon located on the designer surface.

Within your code file, implement the Click event handler to fire up the WF runtime engine and
create an instance of your custom workflow. Notice that the following code is identical to that found
within a console-based workflow application (minus the threading code required to keep the con-
sole program alive until the workflow completes):

// Initial using statements removed for simplicity.
...
// Need the WF runtime!
using System.Workflow.Runtime;

// Be sure to reference our custom WF library.
using CreditCheckWFLib;

namespace WinFormsWFClient
{
public partial class MainForm : Form
{
public MainForm()
{
InitializeComponent();

}

private void btnCheckCustomerCredit_Click(object sender, EventArgs e)
{
// Create the WF runtime.
WorkflowRuntime wfRuntime = new WorkflowRuntime();

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION950

8849CH26.qxd 10/10/07 11:46 AM Page 950

// Get ID in the TextBox to pass to the workflow.
Dictionary<string, object> args = new
Dictionary<string, object>();

args.Add("ID", int.Parse(txtCustomerID.Text));

// Get an instance of our WF.
WorkflowInstance myWorkflow =
wfRuntime.CreateWorkflow(typeof(CreditCheckWF), args);

// Start it up!
myWorkflow.Start();

}
}

}

When you run your application, enter a customer ID value, ensuring that the customer ID you
enter does not current have a reference in the Orders table (to ensure that the item will be success-
fully deleted from the Customers table).

As you test credit ratings, you should eventually find that a risky customer has been deleted
from the Customers table and placed into the CreditRisk table. In fact, for testing purposes, you
may wish to add a dummy entry into the Customers table and attempt to verify credit for a fixed
individual.

■Source Code The WinFormsWFClient example is included under the Chapter 26 subdirectory.

A Brief Word Regarding Custom Activities
At this point, you have seen how to configure a handful of common WF activities within different
types of projects. While these built-in activities certainly are a firm starting point for many WF
applications, they do not account for every possible circumstance. Thankfully, the WF community
has been creating new custom activities, many of which are freely downloadable, and others of
which are offered through third parties at various price points.

■Note If you are interested in examining some additional workflow activities, a good starting point is http://
wf.netfx3.com. Here, you can download a good number of additional activities that extend those that ship with
the product.

Despite the number of auxiliary activities that can be obtained from the online WF community,
it is also entirely possible (and in some cases necessary) to build a custom activity from scratch. As
you might guess, Visual Studio 2008 provides a Workflow Activity Library project template for this
very purpose. If you select this project type, you will be given a designer surface to create your cus-
tom activity, using an identical approach to building a workflow itself (add new activities, connect
them to code, etc.).

Much like the process of building a custom Windows Forms control, a custom activity can be
adorned with numerous .NET attributes that control how the component should integrate within
the IDE—for example, which bitmap image to display on the toolbar, which configuration dialogs
(if any) to display when a property is configured within the Properties window, and so forth.

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION 951

8849CH26.qxd 10/10/07 11:46 AM Page 951

http://wf.netfx3.com
http://wf.netfx3.com

If you are interested in learning more about building custom activities, the .NET Framework 3.5
SDK documentation provides a number of interesting examples, including the construction of a
“Send E-mail Activity.” For more details, simply browse the Custom Activities samples found under
the WF Samples node of the provided documentation (see Figure 26-29).

Figure 26-29. The .NET Framework 3.5 SDK documentation provides numerous workflow examples.

Summary
Windows Workflow Foundation (WF) is an API that was released with .NET 3.0. In essence, WF
allows you to model an application’s internal business processes directly within the application
itself. Beyond simply modeling the overall workflow, however, WF provides a complete runtime
engine and several services that round out this API’s overall functionality (transaction services, per-
sistence and tracking services, etc.). While this introductory chapter did not examine these services
in any great detail, do remember that a production-level WF application will most certainly make
use of these facilities.

When building a workflow-enabled application, Visual Studio 2008 provides several designer
tools, including a workflow designer, configuration using the Properties window, and (most impor-
tant) the Windows Workflow Toolbox. Here, you will find numerous built-in activities that constitute
the overall composition of a particular workflow. Once you have modeled your workflow, you are
then able to execute the workflow instance using the WorkflowRuntime type, using your host of
choice.

CHAPTER 26 ■ INTRODUCING WINDOWS WORKFLOW FOUNDATION952

8849CH26.qxd 10/10/07 11:46 AM Page 952

Desktop User Interfaces

P A R T 6

8849CH27.qxd 10/16/07 11:59 AM Page 953

8849CH27.qxd 10/16/07 11:59 AM Page 954

Programming with Windows Forms

Since the release of the .NET platform (circa 2001), the base class libraries have included a partic-
ular API named Windows Forms (represented by the System.Windows.Forms.dll assembly). As you
may know, the Windows Forms toolkit provides the types necessary to build desktop graphical user
interfaces (GUIs), create custom controls, manage resources (string tables, icons, etc.), and perform
other GUI-centric programming tasks. In addition, a separate API named GDI+ (bundled within the
System.Drawing.dll assembly) provides additional types that allow programmers to generate 2D
graphics, interact with networked printers, and manipulate image data.

The Windows Forms (and GDI+) APIs are still alive and well with the release of .NET 3.5, and
will exist within the base class library for quite some time (arguably forever, in fact). However, since
the release of .NET 3.0, Microsoft shipped a brand new GUI toolkit called Windows Presentation
Foundation (WPF). As you will see beginning in the next chapter, WPF provides a massive amount
of horsepower that can be used to build bleeding-edge user interfaces.

The point of this chapter, however, is to provide a tour of the traditional Windows Forms API
for one simple reason: many GUI applications simply might not require the horsepower offered by
WPF. In fact, for many UI applications, WPF can be overkill. Furthermore, there are many existing
Windows Forms applications scattered throughout the .NET universe that will need to be main-
tained.

Given these points, in this chapter you will come to understand the Windows Forms program-
ming model, work with the integrated designers of Visual Studio 2008, experiment with numerous
Windows Forms controls, and receive an overview of graphics programming using GDI+. To pull
this information together in a cohesive whole, we wrap things up by creating a (semicapable) paint-
ing application.

■Note Earlier editions of this text included three (fairly lengthy) chapters dedicated to the Windows Forms API.
Given that WPF is poised to become the preferred toolkit for .NET GUI development, this edition has consolidated
Windows Forms/GDI+ coverage to this single chapter. However, those who have purchased this book can down-
load the previous Windows Forms/GDI+ chapters in PDF format from the Apress website for free.

The Windows Forms Namespaces
The Windows Forms API consists of hundreds of types (classes, interfaces, structures, enums,
and delegates) that are organized within various namespaces of the System.Windows.Forms.dll
assembly. Figure 27-1 shows these namespaces displayed through the Visual Studio 2008 object
browser.

955

C H A P T E R 2 7

8849CH27.qxd 10/16/07 11:59 AM Page 955

Figure 27-1. The Windows Forms namespaces of System.Windows.Forms.dll

By far and away, the most important namespace is System.Windows.Forms. From a high level,
the types within the System.Windows.Forms namespace can be grouped into the following broad
categories:

• Core infrastructure: These are types that represent the core operations of a Windows Forms
program (Form, Application, etc.) and various types to facilitate interoperability with legacy
ActiveX controls.

• Controls: These are types used to create rich UIs (Button, MenuStrip, ProgressBar,
DataGridView, etc.), all of which derive from the Control base class. Controls are
configurable at design time and are visible (by default) at runtime.

• Components: These are types that do not derive from the Control base class but still provide
visual features to a Windows Forms program (ToolTip, ErrorProvider, etc.). Many compo-
nents (such as the Timer and BackgroundWorker) are not visible at runtime, but can be
configured visually at design time.

• Common dialog boxes: Windows Forms provides a number of canned dialog boxes for com-
mon operations (OpenFileDialog, PrintDialog, ColorDialog, etc.). As you would hope, you
can certainly build your own custom dialog boxes if the standard dialog boxes do not suit
your needs.

Given that the total number of types within System.Windows.Forms is well over 100 strong, it
would be redundant (not to mention a terrible waste of paper) to list every member of the Windows
Forms family. As you work through this chapter, you will gain a firm foundation upon which to
build. However, be sure to check out the .NET Framework 3.5 SDK documentation for further
details.

Building a Simple Windows Forms Application
(IDE-Free)
As you would expect, modern .NET IDEs (such as Visual Studio 2008, C# 2008 Express, or
SharpDevelop) provide numerous form designers, visual editors, and integrated code generation
tools (aka wizards) to facilitate the construction of a Windows Forms application. While these tools
are extremely useful, they can also hinder the process of learning Windows Forms, as these same
tools tend to generate a good deal of boilerplate code that can obscure the core object model.

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS956

8849CH27.qxd 10/16/07 11:59 AM Page 956

Given this, our first Windows Forms example will be created using a no-frills text editor and the C#
command-line compiler (see Chapter 2 for the details of working with csc.exe).

To begin, create a folder named SimpleWinFormsApp (I’d suggest creating this directly off your
C drive), open a Visual Studio 2008 command prompt, and using your text editor of choice, create a
file named SimpleWFApp.cs. Author the following code within your new file, and save it in the
SimpleWinFormsApp folder.

// The minimum required namespaces.
using System;
using System.Windows.Forms;

namespace SimpleWFApp
{
// This is our application object.
class Program
{
static void Main()
{
Application.Run(new MainWindow());

}
}

// This is our main window.
class MainWindow : Form {}

}

This code represents the absolute simplest Windows Forms application. At bare minimum,
we need a class type that extends the Form base class and a Main() method to call the static
Application.Run() method (more details on Form and Application later in this chapter). You can
compile this application using the following command set (recall from Chapter 2 that the default
response file [csc.rsp] automatically references numerous .NET assemblies, including System.
Windows.Forms.dll and System.Drawing.dll):

csc /target:winexe *.cs

■Note Technically speaking, you can build a Windows application at the command line using the /target:exe
option; however, if you do, you will find that a command window will be looming in the background (and it will stay
there until you shut down the main window). When you specify /target:winexe, your executable runs as a native
Windows Forms application (without the looming command window).

If you were to run your application, you would find you have a resizable, minimizable, maxi-
mizable, and closable topmost window (see Figure 27-2).

Figure 27-2. A very simple Windows Forms application

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS 957

8849CH27.qxd 10/16/07 11:59 AM Page 957

Granted, our current application is not terribly exciting, but it does illustrate how simple a
Windows Forms application can be. To spruce things up a bit, let’s add a custom constructor to our
MainWindow type, which allows the caller to set various properties on the window to be displayed.
For example:

// This is our main window.
class MainWindow : Form
{
public MainWindow(string title, int height, int width)
{
// Set various properties from our parent classes.
Text = title;
Width = width;
Height = height;

// Inherited method to center the form on the screen.
CenterToScreen();

}
}

We can now update the call to Application.Run() as follows:

static void Main()
{
Application.Run(new MainWindow("My Window", 200, 300));

}

While this is a step in the right direction, any window worth its salt will require various user
interface elements (menu systems, status bars, buttons, etc.) to allow for input. To understand how
a Form-derived type can contain such elements, you must understand the role of the Controls prop-
erty and the underlying controls collection.

Populating the Controls Collection
The System.Windows.Forms.Control base class (which is the inheritance chain of the Form type)
defines a property named Controls. This property wraps a custom collection nested in the Control
class named ControlsCollection. This collection (as the name suggests) references each UI element
maintained by the derived type. Like other containers, this type supports a number of methods to
insert, remove, and find a given UI widget (see Table 27-1).

Table 27-1. ControlCollection Members

Member Meaning in Life

Add() Used to insert a new Control-derived type (or array of types) in the collection
AddRange()

Clear() Removes all entries in the collection

Count Returns the number of items in the collection

GetEnumerator() Returns the IEnumerator interface for this collection

Remove() Used to remove a control from the collection
RemoveAt()

When you wish to populate the UI of a Form-derived type, you will typically follow a very pre-
dictable series of steps:

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS958

8849CH27.qxd 10/16/07 11:59 AM Page 958

• Define a member variable of a given UI element within the Form derived class.

• Configure the look and feel of the UI element.

• Add the UI element to the form’s ControlsCollection container via a call to Controls.Add().

Assume you wish to update your MainWindow class to support a File ➤ Exit menu system. Here
are the relevant updates, with code analysis to follow:

class MainWindow : Form
{
// Members for a simple menu system.
private MenuStrip mnuMainMenu = new MenuStrip();
private ToolStripMenuItem mnuFile = new ToolStripMenuItem();
private ToolStripMenuItem mnuFileExit = new ToolStripMenuItem();

public MainWindow(string title, int height, int width)
{
...
// Method to create our menu system.
BuildMenuSystem();

}

private void BuildMenuSystem()
{
// Add the File menu item to the main menu.
mnuFile.Text = "&File";
mnuMainMenu.Items.Add(mnuFile);

// Now add the Exit menu to the File menu.
mnuFileExit.Text = "E&xit";
mnuFile.DropDownItems.Add(mnuFileExit);
mnuFileExit.Click += new System.EventHandler(this.mnuFileExit_Click);

// Finally, set the menu for this Form.
Controls.Add(this.mnuMainMenu);
MainMenuStrip = this.mnuMainMenu;

}

// Handler for the File | Exit event.
private void mnuFileExit_Click(object sender, EventArgs e)
{
Application.Exit();

}
}

First off, notice that the MainWindow type now maintains three new member variables. The
MenuStrip type represents the entirety of the menu system, where a given ToolStripMenuItem
represents any given topmost menu item (e.g., File) or submenu item (e.g., Exit) supported by
the host.

■Note If you have programmed with earlier versions of Windows Forms (1.0 or 1.1), you may recall that the
MainMenu type was used to hold any number of MenuItem objects. The MenuStrip control (introduced with
.NET 2.0) is similar to MainMenu; however, MenuStrip is able to contain controls beyond “normal menu items”
(combo boxes, text boxes, etc.).

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS 959

8849CH27.qxd 10/16/07 11:59 AM Page 959

The menu system is configured within our BuildMenuSystem() helper function. Notice that the
text of each ToolStripMenuItem is controlled via the Text property, each of which has been assigned
a string literal containing an embedded ampersand symbol. As you may already know, this syntax
sets the Alt key shortcut, thus selecting Alt+F will activate the File menu, while selecting Alt+X will
activate the Exit menu. Also notice that the File ToolStripMenuItem object (mnuFile) adds subitems
via the DropDownItems property. The MenuStrip object itself adds a topmost menu item via the Items
property.

Once the menu system has been established, it is then added to the controls collection (via the
Controls property), after which we assign our MenuStrip object to the inherited MainMenuStrip
property. While this step may seem redundant, having a specific property such as MainMenuStrip
makes it possible to dynamically establish which menu system to show a user, perhaps due to user
preferences or security settings.

The only other point of interest is the fact that we are
handling the Click event of the File ➤ Exit menu, in
order to capture when the user selects this submenu. The
Click event works in conjunction with a standard dele-
gate type named System.EventHandler. This event can
only call methods that take a System.Object as the first
parameter and a System.EventArgs as the second. Here,
our delegate target (mnuFileExit_Click) has been imple-
mented to terminate the entire Windows application
using the static Application.Exit() method.

Once this application has been recompiled and exe-
cuted, you will now find your simple window sports a
custom menu system (see Figure 27-3).

The Role of System.EventArgs and System.EventHandler
System.EventHandler is one of many delegate types used within the Windows Forms (and ASP.NET)
APIs during the event-handling process. As you have seen, this delegate can only point to methods
where the first argument is of type System.Object, which is a reference to the type that sent the
event. For example, if we were to update the implementation of the mnuFileExit_Click() method
as follows:

private void mnuFileExit_Click(object sender, EventArgs e)
{
MessageBox.Show(string.Format("{0} sent this event", sender.ToString()));
Application.Exit();

}

we would be able to verify that the mnuFileExit type sent the event, as the string

"E&xit sent this event"

is displayed within the message box. You may be wondering what purpose the second argument,
System.EventArgs, serves. In reality, the System.EventArgs type brings little to the table, as it simply
extends Object and provides practically nothing by way of addition functionality:

public class EventArgs
{
public static readonly EventArgs Empty;
static EventArgs();
public EventArgs();

}

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS960

Figure 27-3. A simple window, with a
simple menu system

8849CH27.qxd 10/16/07 11:59 AM Page 960

This type is, however, very useful in the overall scheme of .NET event handling, in that it is the
parent to many (very useful) derived types. For example, the MouseEventArgs type extends EventArgs
to provide details regarding the current state of the mouse. KeyEventArgs also extends EventArgs to
provide details of the state of the keyboard (such as which key was pressed), PaintEventArgs
extends EventArgs to yield graphically relevant data, and so forth. You will see numerous EventArgs
descendents (and the delegates that make use of them) not when working with Windows Forms, but
with the WPF and ASP.NET APIs as well.

In any case, while we could most certainly continue to build more and more functionality into
our MainWindow (status bars, dialog boxes, etc.) using a simple text editor, we will eventually end up
with hand cramps, as we have to manually author all the grungy control configuration logic. Thank-
fully, Visual Studio 2008 provides numerous integrated designers that take care of these details on
our behalf. As we use these tools during the remainder of this chapter, always remember that they
are authoring everyday C# code. There is nothing “magical” about them whatsoever.

■Source Code The SimpleWinFormsApp project can be found under the Chapter 27 subdirectory.

The Visual Studio Windows Forms Project Template
When you wish to leverage the Windows Forms designer tools of Visual Studio 2008, your first step is
to select the Windows Application project template via the File ➤ New Project menu option. To get
comfortable with the core Windows Forms designer tools, create a new application named
SimpleVSWinFormsApp (see Figure 27-4).

Figure 27-4. The Visual Studio Windows Forms project template

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS 961

8849CH27.qxd 10/16/07 11:59 AM Page 961

The Visual Designer Surface
Before we begin to build more interesting Windows applications, this first example will re-create the
previous example while leveraging the designer tools. First of all, once you create a new Windows
Forms project, you will notice that Visual Studio 2008 presents a designer surface to which you can
drag and drop any number of controls. This same designer can be used to configure the initial size
of the window, simply by resizing the form itself via the supplied grab handles (see Figure 27-5).

Figure 27-5. The visual Forms designer

When you wish to configure the look and feel of your window (as well as any control placed on
a form), you will do so using the Properties window. As you will see over the course of this chapter,
this window can be used to assign values to properties as well as establish event handlers for a given
widget. When you have a collection of controls on the designer surface, they can be selected for
configuration using the drop-down list box mounted on the top of the Properties window.

Currently our form is devoid of content, so we only see a listing for the initial Form, which has
been given a default name of Form1 as shown in the read-only (Name) property (see Figure 27-6).

Figure 27-6. The Properties window can be used to set properties and handle events.

■Note The Properties window can be configured to display its content by category or alphabetically using the
first two buttons mounted beneath the drop-down list box. I’d suggest that you sort the items alphabetically to
quickly find a given property or event.

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS962

8849CH27.qxd 10/16/07 11:59 AM Page 962

The next designer element to be aware of is the Solution Explorer window. While all Visual
Studio projects support this window, when you are building Windows Forms applications, it is
especially helpful in that you can (1) quickly change the name of the file and related class for any
window and (2) view the file that contains the designer-maintained code (more information on
this tidbit in just a moment). For now, simply right-click the Form1.cs icon and select the Rename
option. Name this initial window to the more fitting MainWindow.cs. Figure 27-7 shows the end result.

Figure 27-7. The Solution Explorer window allows you to rename your Form-derived type and the
related files.

Dissecting the Initial Form
Before we build our menu system, let’s examine exactly what Visual Studio 2008 has created by
default. First, right-click the MainWindow.cs icon from the Solution Explorer window and select
View Code. Notice that the form has been defined as a partial type, which as you may recall from
Chapter 5 allows a single type to be defined within multiple code files. Also note the form’s con-
structor is making a call to a method named InitializeComponent() and the fact that your type
“is-a” Form.

namespace SimpleVSWinFormsApp
{
public partial class MainWindow : Form
{
public MainWindow()
{
InitializeComponent();

}
}

}

As you may be expecting, InitializeComponent() is defined in a separate file that completes
the partial class definition. As a naming convention, this file always ends in .Designer.cs, preceded
by the name of the related C# file containing the Form-derived type. Using the Solution Explorer
window, open your MainWindow.Designer.cs file. Now, ponder the following code (stripped of the
code comments for simplicity):

partial class MainWindow
{
private System.ComponentModel.IContainer components = null;

protected override void Dispose(bool disposing)
{
if (disposing && (components != null))

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS 963

8849CH27.qxd 10/16/07 11:59 AM Page 963

{
components.Dispose();

}
base.Dispose(disposing);

}

private void InitializeComponent()
{
this.components = new System.ComponentModel.Container();
this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
this.Text = "Form1";

}
}

The IContainer member variable and Dispose() methods are little more than infrastructure
used by the Visual Studio designer tools. However, do notice that the InitializeComponent() is pres-
ent and accounted for. Not only is this method invoked by a form’s constructor at runtime, Visual
Studio makes use of this same method at design time to correctly render the UI on the Forms
designer. To illustrate, change the value assigned to the Text property of the window to "My Main
Window". Once you activate the designer, you will find the form’s caption updates accordingly.

As well, when you are making use of the visual design tools (such as the Properties window),
the IDE will update InitializeComponent() automatically. To illustrate this aspect of the Windows
Forms designer tools, ensure the Forms designer is the active window within the IDE and find the
Opacity property listed in the Properties window. Change this value to 0.8 (80%), which will give
your window a slightly transparent look and feel the next time you compile and run your program.
Once you have made this change, examine the implementation of InitializeComponent() once
again:

private void InitializeComponent()
{
this.SuspendLayout();
//
// MainWindow
//
this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
this.ClientSize = new System.Drawing.Size(284, 264);
this.Name = "MainWindow";
this.Opacity = 0.8;
this.Text = "My Main Window";
this.ResumeLayout(false);

}

For all practical purposes, when you are building a Windows Forms application using Visual
Studio, you can (and typically should) ignore the *.Designer.cs files and allow the IDE to maintain
them on your behalf. If you were to author syntactically (or logically) incorrect code within
InitializeComponent(), you might break the designer. As well, Visual Studio often reformats this
method at design time. Thus, if you were to add custom code to InitializeComponent(), the IDE
may delete it! In any case, simply remember that each window of a Windows Forms application is
composed using partial classes.

Dissecting the Program Class
Beyond providing implementation code for an initial Form-derived type, Windows Application proj-
ect types also provide a static class (named Program) that defines your program’s entry point—Main():

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS964

8849CH27.qxd 10/16/07 11:59 AM Page 964

static class Program
{
[STAThread]
static void Main()
{
Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(false);
Application.Run(new MainWindow());

}
}

As expected, the Main() method invokes Application.Run(), as well as a few other calls on the
Application type to establish some basic rendering options. Last but not least, note that the Main()
method has been adorned with the [STAThread] attribute. This informs the runtime that if this
thread happens to create any classic COM objects (including legacy ActiveX UI controls) during its
lifetime, they are to be placed in a COM-maintained area termed the single-threaded apartment. In
a nutshell, this ensures that the COM objects are thread-safe, even if the author of a given COM
object did not explicitly include code to ensure this is the case.

Visually Building a Menu System
To wrap up our look at the Windows Forms visual designer tools and move on to some more illustra-
tive examples, activate the Forms designer window, locate the Toolbox window of Visual Studio
2008, and find the MenuStrip control within the Menus & Toolbars node (see Figure 27-8).

Figure 27-8. The Toolbox window displays the Windows Forms controls that may be added to your
designer surface.

Drag a MenuStrip control onto the top of your Forms designer. Notice that Visual Studio
responds by activating the menu editor. If you look closely at this editor, you will notice a (very)
small triangle on the top-right of the control. If you click this icon, you will open a context-sensitive
inline editor that allows you to make numerous property settings at once (be aware that many Win-
dows Forms controls have similar inline editors). Just to see an example, click the Insert Standard
Items option, as shown in Figure 27-9.

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS 965

8849CH27.qxd 10/16/07 11:59 AM Page 965

Figure 27-9. The inline menu editor

As you can see, Visual Studio was kind enough to establish an entire menu system on your
behalf. Now, open your designer-maintained file (MainWindow.Designer.cs) and note the numerous
lines of code added to InitializeComponent(), as well as several new member variables that repre-
sent your menu system (as you may agree, designer tools are good things). Finally, flip back to the
designer and undo the previous operation by clicking the Ctrl+Z keyboard combination. This will
bring you back to the initial menu editor and remove the generated code. Using the menu designer,
simply type in a topmost File menu item followed by an Exit submenu (see Figure 27-10).

Figure 27-10. Manually building our menu system

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS966

8849CH27.qxd 10/16/07 11:59 AM Page 966

If you take a look at InitializeComponent(), you will find the same sort of code you authored
by hand in the first example of this chapter. To complete this exercise, flip back to the Forms
designer and click the lightning bolt button mounted on the Properties window. This will show you
all of the events you can handle for the selected control. Be sure you have selected the Exit menu
(named exitToolStripMenuItem by default) and locate the Click event (see Figure 27-11).

Figure 27-11. Establishing events with the IDE

At this point you can enter in the name of the method to be called when the item is clicked, or
if you are feeling lazy at this point, simply double-click the event listed in the Properties window.
This will let the IDE pick the name of the event handler on your behalf (which follows the pattern
NameOfControl_NameOfEvent()).In either case, the IDE will create stub code, to which you can fill
in the implementation details. For example:

public partial class MainWindow : Form
{
public MainWindow()
{
InitializeComponent();
CenterToScreen();

}
private void exitToolStripMenuItem_Click(object sender, EventArgs e)
{
Application.Exit();

}
}

And if you are interested, take a quick peek at InitializeComponent(). As you can see, the nec-
essary event riggings have also been accounted for:

this.exitToolStripMenuItem.Click +=
new System.EventHandler(this.exitToolStripMenuItem_Click);

Hopefully, you now feel more comfortable moving around the IDE when building Windows
Forms applications. While there are obviously many additional shortcuts, editors, and integrated
code wizards, this information is more than enough to press onward.

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS 967

8849CH27.qxd 10/16/07 11:59 AM Page 967

The Anatomy of a Form
Now that you have examined how to build simple Windows Forms applications with (and without)
the aid of Visual Studio, let’s examine the Form type in greater detail. In the world of Windows Forms,
the Form type represents any window in the application, including topmost main windows, child
windows of a multiple document interface (MDI) application, as well as modal and modaless dialog
boxes. As shown in Figure 27-12, the Form type gathers a good deal of functionality from its parent
classes and the numerous interfaces it implements.

Figure 27-12. The inheritance chain of System.Windows.Forms.Form

Table 27-2 offers a high-level look at each parent class in the Form’s inheritance chain.

Table 27-2. Base Classes in the Form Inheritance Chain

Parent Class Meaning in Life

System.Object Like any class in .NET, a Form “is-a” object.

System.MarshalByRefObject Types deriving from this class are accessed remotely
via a reference to (not a local copy of) the remote type.

System.ComponentModel.Component This class provides a default implementation of the
IComponent interface. In the .NET universe, a
component is a type that supports design-time
editing, but is not necessarily visible at runtime.

System.Windows.Forms.Control This class defines common UI members for all
Windows Forms UI controls, including the Form
type itself.

System.Windows.Forms.ScrollableControl This class defines support for horizontal and vertical
scrollbars, as well as members, which allow you to
manage the viewport shown within the scrollable
region.

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS968

8849CH27.qxd 10/16/07 11:59 AM Page 968

Parent Class Meaning in Life

System.Windows.Forms.ContainerControl This class provides focus-management functionality
for controls that can function as a container for other
controls.

System.Windows.Forms.Form This class represents any custom form, MDI child, or
dialog box.

Although the complete derivation of a Form type involves numerous base classes and inter-
faces, do understand that you are not required to learn the role of each and every member from
each and every parent class or implemented interface to be a proficient Windows Forms developer.
In fact, the majority of the members (specifically, properties and events) you will use on a daily
basis are easily set using the Visual Studio 2008 Properties window. This being said, it is important
that you understand the functionality provided by the Control and Form parent classes.

The Functionality of the Control Class
The System.Windows.Forms.Control class establishes the common behaviors required by any GUI
type. The core members of Control allow you to configure the size and position of a control, capture
keyboard and mouse input, get or set the focus/visibility of a member, and so forth. Table 27-3
defines some properties of interest, grouped by related functionality.

Table 27-3. Core Properties of the Control Type

Property Meaning in Life

BackColor These properties define the core UI of the control (colors, font for text,
ForeColor mouse cursor to display when the mouse is over the widget, etc.).
BackgroundImage
Font
Cursor

Anchor These properties control how the control should be positioned within the
Dock container.
AutoSize

Top These properties specify the current dimensions of the control.
Left
Bottom
Right
Bounds
ClientRectangle
Height
Width

Enabled These properties each return a Boolean that specifies the state of the current
Focused control.
Visible

ModifierKeys This static property checks the current state of the modifier keys (Shift, Ctrl,
and Alt) and returns the state in a Keys type.

MouseButtons This static property checks the current state of the mouse buttons (left, right,
and middle mouse buttons) and returns this state in a MouseButtons type.

TabIndex These properties are used to configure the tab order of the control.
TabStop

Continued

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS 969

8849CH27.qxd 10/16/07 11:59 AM Page 969

Table 27-3. Continued

Property Meaning in Life

Opacity This property determines the opacity of the control (0.0 is completely
transparent; 1.0 is completely opaque).

Text This property indicates the string data associated with this control.

Controls This property allows you to access a strongly typed collection
(ControlsCollection) that contains any child controls within the
current control.

As you would guess, the Control class also defines a number of events that allow you to inter-
cept mouse, keyboard, painting, and drag-and-drop activities (among other things). Table 27-4 lists
some events of interest, grouped by related functionality.

Table 27-4. Events of the Control Type

Event Meaning in Life

Click Various events that allow you to interact with the mouse
DoubleClick
MouseEnter
MouseLeave
MouseDown
MouseUp
MouseMove
MouseHover
MouseWheel

KeyPress Various events that allow you to interact with the keyboard
KeyUp
KeyDown

DragDrop Various events used to monitor drag-and-drop activity
DragEnter
DragLeave
DragOver

Paint An event that allows you to interact with the graphical rendering services of GDI+

Finally, the Control base class also defines a number of methods that allow you to interact with
any Control-derived type. As you examine the methods of the Control type, you will notice that a
good number of them have an On prefix followed by the name of a specific event (OnMouseMove,
OnKeyUp, OnPaint, etc.). Each of these On-prefixed virtual methods is the default event handler for its
respective event. If you override any of these virtual members, you gain the ability to perform any
necessary pre- or postprocessing of the event before (or after) invoking your parent’s default imple-
mentation:

public partial class MainWindow : Form
{
protected override void OnMouseDown(MouseEventArgs e)
{
// Add custom code for MouseDown event.

// Call parent implementation when finished.
base.OnMouseDown(e);

}
}

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS970

8849CH27.qxd 10/16/07 11:59 AM Page 970

While this can be helpful in some circumstances (especially if you are building a custom con-
trol that derives from a standard control), you will often handle events using the standard C# event
syntax (in fact, this is the default behavior of the Visual Studio designers). When you handle events
in this manner, the framework will call your custom event handler once the parent’s implementa-
tion has completed. For example, here is how you can manually handle the MouseDown event:

public partial class MainWindow : Form
{
public MainWindow()
{
MouseDown += new MouseEventHandler(MainWindow_MouseDown);

}

private void MainWindow_MouseDown(object sender, MouseEventArgs e)
{
// Add code for MouseDown event.

}
}

Beyond these OnXXX() methods, here are a few other methods to be aware of:

• Hide(): Hides the control and sets the Visible property to false

• Show(): Shows the control and sets the Visible property to true

• Invalidate(): Forces the control to redraw itself by sending a Paint event (more information
on graphical rendering in the section “Rendering Graphical Data Using GDI+” later in this
chapter).

The Functionality of the Form Class
The Form class is typically (but not necessarily) the direct base class for your custom Form types.
In addition to the large set of members inherited from the Control, ScrollableControl, and
ContainerControl classes, the Form type adds additional functionality in particular to main win-
dows, MDI child windows, and dialog boxes. Let’s start with the core properties in Table 27-5.

Table 27-5. Properties of the Form Type

Property Meaning in Life

AcceptButton Gets or sets the button on the form that is clicked when the user
presses the Enter key.

ActiveMDIChild Used within the context of an MDI application.
IsMDIChildIsMDIContainer

CancelButton Gets or sets the button control that will be clicked when the user
presses the Esc key.

ControlBox Gets or sets a value indicating whether the form has a control box.

FormBorderStyle Gets or sets the border style of the form. Used in conjunction with
the FormBorderStyle enumeration.

Menu Gets or sets the menu to dock on the form.

MaximizeBox Used to determine whether this form will enable the maximize
MinimizeBox and minimize boxes.

ShowInTaskbar Determines whether this form will be seen on the Windows taskbar.

Continued

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS 971

8849CH27.qxd 10/16/07 11:59 AM Page 971

Table 27-5. Continued

Property Meaning in Life

StartPosition Gets or sets the starting position of the form at runtime, as specified
by the FormStartPosition enumeration.

WindowState Configures how the form is to be displayed on startup. Used in
conjunction with the FormWindowState enumeration.

In addition to numerous On-prefixed default event handlers, Table 27-6 gives a list of some core
methods defined by the Form type.

Table 27-6. Key Methods of the Form Type

Method Meaning in Life

Activate() Activates a given form and gives it focus

Close() Closes a form

CenterToScreen() Places the form in the dead-center of the screen

LayoutMDI() Arranges each child form (as specified by the LayoutMDI enumeration) within
the parent form

ShowDialog() Displays a form as a modal dialog box

Finally, the Form class defines a number of events, many of which fire during the form’s lifetime.
Table 27-7 hits the highlights.

Table 27-7. Select Events of the Form Type

Event Meaning in Life

Activated Occurs whenever the form is activated, meaning the form has been given the
current focus on the desktop

Closed, Closing Used to determine when the form is about to close or has closed

Deactivate Occurs whenever the form is deactivated, meaning the form has lost current
focus on the desktop

Load Occurs after the form has been allocated into memory, but is not yet visible
on the screen

MDIChildActive Sent when a child window is activated

The Life Cycle of a Form Type
If you have programmed user interfaces using GUI toolkits such as Java Swing, Mac OS X Cocoa, or
the raw Win32 API, you are aware that “window types” have a number of events that fire during their
lifetime. The same holds true for Windows Forms. As you have seen, the life of a form begins when
the type constructor is called prior to being passed into the Application.Run() method.

Once the object has been allocated on the managed heap, the framework fires the Load event.
Within a Load event handler, you are free to configure the look and feel of the Form, prepare any con-
tained child controls (such as ListBoxes, TreeViews, and whatnot), or simply allocate resources used
during the Form’s operation (database connections, proxies to remote objects, and whatnot).

Once the Load event has fired, the next event to fire is Activated. This event fires when the form
receives focus as the active window on the desktop. The logical counterpart to the Activated event

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS972

8849CH27.qxd 10/16/07 11:59 AM Page 972

is (of course) Deactivate, which fires when the form loses focus as the active window. As you can
guess, the Activated and Deactivate events can fire numerous times over the life of a given Form
type as the user navigates between active applications.

When the user has chosen to close the form in question, two close-centric events fire: Closing
and Closed. The Closing event is fired first and is an ideal place to prompt the end user with the
much hated (but useful) “Are you sure you wish to close this application?” message. This conforma-
tional step is quite helpful to ensure the user has a chance to save any application-centric data
before terminating the program.

The Closing event works in conjunction with the CancelEventHandler delegate defined in the
System.ComponentModel namespace. If you set the CancelEventArgs.Cancel property to true, you
prevent the window from being destroyed and instruct it to return to normal operation. If you set
CancelEventArgs.Cancel to false, the Closed event fires, and the Windows Forms application exits,
which unloads the AppDomain and terminates the process.

To solidify the sequence of events that take place during a form’s lifetime, assume you have
a new Windows Forms project named FormLifeTime and have renamed the initial form to
MainWindow.cs (via Solution Explorer). Now, within your form’s constructor, handle the Load,
Activated, Deactivate, Closing, and Closed events (recall from Chapter 11 that the IDE will auto-
generate the correct delegate and event handler when you press the Tab key twice after typing +=):

public MainWindow()
{
InitializeComponent();

// Handle various lifetime events.
Closing += new CancelEventHandler(MainWindow_Closing);
Load += new EventHandler(MainWindow_Load);
Closed += new EventHandler(MainWindow_Closed);
Activated += new EventHandler(MainWindow_Activated);
Deactivate += new EventHandler(MainWindow_Deactivate);

}

■Note The reason we are handling these events manually is that the Properties window (for some strange rea-
son) does not list the Closing or Closed events. However, the Load, Activated, and Deactivate events can be
handled using this design-time tool.

Within the Load, Closed, Activated, and Deactivate event handlers, you are going to update the
value of a new Form-level string member variable (named lifeTimeInfo) with a simple message
that displays the name of the event that has just been intercepted. As well, notice that within the
Closed event handler, you will display the value of this string within a message box:

private void MainWindow_Load(object sender, System.EventArgs e)
{
lifeTimeInfo += "Load event\n";

}

private void MainWindow_Activated(object sender, System.EventArgs e)
{
lifeTimeInfo += "Activate event\n";

}

private void MainWindow_Deactivate(object sender, System.EventArgs e)
{

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS 973

8849CH27.qxd 10/16/07 11:59 AM Page 973

lifeTimeInfo += "Deactivate event\n";
}

private void MainWindow_Closed(object sender, System.EventArgs e)
{
lifeTimeInfo += "Closed event\n";
MessageBox.Show(lifeTimeInfo);

}

Within the Closing event handler, you will prompt the user to ensure he or she wishes to termi-
nate the application using the incoming CancelEventArgs. In the following code, notice that the
MessageBox.Show() method returns a DialogResult type that contains a value representing which
button has been selected by the end user. Here, we have crafted a message box that displays Yes and
No buttons; therefore, we are interested in discovering whether the return value from Show() is
DialogResult.No.

private void MainWindow_Closing(object sender, CancelEventArgs e)
{
lifeTimeInfo += "Closing event\n";

// Show a message box with Yes and No buttons.
DialogResult dr = MessageBox.Show("Do you REALLY want to close this app?",
"Closing event!", MessageBoxButtons.YesNo);

// Which button was clicked?
if (dr == DialogResult.No)
e.Cancel = true;

else
e.Cancel = false;

}

Now run your application and shift the form into and out of focus a few times (to trigger the
Activated and Deactivate events). Once you finally shut down the application, you will see a mes-
sage box that looks something like Figure 27-13.

Figure 27-13. The life and times of a Form-derived type

■Source Code The FormLifeTime project can be found under the Chapter 27 subdirectory.

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS974

8849CH27.qxd 10/16/07 11:59 AM Page 974

Responding to Mouse Activity
Recall that the Control parent class defines a set of events that allow you to monitor mouse activity
in a variety of manners. To check this out firsthand, create a new Windows Application project
named MouseEventsApp, rename the initial form to MainWindow.cs (via Solution Explorer), and
handle the MouseMove event using the Properties window. This will generate the following event
handler:

public partial class MainWindow : Form
{
public MainWindow()
{
InitializeComponent();

}

// Generated via the Properties window.
private void MainWindow_MouseMove(object sender, MouseEventArgs e)
{
}

}

The MouseMove event works in conjunction with the System.Windows.Forms.MouseEventHandler
delegate. This delegate can only call methods where the first parameter is a System.Object, while
the second is of type MouseEventArgs. This type contains various members that provide detailed
information regarding the state of the event when mouse-centric events occur:

public class MouseEventArgs : EventArgs
{
private readonly MouseButtons button;
private readonly int clicks;
private readonly int delta;
private readonly int x;
private readonly int y;

public MouseEventArgs(MouseButtons button, int clicks, int x,
int y, int delta);

public MouseButtons Button { get; }
public int Clicks { get; }
public int Delta { get; }
public Point Location { get; }
public int X { get; }
public int Y { get; }

}

While I’d bet most of the public properties are rather self-explanatory, Table 27-8 provides the
details.

Table 27-8. Properties of the MouseEventArgs Type

Property Meaning in Life

Button Gets which mouse button was pressed, as defined by the MouseButtons enumeration

Clicks Gets the number of times the mouse button was pressed and released

Delta Gets a signed count of the number of detents the mouse wheel has rotated

Continued

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS 975

8849CH27.qxd 10/16/07 11:59 AM Page 975

Table 27-8. Continued

Property Meaning in Life

Location Returns a Point that contains the current X and Y values

X Gets the x-coordinate of a mouse click

Y Gets the y-coordinate of a mouse click

Let’s implement our MouseMove handler to display the current X and Y position of the mouse on
the Form’s caption using the Location property:

private void MainWindow_MouseMove(object sender, MouseEventArgs e)
{
Text = string.Format("Mouse Position: {0}", e.Location);

}

When you run the application and move the mouse over the window, you will find the position
displayed on the title area of your MainWindow type (see Figure 27-14).

Figure 27-14. Intercepting mouse movement

Determining Which Mouse Button Was Clicked
Another common mouse-centric detail to attend to is determining which button has been clicked
when a MouseUp, MouseDown, MouseClick, or MouseDoubleClick event occurs. When you wish to deter-
mine exactly which button was clicked (such as left, right, or middle), you need to examine the
Button property of the MouseEventArgs class. The value of the Button property is constrained by the
related MouseButtons enumeration:

public enum MouseButtons
{
Left,
Middle,
None,
Right,
XButton1,
XButton2

}

To illustrate, handle the MouseUp event on your MainWindow type using the Properties window.
The following MouseUp event handler displays which mouse button was clicked inside a message
box:

private void MainWindow_MouseUp (object sender, MouseEventArgs e)
{
// Which mouse button was clicked?

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS976

8849CH27.qxd 10/16/07 11:59 AM Page 976

if(e.Button == MouseButtons.Left)
MessageBox.Show("Left click!");

if(e.Button == MouseButtons.Right)
MessageBox.Show("Right click!");

if (e.Button == MouseButtons.Middle)
MessageBox.Show("Middle click!");

}

■Source Code The MouseEventApp project is included under the Chapter 27 subdirectory.

Responding to Keyboard Activity
Windows applications typically define numerous input controls (such as the TextBox) where the
user can enter information via the keyword. When you capture keyboard input in this manner, there
is no need to explicitly handle keyboard events, as you can simply extract the textual data from the
control using various properties (such as the Text property of the TextBox type).

However, if you need to monitor keyboard input for more exotic purposes (such as filtering
keystrokes on a control, or capturing keypresses on the form itself), the base class libraries provide
the KeyUp and KeyDown events. These events work in conjunction with the KeyEventHandler delegate,
which can point to any method taking an object as the first parameter and KeyEventArgs as the sec-
ond. This type is defined as follows:

public class KeyEventArgs : EventArgs
{
private bool handled;
private readonly Keys keyData;
private bool suppressKeyPress;

public KeyEventArgs(Keys keyData);

public virtual bool Alt { get; }
public bool Control { get; }
public bool Handled { get; set; }
public Keys KeyCode { get; }
public Keys KeyData { get; }
public int KeyValue { get; }
public Keys Modifiers { get; }
public virtual bool Shift { get; }
public bool SuppressKeyPress { get; set; }

}

Table 27-9 documents some of the more interesting properties supported by KeyEventArgs.

Table 27-9. Properties of the KeyEventArgs Type

Property Meaning in Life

Alt Gets a value indicating whether the Alt key was pressed

Control Gets a value indicating whether the Ctrl key was pressed

Handled Gets or sets a value indicating whether the event was fully handled in your handler

Continued

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS 977

8849CH27.qxd 10/16/07 11:59 AM Page 977

Table 27-9. Continued

Property Meaning in Life

KeyCode Gets the keyboard code for a KeyDown or KeyUp event

Modifiers Indicates which modifier keys (Ctrl, Shift, and/or Alt) were pressed

Shift Gets a value indicating whether the Shift key was pressed

To illustrate, assume you have a new Windows Application named KeyboardEventApp, which
handles the KeyUp event as follows.

public partial class MainWindow : Form
{
public MainWindow()
{
InitializeComponent();

}

private void MainWindow_KeyUp(object sender, KeyEventArgs e)
{
Text = string.Format("Key Pressed: {0} Modifiers: {1}",
e.KeyCode.ToString(), e.Modifiers.ToString());

}
}

Now compile and run your program. You should be able to determine not only which mouse
button was clicked, but also which keyboard key was pressed. For example, Figure 27-15 shows the
result of pressing the P, Ctrl, and Shift keys simultaneously.

Figure 27-15. Intercepting keyboard activity

■Source Code The KeyboardEventApp project is included under the Chapter 27 subdirectory.

Designing Dialog Boxes
Within a graphical user interface program, dialog boxes tend to be the primary way to capture user
input for use within the application itself. Unlike other GUI APIs you may have used in the past,
there is no “Dialog” base class. Rather, dialog boxes under Windows Forms are simply types deriving
from the Form class.

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS978

8849CH27.qxd 10/16/07 11:59 AM Page 978

In addition, many dialog boxes are intended to be nonsizable; therefore, you will typically want
to set the FormBorderStyle property to FormBorderStyle.FixedDialog. As well, dialog boxes typically
set the MinimizeBox and MaximizeBox properties to false. In this way, the dialog box is configured to
be a fixed constant. Finally, if you set the ShowInTaskbar property to false, you will prevent the form
from being visible in the Windows taskbar.

To illustrate building and manipulating dialog boxes, create a new Windows Application
project named CarOrderApp. Rename the initial Form1.cs file to MainWindow.cs using Solution
Explorer, and using the Forms designer, create a simple File ➤ Exit menu as well as a Tool ➤ Order
Automobile . . . menu item. Once you have done so, handle the Click event for the Exit and Order
Automobile submenus via the Properties window. Figure 27-16 shows the initial design of the main
window.

Figure 27-16. Menu system of the main window

Implement the File ➤ Exit menu handler to simply terminate the application via a call to
Application.Exit():

private void exitToolStripMenuItem_Click(object sender, EventArgs e)
{
Application.Exit();

}

Now, using the Project menu of Visual Studio, select the Add Windows Forms menu option.
Name your new form OrderAutoDialog.cs (see Figure 27-17).

For this example, design a dialog box that has the expected OK and Cancel button (named
btnOK and btnCancel, respectively) as well as three TextBox controls named txtMake, txtColor, and
txtPrice. Now, using the Properties window, finalize the design of your dialog box as follows:

• Set the FormBorderStyle property to FixedDialog.

• Set the MinimizeBox and MaximizeBox properties to false.

• Set the StartPosition property to CenterParent.

• Set the ShowInTaskbar property to false.

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS 979

8849CH27.qxd 10/16/07 11:59 AM Page 979

Figure 27-17. Inserting new dialog boxes using Visual Studio

The DialogResult Property
Last but not least, select the OK button, and using the Properties window, set the DialogResult
property to OK. In a similar way, set the DialogResult property of the Cancel button to (you guessed
it) Cancel. As you will see in just a moment, the DialogResult property is quite useful in that the
launching form can quickly determine which button the user has clicked to take the appropriate
course of action. The DialogResult property can be set to any value from the related DialogResult
enumeration:

public enum DialogResult
{
Abort, Cancel, Ignore, No,
None, OK, Retry, Yes

}

Figure 27-18 shows one possible design of our dialog box, with a few descriptive Label controls
to boot.

Figure 27-18. The OrderAutoDialog type

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS980

8849CH27.qxd 10/16/07 11:59 AM Page 980

Configuring the Tab Order
Now that you have created a somewhat interesting dialog box, let’s formalize the issue of tab order.
As you may know, when a form contains multiple GUI widgets, users expect to be able to shift focus
using the Tab key. Configuring the tab order for your set of controls requires that you understand
two key properties: TabStop and TabIndex.

The TabStop property can be set to true or false, based on whether or not you wish this GUI
item to be reachable using the Tab key. Assuming the TabStop property has been set to true for a
given widget, the TabOrder property is then set to establish its order of activation in the tabbing
sequence (which is zero based). Consider this example:

// Configure tabbing properties.
txtMake.TabIndex = 0;
txtMake.TabStop = true;

The Tab Order Wizard
While you could set the TabStop and TabIndex manually using the Properties window, the Visual
Studio 2008 IDE supplies a Tab Order Wizard, which you access by choosing View ➤ Tab Order (be
aware that you will not find this menu option unless the Forms designer is active). Once activated,
your design-time form displays the current TabIndex value for each widget. To change these values,
click each item in the order you choose (see Figure 27-19).

Figure 27-19. The Tab Order Wizard

To exit the Tab Order Wizard, simply press the Esc key.

Setting the Form’s Default Input Button
Many user-input forms (especially dialog boxes) have a particular Button that will automatically
respond to the user pressing the Enter key. For the current form, if you wish to ensure that when
the user presses the Enter key, the Click event handler for btnOK is invoked, simply set the form’s
AcceptButton property as follows (this same setting can be established using the Properties window):

// When the Enter key is pressed, it is as if
// the user clicked the btnOK button.
this.AcceptButton = btnOK;

■Note Some forms require the ability to simulate clicking the form’s Cancel button when the user presses the
Esc key. This can be done by assigning the CancelButton property of the Form to the Button object representing
the clicking of the Cancel button.

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS 981

8849CH27.qxd 10/16/07 11:59 AM Page 981

Displaying Dialog Boxes
When you wish to display a dialog box, you must first decide whether you wish to launch the dialog
box in a modal or modaless fashion. As you may know, modal dialog boxes must be dismissed by
the user before he or she is able to return to the window that launched the dialog box in the first
place (for example, most About boxes are modal in nature). To show a modal dialog box, simply call
ShowDialog() off your dialog box object. On the other hand, a modaless dialog box can be displayed
by calling Show(), which allows the user to switch focus between the dialog box and the main win-
dow (for example, a Find/Replace dialog box).

For our example, update the Tools ➤ Order Automobile . . . menu handler of the MainWindow
type to show the OrderAutoDialog object in a modal manner. Consider the following initial code:

private void orderAutomobileToolStripMenuItem_Click(object sender, EventArgs e)
{
// Create your dialog object.
OrderAutoDialog dlg = new OrderAutoDialog();

// Show as modal dialog box, and figure out which button
// was clicked using the DialogResult return value.
if (dlg.ShowDialog() == DialogResult.OK)
{
// They clicked OK, so do something...

}
}

■Note The ShowDialog() and Show() methods can optionally be called by specifying an object that represents
the owner of the dialog box (which for the form loading the dialog box would be represented by this). Specifying
the owner of a dialog box will establish the z-ordering of the form types and also ensure (in the case of a modaless
dialog box) that when the main window is destroyed, all “owned windows” are also disposed.

Be aware that when you create an instance of a Form-derived type (OrderAutoDialog in this
case), the dialog box is not visible on the screen, but simply allocated into memory. It is not until
you call Show() or ShowDialog() that the form is indeed visible. Next, notice that ShowDialog()
returns you the DialogResult value that has been assigned to the button (the Show() method simply
returns void).

Once ShowDialog() returns, the form is no longer visible on the screen, but is still in memory.
Therefore, we are able to extract the values in each TextBox. However, if you were to attempt to
compile the following code:

private void orderAutomobileToolStripMenuItem_Click(object sender, EventArgs e)
{
// Create your dialog object.
OrderAutoDialog dlg = new OrderAutoDialog();

// Show as modal dialog box, and figure out which button
// was clicked using the DialogResult return value.
if (dlg.ShowDialog() == DialogResult.OK)
{
// Get values in each text box? Compiler errors!
string orderInfo = string.Format("Make: {0}, Color: {1}, Cost: {2}",
dlg.txtMake.Text, dlg.txtColor.Text, dlg.txtPrice.Text);

MessageBox.Show(orderInfo, "Information about your order!");
}

}

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS982

8849CH27.qxd 10/16/07 11:59 AM Page 982

you will receive compiler errors. The reason is that Visual Studio 2008 declares the controls you
add to the Forms designer as private member variables of the class! If you were to open the
OrderAutoDialog.Designer.cs file, you could verify this very fact. While a prim-and-proper dialog
box might preserve encapsulation by adding public properties to get and set the values within
these text boxes, let’s take a shortcut and simply redefine them using the public keyword:

partial class OrderAutoDialog
{
...
// Form member variables are defined within the designer-maintained file.
public System.Windows.Forms.TextBox txtMake;
public System.Windows.Forms.TextBox txtColor;
public System.Windows.Forms.TextBox txtPrice;

}

At this point, you can compile and run your application. Once you launch your dialog box, you
should be able to see the input data displayed within a message box (provided you click the OK but-
ton).

■Note Rather than directly editing the *.Designer.cs file to define the access modifier of a control, you can
select the control you wish to tweak on the designer and use the Modifiers property of the Properties window
to do so.

Understanding Form Inheritance
Up until this point in the chapter, each one of your custom windows/dialog boxes has derived
directly from System.Windows.Forms.Form. However, one intriguing aspect of Windows Forms devel-
opment is the fact that Form types can function as the base class to derived Forms. For example,
assume you have created a .NET code library that contains each of your company’s core dialog
boxes. Later, you decide that your About box is a bit on the bland side, and therefore wish to add a
3D image of your company logo. Rather than having to re-create the entire About box, you can sim-
ply extend the basic About box, thereby inheriting the core look and feel:

// ThreeDAboutBox "is-a" AboutBox
public class ThreeDAboutBox : AboutBox
{
// Add code to render company logo...

}

To see form inheritance in action, insert a new form into your project using the Project ➤ Add
Form menu option. This time, however, pick the Inherited Form icon, and name your new form
ImageOrderAutoDialog.cs (see Figure 27-20).

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS 983

8849CH27.qxd 10/16/07 11:59 AM Page 983

Figure 27-20. Adding a derived form to your project

This option will bring up the Inheritance Picker dialog box, which will show you each of the
forms in your current project. Notice that the Browse button allows you to pick a form in an external
.NET assembly. Here, simply pick your OrderAutoDialog type (see Figure 27-21).

Figure 27-21. The Inheritance Picker dialog box

■Note You must compile your project at least one time to see the forms of your project in the Inheritance Picker
dialog box, as this tool is reading assembly metadata to show you your options.

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS984

8849CH27.qxd 10/16/07 11:59 AM Page 984

Once you click the OK button, you will find that the visual designer tools show each of the
base controls on your parents, each of which has a small arrow icon mounted on the upper-left of
the control (symbolizing inheritance). To complete our derived dialog box, locate the PictureBox
control from the Common Controls section of the Toolbox, and add one to your derived form.
Next, using the Image property, select an image file of your choosing. Figure 27-22 shows one
possible UI, using the logo for the company I work with, Intertech Training.

Figure 27-22. The ImageOrderAutoDialog type

With this, you can now update the Tools ➤ Order Automobile . . . Click event handler to create
an instance of your derived type, rather than the OrderAutoDialog base class:

private void orderAutomobileToolStripMenuItem_Click(object sender, EventArgs e)
{
// Create the derived dialog object.
ImageOrderAutoDialog dlg = new ImageOrderAutoDialog();

...
}

■Source Code The CarOrderApp project is included under the Chapter 27 subdirectory.

Rendering Graphical Data Using GDI+
Many GUI applications require the ability to dynamically generate graphical data for display on the
surface of a window. For example, perhaps you have selected a set of records from a relational data-
base and wish to render a pie chart (or bar chart) that visually shows items in stock. Or, perhaps you
are interested in re-creating some old-school video game using the .NET platform. Regardless of
your goal, when you need to graphically render data within a Windows Forms application, GDI+ is
the API to do so. This technology is bundled within the System.Drawing.dll assembly, which defines
a number of namespaces (see Figure 27-23).

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS 985

8849CH27.qxd 10/16/07 11:59 AM Page 985

Figure 27-23. The namespaces of System.Drawing.dll

Table 27-10 documents the role of each GDI+ namespace from a high level.

Table 27-10. Core GDI+ Namespaces

Namespace Meaning in Life

System.Drawing This is the core GDI+ namespace that defines numerous types for
basic rendering (fonts, pens, basic brushes, etc.) as well as the
almighty Graphics type.

System.Drawing.Drawing2D This namespace provides types used for more advanced 2D/vector
graphics functionality (e.g., gradient brushes, pen caps, geometric
transforms, etc.).

System.Drawing.Imaging This namespace defines types that allow you to manipulate
graphical images (e.g., change the palette, extract image metadata,
manipulate metafiles, etc.).

System.Drawing.Printing This namespace defines types that allow you to render images to the
printed page, interact with the printer itself, and format the overall
appearance of a given print job.

System.Drawing.Text This namespace allows you to manipulate collections of fonts.

The System.Drawing Namespace
The vast majority of the types you’ll use when programming GDI+ applications are found within the
System.Drawing namespace. As you would expect, there are classes that represent images, brushes,
pens, and fonts. Furthermore, System.Drawing defines a number of related utility types such as
Color, Point, and Rectangle. Table 27-11 lists some (but not all) of the core types.

Table 27-11. Core Types of the System.Drawing Namespace

Type Meaning in Life

Bitmap This type encapsulates image data (*.bmp or otherwise).

Brush Brush objects are used to fill the interiors of graphical shapes such as
Brushes rectangles, ellipses, and polygons.
SolidBrush
SystemBrushes
TextureBrush

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS986

8849CH27.qxd 10/16/07 11:59 AM Page 986

Type Meaning in Life

BufferedGraphics This type provides a graphics buffer for double buffering, which is used to
reduce or eliminate flicker caused by redrawing a display surface.

Color The Color and SystemColors types define a number of static read-only
SystemColors properties used to obtain specific colors for the construction of various

pens/brushes.

Font The Font type encapsulates the characteristics of a given font (i.e., type name,
FontFamily bold, italic, point size, etc.). FontFamily provides an abstraction for a group of

fonts having a similar design but with certain variations in style.

Graphics This core class represents a valid drawing surface, as well as a number of
methods to render text, images, and geometric patterns.

Icon These classes represent custom icons, as well as the set of standard system-
SystemIcons supplied icons.

Image Image is an abstract base class that provides functionality for the Bitmap, Icon,
ImageAnimator and Cursor types. ImageAnimator provides a way to iterate over a number of

Image-derived types at some specified interval.

Pen Pens are objects used to draw lines and curves. The Pens type defines a
Pens number of static properties that return a new Pen of a given color.
SystemPens

Point These structures represent an (x, y) coordinate mapping to an underlying
PointF integer or float, respectively.

Rectangle These structures represent a rectangular dimension (again mapping to an
RectangleF underlying integer or float).

Size These structures represent a given height/width (again mapping to an
SizeF underlying integer or float).

StringFormat This type is used to encapsulate various features of textual layout
(i.e., alignment, line spacing, etc.).

Region This type describes the interior of a geometric image composed of rectangles
and paths.

The Role of the Graphics Type
The System.Drawing.Graphics class is the gateway to GDI+ rendering functionality. This class not
only represents the surface you wish to draw upon (such as a form’s surface, a control’s surface, or a
region of memory), but also defines dozens of members that allow you to render text, images (icons,
bitmaps, etc.), and numerous geometric patterns. Table 27-12 gives a partial list of members.

Table 27-12. Members of the Graphics Class

Method Meaning in Life

FromHdc() These static methods provide a way to obtain a valid Graphics object from
FromHwnd() a given image (e.g., icon, bitmap, etc.) or GUI widget.
FromImage()

Clear() This method fills a Graphics object with a specified color, erasing the
current drawing surface in the process.

Continued

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS 987

8849CH27.qxd 10/16/07 11:59 AM Page 987

Table 27-12. Continued

Method Meaning in Life

DrawArc() These methods are used to render a given image or geometric pattern.
DrawBeziers() All DrawXXX() methods require the use of GDI+ Pen objects.
DrawCurve()
DrawEllipse()
DrawIcon()
DrawLine()
DrawLines()
DrawPie()
DrawPath()
DrawRectangle()
DrawRectangles()
DrawString()

FillEllipse() These methods are used to fill the interior of a given geometric shape.
FillPie() All FillXXX() methods require the use of GDI+ Brush objects.
FillPolygon()
FillRectangle()
FillPath()

Now, despite what you may be assuming, the Graphics class is not directly creatable via the new
keyword, as there are no publicly defined constructors. How, then, do you obtain a valid Graphics
object? Glad you asked.

Obtaining a Graphics Object via the Paint Event
The most common way to obtain a Graphics object is to handle the Paint event on the window you
are attempting to render upon using the Visual Studio 2008 Properties window. This event is defined
in terms of the PaintEventHandler delegate, which can point to any method taking a System.Object
as the first parameter and a PaintEventArgs as the second.

The PaintEventArgs parameter contains the Graphics object you require to render onto the
Form’s surface. To illustrate, create a new Windows Application project named PaintEventApp. Using
Solution Explorer, rename your initial Form.cs file to MainWindow.cs and then handle the Paint event
using the Properties window. This will result in the following stub code:

public partial class MainWindow : Form
{
public MainWindow()
{
InitializeComponent();

}

private void MainWindow_Paint(object sender, PaintEventArgs e)
{

}
}

Now that you have handled the Paint event, you may wonder when it will fire. Whenever a win-
dow becomes “dirty,” the Paint event will fire. A window is considered “dirty” whenever it is resized,
uncovered by another window (partially or completely), or minimized and then restored. In all
these cases, the .NET platform ensures that when your Form needs to be redrawn, the Paint event
handler is called automatically. Consider the following implementation of MainWindow_Paint():

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS988

8849CH27.qxd 10/16/07 11:59 AM Page 988

private void MainWindow_Paint(object sender, PaintEventArgs e)
{
// Get the graphics object for this Form.
Graphics g = e.Graphics;

// Draw a circle.
g.FillEllipse(Brushes.Blue, 10, 20, 150, 80);

// Draw a string in a custom font.
g.DrawString("Hello GDI+", new Font("Times New Roman", 30),

Brushes.Red, 200, 200);

// Draw a line with a custom pen.
using (Pen p = new Pen(Color.YellowGreen, 10))
{
g.DrawLine(p, 80, 4, 200, 200);

}
}

Once we obtain the Graphics object from the incoming PaintEventArgs parameter, we call
FillEllipse(). Notice that this method (as well as any Fill-prefixed method) requires a Brush-
derived type as the first parameter. While we could create any number of interesting brush objects
from the System.Drawing.Drawing2D namespace (HatchBrush, LinearGradientBrush, etc.), the
Brushes utility class provides handy access to a variety of solid-colored brush types.

Next, we make a call to DrawString(), which requires a string to render as its first parameter.
Given this, GDI+ provides the Font type, which represents not only the name of the font to use when
rendering the textual data, but also related characteristics such as the point size (30 in this case).
Also notice that DrawString() requires a Brush type as well, given that as far as GDI+ is concerned,
“Hello GDI+” is simply a collection of geometric patterns to fill on the screen. Finally, DrawLine() is
called to render a line using a custom Pen type, 10 pixels wide. Figure 27-24 shows the output of this
rendering logic.

Figure 27-24. A simple GDI+ rendering operation

■Note Notice in the preceding code, we are explicitly disposing of the Pen object. As a rule, when you directly
create a GDI+ type that implements IDisposable, call the Dispose() method as soon as you are done with the
object. By doing so, you are able to release the underlying resources as soon as possible. If you do not do so, the
resources will eventually be freed by the garbage collector in a nondeterministic manner.

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS 989

8849CH27.qxd 10/16/07 11:59 AM Page 989

Invalidating the Form’s Client Area
During the flow of a Windows Forms application, you may need to explicitly fire the Paint event in
your code, rather than waiting for the window to become “naturally dirty” by the actions of the end
user. For example, you may be building a program that allows the user to select from a number of
predefined images using a custom dialog box. Once the dialog box is dismissed, you need to draw
the newly selected image onto the form’s client area. Obviously, if you waited for the window to
become “naturally dirty,” the user would not see the change take place until the window was resized
or uncovered by another window. To force a window to repaint itself programmatically, simply call
the inherited Invalidate() method:

public partial class MainForm: Form
{
...
private void MainForm_Paint(object sender, PaintEventArgs e)
{
Graphics g = e.Graphics;
// Render the correct image here.

}

private void GetImageFromDialog()
{
// Show dialog box and get new image.
// Repaint the entire client area.
Invalidate();

}
}

The Invalidate() method has been overloaded a number of times to allow you to specify a
specific rectangular region to repaint, rather than repainting the entire client area (which is the
default). If you wish to only update the extreme upper-left rectangle of the client area, you could
write the following:

// Repaint a given rectangular area of the Form.
private void UpdateUpperArea()
{
Rectangle myRect = new Rectangle(0, 0, 75, 150);
Invalidate(myRect);

}

■Source Code The PaintEventApp project is included under the Chapter 27 subdirectory.

Building a Complete Windows Forms Application
To conclude our introductory look at the Windows Forms and GDI+ APIs, let’s wrap up this chapter
by building a complete GUI application that illustrates several of the techniques discussed in this
chapter working as a cohesive unit. The program we will create is a rudimentary painting program
that allows users to select between two shape types (a circle or rectangle for simplicity) using the
color of their choice, to render data to the form. Furthermore, we will allow end users to save their
pictures to a local file on their hard drive for later use via object serialization services.

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS990

8849CH27.qxd 10/16/07 11:59 AM Page 990

Building the Main Menu System
Begin by creating a new Windows Forms application named MyPaintProgram and rename your ini-
tial Form1.cs file to MainWindow.cs. Now design a menu system on this initial window that supports
a topmost File menu that provides Save . . ., Load . . ., and Exit submenus (see Figure 27-25).

Figure 27-25. The File menu system

Next, create a second topmost Tools menu that provides options to select a shape and color to
use for rendering as well as an option to clear the form of all graphical data (see Figure 27-26).

Figure 27-26. The Tools menu system

Finally, handle the Click event for each one of these subitems. We will implement each handler
as we progress through the example; however, we can finish up the File ➤ Exit menu handler simply
by calling Application.Exit():

private void exitToolStripMenuItem_Click(object sender, EventArgs e)
{
Application.Exit();

}

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS 991

8849CH27.qxd 10/16/07 11:59 AM Page 991

Defining the ShapeData Type
Recall that our application will allow end users to select from two predefined shapes in a given
color. Because we will provide a way to allow users to save their graphical data to a file, we will want
to define a custom class type that encapsulates each of these details; for simplicity, we will do so
using C# automatic properties (see Chapter 13). Add a new class to your project named
ShapeData.cs. Implement this type as follows:

[Serializable]
class ShapeData
{
// The upper left of the shape to be drawn.
public Point UpperLeftPoint { get; set; }

// The current color of the shape to be drawn.
public Color Color { get; set; }

// The type of shape.
public SelectedShape ShapeType { get; set; }

}

Here, ShapeData is making use of three automatic properties, two of which (Point and Color)
are defined in the System.Drawing namespace, so be sure to import this namespace within your
code file. Also notice that this type has been adorned with the [Serializable] attribute. In a later
step, we will configure our MainWindow type to maintain a list of ShapeData types that will be per-
sisted using object serialization services (see Chapter 21).

Defining the ShapePickerDialog Type
To allow the user to choose between the circle or rectangle image type, we will now create a simple
custom dialog box named ShapePickerDialog (insert this new Form now). Beyond the obligatory OK
and Cancel buttons (each of which has been assigned the correct DialogResult value), this dialog
box will make use of a single GroupBox that maintains two RadioButton objects named
radioButtonCircle and radioButtonRect. Figure 27-27 shows one possible design.

Figure 27-27. The ShapePickerDialog type

Now, open the code window for your dialog box by right-clicking the Forms designer and
selecting the View Code menu option. Within the MyPaintProgram namespace, define an enumera-
tion (named SelectedShape) that defines names for each possible shape:

public enum SelectedShape
{
Circle, Rectangle

}

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS992

8849CH27.qxd 10/16/07 11:59 AM Page 992

Now, update your current ShapePickerDialog class type as follows:

• Add an automatic property of type SelectedShape. The caller will be able to use this property
to determine which shape to render.

• Handle the Click event for the OK button using the Properties window.

• Implement this event handler to determine whether the circle radio button has been
selected (via the Checked property). If so, set your currentShape variable to SelectedShape.
Circle; otherwise, set this member variable to SelectedShape.Rectangle.

Here is the complete code:

public partial class ShapePickerDialog : Form
{
public SelectedShape SelectedShape { get; set; }

public ShapePickerDialog()
{
InitializeComponent();

}

private void btnOK_Click(object sender, EventArgs e)
{
if (radioButtonCircle.Checked)
SelectedShape = SelectedShape.Circle;

else
SelectedShape = SelectedShape.Rectangle;

}
}

That wraps up the infrastructure of our program. Now we simply need to implement the Click
event handlers for the remaining menu items on the main window.

Adding Infrastructure to the MainWindow Type
Returning to the construction of the main window, add three new member variables to this Form
that allow you to keep track of the selected shape (via a SelectedShape enum type), the selected
color (represented by a System.Drawing.Color type), as well as each of the rendered images held in
a generic List<T>:

public partial class MainWindow : Form
{
// Current shape / color to draw.
private SelectedShape currentShape;
private Color currentColor = Color.DarkBlue;

// This maintains each ShapeData.
private List<ShapeData> shapes = new List<ShapeData>();

...
}

Next, handle the MouseDown and Paint events for this Form-derived type using the Properties
window. We will implement them in a later step; however, for the time being, you should find that
the IDE has generated the following stub code:

private void MainWindow_Paint(object sender, PaintEventArgs e)
{
}

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS 993

8849CH27.qxd 10/16/07 11:59 AM Page 993

private void MainWindow_MouseClick(object sender, MouseEventArgs e)
{
}

Implementing the Tools Menu Functionality
To allow users to set the currentShape member variable, implement the Click handler for the Tools
➤ Pick Shape . . . menu option to launch your custom dialog box, and based on their selection,
assign this member variable accordingly:

private void pickShapeToolStripMenuItem_Click(object sender, EventArgs e)
{
// Load our dialog box and set the correct shape type.
ShapePickerDialog dlg = new ShapePickerDialog();
if (DialogResult.OK == dlg.ShowDialog())
{
currentShape = dlg.SelectedShape;

}
}

To allow users to set the currentColor member variable, implement the Click event handler for
the Tools ➤ Pick Color . . . menu to make use of the System.Windows.Forms.ColorDialog type:

private void pickColorToolStripMenuItem_Click(object sender, EventArgs e)
{
ColorDialog dlg = new ColorDialog();

if (dlg.ShowDialog() == DialogResult.OK)
{
currentColor = dlg.Color;

}
}

If you were to run your program as it now stands and select the Tools ➤ Pick Color menu
option, you would get the dialog box shown in Figure 27-28.

Figure 27-28. The stock ColorDialog type

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS994

8849CH27.qxd 10/16/07 11:59 AM Page 994

Finally, implement the Tools ➤ Clear Surface menu handler to empty the contents of the
List<T> member variable and programmatically fire the Paint event via a call to Invalidate():

private void clearSurfaceToolStripMenuItem_Click(object sender, EventArgs e)
{
shapes.Clear();

// This will fire the paint event.
Invalidate();

}

Capturing and Rendering the Graphical Output
Given that a call to Invalidate() will fire the Paint event, we will obviously need to author code
within our Paint event handler. Our goal is to loop through each item in the (currently empty)
List<T> member variable and render a circle or square at the current mouse location. The first step
is to implement the MouseDown event handler to insert a new ShapeData type into our generic List<T>
type, based on the user-selected color, shape type, and current location of the mouse:

private void MainWindow_MouseClick(object sender, MouseEventArgs e)
{
// Make a ShapeData type based on current user
// selections.
ShapeData sd = new ShapeData();
sd.ShapeType = currentShape;
sd.Color = currentColor;
sd.UpperLeftPoint = new Point(e.X, e.Y);

// Add to the List<T> and force the form to repaint itself.
shapes.Add(sd);
Invalidate();

}

With this, we can now implement our Paint event handler as follows:

private void MainWindow_Paint(object sender, PaintEventArgs e)
{
// Get the Graphics type for this window.
Graphics g = e.Graphics;

// Render each shape in the selected color.
foreach (ShapeData s in shapes)
{
// Render a rectangle or circle 20 x 20 pixels in size
// using the correct color.
if (s.ShapeType == SelectedShape.Rectangle)
g.FillRectangle(new SolidBrush(s.Color),

s.UpperLeftPoint.X,
s.UpperLeftPoint.Y, 20, 20);

else
g.FillEllipse(new SolidBrush(s.Color),

s.UpperLeftPoint.X,
s.UpperLeftPoint.Y, 20, 20);

}
}

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS 995

8849CH27.qxd 10/16/07 11:59 AM Page 995

If you were to run your application at this point, you should now be able to render any number
of shapes in a variety of colors (see Figure 27-29).

Figure 27-29. MyPaintProgram in action

Implementing the Serialization Logic
The final aspect of our project involves implementing Click event handlers for the File ➤ Save . . .
and File ➤ Load . . . menu items. Given that ShapeData has been marked with the [Serialization]
attribute (and given that List<T> itself is serializable), we can very quickly save out the current
graphical data using the Windows Forms SaveFileDialog type. First, update your using directives to
specify you are using the System.Runtime.Serialization.Formatters.Binary and System.IO name-
spaces.

// For the binary formatter.
using System.Runtime.Serialization.Formatters.Binary;
using System.IO;

With this, update your File ➤ Save . . . handler as follows:

private void saveToolStripMenuItem_Click(object sender, EventArgs e)
{
using (SaveFileDialog saveDlg = new SaveFileDialog())
{
// Configure the look and feel of the save dialog box.
saveDlg.InitialDirectory = ".";
saveDlg.Filter = "Shape files (*.shapes)|*.shapes";
saveDlg.RestoreDirectory = true;
saveDlg.FileName = "MyShapes";

// If they click the OK button, open the new
// file and serialize the List<T>.
if (saveDlg.ShowDialog() == DialogResult.OK)
{
Stream myStream = saveDlg.OpenFile();
if ((myStream != null))
{
// Save the shapes!
BinaryFormatter myBinaryFormat = new BinaryFormatter();
myBinaryFormat.Serialize(myStream, shapes);
myStream.Close();

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS996

8849CH27.qxd 10/16/07 11:59 AM Page 996

}
}

}
}

The File ➤ Load event handler simply opens the selected file and deserializes the data back
into the List<T> member variable with the help of the Windows Forms OpenFileDialog type:

private void loadToolStripMenuItem_Click(object sender, EventArgs e)
{
using (OpenFileDialog openDlg = new OpenFileDialog())
{
openDlg.InitialDirectory = ".";
openDlg.Filter = "Shape files (*.shapes)|*.shapes";
openDlg.RestoreDirectory = true;
openDlg.FileName = "MyShapes";

if (openDlg.ShowDialog() == DialogResult.OK)
{
Stream myStream = openDlg.OpenFile();
if ((myStream != null))
{
// Get the shapes!
BinaryFormatter myBinaryFormat = new BinaryFormatter();
shapes = (List<ShapeData>)myBinaryFormat.Deserialize(myStream);
myStream.Close();
Invalidate();

}
}

}
}

Given your work in Chapter 21, I’d guess the overall serialization logic looks familiar. It is worth
pointing out that the SaveFileDialog and OpenFileDialog types both support a Filter property that
is assigned a rather cryptic string value. This filter controls a number of settings for the save/open
dialog boxes such as the file extension (*.shapes). The FileName property is used to control what the
default name of the file to be created should be, which in this example is MyShapes.

At this point, your painting application is complete. You should now be able to save and load
your current graphical data to any number of *.shapes files. If you are interested in enhancing this
Windows Forms program, you may wish to account for additional shapes, or allow the user to con-
trol the size of the shape to draw or perhaps select the format used to save the data (binary, XML,
SOAP).

Summary
The purpose of this chapter was to examine the process of building traditional desktop applications
using the Windows Forms and GDI+ APIs, which have been part of the .NET Framework since ver-
sion 1.0. At minimum, a Windows Forms application consists of a type-extending Form and a Main()
method that interacts with the Application type.

When you wish to populate your forms with UI elements (menu systems, GUI input controls,
etc.), you do so by inserting new objects into the inherited Controls collection. This chapter also
illustrated how to capture mouse, keyboard, and rendering events. Along the way, you were intro-
duced to the Graphics type and numerous ways to generate graphical data at runtime.

As mentioned during the overview of this chapter, the Windows Forms API has been (in some
ways) superseded by the WPF API introduced with the release of .NET 3.0 (which you will begin to

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS 997

8849CH27.qxd 10/16/07 11:59 AM Page 997

examine in the next chapter). While it is true that WPF will eventually become the toolkit of choice
for supercharged UI front ends, the Windows Forms API is still the simplest (and in many cases,
most direct) way to author standard business applications, in-house applications, and simple con-
figuration utilities. For these reasons, Windows Forms will be part of the .NET base class libraries
for years to come.

CHAPTER 27 ■ PROGRAMMING WITH WINDOWS FORMS998

8849CH27.qxd 10/16/07 11:59 AM Page 998

Introducing Windows Presentation
Foundation and XAML

In the previous chapter, you were introduced to the functionality contained within the System.
Windows.Forms.dll and System.Drawing.dll assemblies. As explained, the Windows Forms API is the
original GUI toolkit of the .NET platform, which provides numerous types that can be used to build
sophisticated desktop user interfaces. While it is true that Windows Forms/GDI+ is still entirely sup-
ported under .NET 3.5, Microsoft shipped a brand-new desktop API termed Windows Presentation
Foundation (WPF) beginning with the release of .NET 3.0.

This initial WPF chapter begins by examining the motivation behind this new UI framework
and provides a brief overview of the various types of WPF applications supported by the API. After
this point we will examine the core WPF programming model and come to know the role of the
Application and Window types as well as the key WFP assemblies and namespaces.

The latter part of this chapter will introduce you to a brand-new XML-based grammar:
Extensible Application Markup Language (XAML). As you will see, XAML provides WPF developers
with a way to partition UI definitions from the logic that drives them. Here, you will be exposed to
several critical XAML topics including attached property syntax, type converters, markup exten-
sions, and understanding how to parse XAML at runtime. This chapter wraps up by examining the
various WPF-specific tools that ship with the Visual Studio 2008 IDE and examines the role of
Microsoft Expression Blend.

The Motivation Behind WPF
Over the years, Microsoft has developed numerous graphical user interface toolkits (raw C/C++/
Win32 API development, VB6, MFC, etc.) to build desktop executables. Each of these APIs provided
a code base to represent the basic aspects of a GUI application, including main windows, dialog
boxes, controls, menu systems, and other necessities. With the initial release of the .NET platform,
the Windows Forms API (see Chapter 27) quickly became the preferred model for UI development,
given its simple yet very powerful object model.

While many full-featured desktop applications have been successfully created using Windows
Forms, the fact of the matter is that this programming model is rather asymmetrical. Simply put,
System.Windows.Forms.dll and System.Drawing.dll do not provide direct support for many addi-
tional technologies required to build a full-fledged desktop application. To illustrate this point,
consider the ad hoc nature of GUI development prior to the release of WPF (e.g., .NET 2.0; see
Table 28-1).

999

C H A P T E R 2 8

8849CH28.qxd 10/19/07 9:28 AM Page 999

Table 28-1. .NET 2.0 Solutions to Desired Functionalities

Desired Functionality .NET 2.0 Solution

Building forms with controls Windows Forms

2D graphics support GDI+ (System.Drawing.dll)

3D graphics support DirectX APIs

Support for streaming video Windows Media Player APIs

Support for flow-style documents Programmatic manipulation of PDF files

As you can see, a Windows Forms developer must pull in types from a number of different APIs
and object models. While it is true that making use of these diverse APIs may look similar syntacti-
cally (it is just C# code, after all), you may also agree that each technology requires a radically
different mind-set. For example, the skills required to create a 3D rendered animation using DirectX
are completely different from those used to bind data to a grid. To be sure, it is very difficult for a
Windows Forms programmer to master the diverse nature of each API.

Unifying Diverse APIs
WPF (introduced with .NET 3.0) was purposely created to merge these previous unrelated program-
ming tasks into a single unified object model. Thus, if you need to author a 3D animation, you have
no need to manually program against the DirectX API (although you could), as 3D functionality is
baked directly into WPF. To see how well things have cleaned up, consider Table 28-2, which illus-
trates the desktop development model ushered in as of .NET 3.0.

Table 28-2. .NET 3.0 Solutions to Desired Functionalities

Desired Functionality .NET 3.0 and Higher Solution

Building forms with controls WPF

2D graphics support WPF

3D graphics support WPF

Support for streaming video WPF

Support for flow-style documents WPF

Providing a Separation of Concerns via XAML
Perhaps one of the most compelling benefits is that WPF provides a way to cleanly separate the look
and feel of a Windows application from the programming logic that drives it. Using XAML, it is pos-
sible to define the UI of an application via markup. This markup (ideally created by those with an
artistic mind-set using dedicated tools) can then be connected to a managed code base to provide
the guts of the program’s functionality.

■Note XAML is not limited to WPF applications! Any application can use XAML to describe a tree of .NET objects,
even if they have nothing to do with a visible user interface. For example, it is possible to build custom activities for
a Windows Workflow Foundation application using XAML.

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1000

8849CH28.qxd 10/19/07 9:28 AM Page 1000

As you dig into WPF, you may be surprised how much flexibility “desktop markup” provides.
XAML allows you to define not only simple UI elements (buttons, grids, list boxes, etc.) in markup,
but also graphical renderings, animations, data binding logic, and multimedia functionality (such
as video playback). For example, defining a circular button control that animates a company logo
requires just a few lines of markup. Even better, WPF elements can be modified through styles and
templates, which allow you to change the overall look and feel of an application with minimum fuss
and bother, independent of the core application processing code.

Given all these points, the need to build custom controls greatly diminishes under WPF. Unlike
Windows Forms development, the only compelling reason to build a custom WPF control library is
if you need to change the behaviors of a control (e.g., add custom methods, properties, or events;
subclass an existing control to override virtual members; etc.). If you simply need to change the look
and feel of a control (again, such as a circular animated button), you can do so entirely through
markup.

■Note Other valid reasons to build custom WPF controls include achieving binary reuse (via a WPF control
library), as well as building controls that expose custom design-time functionality and integration with the Visual
Studio 2008 IDE.

Providing an Optimized Rendering Model
Also be aware of the fact that WPF is optimized to take advantage of the new video driver model
supported under the Windows Vista operating system. While WPF applications can be developed on
and deployed to Windows XP machines (as well as Windows Server 2003 machines), the same appli-
cation running on Vista will perform much better, especially when making use of animations/
multimedia services. This is due to the fact that the display services of WPF are rendered via the
DirectX engine, allowing for efficient hardware and software rendering.

■Note Allow me to reiterate this key point: WPF is not limited to Windows Vista! Although the Vista operating
system has the .NET 3.0 libraries (which include WPF) installed out of the box, you can build and execute WPF
applications on XP and Windows Server 2003 once you install the .NET Framework 3.5 SDK (for programmers) or
.NET 3.5 runtime (for end users).

WPF applications also tend to behave better under Vista. If one graphics-intensive application
crashes, it will not take down the entire operating system (à la the blue screen of death); rather, the
misbehaving application in question will simply terminate. As you may know, the most common
cause of the infamous blue screen of death is misbehaving video drivers.

Additional WPF-Centric Bells and Whistles
To recap the story thus far, Windows Presentation Foundation (WPF) is a new API to build desktop
applications that integrates various desktop APIs into a single object model and provides a clean
separation of concerns via XAML. In addition to these major points, WPF applications also benefit
from various other bells and whistles, many of which are explained over the next several chapters.
Here is a quick rundown of the core services:

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1001

8849CH28.qxd 10/19/07 9:28 AM Page 1001

• A number of layout managers (far more than Windows Forms) to provide extremely flexible
control over placement and reposition of content

• Use of an enhanced data-binding engine to bind content to UI elements in a variety of ways

• A built-in style engine, which allows you to define “themes” for a WPF application

• Use of vector graphics, which allows content to be automatically resized to fit the size and
resolution of the screen hosting the application

• Support for 2D and 3D graphics, animations, and video and audio playback

• A rich typography API, such as support for XML Paper Specification (XPS) documents,
fixed documents (WYSIWYG), flow documents, and document annotations (e.g., a Sticky
Notes API)

• Support for interoperating with legacy GUI models (e.g., Windows Forms, ActiveX, and
Win32 HWNDs)

The Various Flavors of WPF Applications
The WPF API can be used to build a variety of GUI-centric applications, which basically differ in
their navigational structure and deployment models. The sections that follow present a high-level
walk through each option.

Traditional Desktop Applications
The first (and most familiar) option is a traditional executable assembly that runs on a local
machine. For example, you could use WPF to build a text editor, painting program, or multimedia
program such as a digital music player, photo viewer, and so forth. Like any other desktop applica-
tions, these *.exe files can be installed using traditional means (setup programs, Windows Installer
packages, etc.) or via ClickOnce technology to allow desktop applications to be distributed and
installed via a remote web server.

In this light, WPF is simply a new API to build traditional desktop applications. Programmati-
cally speaking, this type of WPF application will make use (at a minimum) of the Window and
Application types, in addition to the expected set of dialog boxes, toolbars, status bars, menu
systems, and other UI elements.

Navigation-Based WPF Applications
WPF applications can optionally choose to make use of a navigation-based structure, which makes
a traditional desktop application take on the basic behavior of a web browser application. Using
this model, you can build a desktop *.exe that provides a “forward” and “back” button that allows
the end user to move back and forth between various UI displays called pages. The application itself
maintains a list of each page and provides the necessary infrastructure to navigate between them,
pass data across pages (similar to a web-based application variable), and maintain a history list. By
way of a concrete example, consider Vista’s Windows Explorer (see Figure 28-1), which makes use
of such functionality. Notice the navigational buttons (and history list) mounted on the upper-left
corner of the window.

Regardless of the fact that a WPF desktop application can take on a weblike navigational
scheme, understand that this is simply a UI design issue. The application itself is still little more
than a local executable assembly running on a desktop machine, and it has nothing to do with a
web application beyond a slightly similar look and feel. Programmatically speaking, this naviga-
tional structure is represented using types such as Page, NavigationWindow, and Frame.

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1002

8849CH28.qxd 10/19/07 9:28 AM Page 1002

Figure 28-1. A navigation-based desktop program

XBAP Applications
WPF also allows you to build applications that can be hosted within a web browser. This flavor of
WPF application is termed an XAML browser application, or XBAP. Under this model, the end user
navigates to a given URL, at which point the XBAP application (which takes an *.xbap file exten-
sion) is transparently downloaded and installed to the local machine. Unlike a traditional ClickOnce
installation for an executable application, however, the XBAP program is hosted directly within the
browser and adopts the browser’s intrinsic navigational system. Figure 28-2 illustrates an XBAP
program in action (specifically, the ExpenseIt WPF sample program that ships with the .NET
Framework 3.5 SDK).

Figure 28-2. XBAP programs are downloaded to a local machine and hosted within a web browser.

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1003

8849CH28.qxd 10/19/07 9:28 AM Page 1003

One possible downside to this flavor of WPF is that XBAPs must be hosted within Microsoft
Internet Explorer 6.0 (or higher) or Firefox. If you are deploying such applications across a company
intranet, browser compatibility should not be a problem, given that system administrators can play
dictator regarding which browser should be installed on users’ machines. However, if you want the
outside world to make use of your XBAP, it is not possible to ensure each end user is making use of
Internet Explorer/Firefox, and therefore some external users may not be able to view your WPF
XBAP application.

Another issue to be aware of is that XBAP applications run within a security sandbox termed
the Internet zone. As you may recall from Chapter 20, .NET assemblies that are loaded into this
sandbox have limited access to system resources (such as the local file system or system registry)
and cannot freely use all aspects of specific .NET APIs that might pose a security threat. Specifically,
XBAPs cannot perform the following tasks:

• Create and display stand-alone windows

• Display application-defined dialog boxes

• Display a Save dialog box launched by the XBAP itself

• Access the file system (use of isolated storage is permitted)

• Make use of legacy UI models (Windows Forms, ActiveX) or call unmanaged code

At first glance, the inability to create secondary windows (or dialog boxes) may seem very limit-
ing. In reality, an XBAP can show users multiple user interfaces by using the page-navigation model
mentioned previously.

Silverlight Applications
WPF and XAML also provide the foundation for a cross-platform WPF-centric plug-in termed Sil-
verlight. Using the Silverlight SDK, it is possible to build browser-based applications that can be
hosted by Mac OS X as well as Microsoft Windows (additional operating systems are supposedly
also in the works).

With Silverlight, you are able to build extremely feature-rich (and interactive) web applications.
For example, like WPF, Silverlight has a vector-based graphical system, animation support, a rich
text document model, and multimedia support. Furthermore, as of Silverlight 1.1, you are able to
incorporate a subset of the .NET base class library into your applications. This subset includes a
number of WPF controls, LINQ support, generic collection types, web service support, and a
healthy subset of mscorlib.dll (file I/O, XML manipulation, etc.).

■Note This edition of the text does not address Silverlight. If you are interested in learning more about this API,
check out http://www.microsoft.com/silverlight. Here you can download the free Silverlight SDK (includ-
ing the Silverlight plug-in itself), view numerous sample projects, and learn more about this intriguing aspect of
WPF development.

Investigating the WPF Assemblies
Regardless of which type of WPF application you wish to build, WPF is ultimately little more than a
collection of types bundled within .NET assemblies. Table 28-3 describes the core assemblies used
to build WPF applications, each of which must be referenced when creating a new project (as you
would hope, Visual Studio 2008 WPF projects automatically reference the required assemblies).

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1004

8849CH28.qxd 10/19/07 9:28 AM Page 1004

http://www.microsoft.com/silverlight

Table 28-3. Core WPF Assemblies

Assembly Meaning in Life

PresentationCore.dll This assembly defines numerous types that constitute the
foundation of the WPF GUI layer. For example, this assembly
contains support for the WPF Ink API (for programming against
stylus input for Pocket PCs and Tablet PCs), several animation
primitives (via the System.Windows.Media.Animation namespace),
and numerous graphical rendering types (via System.Windows.
Media).

PresentationFoundation.dll Here you will find the WPF control set, additional animation and
multimedia types, data binding support, types that allow for
programmatic access to XAML, and other WPF services.

WindowsBase.dll This assembly defines the core (and in many cases lower-level)
types that constitute the infrastructure of the WPF API. Here you
will find types representing WPF threading types, security types,
various type converters, and other basic programming primitives
(Point, Vector, Rect, etc.).

Collectively, these three assemblies define a number of new namespaces and hundreds of new
.NET classes, interfaces, structures, enumerations, and delegates. While you should consult the
.NET Framework 3.5 SDK documentation for complete details, Table 28-4 documents the role of
some (but certainly not all) of the core namespaces you should be aware of.

Table 28-4. Core WPF Namespaces

Namespace Meaning in Life

System.Windows This is the root namespace of WPF. Here you will find core types
(such as Application and Window) that are required by any WPF
desktop project.

System.Windows.Controls Here you will find all of the expected WPF widgets, including types
to build menu systems, tool tips, and numerous layout managers.

System.Windows.Markup This namespace defines a number of types that allow XAML
markup (and the equivalent binary format, BAML) to be parsed
and processed programmatically.

System.Windows.Media This is the root namespace to several media-centric namespaces.
Within these namespaces you will find types to work with
animations, 3D rendering, text rendering, and other multimedia
primitives.

System.Windows.Navigation This namespace provides types to account for the navigation
logic employed by XAML browser applications (XBAPs) as well as
standard desktop applications that require a navigational page
model.

System.Windows.Shapes This namespace defines various 2D graphic types (Rectangle,
Polygon, etc.) used by various aspects of the WPF framework.

To begin our journey into the WPF programming model, we’ll examine two members of the
System.Windows namespace that are commonplace to any traditional desktop development effort:
Application and Window.

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1005

8849CH28.qxd 10/19/07 9:28 AM Page 1005

The Role of the Application Class
The System.Windows.Application class type represents a global instance of a running WPF applica-
tion. Like its Windows Forms counterpart, this type supplies a Run() method (to start the application),
a series of events that you are able to handle in order to interact with the application’s lifetime (such
as Startup and Exit), and a number of members that are specific to XAML browser applications
(such as events that fire as a user navigates between pages). Table 28-5 details some of the key
members to be aware of.

Table 28-5. Key Properties of the Application Type

Property Meaning in Life

Current This static property allows you to gain access to the running Application object
from anywhere in your code. This can be very helpful when a window or dialog box
needs to gain access to the Application object that created it.

MainWindow This property allows you to programmatically get or set the main window of the
application.

Properties This property allows you to establish and obtain data that is accessible throughout
all aspects of a WPF application (windows, dialog boxes, etc.). In many ways, this
looks and feels very much like establishing application variables for an ASP.NET web
application.

StartupUri This property gets or sets a URI that specifies a window or page to open
automatically when the application starts.

Windows This property returns a WindowCollection type, which provides access to each
window created from the thread that created the Application object. This can be
very helpful when you wish to iterate over each open window of an application and
alter its state (such as minimizing all windows).

Unlike its Windows Forms counterpart, however, the WPF Application type does not expose its
functionality exclusively through static members. Rather, WPF programs define a class that extends
this type to represent the entry point to the executable. For example:

// Define the global application object
// for this WPF program.
class MyApp : Application
{
[STAThread]
static void Main()
{
// Handle events, run the application,
// launch the main window, etc.

}
}

You’ll build a complete Application-derived type in an upcoming example. Until then, let’s
check out the core functionality of the Window type and learn about a number of key WPF base
classes in the process.

The Role of the Window Class
The System.Windows.Window type represents a single window owned by the Application-derived
type, including any dialog boxes displayed by the main window. As you might expect, the Window
type has a series of parent classes, each of which brings more functionality to the table. Consider

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1006

8849CH28.qxd 10/19/07 9:28 AM Page 1006

Figure 28-3, which shows the inheritance chain (and implemented interfaces) for the System.
Windows.Window type as seen through the Visual Studio 2008 object browser.

Figure 28-3. The hierarchy of the Window type

You’ll come to understand the functionality provided by many of these base classes as you
progress through this chapter and the chapters to come. However, to whet your appetite, the follow-
ing sections present a breakdown of the functionality provided by each base class (consult the .NET
Framework 3.5 SDK documentation for full details).

The Role of System.Windows.Controls.ContentControl
The direct parent of Window is ContentControl. This base class provides derived types with the ability
to host content, which simply put refers to a collection of objects placed within the control’s surface
area. Under the WPF content model, a content control has the ability to contain a great number of
UI elements beyond simple string data. For example, it is entirely possible to define a Button that
contains an embedded ScrollBar as content. The ContentControl base class provides a key property
named (not surprisingly) Content for this purpose.

If the value you wish to assign to the Content property can be represented as a simple string
literal, you may set the Content property explicitly as an attribute within the element’s opening
definition:

<!-- Setting the Content value explicitly -->
<Button Height="80" Width="100" Content="ClickMe"/>

Alternatively, you are able to implicitly set the Context property by specifying a value within the
scope of the content control’s element definition. Consider the following functionally equivalent
XAML description of the previous button:

<!-- Setting the Content value implicitly -->
<Button Height="80" Width="100">
ClickMe

</Button>

However, if the value you wish to assign to the Content property cannot be represented as a
simple array of characters, you are unable to assign the Content property using an attribute in the
control’s opening definition. For these cases, you must establish content either implicitly or by
using property-element syntax. Consider the following functionally equivalent XAML definition,
which sets the Content property to a ScrollBar type (you’ll find more information on XAML later in
this chapter, so don’t sweat the details just yet):

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1007

8849CH28.qxd 10/19/07 9:28 AM Page 1007

<!-- A Button containing a ScrollBar
as implicit content -->

<Button Height = "80" Width = "100">
<ScrollBar Width = "75" Height = "40"/>

</Button>

<!-- A Button containing a ScrollBar
using property-element syntax -->

<Button Height = "80" Width = "100">
<Button.Content>
<ScrollBar Width = "75" Height = "40"/>

</Button.Content>
</Button>

Do be aware, however, that not every WPF control derives from ContentControl, and therefore
only a subset of controls supports this unique content model. Specifically, any class deriving from
Frame, GroupItem, HeaderedContentControl, Label, ListBoxItem, ButtonBase, StatusBarItem,
ScrollViewer, ToolTip, UserControl, or Window can make use of this content model. Any other type
attempting to do so results in a markup/compile-time error. For example, consider this malformed
ScrollBar type:

<!-- Error! ScrollBars don't derive from ContentControl! -->
<ScrollBar Height = "80" Width = "100">
<Button Width = "75" Height = "40"/>

</ScrollBar >

Another important point regarding this new content model is that controls deriving from
ContentControl (including the Window type itself) can assign only a single value to the Content prop-
erty. Therefore, the following XAML Button definition is also illegal, as the Content property has
been implicitly set twice:

<!-- Try to add a TextBox and an Ellipse to a Button? Error! -->
<Button Height = "200" Width = "200">
<Ellipse Fill = "Green" Height = "80" Width = "80"/>
<TextBox Width = "50" Height = "40"/>

</Button >

At first glance, this fact might appear to be extremely limiting (imagine how nonfunctional a
dialog box would be with only a single button!). Thankfully, it is indeed possible to add numerous
elements to a ContentControl-derived type using panels. To do so, each bit of content must first be
arranged into one of the WPF panel types, after which point the panel becomes the single value
assigned to the Content property. You will learn more about the WPF content model as well as the
various panel types (and the controls they contain) in Chapter 29.

■Note The System.Windows.ContentControl class also provides the HasContent property to determine if
the value of Content is currently null.

The Role of System.Windows.Controls.Control
Unlike ContentControl, all WPF controls share the Control base class as a common parent. This
base class provides numerous core members that account for basic UI functionality. For example,
Control defines properties to establish the control’s size, opacity, tab order logic, the display cursor,
background color, and so forth. Furthermore, this parent class provides support for templating

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1008

8849CH28.qxd 10/19/07 9:28 AM Page 1008

services. As explained in Chapter 30, WPF controls can dynamically change their appearance using
templates, styles, and themes. Table 28-6 documents some key members of the Control type,
grouped by related functionality.

Table 28-6. Key Members of the Control Type

Members Meaning in Life

Background, Foreground, BorderBrush, These properties allow you to set basic settings
BorderThickness, Padding, regarding how the control will be rendered and
HorizontalContentAlignment, positioned.
VerticalContentAlignment

FontFamily, FontSize, FontStretch, FontWeight These properties control various font-centric
settings.

IsTabStop, TabIndex These properties are used to establish tab order
among controls on a window.

MouseDoubleClick, PreviewMouseDoubleClick These events handle the act of double-clicking a
widget.

Template This property allows you to get and set the
control’s template, which can be used to change
the rendering output of the widget.

The Role of System.Windows.FrameworkElement
This base class provides a number of lower-level members that are used throughout the WPF frame-
work, such as support for storyboarding (used within animations) and support for data binding, as
well as the ability to name a member (via the Name property), obtain any resources defined by the
derived type, and establish the overall dimensions of the derived type. Table 28-7 hits the highlights.

Table 28-7. Key Members of the FrameworkElement Type

Members Meaning in Life

ActualHeight, ActualWidth, MaxHeight, MaxWidth, Control the size of the derived type (not
MinHeight, MinWidth, Height, Width surprisingly)

ContextMenu Gets or sets the pop-up menu associated with
the derived type

Cursor Gets or sets the mouse cursor associated with
the derived type

HorizontalAlignment, VerticalAlignment Control how the type is positioned within a
container (such as a panel or list box)

Name Allows to you assign a name to the type, in
order to access its functionality in a code file

Resources Provides access to any resources defined by
the type (see Chapter 30 for an examination of
the WPF resource system)

ToolTip Gets or sets the tool tip associated with the
derived type

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1009

8849CH28.qxd 10/19/07 9:28 AM Page 1009

The Role of System.Windows.UIElement
Of all the types within a Window’s inheritance chain, the UIElement base class provides the greatest
amount of functionality. The key task of UIElement is to provide the derived type with numerous
events to allow the derived type to receive focus and process input requests. For example, this class
provides numerous events to account for drag-and-drop operations, mouse movement, keyboard
input, and stylus input (for Pocket PCs and Tablet PCs).

Chapter 29 digs into the WPF event model in detail; however, many of the core events will look
quite familiar (MouseMove, KeyUp, MouseDown, MouseEnter, MouseLeave, etc.). In addition to defining
dozens of events, this parent class provides a number of properties to account for control focus,
enabled state, visibility, and hit testing logic, as shown in Table 28-8.

Table 28-8. Key Members of the UIElement Type

Members Meaning in Life

Focusable, IsFocused These properties allow you to set focus on a given derived
type.

IsEnabled These properties allow you to control whether a given
derived type is enabled or disabled.

IsMouseDirectlyOver, IsMouseOver These properties provide a simple way to perform hit-testing
logic.

IsVisible, Visibility, Visible These properties allow you to work with the visibility setting
of a derived type.

RenderTransform This property allows you to establish a transformation that
will be used to render the derived type.

The Role of System.Windows.Media.Visual
The Visual class type provides core rendering support in WPF, which includes hit testing of ren-
dered data, coordinate transformation, and bounding box calculations. In fact, this type is the
connection point between the managed WPF assembly stack and the unmanaged milcore.dll
binary that communicates with the DirectX subsystem.

As examined in Chapter 30, WPF provides three possible manners in which you can render
graphical data, each of which differs in terms of functionality and performance. Use of the Visual
type (and its children, such as DrawingVisual) provides the most lightweight way to render graphical
data, but it also entails the greatest amount of manual code to account for all the required services.
Again, more details to come in Chapter 30.

The Role of System.Windows.DependencyObject
WPF supports a particular flavor of .NET properties termed dependency properties. Simply put, this
approach allows a type to compute the value of a property based on the value of other properties
(hence the term “dependency”). In order for a type to participate in this new property scheme, it
will need to derive from the DependencyObject base class. In addition, DependencyObject allows
derived types to support attached properties, which are a form of dependency property very useful
when programming against the WPF data-binding model as well as when laying out UI elements
within various WPF panel types.

The DependencyObject base class provides two key methods to all derived types: GetValue()
and SetValue(). Using these members, you are able to establish the property itself. Other bits of
infrastructure allow you to “register” who can use the dependent/attached property in question.

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1010

8849CH28.qxd 10/19/07 9:28 AM Page 1010

While dependency properties are a key aspect of WPF development, much of the time their details
are hidden from view. Chapter 29 dives further into the details of the “new” property type.

The Role of System.Windows.Threading.DispatcherObject
The final base class of the Window type (beyond System.Object, which I assume needs no further
explanation at this point in the text) is DispatcherObject. This type provides one property of inter-
est, Dispatcher, which returns the associated System.Windows.Threading.Dispatcher object. The
Dispatcher type is the entry point to the event queue of the WPF application, and it provides the
basic constructs for dealing with concurrency and threading. By and large, this is a lower-level class
that can be ignored by the majority of your WPF applications.

Building a (XAML-Free) WPF Application
Given all of the functionality provided by the parent classes of the Window type, it is possible to rep-
resent a window in your application by either directly creating a Window type or using this class as
the parent to a strongly typed descendent. Let’s examine both approaches in the following code
example. Although most WPF applications will make use of XAML, doing so is entirely optional.
Anything that can be expressed in XAML can be expressed in code and (for the most part) vice
versa. If you wish, it is possible to build a complete WPF project using the underlying object model
and procedural code.

To illustrate, let’s create a minimal but complete application without the use of XAML using the
Application and Window types directly. Consider the following C# code file (SimpleWPFApp.cs), which
creates a main window of modest functionality:

// A simple WPF application, written without XAML.
using System;
using System.Windows;
using System.Windows.Controls;

namespace SimpleWPFApp
{
// In this first example, we are defining a single class type to
// represent the application itself and the main window.
class MyWPFApp : Application
{
[STAThread]
static void Main()
{
// Handle the Startup and Exit events, and then run the application.
MyWPFApp app = new MyWPFApp();
app.Startup += AppStartUp;
app.Exit += AppExit;
app.Run(); // Fires the Startup event.

}

static void AppExit(object sender, ExitEventArgs e)
{
MessageBox.Show("App has exited");

}

static void AppStartUp(object sender, StartupEventArgs e)
{
// Create a Window object and set some basic properties.

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1011

8849CH28.qxd 10/19/07 9:28 AM Page 1011

Window mainWindow = new Window();
mainWindow.Title = "My First WPF App!";
mainWindow.Height = 200;
mainWindow.Width = 300;
mainWindow.WindowStartupLocation = WindowStartupLocation.CenterScreen;
mainWindow.Show();

}
}

}

■Note The Main() method of a WPF application must be attributed with the [STAThread] attribute, which
ensures any legacy COM objects used by your application are thread-safe. If you do not annotate Main() in this
way, you will trigger a runtime exception!

Note that the MyWPFApp class extends the System.Windows.Application type. Within this type’s
Main() method, we create an instance of our application object and handle the Startup and Exit
events using method group conversion syntax. Recall from Chapter 11 that this shorthand notation
removes the need to manually specify the underlying delegates used by a particular event.

However, if you wish, you can specify the underlying delegates directly by name. In the
following modified Main() method, notice that the Startup event works in conjunction with the
StartupEventHandler delegate, which can only point to methods taking an Object as the first
parameter and a StartupEventArgs as the second. The Exit event, on the other hand, works with
the ExitEventHandler delegate, which demands that the method pointed to take an ExitEventArgs
type as the second parameter:

[STAThread]
static void Main()
{
// This time, specify the underlying delegates.
MyWPFApp app = new MyWPFApp();
app.Startup += new StartupEventHandler(AppStartUp);
app.Exit += new ExitEventHandler(AppExit);
app.Run(); // Fires the Startup event.

}

The AppStartUp() method has been configured to create a Window type, establish some very
basic property settings, and call Show() to display the window on the screen in a modal-less fashion
(like Windows Forms, the ShowDialog() method can be used to launch a modal dialog). The
AppExit() method simply makes use of the WPF MessageBox type to display a diagnostic message
when the application is being terminated.

To compile this C# code into an executable WPF application, assume that you have created a
C# response file named build.rsp that references each of the WPF assemblies. Note that the path to
each assembly should be defined on a single line (see Chapter 2 for more information on response
files and working with the command-line compiler):

build.rsp
#
/target:winexe
/out:SimpleWPFApp.exe
/r:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\WindowsBase.dll"
/r:"C:\Program Files\Reference Assemblies\Microsoft\Framework

\v3.0\PresentationCore.dll"

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1012

8849CH28.qxd 10/19/07 9:28 AM Page 1012

/r:"C:\Program Files\Reference Assemblies\Microsoft\Framework
\v3.0\PresentationFramework.dll"

*.cs

You can now compile this WPF program at the command prompt as follows:

csc @build.rsp

Once you run the program, you will find a very simple main window that can be minimized,
maximized, and closed. To spice things up a bit, we need to add some user interface elements.
Before we do, however, let’s refactor our code base to account for a strongly typed and well-
encapsulated Window-derived class.

Extending the Window Class Type
Currently, our Application-derived class directly creates an instance of the Window type upon
application startup. Ideally, we would create a class deriving from Window in order to encapsulate
its functionality. Assume we have created the following class definition within our current
SimpleWPFApp namespace:

class MainWindow : Window
{
public MainWindow(string windowTitle, int height, int width)
{
this.Title = windowTitle;
this.WindowStartupLocation = WindowStartupLocation.CenterScreen;
this.Height = height;
this.Width = width;
this.Show();

}
}

We can now update our Startup event handler to simply directly create an instance of
MainWindow:

static void AppStartUp(object sender, StartupEventArgs e)
{
// Create a MainWindow object.
MainWindow wnd = new MainWindow("My better WPF App!", 200, 300);

}

Once the program is recompiled and executed, the output is identical. The obvious benefit is
that we now have a strongly typed class to build upon.

■Note When you create a Window (or Window-derived) object, it will automatically be added to the internal win-
dows collection of the Application type (via some constructor logic found in the Window class itself). Given this
fact, a window will be alive in memory until it is terminated or is explicitly removed from the collection via the
Application.Windows property.

Creating a Simple User Interface
Adding UI elements into a Window-derived type is similar (but not identical) to adding UI elements
into a System.Windows.Forms.Form-derived type:

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1013

8849CH28.qxd 10/19/07 9:28 AM Page 1013

mailto:@build.rsp

1. Define a member variable to represent the required widget.

2. Configure the variable’s look and feel upon the creation of your Window type.

3. Add the widget to the Window’s client area via a call to AddChild().

Although the process might feel familiar to Windows Forms development, one obvious difference
is that the UI controls used by WPF are defined within the System.Windows.Controls namespace
rather than System.Windows.Forms (thankfully, in many cases, they are identically named and feel
quite similar to their Windows Forms counterparts).

A more drastic change from Windows Forms is the fact that a Window-derived type can contain
only a single child element (due to the WPF content model). When a window needs to contain multi-
ple UI elements (which will be the case for practically any window), you will need to make use of a
layout manager such as DockPanel, Grid, Canvas, or StackPanel to control their positioning.

For this example, we will add single Button type to the Window-derived type. When we click this
button, we terminate the application by gaining access to the global application object (via the
Application.Current property) in order to call the Shutdown() method. Ponder the following update
to the MainWindow class:

class MainWindow : Window
{
// Our UI element.
private Button btnExitApp = new Button();

public MainWindow(string windowTitle, int height, int width)
{
// Configure button and set the child control.
btnExitApp.Click += new RoutedEventHandler(btnExitApp_Clicked);
btnExitApp.Content = "Exit Application";
btnExitApp.Height = 25;
btnExitApp.Width = 100;

// Set the content of this window to a single button.
this.AddChild(btnExitApp);

// Configure the window.
this.Title = windowTitle;
this.WindowStartupLocation = WindowStartupLocation.CenterScreen;
this.Height = height;
this.Width = width;
this.Show();

}

private void btnExitApp_Clicked(object sender, RoutedEventArgs e)
{
// Get a handle to the current application and shut it down.
Application.Current.Shutdown();

}
}

Given your work with Windows Forms in Chapter 27, the code within the window’s constructor
should not look too threatening. Do notice, however, that the Click event of the WPF button works
in conjunction with a delegate named RoutedEventHandler, which obviously begs the question,
what is a routed event? You’ll examine the details of the WPF event model in the next chapter; for
the time being, simply understand that targets of the RoutedEventHandler delegate must supply an
object as the first parameter and a RoutedEventArgs as the second.

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1014

8849CH28.qxd 10/19/07 9:28 AM Page 1014

In any case, once you recompile and run this application, you will find the customized window
shown in Figure 28-4. Notice that our button is automatically placed in the dead center of the win-
dow’s client area, which is the default behavior when content is not placed within a WPF panel type.

Figure 28-4. A somewhat interesting WPF application

■Source Code The SimpleWPFApp project is included under the Chapter 28 subdirectory.

Additional Details of the Application Type
Now that you have created a simple WPF program using a 100-percent pure code approach, let’s
illustrate some additional details of the Application type, beginning with the construction of
application-wide data. To do so, we will extend the previous SimpleWPFApp application with new
functionality.

Application-wide Data and Processing Command-Line
Arguments
Recall that the Application type defines a property named Properties, which allows you to define a
collection of name/value pairs via a type indexer. Because this indexer has been defined to operate
on type System.Object, you are able to store any sort of item within this collection (including your
custom classes), to be retrieved at a later time using a friendly moniker. Using this approach, it is
simple to share data across all windows in a WPF application.

To illustrate, we will update the current Startup event handler to check the incoming command-
line arguments for a value named /GODMODE (a common cheat code for many PC video games). If we
find such a token, we will establish a bool value set to true within the properties collection of the
same name (otherwise we will set the value to false).

Sounds simple enough, but one question you may have is, how are we going to pass the incom-
ing command-line arguments (typically obtained from the Main() method) to our Startup event
handler? One approach is to call the static Environment.GetCommandLineArgs() method. However,
these same arguments are automatically added to the incoming StartupEventArgs parameter and
can be accessed via the Args property. This being said, here is our first update:

static void AppStartUp(object sender, StartupEventArgs e)
{
// Check the incoming command-line arguments and see if they
// specified a flag for /GODMODE.
Application.Current.Properties["GodMode"] = false;

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1015

8849CH28.qxd 10/19/07 9:28 AM Page 1015

foreach(string arg in e.Args)
{
if (arg.ToLower() == "/godmode")
{
Application.Current.Properties["GodMode"] = true;
break;

}
}

// Create a MainWindow object.
MainWindow wnd = new MainWindow("My better WPF App!", 200, 300);

}

Now recall that this new name/value pair can be accessed from anywhere within the WPF
application. All we are required to do is obtain an access point to the global application object (via
Application.Current) and investigate the collection. For example, we could update the Click event
handler of the Button type of the main window like so:

private void btnExitApp_Clicked(object sender, RoutedEventArgs e)
{
// Did user enable /godmode?
if((bool)Application.Current.Properties["GodMode"])
MessageBox.Show("Cheater!");

// Get a handle to the current application and shut it down.
Application.Current.Shutdown();

}

With this, if the end user launches our program as follows:

SimpleWPFApp.exe /godmode

he or she will see our shameful message box displayed when terminating the application.

Iterating over the Application’s Windows Collection
Another interesting property exposed by Application is Windows, which provides access to a collec-
tion representing each window loaded into memory for the current WPF application. Recall that
as you create new Window types, they are automatically added into the global application object’s
Windows collection. We have no need to update our current example to illustrate this; however, here
is an example method that will minimize each window of the application (perhaps in response to a
given keyboard gesture or menu option triggered by the end user):

static void MinimizeAllWindows()
{
foreach (Window wnd in Application.Current.Windows)
{
wnd.WindowState = WindowState.Minimized;

}
}

Additional Events of the Application Type
Like many types within the .NET base class libraries, Application also defines a set of events that
you can intercept. You have already seen the Startup and Exit events in action. You should also be
aware of Activated and Deactivated. At first glance these events can seem a bit confusing, given

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1016

8849CH28.qxd 10/19/07 9:28 AM Page 1016

that the Window type supplied identically named methods. Unlike their UI counterparts, however,
the Activated and Deactivated events fire whenever any window maintained by the application
object received or lost focus (in contrast to the same events of the Window type, which are unique to
that Window object).

Our current example has no need to handle these two events, but if you need to do so, be aware
that each event works in conjunction with the System.EventHandler delegate, and therefore the
event handler will take an Object as the first parameter and System.EventArgs as the second (see
Chapter 27 for a refresher on the EventHandler delegate).

■Note A majority of the remaining events of the Application type are specific to a navigation-based WPF
application. Using these events, you are able to intercept the process of moving between Page objects of your
program.

Additional Details of the Window Type
The Window type, as you saw earlier in this chapter, gains a ton of functionality from its set of parent
classes and implemented interfaces. Over the chapters to come, you’ll glean more and more infor-
mation about what these base classes bring to the table; however, it is important to revisit the
Window type itself and come to understand some core services you’ll need to use on a day-to-day
basis, beginning with the set of events that are fired over its lifetime.

The Lifetime of a Window Object
Like the System.Windows.Forms.Form type, System.Windows.Window has a set of events that will fire
over the course of its lifetime. When you handle some (or all) of these events, you will have a con-
venient manner in which you can perform custom logic as your Window goes about its business. First
of all, because a window is a class type, the very first step in its initialization entails a call to a speci-
fied constructor. After that point, the first WPF-centric event that fires is SourceInitialized, which
is only useful if your Window is making use of various interoperability services (e.g., using legacy
ActiveX controls in a WPF application). Even then, the need to intercept this event is limited, so
consult the .NET Framework 3.5 documentation if you require more information.

The first immediately useful event that fires after the Window’s constructor is Activate, which
works in conjunction with the System.EventHandler delegate. This event is fired when a window
receives focus and thus becomes the foreground window. The counterpart to this event is
Deactivate (which also works with the System.EventHandler delegate), which fires when a window
loses focus.

Here is an update to our existing Window-derived type that adds an informative message to
a private string variable (you’ll see the usefulness of this string variable in just a bit) when the
Activate and Deactivate events occur:

class MainWindow : Window
{
private Button btnExitApp = new Button();

// This string will document which events fire, and when.
private string lifeTimeData = String.Empty;

protected void MainWindow_Activated(object sender, EventArgs e)
{

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1017

8849CH28.qxd 10/19/07 9:28 AM Page 1017

lifeTimeData += "Activate Event Fired!\n";
}
protected void MainWindow_Deactivated(object sender, EventArgs e)
{
lifeTimeData += "Deactivated Event Fired!\n";

}

public MainWindow(string windowTitle, int height, int width)
{
// Rig up events.
this.Activated += MainWindow_Activated;
this.Deactivated += MainWindow_Deactivated;
...

}
}

■Note Recall that you can handle application-level activation/deactivation for all windows with the
Application.Activated and Application.Deactivated events.

Once the Activated event fires, the next event to do so is Loaded (which works with the
RoutedEventHandler delegate), which signifies that the window has been for all practical purposes
fully laid out and rendered, and is ready to respond to user input.

■Note While the Activated event can fire many times as a window gains or loses focus, the Loaded event will
fire only one time during the window’s lifetime.

Assume that our MainWindow type has handled this event and defines the following event
handler:

protected void MainWindow_Loaded(object sender, RoutedEventArgs e)
{
lifeTimeData += "Loaded Event Fired!\n";

}

■Note Should the need arise (which can be the case with custom WPF controls), you can capture the exact
moment when a window’s content has been loaded by handling the ContentRendered event.

Handling the Closing of a Window Object
End users can shut down a window using numerous built-in system-level techniques (e.g., clicking
the “X” close button on the window’s frame) or by indirectly calling the Close() method in response
to some user interaction element (e.g., File ➤ Exit). In either case, WPF provides two events that you
can intercept to determine if the user is truly ready to shut down the window and remove it from
memory. The first event to fire is Closing, which works in conjunction with the CancelEventHandler
delegate.

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1018

8849CH28.qxd 10/19/07 9:28 AM Page 1018

This delegate expects target methods to take System.ComponentModel.CancelEventArgs as the
second parameter. CancelEventArgs provides the Cancel property, which when set to false will pre-
vent the window from actually closing (this is handy when you have asked the user if he really wants
to close the window, or perhaps needs to save his work).

If the user did indeed wish to close the window, CancelEventArgs.Cancel can be set to true,
which will then cause the Closed event to fire (which works with the System.EventHandler delegate),
which is the point at which the window is about to be closed for good. Assuming the MainWindow
type has handled these two events, consider the final event handlers:

protected void MainWindow_Closing(object sender,
System.ComponentModel.CancelEventArgs e)

{
lifeTimeData += "Closing Event Fired!\n";

// See if the user really wants to shut down this window.
string msg = "Do you want to close without saving?";
MessageBoxResult result = MessageBox.Show(msg,
"My App", MessageBoxButton.YesNo, MessageBoxImage.Warning);
if (result == MessageBoxResult.No)
{
// If user doesn't want to close, cancel closure.
e.Cancel = true;

}
}

protected void MainWindow_Closed(object sender, EventArgs e)
{
lifeTimeData += "Closing Event Fired!\n";
MessageBox.Show(lifeTimeData);

}

When you compile and run your application, shift the window into and out of focus a few
times. Also attempt to close the window once or twice. When you do indeed close the window for
good, you will see a message box pop up that displays the events that fired during the window’s life-
time (Figure 28-5 shows one possible test run).

Figure 28-5. The life and times of a System.Windows.Window

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1019

8849CH28.qxd 10/19/07 9:28 AM Page 1019

Handling Window-Level Mouse Events
Much like Windows Forms, the WPF API provides a number of events you can capture in order to
interact with the mouse. Specifically, the UIElement base class defines a number of mouse-centric
events such as MouseMove, MouseUp, MouseDown, MouseEnter, MouseLeave, and so forth.

Consider, for example, the act of handling the MouseMove event. This event works in conjunc-
tion with the System.Windows.Input.MouseEventHandler delegate, which expects its target to take a
System.Windows.Input.MouseEventArgs type as the second parameter. Using MouseEventArgs (like a
Windows Forms application) you are able to extract out the (x, y) position of the mouse and other
relevant details. Consider the following partial definition:

public class MouseEventArgs : InputEventArgs
{
...
public Point GetPosition(IInputElement relativeTo);
public MouseButtonState LeftButton { get; }
public MouseButtonState MiddleButton { get; }
public MouseDevice MouseDevice { get; }
public MouseButtonState RightButton { get; }
public StylusDevice StylusDevice { get; }
public MouseButtonState XButton1 { get; }
public MouseButtonState XButton2 { get; }

}

The GetPosition() method allows you to get the (x, y) value relative to a UI element on the
window. If you are interested in capturing the position relative to the activated window, simply pass
in this. Here is an event handler for MouseMove that will display the location of the mouse in the
window’s title area (notice we are translating the returned Point type into a string value via
ToString()):

protected void MainWindow_MouseMove(object sender,
System.Windows.Input.MouseEventArgs e)

{
// Set the title of the window to the current X,Y of the mouse.
this.Title = e.GetPosition(this).ToString();

}

Handling Window-Level Keyboard Events
Processing keyboard input is also very straightforward. UIElement defines a number of events that
you can capture to intercept keypresses from the keyboard on the active element (e.g., KeyUp, KeyDown,
etc.). The KeyUp and KeyDown events both work with the System.Windows.Input.KeyEventHandler
delegate, which expects the target’s second event handler to be of type KeyEventArgs, which defines
several public properties of interest:

public class KeyEventArgs : KeyboardEventArgs
{
...
public bool IsDown { get; }
public bool IsRepeat { get; }
public bool IsToggled { get; }
public bool IsUp { get; }
public Key Key { get; }
public KeyStates KeyStates { get; }
public Key SystemKey { get; }

}

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1020

8849CH28.qxd 10/19/07 9:28 AM Page 1020

To illustrate handling the KeyUp event, the following event handler will display the previously
pressed key on the window’s title:

protected void MainWindow_KeyUp(object sender, System.Windows.Input.KeyEventArgs e)
{
// Display keypress.
this.Title = e.Key.ToString();

}

At this point in the chapter, WPF might look like nothing more than a new GUI model that is
providing (more or less) the same services as System.Windows.Forms.dll. If this were in fact the case,
you might question the usefulness of yet another UI toolkit. To truly see what makes WPF so unique
requires an understanding of a new XML-based grammar, XAML.

■Source Code The SimpleWPFAppRevisited project is included under the Chapter 28 subdirectory.

Building a (XAML-Centric) WPF Application
Extensible Application Markup Language, or XAML, is an XML-based grammar that allows you to
define the state (and, to some extent, the functionality) of a tree of .NET objects through markup.
While XAML is frequently used when building UIs with WPF, in reality it can be used to describe any
tree of nonabstract .NET types (including your own custom types defined in a custom .NET assem-
bly), provided each supports a default constructor. As you will see, the markup found within a
*.xaml file is transformed into a full-blown object model that maps directly to the types within a
related .NET namespace.

Because XAML is an XML-based grammar, we gain all the benefits and drawbacks XML affords
us. On the plus side, XAML files are very self-describing (as any XML document should be). By and
large, each element in an XAML file represents a type name (such as Button, Window, or Application)
within a given .NET namespace. Attributes within the scope of an opening element map to proper-
ties (Height, Width, etc.) and events (Startup, Click, etc.) of the specified type.

Given the fact that XAML is simply a declarative way to define the state of an object, it is possi-
ble to define a WPF widget via markup or procedural code. For example, the following XAML:

<!-- Defining a WPF Button in XAML -->
<Button Name = "btnClickMe" Height = "40" Width = "100" Content = "Click Me" />

can be represented programmatically as follows:

// Defining the same WPF Button in C# code.
Button btnClickMe = new Button();
btnClickMe.Height = 40;
btnClickMe.Width = 100;
btnClickMe.Content = "Click Me";

On the downside, XAML can be verbose and is (like any XML document) case sensitive, thus
complex XAML definitions can result in a good deal of markup. Most developers will not need to
manually author a complete XAML description of their WPF applications. Rather, the majority of
this task will (thankfully) be relegated to development tools such as Visual Studio 2008, Microsoft
Expression Blend, or any number of third-party products. Once the tools generate the basic
markup, you can go in and fine-tune the XAML definitions by hand if necessary.

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1021

8849CH28.qxd 10/19/07 9:28 AM Page 1021

While tools can generate a good deal of XAML on your behalf, it is important for you to under-
stand the basic workings of XAML syntax and how this markup is eventually transformed into a
valid .NET assembly. To illustrate XAML in action, in our next example we’ll build a WPF application
using nothing more than a pair of *.xaml files.

Defining MainWindow in XAML
Our first Window-derived class (MainWindow) was defined in C# as a class type that extends the
System.Windows.Window base class. This class contains a single Button type that calls a registered
event handler when clicked. Defining this same Window type in the grammar of XAML can be
achieved as so (assume this markup has been defined in a file named MainWindow.xaml):

<!-- Here is our Window definition -->
<Window x:Class="SimpleXamlApp.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="My Xaml App" Height="200" Width="300"
WindowStartupLocation ="CenterScreen">

<!--Set the content of this window -->
<Button Width="133" Height="24" Name="btnExitApp" Click ="btnExitApp_Clicked">
Exit Application

</Button>

<!--The implementation of our button's Click event handler! -->
<x:Code>
<![CDATA[
private void btnExitApp_Clicked(object sender, RoutedEventArgs e)
{
// Get a handle to the current app and shut it down.
Application.Current.Shutdown();

}
]]>
</x:Code>

</Window>

First of all, notice that the root element, <Window>, defines the name of the derived type via the
Class attribute. The x prefix is used to denote that this attribute is defined within the XAML-centric
XML namespace, http://schemas.microsoft.com/winfx/2006/xaml (more details on these XML
namespaces later in this chapter). Within the scope of the opening <Window> element we have speci-
fied values for the Title, Height, Width, and WindowsStartupLocation attributes, which as you can
see are a direct mapping to properties of the same name supported by the System.Windows.Window
type.

Next up, notice that within the scope of the window’s definition, we have authored markup to
describe the look and feel of the Button instance, which will be used to implicitly set the Content
property of the window. Beyond setting up the variable name and its overall dimensions, we have
also handled the Click event of the Button type by assigning the method to delegate to when the
Click event occurs.

The final aspect of this XAML file is the <Code> element, which allows us to author event han-
dlers and other methods of this class directly within an *.xaml file. As a safety measure, the code
itself is wrapped within a CDATA scope, to prevent XML parsers from attempting to directly interpret
the data (although this is not strictly required for the current example).

It is important to point out that authoring functionality within a <Code> element is not recom-
mended. Although this “single-file approach” isolates all the action to one location, inline code does

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1022

8849CH28.qxd 10/19/07 9:28 AM Page 1022

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml

not provide us with a clear separation of concerns between UI markup and programming logic. In
most WPF applications, “real code” will be found within an associated C# code file (which we will do
eventually).

Defining the Application Object in XAML
Remember that XAML can be used to define in markup any nonabstract .NET class that supports a
default constructor. Given this, we could most certainly define our application object in markup as
well. Consider the following content within a new file, MyApp.xaml:

<!-- The Main() method seems to be missing!
However, the StartupUri attribute is the
functional equivalent -->

<Application x:Class="SimpleXamlApp.MyApp"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
StartupUri="MainWindow.xaml">

</Application>

Here, you might agree, the mapping between the Application-derived C# class type and its
XAML description is not as clear-cut as was the case for our MainWindow’s XAML definition. Specifi-
cally, there does not seem to be any trace of a Main() method. Given that any .NET executable must
have a program entry point, you are correct to assume it is generated at compile time, based in part
on the StartupUrl property. The assigned *.xaml file will be used to determine which Window-
derived class to create when this application starts up.

Although the Main() method is automatically created at compile time, we are free to use the
<Code> element to establish our Exit event handler if we so choose, as follows (notice this method is
no longer static, as it will be translated into an instance-level member in the MyApp class):

<Application x:Class="SimpleXamlApp.MyApp"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
StartupUri="MainWindow.xaml" Exit ="AppExit">
<x:Code>
<![CDATA[
private void AppExit(object sender, ExitEventArgs e)
{
MessageBox.Show("App has exited");

}
]]>
</x:Code>

</Application>

Processing the XAML Files via msbuild.exe
At this point, we are ready to transform our markup into a valid .NET assembly. When doing so, we
cannot make direct use of the C# compiler and a response file. To date, the C# compiler does not
have a direct understanding of XAML markup. However, the msbuild.exe command-line utility
does understand how to transform XAML into C# code and compile this code on the fly when it is
informed of the correct *.targets files.

msbuild.exe is a tool that allows you to define complex build scripts via (surprise, surprise) an
XML grammar. One interesting aspect of these XML definitions is that they are the same format as
Visual Studio *.csproj files. Given this, we are able to define a single file for automated command-
line builds as well as a Visual Studio 2008 project. Consider the following minimalist build file,
SimpleXamlApp.csproj:

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1023

8849CH28.qxd 10/19/07 9:28 AM Page 1023

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

<Project DefaultTargets="Build"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<RootNamespace>SimpleXamlApp</RootNamespace>
<AssemblyName>SimpleXamlApp</AssemblyName>
<OutputType>winexe</OutputType>

</PropertyGroup>
<ItemGroup>
<Reference Include="System" />
<Reference Include="WindowsBase" />
<Reference Include="PresentationCore" />
<Reference Include="PresentationFramework" />

</ItemGroup>
<ItemGroup>
<ApplicationDefinition Include="MyApp.xaml" />
<Page Include="MainWindow.xaml" />

</ItemGroup>
<Import Project="$(MSBuildBinPath)\Microsoft.CSharp.targets" />
<Import Project="$(MSBuildBinPath)\Microsoft.WinFX.targets" />

</Project>

Here, the <PropertyGroup> element is used to specify some basic aspects of the build, such as
the root namespace, the name of the resulting assembly, and the output type (the equivalent of the
/target:winexe option of csc.exe).

The first <ItemGroup> specifies the set of external assemblies to reference with the current
build, which as you can see are the core WPF assemblies examined earlier in this chapter. The sec-
ond <ItemGroup> is much more interesting. Notice that the <ApplicationDefinition> element’s
Include attribute is assigned to the *.xaml file that defines our application object. The <Page>’s
Include element can be used to list each of the remaining *.xaml files that define the windows (and
pages, which are often used when building XAML browser applications) processed by the applica-
tion object.

However, the “magic” of this *.csproj file is the final <Import> subelements. Notice that our
build script is referencing two *.targets files, each of which contains numerous other instructions
used during the build process. The Microsoft.WinFX.targets file contains the necessary build set-
tings to transform the XAML definitions into equivalent C# code files, while Microsoft.CSharp.
Targets contains data to interact with the C# compiler itself.

■Note A full examination of the msbuild.exe utility is beyond the scope of this text. If you’d like to learn more,
perform a search for the topic “MSBuild” in the .NET Framework 3.5 SDK documentation.

At this point, we can pass our SimpleXamlApp.csproj file into msbuild.exe for processing:

msbuild SimpleXamlApp.csproj

Once the build has completed, you should be able to find your assembly within the generated
\bin\Debug folder. At this point, you can launch your WPF application as expected. As you may
agree, it is quite bizarre to generate valid .NET assemblies by authoring a few lines of markup. How-
ever, to be sure, if you open SimpleXamlApp.exe in ildasm.exe, you can see that (somehow) your
XAML has been transmogrified into an executable application (see Figure 28-6).

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1024

8849CH28.qxd 10/19/07 9:28 AM Page 1024

http://schemas.microsoft.com/developer/msbuild/2003

Figure 28-6. Transforming markup into a .NET assembly? Interesting . . .

Transforming Markup into a .NET Assembly
To understand exactly how our markup was transformed into a .NET assembly, we need to dig a bit
deeper into the msbuild.exe process and examine a number of compiler-generated files, including a
particular binary resource embedded within the assembly at compile time.

Mapping XAML to C# Code
As mentioned, the *.targets files specified in an MSBuild script define numerous instructions to
translate XAML elements into C# code for compilation. When msbuild.exe processed our *.csproj
file, it produced two files with the form *.g.cs (where g denotes autogenerated), which were saved
into the \obj\Debug directory. Based on the names of our *.xaml file names, the C# files in question
are MainWindow.g.cs and MyApp.g.cs.

If you open the MainWindow.g.cs file, you will find your class extends the Window base class and
contains the btnExitApp_Clicked() method as expected. Also, this class defines a member variable
of type System.Windows.Controls.Button. Strangely enough, there does not appear to be any code
that establishes the property settings for the Button or Window type (Height, Width, Title, etc.). This
part of the mystery will become clear in just a moment.

Finally, note that this class defines a private member variable of type bool (named
_contentLoaded), which was not directly accounted for in the XAML markup. Here is a partial
definition of the generated MainWindow type:

public partial class MainWindow :
System.Windows.Window, System.Windows.Markup.IComponentConnector

{
internal System.Windows.Controls.Button btnExitApp;

// This member variable will be explained soon enough.

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1025

8849CH28.qxd 10/19/07 9:28 AM Page 1025

private bool _contentLoaded;

private void btnExitApp_Clicked(object sender, RoutedEventArgs e)
{
// Get a handle to the current application and shut it down.
Application.Current.Shutdown();

}
...
}

This Windows-derived class also explicitly implements the WPF IComponentConnector interface
defined in the System.Windows.Markup namespace. This interface defines a single method,
Connect(), which has been implemented to rig up the event logic as specified within the original
MainWindow.xaml file:

void System.Windows.Markup.IComponentConnector.Connect(int connectionId,
object target)
{
switch (connectionId)
{
case 1:
this.btnExitApp = ((System.Windows.Controls.Button)(target));
this.btnExitApp.Click += new
System.Windows.RoutedEventHandler(this.btnExitApp_Clicked);

return;
}
this._contentLoaded = true;

}

Finally, the MainWindow class also implements a method named InitializeComponent(). This
method ultimately resolves the location of an embedded resource within the assembly, given the
name of the original *.xaml file. Once the resource is located, it is loaded into the current applica-
tion object via a call to Application.LoadComponent(). Finally, the private bool member variable
(mentioned previously) is set to true, to ensure the requested resource is loaded exactly once
during the lifetime of this application:

public void InitializeComponent() {
if (_contentLoaded) {
return;

}
_contentLoaded = true;
System.Uri resourceLocater = new
System.Uri("/SimpleXamlApp;component/mainwindow.xaml",
System.UriKind.RelativeOrAbsolute);

System.Windows.Application.LoadComponent(this, resourceLocater);
}

At this point, the question becomes, what exactly is this embedded resource?

The Role of BAML
When msbuild.exe processed our *.csproj file, it generated a file with a *.baml file extension, which
is named based on the initial MainWindow.xaml file. As you might have guessed from the name,
Binary Application Markup Language (BAML) is a binary representation of XAML. This *.baml file
is embedded as a resource (via a generated *.g.resources file) into the compiled assembly. Using
BAML, WPF assemblies contain within them their complete XAML definition (in a much more

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1026

8849CH28.qxd 10/19/07 9:28 AM Page 1026

compact format). You can verify this for yourself by opening your assembly using reflector.exe, as
shown in Figure 28-7.

Figure 28-7. Viewing the embedded *.baml resource via Lutz Roeder’s .NET Reflector

The call to Application.LoadComponent() reads the embedded BAML resource and populates
the tree of defined objects with their correct state (again, such as the window’s Height and Width
properties). In fact, if you open the *.baml or *.g.resources file via Visual Studio, you can see traces
of the initial XAML attributes. As an example, Figure 28-8 highlights the StartupLocation.
CenterScreen property.

Figure 28-8. Behold the BAML!

The final piece of the autogenerated code puzzle occurs in the MyApp.g.cs file. Here we see our
Application-derived class with a proper Main() entry point method. The implementation of this
method calls InitializeComponent() on the Application-derived type, which in turn sets the

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1027

8849CH28.qxd 10/19/07 9:28 AM Page 1027

StartupUri property, allowing each of the objects to establish its correct property settings based on
the binary XAML definition.

namespace SimpleXamlApp
{
public partial class MyApp : System.Windows.Application
{
void AppExit(object sender, ExitEventArgs e)
{
MessageBox.Show("App has exited");

}

[System.Diagnostics.DebuggerNonUserCodeAttribute()]
public void InitializeComponent() {
this.Exit += new System.Windows.ExitEventHandler(this.AppExit);
this.StartupUri = new System.Uri("MainWindow.xaml", System.UriKind.Relative);

}

[System.STAThreadAttribute()]
[System.Diagnostics.DebuggerNonUserCodeAttribute()]
public static void Main() {
SimpleXamlApp.MyApp app = new SimpleXamlApp.MyApp();
app.InitializeComponent();
app.Run();

}
}

}

XAML-to-Assembly Process Summary
Whew! So, at this point we have created a full-blown .NET assembly using nothing but three XML
documents (one of which was used by the msbuild.exe utility). As you have seen, msbuild.exe lever-
ages auxiliary settings defined within the *.targets file to process the XAML files (and generate the
*.baml) for the build process. While these gory details happen behind the scenes, Figure 28-9 illus-
trates the overall picture regarding the compile-time processing of *.xaml files.

Figure 28-9. The XAML-to-assembly compile-time process

MainWindow.xaml
MyApp.xmal
*.csproj

msbuild.exe
and Required
C# and WPF

Targets

C# Compiler

– Compile C# Files
– Embed *.g.resources as Resource

Output to \Obj\Debug Directory

MainWindow.g.cs
My App.g.cs

MainWindow.baml
SimpleXamlApp.g.resources

Embedded BAML
Resource

SimpleXamlApp.exe

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1028

8849CH28.qxd 10/19/07 9:28 AM Page 1028

It is also important to point out that once the compiler has processed all of your *.xaml files in
order to build the related C# code and binary resource, they are technically no longer required (and
would never need to be shipped along with your executable). However, as shown at the end of this
chapter, it is possible to dynamically create a Window object by reading a *.xaml file programmati-
cally. In this case, the physical *.xaml file would indeed need to be shipped with the application
itself.

■Source Code The SimpleXamlApp project can be found under the Chapter 28 subdirectory.

Separation of Concerns Using Code-Behind Files
Before we truly begin digging into the details of XAML, we have one final aspect of the basic pro-
gramming model to address: the separation of concerns. Recall that one of the major motivations
for WPF was to separate UI content from programming logic, which our current examples have
not done.

Rather than directly embedding our event handlers (and other custom methods) within the
scope of the XAML <Code> element, it is preferable to define a separate C# file to define the imple-
mentation logic, leaving the *.xaml files to contain nothing but UI markup content. Assume the
following code-behind file, MainWindow.xaml.cs (by convention, the name of a C# code-behind file
takes the form *.xaml.cs):

// MainWindow.xaml.cs
using System;
using System.Windows;
using System.Windows.Controls;

namespace SimpleXamlApp
{
public partial class MainWindow : Window
{
public MainWindow()
{
// Remember! This method is defined
// within the generated MainWindow.g.cs file.
InitializeComponent();

}

private void btnExitApp_Clicked(object sender, RoutedEventArgs e)
{
// Get a handle to the current application and shut it down.
Application.Current.Shutdown();

}
}

}

Here, we have defined a partial class (to contain the event handling logic) that will be merged
with the partial class definition of the same type in the *.g.cs file. Given that InitializeComponent()
is defined within the MainWindow.g.cs file, our window’s constructor makes a call in order to load
and process the embedded BAML resource.

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1029

8849CH28.qxd 10/19/07 9:28 AM Page 1029

If desired, we could also build a code-behind file for our Application-derived type. Because
most of the action takes place in the MyApp.g.cs file, the code within MyApp.xaml.cs is little more
than the following:

// MyApp.xaml.cs
using System;
using System.Windows;
using System.Windows.Controls;

namespace SimpleXamlApp
{
public partial class MyApp : Application
{
private void AppExit(object sender, ExitEventArgs e)
{
MessageBox.Show("App has exited");

}
}

}

Before we recompile our files using msbuild.exe, we need to update our *.csproj file to
account for the new C# files to include in the compilation process, via the <Compile> elements
(shown in bold):

<Project DefaultTargets="Build" xmlns=
"http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<RootNamespace>SimpleXamlApp</RootNamespace>
<AssemblyName>SimpleXamlApp</AssemblyName>
<OutputType>winexe</OutputType>

</PropertyGroup>
<ItemGroup>
<Reference Include="System" />
<Reference Include="WindowsBase" />
<Reference Include="PresentationCore" />
<Reference Include="PresentationFramework" />

</ItemGroup>
<ItemGroup>
<ApplicationDefinition Include="MyApp.xaml" />
<Compile Include = "MainWindow.xaml.cs" />
<Compile Include = "MyApp.xaml.cs" />
<Page Include="MainWindow.xaml" />

</ItemGroup>
<Import Project="$(MSBuildBinPath)\Microsoft.CSharp.targets" />
<Import Project="$(MSBuildBinPath)\Microsoft.WinFX.targets" />

</Project>

Once we pass our build script into msbuild.exe, we find once again the same executable
assembly. However, as far as development is concerned, we now have a clean partition of presen-
tation (XAML) from programming logic (C#). Given that this is the preferred method for WPF
development, you’ll be happy to know that WPF applications created using Visual Studio 2008
always make use of the code-behind model just presented.

■Source Code The CodeBehindXamlApp project can be found under the Chapter 28 subdirectory.

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1030

8849CH28.qxd 10/19/07 9:28 AM Page 1030

http://schemas.microsoft.com/developer/msbuild/2003
http://schemas.microsoft.com/developer/msbuild/2003

The Syntax of XAML
As mentioned earlier in this chapter, the chances of you needing to manually author reams of XAML
markup in your WPF applications will be slim to none, as this task will be done on your behalf using
dedicated tools (Visual Studio 2008, Microsoft Expression Blend, etc.). Nevertheless, the more you
understand about the syntax of a well-formed *.xaml file, the better equipped you will be to tweak
and modify autogenerated markup, and the deeper your understanding of WPF itself. This being
said, let’s dig into the core syntax of XAML (subsequent chapters will provide additional XAML syn-
tax examples where required).

Experimenting with XAML Using XamlPad
When you are investigating XAML, you will certainly want to author content and quickly see the
end result. To facilitate such exploration, the Microsoft Windows SDK ships with a utility named
xamlpad.exe.

■Note Strangely enough, neither the .NET Framework 3.5 SDK nor Visual Studio 2008 ship with xamlpad.exe.
While you could download the Windows SDK to obtain this tool, the final example program in this chapter will have
you create a slimmed-down version of xamlpad.exe using C#.

If you have downloaded the Windows SDK to obtain a copy of xamlpad.exe, you can launch this
tool via the Start ➤ All Programs ➤ Microsoft Windows SDK ➤ Tools menu option. Figure 28-10
shows the initial launch of xamlpad.exe, with the Visual Tree Explorer option activated (via the
related toolbar button).

Figure 28-10. XamlPad provides real-time display of XAML markup.

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1031

8849CH28.qxd 10/19/07 9:28 AM Page 1031

Using XamlPad, you are able to author XAML markup in the pane mounted at the bottom of
the window and view the output above. When you first start this tool, you will find little more than
an empty <Page> declaration, which is used to contain markup for an XBAP application:

<Page
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
<Grid>
<!-- Add your XAML here! -->

</Grid>
</Page>

Although XamlPad does not allow you to view markup for a <Window> element directly within
the XamlPad view window, you are free to change <Page> to <Window> and press the F5 key to launch
a stand-alone window to display your content. Furthermore, be aware that the markup you enter in
a <Page> or <Window> element is identical.

■Note XamlPad does not allow you author any markup that entails code compilation. This includes defining a
Class attribute (for specifying a code file), using <Code> elements, or using any XMAL keywords that also entail
code compilation (such as FieldModifier or ClassModifier). Any attempt to do so will result in a markup error.

As you are authoring markup with XamlPad, you will notice a lack of IntelliSense. However,
clicking the Show Visual Tree button opens a UI that mimics the Visual Studio Properties window
to help you visualize the structure of your XAML markup. Sadly, the Visual Tree window cannot
(currently) be used to change the XAML itself; it is a read-only view of the XAML markup.

Also be aware that XamlPad currently has no way in which you can save individual *.xaml files;
markup is automatically saved to XamlPad_Saved.xaml and will be displayed the next time you load
the tool (feel free to copy the markup and paste it into your current application, however).

XAML Namespaces and XAML Keywords
As you have already seen in this chapter’s earlier examples, the root element of a WPF-centric XAML
file (such as a <Window>, <Page>, or <Application> definition) is typically defined to make reference
to two XML namespaces:

<Page
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
<Grid>

</Grid>
</Page>

The first XML namespace, http://schemas.microsoft.com/winfx/2006/xaml/presentation,
maps a slew of WPF-centric namespaces for use by the current *.xaml file (System.Windows,
System.Windows.Controls, System.Windows.Data, System.Windows.Ink, System.Windows.Media,
System.Windows.Navigation, etc.). This one-to-many mapping is actually hard-coded within the
WPF assemblies (WindowsBase.dll, PresentationCore.dll, and PresentationFramework.dll)
using the assembly-level [XmlnsDefinition] attribute. If you load these WPF assemblies into
reflector.exe, you can view these mappings firsthand (see Figure 28-11).

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1032

8849CH28.qxd 10/19/07 9:28 AM Page 1032

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation

Figure 28-11. The http://schemas.microsoft.com/winfx/2006/xaml/presentation namespace maps to
the core WPF namespaces.

The second XML namespace, http://schemas.microsoft.com/winfx/2006/xaml, is used to
include XAML-specific keywords as well as a subset of types within the System.Windows.Markup
namespace. A well-formed XML document must define a root element that designates a single
XML namespace as the primary namespace, which typically is the namespace that contains the
most commonly used items. If a root element requires the inclusion of additional secondary name-
spaces (as seen here), they must be defined using a unique prefix (to resolve any possible name
clashes). As a convention, the prefix is simply x; however, this can be any unique token you require,
such as XamlSpecificStuff:

<Page
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:XamlSpecificStuff="http://schemas.microsoft.com/winfx/2006/xaml">
<Grid>

</Grid>
</Page>

The obvious downside of defining wordy XML namespace prefixes is you would be required to
type XamlSpecificStuff each time your XAML file needs to refer to one of the types defined in the
namespace in question. For example, one of the items within http://schemas.microsoft.com/
winfx/2006/xaml is the XAML keyword Code, which as you have seen allows you to embed C# code
within an XAML document. Another XAML keyword is Class, which allows you to define the name
of the generated C# class type.

If we were to change the definition of the MyApp XAML definition created earlier in this chap-
ter to make use of this more verbose XML namespace prefix, we would now be required to author
the following:

<Application XamlSpecificStuff:Class="SimpleXamlApp.MyApp"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:XamlSpecificStuff ="http://schemas.microsoft.com/winfx/2006/xaml"
StartupUri="MainWindow.xaml" Exit ="AppExit">
< XamlSpecificStuff:Code>
<![CDATA[
private void AppExit(object sender, ExitEventArgs e)
{
MessageBox.Show("App has exited");

}
]]>
</XamlSpecificStuff:Code>

</Application>

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1033

8849CH28.qxd 10/19/07 9:28 AM Page 1033

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Given that XamlSpecificStuff requires many additional keystrokes, let’s just stick with x. In any
case, beyond the Class and Code keywords, including the http://schemas.microsoft.com/winfx/
2006/xaml XML namespace also provides access to additional XAML keywords (and members of the
System.Windows.Markup namespace), the core of which are shown in Table 28-9.

Table 28-9. XAML Keywords

XAML Keyword Meaning in Life

Array Represents a .NET array type in XAML.

ClassModifier Allows you to define the visibility of the class type (internal or public) denoted
by the Class keyword.

DynamicResource Allows you to make reference to a WPF resource that should be monitored for
changes.

FieldModifier Allows you to define the visibility of a type member (internal, public, private,
or protected) for any named subelement of the root (e.g., a <Button> within a
<Window> element). A “named element” is defined using the Name XAML
keyword.

Key Allows you to establish a key value for an XAML item that will be placed into a
dictionary element.

Name Allows you to specify the generated C# name of a given XAML element.

Null Represents a null reference.

Static Allows you to make reference to a static member of a type.

StaticResource Allows you to make reference to a WPF resource that should not be monitored
for changes.

Type The XAML equivalent of the C# typeof operator (it will yield a System.Type
based on the supplied name).

TypeArguments Allows you to establish an element as a generic type with a specific type
parameter (e.g., List<int> vs. List<bool>).

You will see many of these keywords in action where required; however, by way of a simple
example, consider the following XAML <Window> definition that makes use of the ClassModifier and
FieldModifier keywords, as well as Name and Class (remember that xamlpad.exe will not allow you
to make use of any XAML keyword that entails code compilation, such as Code, FieldModifier, or
ClassModifier):

<!-- This class will now be internal.
If using a code file, the partial class must
also be defined as internal! -->

<Window x:Class="MyWPFApp.MainWindow" x:ClassModifier ="internal"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<!-- This button will be public in the *.g.cs file -->
<Button x:Name ="myButton" x:FieldModifier ="public">
OK

</Button>
</Window>

By default, all C#/XAML type definitions are public, while members default to internal. How-
ever, based on our XAML definition, the resulting autogenerated file contains an internal class type
with a public Button type:

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1034

8849CH28.qxd 10/19/07 9:28 AM Page 1034

http://schemas.microsoft.com/winfx
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

internal partial class MainWindow : System.Windows.Window,
System.Windows.Markup.IComponentConnector

{
public System.Windows.Controls.Button myButton;
...

}

XAML Elements and XAML Attributes
Once you have established your root element and any required XML namespaces, your next task is
to populate the root with a child element. As mentioned, in a real-world WPF application, the child
will be one of the panel types, which contains in turn any number of additional UI elements that
describe the user interface. The next chapter examines these panel types in detail, so for the time
being assume that our <Window> type will contain a single Button element.

As you have already seen over the course of this chapter, XAML elements map to a class or
structure type within a given .NET namespace, while the attributes within the opening element tag
map to properties or events of the type (you cannot reference the methods of a type via an XAML
attribute). Thus, when you author code such as the following:

<Window x:Class="MyWPFApp.MainWindow" x:ClassModifier ="internal"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<!-- This assumes you have a method named myButton_Click in
your code file! -->

<Button x:Name ="myButton" x:FieldModifier ="public"
Height ="50" Width ="100" Click ="myButton_Click">

OK
</Button>

</Window>

you have effectively authored a Button that could be expressed in code as so:

Button myButton = new Button();
myButton.Height = 50;
myButton.Width = 100;
myButton.Content = "OK";
myButton.Click += new RoutedEventHandler(myButton_Click);

Given your work thus far in the chapter, this mapping may seem straightforward; however,
consider the assignment of the button’s content. Recall that many WPF controls derive from
ContentControl. By doing so, they are able to contain any number of internal items (such as a
Button with a ScrollBar). Here, the Content property was implicitly set due to the fact that we
placed the text "OK" within the opening and closing element. If we wish, we could explicitly set
the Content property as follows:

<Button x:Name ="myButton"
Height ="50" Width ="100" Content = "OK">

</Button>

At this point, the act of setting the Content property implicitly or explicitly may seem to be
nothing more than a personal preference. The story becomes more interesting when you consider
how you would use XAML to assign a Button’s content to be an object other than a simple string (a
graphical rendering, a ScrollBar or TextBox, etc.). As mentioned earlier in this chapter, the solution
is to use property-element syntax.

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1035

8849CH28.qxd 10/19/07 9:28 AM Page 1035

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Understanding XAML Property-Element Syntax
Property-element syntax allows you to assign complex objects to a property. Here is an XAML
description for the “scrollbar in a button” scenario that sets the Content property using property-
element syntax:

<Button x:Name ="myButton" Height ="100" Width ="100">
<Button.Content>
<ScrollBar Height = "50" Width = "20"/>

</Button.Content>
</Button>

Notice that in this case, we have made use of a nested element named <Button.Content> to
define the ScrollBar type. Property-element syntax always breaks down to the pattern <TypeName.
PropertyName>; obviously the type in this case is <Button> while the property is Content. Figure 28-12
shows the output as seen in xamlpad.exe.

Figure 28-12. Property-element syntax allows you to assign complex objects to properties.

Also recall that the child element of a ContentControl-derived type will automatically be used
to set the Content property, therefore the following definition is also legal:

<Button x:Name ="myButton" Height ="100" Width ="100">
<ScrollBar Height = "50" Width = "20"/>

</Button>

Property-element syntax is not limited to setting the Content property. Rather, this XAML
syntax can be used whenever you need to set a complex object to a type property. Consider, for
example, the Background property of the Button type. This property can be set on any Brush type
found within the WPF APIs. If you need a solid color brush type, the following markup is all that
is required, as the string value assigned to properties requiring a Brush-derived type (such as
Background) is converted into a brush type automatically:

<!-- Here, "Green" maps to Brushes.Green -->
<Button x:Name ="myButton" Height ="100" Width ="100" Background ="Green">
<Button.Content>

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1036

8849CH28.qxd 10/19/07 9:28 AM Page 1036

<ScrollBar Height = "50" Width = "20"/>
</Button.Content>

</Button>

However, if you need a more elaborate brush (such as a LinearGradientBrush), name/value
syntax will not suffice. Considering that LinearGradientBrush is a full-blown class type, we must
make use of property-element syntax to pass in startup values to the type:

<Button x:Name ="myButton" Height ="100" Width ="100">
<Button.Content>
<ScrollBar Height = "50" Width = "20"/>

</Button.Content>
<Button.Background>
<LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
<GradientStop Color="Blue" Offset="0" />
<GradientStop Color="Yellow" Offset="0.25" />
<GradientStop Color="Green" Offset="0.75" />
<GradientStop Color ="Red" Offset="0.50" />

</LinearGradientBrush>
</Button.Background>

</Button>

Don’t concern yourself with the configuration of the LinearGradientBrush type for the time
being (Chapter 30 addresses WPF’s graphical rendering services). Simply notice that we have used
property-element syntax to establish the Content and Background property of the Button type.
Figure 28-13 shows the rendering of this rather fancy button.

Figure 28-13. A very fancy button type

While property-element syntax is most often used to assign complex objects (such as
LinearGradientBrush) to property values, it is permissible to make use of simple string values
as well:

<Button x:Name ="myButton" Height ="100" Width ="100">
<Button.Content>
<ScrollBar Height = "50" Width = "20"/>

</Button.Content>
<Button.Background>
Pink

</Button.Background>
</Button>

In this case, you have really gained nothing. Rather, you have just complicated the process, as
you could simply have typed the following:

<Button x:Name ="myButton" Height ="100" Width ="100" Background = "Pink">
<Button.Content>
<ScrollBar Height = "50" Width = "20"/>

</Button.Content>
</Button>

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1037

8849CH28.qxd 10/19/07 9:28 AM Page 1037

Understanding XAML Attached Properties
In addition to property-element syntax, XAML defines syntax used to define an attached property.
While attached properties have many uses, one purpose of an attached property is to allow different
child elements to specify unique values for a property that is actually defined in a parent element.
The most common use of attached property syntax is to position UI elements within one of the WPF
panel types (Grid, DockPanel, etc.). The next chapter dives into these panels in some detail. For the
time being, here is an example of attached-property syntax:

<Page
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
<DockPanel LastChildFill ="True">
<!-- Dock items to the panel using attached properties -->
<Label DockPanel.Dock ="Top" Name="lblInstruction"

FontSize="15">Enter Car Information</Label>
<Label DockPanel.Dock ="Left" Name="lblMake">Make</Label>
<Label DockPanel.Dock ="Right" Name="lblColor">Color</Label>
<Label DockPanel.Dock ="Bottom" Name="lblPetName">Pet Name</Label>
<Button Name="btnOK">OK</Button>

</DockPanel>
</Page>

Here, we have defined a DockPanel type that contains four Label types docked within the con-
tainer. Notice the format of this particular attached property syntax is <ParentType.ParentProperty>
(e.g., DockPanel.Dock). Note that the Button type does not specify a docking area; however, it will
take over the remaining area in the DockPanel, giving the assignment of the LastChildFill property
in the opening <DockPanel> definition.

There are a few items to be aware of regarding attached properties. First and foremost, this is
not an all-purpose syntax that can be applied to any element of any parent. For example, the follow-
ing XAML cannot be parsed without error:

<!-- Set Height property on Button via attached property? -->
<Button x:Name ="myButton" Width ="100">
<Button.Content>
<ScrollBar Button.Height = "100" Height = "50" Width = "20"/>

</Button.Content>
<Button.Background>
Pink

</Button.Background>
</Button>

In reality, attached properties are a specialized form of a WPF-specific concept termed a
dependency property. In a nutshell, dependency properties allow the value of a field to be computed
based on multiple inputs. Dependency properties, and therefore attached properties, need to
“register” which properties can be set by which objects (which has not been done for the
ScrollBar/Button scenario just shown).

WPF uses the dependency property mechanism under the hood for several technologies such
as data binding, styles and themes, and animation services. As well, a dependency property can be
implemented to provide self-contained validation, default values, and a callback mechanism, and it
provides a way to establish property values based on runtime information.

The odd thing about dependency properties is the fact that setting a dependency property
value looks no different from setting a “normal” .NET property. Therefore, in most cases, you will be
blissfully unaware that you have set a dependency property value.

However, the manner in which dependency properties are implemented behind the scenes is
quite different indeed. For the vast majority of your WPF applications, you will not need to author

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1038

8849CH28.qxd 10/19/07 9:28 AM Page 1038

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

custom dependency properties. The only time this may become a common task is when you are in
the position of building custom WFP controls, which again is not a common activity in the first
place given the advent of XAML. You will explore dependency properties in a bit more detail in
Chapter 29.

Understanding XAML Type Converters
For all practical purposes, when you are assigning values to attributes (e.g., Background = "Pink") or
implicitly setting content within the scope of an opening and closing element (e.g., <Button>OK</
Button>), you can simply assume the values to be string data. However, if you think this through, it
clearly could not be the case. Consider, for example, the definition of the Background property of the
Button type (which we inherited from the Control base class):

// The System.Windows.Controls.Control.Background property.
public Brush Background
{
...

}

As you can see, this property is wrapping a Brush type, not a System.String! This begs the ques-
tion, what is transforming "Pink" into (in this case) a SolidColorBrush object with RGB values that
equal the color pink? Here’s another example. Consider the following XAML definition of a purple
ellipse of a given size:

<Ellipse Fill = "Purple" Width = "100.5" Height = "87.4">
</Ellipse>

If you were to look at the definition of the Width and Height properties of the Ellipse type, you
would find they are prototyped to operate on doubles, not strings.

Behind the scenes, XAML parsers make use of various type converters to transform this string
data into the correct underlying object. For example, the value "Pink", when assigned to a property
prototyped to operate on brush types, makes use of the ColorConverter and BrushConverter types.
Numerous other converters exist as well: SizeConverter (used to set the Width and Height properties
of the previous Ellipse), RectConverter, VectorConverter, and so on.

Regardless of their names, all type converters derive from the System.ComponentModel.
TypeConverter base class. This type defines a number of virtual methods such as CanConvertTo(),
ConvertTo(), CanConvertFrom(), and ConvertFrom(), which can be overridden by a derived type to
account for the underlying translation.

For the most part, you do not need to know which type converter is mapping your XAML string
data to the correct underlying object. At the very least, simply understand that they are used trans-
parently in the background to simplify XAML definitions.

■Note Although XAML itself is a relativity new technology, the concept of type converters has existed since the
release of the .NET platform. Windows Forms and GDI+ make use of various converters behind the scenes. For
example, the GDI+ System.Drawing namespace defines a type converter named FontConverter, which can
map the string "Wingdings" into a Font object using the Wingdings font face.

Understanding XAML Markup Extensions
Type converters are interesting constructs in that there is no physical evidence that you are interact-
ing with them at the level of XAML. Rather, type converters are used internally behind the scenes

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1039

8849CH28.qxd 10/19/07 9:28 AM Page 1039

when an *.xaml file is processed. In contrast, XAML also supports markup extensions. Like a type
converter, markup extensions allow you to transform a simple markup value into a runtime object.
The difference, however, is that markup extensions have a very specific XAML syntax.

Given that type converters and markup extensions appear to serve an identical purpose, you
might wonder why we have two approaches to generate type definitions. Simply put, markup exten-
sions allow for a greater level of flexibility than type converters and provide a way to cleanly extend
the grammar of XAML with new functionality.

Using markup extensions, you could assign the value of a property to the return value of a
static property on another type, declare an array of data via markup, or obtain type information. In
fact, a subset of XAML keywords (such as Array, Null, Static, and Type) are markup extensions in
disguise. Like type converters, a markup extension is represented internally as a class that derives
from MarkupExtension (as a naming convention, all types that subclass MarkupExtension take an
Extension suffix).

To see a markup extension in action, assume you wish to set the Content property for a set of
Labels to display information regarding the machine your application is executing on using static
members of System.Environment. Here is the complete markup, with a discussion to follow:

<Page
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:CorLib="clr-namespace:System;assembly=mscorlib">

<StackPanel>
<Label Content ="{x:Static CorLib:Environment.MachineName}"/>
<Label Content ="{x:Static CorLib:Environment.OSVersion}"/>
<Label Content ="{x:Static CorLib:Environment.ProcessorCount}"/>

</StackPanel>
</Page>

First of all, notice that the <Page> definition has a new XML namespace declaration, which we
have given the namespace prefix of CorLib (the name of this prefix, like any XML namespace prefix,
is arbitrary). The value assigned to this XML namespace is unique, however, as we are making use of
a registered token named clr-namespace (which allows us to point to a .NET namespace that con-
tains the type definition) and another token named assembly (which represents the friendly name
of the assembly containing the namespace).

With this XML namespace established, notice how each of the Label types can invoke a static
member of the Environment type via the Static markup extension. As you can see, markup exten-
sions are always sandwiched between curly brackets. In its simplest form, the markup extension
takes two values: the name of the markup extension (Static in this case) followed by the value to
assign it (such as CorLib:System.Environment.OSVersion).

<!-- Using the 'Static' markup extension to set the Content property to
the value of a static property. -->

<Label Content ="{x:Static CorLib:Environment.OSVersion}"/>

Here is another example. Assume you wish to obtain the fully qualified name of various types
to assign the Content property to another set of Label types. In this case, you can make use of the
baked-in Type markup extension:

<Page
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:CorLib="clr-namespace:System;assembly=mscorlib">

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1040

8849CH28.qxd 10/19/07 9:28 AM Page 1040

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

<StackPanel>
<Label Content ="{x:Static CorLib:Environment.MachineName}"/>
<Label Content ="{x:Static CorLib:Environment.OSVersion}"/>
<Label Content ="{x:Static CorLib:Environment.ProcessorCount}"/>

<Label Content ="{x:Type Label}" />
<Label Content ="{x:Type Page}" />
<Label Content ="{x:Type CorLib:Boolean}" />
<Label Content ="{x:Type x:TypeExtension}" />

</StackPanel>
</Page>

Here you are obtaining the fully qualified names of the WPF Label type, the Button type, as well
as the Boolean data type within mscorlib.dll and, just for good measure, the fully qualified name of
the Type markup extension itself. If you were to view this page within xamlpad.exe, you would find
something like Figure 28-14.

Figure 28-14. Using markup extensions to set properties to values of static members and obtain type
information

A Preview of Resources and Data Binding
To wrap up our introductory look at the syntax of XAML, this final example will not only illustrate
using the Array markup extension (represented by the ArrayExtension class type), but also show
some simple declarative data binding and preview the concept of WPF resources. The Array markup
extension allows you to assign an array of data to a given property. When using XAML to define such
an array, we do so by making use of the Type markup extension to establish what kind of array we
are creating (array of strings, array of bitmaps, etc.). Consider the following <Page> definition:

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1041

8849CH28.qxd 10/19/07 9:28 AM Page 1041

<Page
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:CorLib="clr-namespace:System;assembly=mscorlib">

<StackPanel>
<Label Content ="{x:Array Type = CorLib:String}"/>

</StackPanel>
</Page>

If you view the rendered markup using xamlpad.exe, you will see the value System.String[]
print out in the view pane. Using the expected curly bracket syntax, we have no way to populate the
array with data. To do so, we must create our array using subelements that match the specified type
of the array. Consider the following partial XAML definition:

<x:Array Type="CorLib:String">
<CorLib:String>Sun Kil Moon</CorLib:String>
<CorLib:String>Red House Painters</CorLib:String>
<CorLib:String>Besnard Lakes</CorLib:String>

</x:Array>

Here, we have created an array of strings. Within the scope of the <x:Array> type, we add in
three textual values and close the definition. While this is valid XAML markup, the next question is,
where we can place our array declaration? If we were to place it directly within the scope of a <Page>
element, we have just set the Content property of the <Page> implicitly and we would (once again)
see System.String[] display in the view port of xamlpad.exe (which is not quite what we are
aiming for).

<Page
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:CorLib="clr-namespace:System;assembly=mscorlib">
<!-- Humm, we just set the Content property here! -->
<x:Array Type="CorLib:String">
<CorLib:String>Sun Kil Moon</CorLib:String>
<CorLib:String>Red House Painters</CorLib:String>
<CorLib:String>Besnard Lakes</CorLib:String>

</x:Array>
</Page>

What we really would like to do is give this array a name and then reference it elsewhere in our
markup (e.g., to fill a ListBox). We can do this very thing, if we define our array within a resource
element. Now, let me be clear that WPF “resources” do not always map to what we may typically
think (string tables, icons, bitmaps, etc.). While they certainly could, WPF resources can be used to
represent any custom blob of markup, such as our array of strings (more information on WPF
resources can be found in Chapter 30).

Consider the final <Page> definition that adds a string array resource named "GoodMusic" to a
<StackPanel> via the Key markup extension. Once we have done so, we then set the ItemsSource
property of the ListBox type to our array using the StaticResource markup extension (notice we
are referencing the same key at this time):

<Page
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:CorLib="clr-namespace:System;assembly=mscorlib">

<StackPanel>
<StackPanel.Resources>

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1042

8849CH28.qxd 10/19/07 9:28 AM Page 1042

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

<x:Array Type="CorLib:String" x:Key = "GoodMusic">
<CorLib:String>Sun Kil Moon</CorLib:String>
<CorLib:String>Red House Painters</CorLib:String>
<CorLib:String>Besnard Lakes</CorLib:String>

</x:Array>
</StackPanel.Resources>

<Label Content ="Really good music"/>
<ListBox Width = "200" ItemsSource ="{StaticResource GoodMusic}"/>

</StackPanel>
</Page>

As you can see, we are nesting within the scope of the <StackPanel> a nested <StackPanel.
Resources> element as the home for our array of strings. The StaticResource markup extensions
represent any resource that is not expected to change after the initial binding (hence the notion of
“static”). If you are working with a resource that may change after the first bind (such as a given
system color), you can use the alternative markup extension, DynamicResource. In any case,
Figure 28-15 shows how xamlpad.exe looks now.

Figure 28-15. Markup extensions, static resources, and simple data binding

■Note The reason that the Key and StaticResource markup extensions have not been qualified with an
x prefix (unlike the other markup extensions examined here) is because they are defined within the root
http://schemas.microsoft.com/winfx/2006/xaml/presentation XML namespace (as they are
WPF-centric).

So! At this point you have seen numerous examples that showcase each of the core aspects of
XAML syntax. As you might agree, XAML is very interesting in that it allows us to describe a tree of
.NET objects in a declarative manner. While this is extremely helpful when configuring graphical
user interfaces, do remember that XAML can describe any type from any assembly provided it is a
nonabstract type containing a default constructor.

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1043

8849CH28.qxd 10/19/07 9:28 AM Page 1043

http://schemas.microsoft.com/winfx/2006/xaml/presentation

■Note XAML can also be processed at runtime. You’ll see an example of doing so later in this chapter.

That wraps up our introductory look at WPF and the core syntax of XAML. The next chapter
builds on this information by exploring the role of WPF layout managers and the controls they con-
tain. Before moving on, however, allow me to mention the role of the Visual Studio 2008 WPF
project templates and Microsoft Expression Blend.

Building WPF Applications Using Visual
Studio 2008
Over the course of this chapter you created examples using no-frills text editors, the command-line
compiler, and xamlpad.exe. The reason for doing so, of course, was to focus on the core syntax of
WPF applications without getting distracted by the bells and whistles of a graphical designer. How-
ever, now that you have seen how to build WPF applications in the raw, let’s examine how Visual
Studio 2008 can simplify the construction of WPF applications.

The WPF Project Templates
The New Project dialog box of Visual Studio 2008 defines a set of WPF-centric project workspaces,
all of which are contained under the Window node of the Visual C# root. As you can see in Figure
28-16, you can choose from a WPF Application, WPF User Control Library, WPF Custom Control
Library, and WPF Browser Application (e.g., XBAP).

Figure 28-16. The WPF project templates of Visual Studio 2008

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1044

8849CH28.qxd 10/19/07 9:28 AM Page 1044

When you wish to build a WPF desktop application, you’ll want to select the WPF
Application project workspace type. Beyond setting references to each of the WPF assemblies
(PresentationCore.dll, PresentationFoundation.dll, and WindowsBase.dll), you will also be pro-
vided with initial Window- and Application-derived types, making use of code files and an XAML
definition (see Figure 28-17).

Figure 28-17. The initial files of a WPF Application project type

Changing the Name of the Initial Window
For a production-level project, you will most certainly wish to rename your initial Window-derived
type (and the file that defines it) from the default name of Window1 to a more fitting description.
However, given all of the moving parts required by a WPF application, doing so is a bit more com-
plex than meets the eye. Here is a walk-through of the process.

First, if you right-click the name of your initial Window1.xaml file and select the Rename menu
option, you will be pleased to find that the related Windows1.xaml.cs is also renamed according to
your selection (e.g., MainWindow.xaml). However, the name of the class type within the *.xaml.cs file
will still be named Window1. If you right-click the class name within the *.xaml.cs file and select the
Refactor ➤ Rename option, you will be able to supply a fitting name (MainWindow). At this point, if
you attempt to run your program, you will generate a runtime exception!

The first reason for this is that the Class attribute of the opening <Window> element is still refer-
ring to the original Window1 class name, which must be updated to match your new class name:

<Window x:
Class="MyWPFApplication.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Window1" Height="300" Width="300">
<Grid>

</Grid>
</Window>

In addition, the StartupUri property in the <Application> declaration must also be updated to
specify the name of the renamed XAML file containing the initial Window type (MainWindow.xaml):

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1045

8849CH28.qxd 10/19/07 9:28 AM Page 1045

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

<Application x:Class="MyWPFApp.App"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
StartupUri="MainWindow.xaml"

>
<Application.Resources>

</Application.Resources>
</Application>

At this point, you should be able to compile and run your application without error.

■Note When you insert new Window types into a WPF project, the name of your initial file will be used to
correctly name the files and type definitions, so no additional configuration is required.

The WPF Designer
Similar to a Windows Forms application (see Chapter 27), Visual Studio 2008 provides a Toolbox that
contains numerous WPF controls, a visual designer that can be used to assemble your UI, and a
Properties window to set the properties of a selected control. The designer for an *.xaml file is
divided into two panes. By default, the upper pane displays the look and feel of the window you
are creating, while the bottom pane displays the XAML definition (see Figure 28-18).

Figure 28-18. The WPF designer

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1046

8849CH28.qxd 10/19/07 9:28 AM Page 1046

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

■Note You can reposition the display panes of the visual designer using the buttons embedded within the splitter
window—for example, the Swap Panes button (indicated by the up/down arrows), the Horizontal and Vertical split
buttons, and so on. Take a moment to find a configuration you are comfortable with.

When you author XAML markup in the XAML pane, you will find the expected IntelliSense. For
example, if you type a Button declaration in the scope of the initial <Grid> type, you will see a list of
the properties and events supported by the type. Furthermore, when you select a property member,
you will see a list of possible values, as shown in Figure 28-19.

Figure 28-19. XAML IntelliSense

Unlike Windows Forms, handling events within a WPF application is not done by clicking the
lightning bolt button of the Properties window (in fact, this button does not exist when building a
WPF application!). When you wish to handle events for a WPF widget, you could author all of the
code manually using the expected C# syntax; however, if you type an event name in the XAML
editor, you will activate the New Event Handler pop-up menu (see Figure 28-20).

Figure 28-20. Handling events using the visual designer

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1047

8849CH28.qxd 10/19/07 9:28 AM Page 1047

If you manually enter an event name (encased in quotation marks, as required by XAML), you
can specify any method name you wish. If you would rather simply have the IDE generate a default
name (which takes the form NameOfControl_NameOfEvent), you can double-click the <New Event
Handler> pop-up menu item. In either case, the IDE responds by adding the correct event handler
in your code file:

private void Button_Click(object sender, RoutedEventArgs e)
{
}

■Note Recall that if you wish the IDE to define a member variable of a control type, you will need to assign
a value to the Name property. If you handle events for unnamed controls, the event handler name is simply
TypeOfControl_NameOfEvent[_Number] (e.g., Button_Click, Button_Click_1, Button_Click_2, etc.).

Now that you have seen the basic tools used within Visual Studio 2008 to manipulate WPF
applications, let’s leverage this IDE to build an example program that illustrates the process of
parsing XAML at runtime.

Processing XAML at Runtime: SimpleXamlPad.exe
The WPF API supports the ability to load, parse, and save XAML descriptions programmatically.
Doing so can be quite useful in a variety of situations. For example, assume you have five different
XAML files that describe the look and feel of a Window type. As long as the names of each control
(and any necessary event handlers) are identical within each file, it would be possible to dynami-
cally apply “skins” to the window (perhaps based on a startup argument passed into the
application).

Interacting with XAML at runtime revolves around the XamlReader and XamlWriter types, both
of which are defined within the System.Windows.Markup namespace. To illustrate how to program-
matically hydrate a Window object from an external *.xaml file, we will create a WPF Application
project (named SimpleXamlPad) that mimics the basic functionality of the xamlpad.exe application
examined earlier in this chapter.

While our application will certainly not be as feature-rich as xamlpad.exe, it will provide the
ability to enter XAML definitions, view the results, and save the XAML to an external file. Once you
have created the SimpleXamlPad project using Visual Studio 2008, rename your initial window to
MainWindow (using the process described previously) and update the initial XAML definition as so:

■Note The next chapter will dive into the details of working with controls and panels, so don’t fret over the
details of the control declarations.

<Window x:Class="SimpleXamlPad.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Simple XAMl Viewer" Height="338" Width="1041"
Loaded="Window_Loaded" Closed="Window_Closed"
WindowStartupLocation="CenterScreen">
<DockPanel LastChildFill="True" >

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1048

8849CH28.qxd 10/19/07 9:28 AM Page 1048

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

<!-- This button will launch a window with defined XAML -->
<Button DockPanel.Dock="Top" Name = "btnViewXaml" Width="100" Height="40"

Content ="View Xaml" Click="btnViewXaml_Click" />

<!-- This will be the area to type within -->
<TextBox AcceptsReturn ="True" Name ="txtXamlData"

FontSize ="14" Background="Black" Foreground="Yellow"
BorderBrush ="Blue" VerticalScrollBarVisibility="Auto"
AcceptsTab="True">

</TextBox>
</DockPanel>

</Window>

First of all, notice that we have replaced the initial <Grid> with a <DockPanel> type that con-
tains a Button (named btnViewXaml) and a TextBox (named txtXamlData), and that the Click event of
the Button type has been handled. Also notice that the Loaded and Closed events of the Window itself
have been handled within the opening <Window> element. If you have used the designer to handle
your events, you should find the following code in your MainWindow.xaml.cs file:

public partial class MainWindow : Window
{
public MainWindow()
{
InitializeComponent();

}

private void btnViewXaml_Click(object sender, RoutedEventArgs e)
{
}

private void Window_Closed(object sender, EventArgs e)
{
}

private void Window_Loaded(object sender, RoutedEventArgs e)
{
}

}

Before continuing, be sure to import the following namespaces into your MainWindow.xaml.cs
file:

using System.IO;
using System.Windows.Markup;

Implementing the Loaded Event
The Loaded event of our main window is in charge of determining if there is currently a file named
YourXaml.xaml in the folder containing the application. If this file does exist, you will read in the
data and place it into the TextBox on the main window. If not, you will fill the TextBox with an initial
default XAML description of an empty window (this description is the exact same markup as an ini-
tial window definition, except that we are using a <StackPanel>, rather than a <Grid>, to set the
Window’s Content property [implicitly]).

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1049

8849CH28.qxd 10/19/07 9:28 AM Page 1049

■Note The string we are building to represent the XML namespaces is a bit nasty to type, given the escape
characters required for the embedded quotations (type carefully).

private void Window_Loaded(object sender, RoutedEventArgs e)
{
// When the main window of the app loads,
// place some basic XAML text into the text block.
if (File.Exists(System.Environment.CurrentDirectory + "\\YourXaml.xaml"))
{
txtXamlData.Text = File.ReadAllText("YourXaml.xaml");

}
else
{
txtXamlData.Text =
"<Window xmlns=\"http://schemas.microsoft.com"
+"/winfx/2006/xaml/presentation\"\n"
+"xmlns:x=\"http://schemas.microsoft.com/winfx/2006/xaml\""
+" Height =\"400\" Width =\"500\" WindowStartupLocation=\"CenterScreen\">\n"
+"<StackPanel>\n"
+"</StackPanel>\n"
+"</Window>";

}
}

Using this approach, the SimpleXamlPad.exe application will be able to load the XAML entered
in a previous session, or supply a default block of markup if necessary. At this point, you should be
able to run your program and find the display shown in Figure 28-21 within the TextBox type.

Figure 28-21. The first run of SimpleXamlPad.exe

Implementing the Button’s Click Event
When you click the Button type, you will first save the current data in the TextBox into the YourXaml.
xaml file. At this point, you will read in the persisted data via File.Open() to obtain a Stream-derived
type. This is necessary, as the XamlReader.Load() method requires a Stream-derived type (rather
than a simple System.String) to represent the XAML to be parsed.

Once you have loaded the XAML description of the <Window> you wish to construct, create an
instance of System.Windows.Window based on the in-memory XAML, and display the Window as a
modal dialog:

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1050

8849CH28.qxd 10/19/07 9:28 AM Page 1050

http://schemas.microsoft.com
http://schemas.microsoft.com/winfx/2006/xaml\
http://schemas.microsoft.com/winfx/2006/xaml\

private void btnViewXaml_Click(object sender, RoutedEventArgs e)
{
// Write out the data in the text block to a local *.xaml file.
File.WriteAllText("YourXaml.xaml", txtXamlData.Text);

// This is the window that will be dynamically XAML-ed.
Window myWindow = null;

// Open local *.xaml file.
try
{
using (Stream sr = File.Open("YourXaml.xaml", FileMode.Open))
{
// Connect the XAML to the Window object.
myWindow = (Window)XamlReader.Load(sr);
myWindow.ShowDialog();

}
}
catch (Exception ex)
{ MessageBox.Show(ex.Message); }

}

Note that we are wrapping much of our logic within a try/catch block. In this way, if the
YourXaml.xaml file contains ill-formed markup, we can see the error of our ways within the resulting
message box.

Implementing the Closed Event
Finally, the Closed event of our Window type will ensure that the latest and greatest data in the
TextBox is persisted to the YourXaml.xaml file:

private void Window_Closed(object sender, EventArgs e)
{
// Write out the data in the text block to a local *.xaml file.
File.WriteAllText("YourXaml.xaml", txtXamlData.Text);

}

Testing the Application
Now fire up your program and enter some XAML into your text area. Do be aware that (like
xamlpad.exe) this program does not allow you to specify any code generation–centric XAML
attributes (such as Class or any event handlers). As a test, enter the following XAML within your
<StackPanel> scope:

<StackPanel>
<Rectangle Fill = "Green" Height = "40" Width = "200" />
<Button Content = "OK!" Height = "40" Width = "100" />
<Label Content ="{x:Type Label}" />

</StackPanel>

Once you click the button, you will see a window appear that renders your XAML definitions
(or possibly you’ll see a parsing error in message box—watch your typing!). Figure 28-22 shows
possible output.

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1051

8849CH28.qxd 10/19/07 9:28 AM Page 1051

Figure 28-22. SimpleXamlPad.exe in action

Great! I am sure you can think of many possible enhancements to this application, but to do so
you need to be aware of how to work with WPF controls and the panels that contain them. Before
examining the WPF control model in the next chapter, we will close this chapter by quickly examin-
ing the Microsoft Expression Blend application.

■Source Code The SimpleXamlPad project can be found under the Chapter 28 subdirectory.

The Role of Microsoft Expression Blend
While learning new technologies such as XAML and WPF is exciting to most developers, few of us
are thrilled by the thought of authoring thousands of lines of markup to describe windows, 3D
images, animations, and other such things. Even with the assistance of Visual Studio 2008, generat-
ing a feature-rich XAML description of complex entities is tedious and error-prone. Visual Studio
2008 is much better equipped to author procedural code and tweak XAML definitions generated by
a tool that is dedicated to the automation of XAML descriptions.

Recall that one of the biggest benefits of WPF is the separation of concerns. However, WPF does
not simply use separation of concerns at the file level (e.g., C# code files and XAML files). In fact, a
WPF application honors the separation of concerns at the level of the tools we use to build our
applications. This is important, as a professional WPF application will typically require you to make
use of the services of a talented graphic artist to give the application the proper look and feel. As
you can imagine, nontechnical individuals would rather not use Visual Studio 2008 to author XAML.

To address these problems, Microsoft has created a new family of products that fall under the
Expression umbrella. Full details of each member of the Expression family can be found at http://
www.microsoft.com/expression, but in a nutshell, Expression Blend is a tool geared toward building
feature-rich WPF front ends.

Benefits of Expression Blend
The first major benefit of Expression Blend is that the manner in which a graphic artist would
author the UI feels similar (but certainly not identical to) to other multimedia applications such as
Adobe Photoshop or Macromedia Director. For example, Expression Blend supports tools to build
story frames for animations, color blending utilities, layout and graphical transformation tools, and
so forth. In addition, Expression Blend provides features that lean a bit closer to the world of code,

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1052

8849CH28.qxd 10/19/07 9:28 AM Page 1052

http://www.microsoft.com/expression
http://www.microsoft.com/expression

including support to establish data bindings and event triggers. Regardless, a graphic artist can
build extremely rich UIs without ever seeing a single line of XAML or procedural C# code.
Figure 28-23 shows a screen shot of Expression Blend in action.

Figure 28-23. Expression Blend generates XAML transparently in the background.

The next major benefit of Expression Blend is that it makes use of the same exact project work-
space as Visual Studio 2008! Therefore, once a graphic artist renders the UI, a C# professional is able
to open the same project and author code, add event handlers, tweak XAML, and so forth. Likewise,
graphic artists can open existing Visual Studio 2008 WPF project into Expression Blend to spruce up
a lackluster front end. The short answer is, WPF is a highly collaborative endeavor between related
code files and development tools.

While it is true that use of a tool like Expression Blend is more or less mandatory when using
WPF to generate bleeding-edge media-rich applications, this edition of the text will not cover the
details of doing so. To be sure, the purpose of this book is to examine the underlying programming
model of WPF, not to dive into the details of art theory. However, if you are interested in learning
more, you are able to download evaluation copies of the members of the Microsoft Expression fam-
ily from the supporting website. At the very least I suggest downloading a trial copy of Expression
Blend just to see what this tool is capable of.

Summary
Windows Presentation Foundation (WPF) is a user interface toolkit introduced since the release of
.NET 3.0. The major goal of WPF is to integrate and unify a number of previously unrelated desktop
technologies (2D graphics, 3D graphics, window and control development, etc.) into a single uni-
fied programming model. Beyond this point, WPF programs typically make use of Extendable

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML 1053

8849CH28.qxd 10/19/07 9:28 AM Page 1053

Application Markup Language (XAML), which allows you to declare the look and feel of your WPF
elements via markup.

As you have seen in this chapter, XAML allows you to describe trees of .NET objects using a
declarative syntax. During this chapter’s investigation of XAML, you were exposed to several new
bits of syntax including property-element syntax and attached properties, as well as the role of type
converters and XAML markup extensions. The chapter wrapped up with an examination of how you
can programmatically interact with XAML definitions using the XamlReader and XamlWriter types,
you took a tour of the WPF-specific features of Visual Studio 2008, and you briefly looked at the role
of Microsoft Expression Blend.

CHAPTER 28 ■ INTRODUCING WINDOWS PRESENTATION FOUNDATION AND XAML1054

8849CH28.qxd 10/19/07 9:28 AM Page 1054

Programming with WPF Controls

The previous chapter provided a foundation on the WPF programming model, including an exam-
ination of the Window and Application types as well as several details regarding the Extendable
Application Markup Language (XAML). Here, you will build upon your current understanding by
digging into the WPF control set. We begin this chapter with a survey of the intrinsic WPF controls,
followed by an examination of two important control-related WPF topics: dependency properties
and routed events.

Once you have been exposed to the core programming model, the remainder of this chapter
will illustrate several interesting ways to use WPF controls within your applications. For example,
you will learn how to organize controls within various WPF containers (Canvas, Grid, StackPanel,
WrapPanel, etc.) and how to construct a main window complete with a menu system, status bar, and
toolbar. This chapter concludes by examining how to make use of control commands (which can be
used to tack on built-in behaviors to UI elements and input commands) and introduces you to the
WPF data-binding model.

■Note Many of the control XAML definitions have been included in the code download as “loose XAML files.”
To view the rendered output, you can copy and paste the markup within a given *.xaml file into your
SimpleXamlPad.exe application you created in Chapter 28. As an alternative, you can change the <Window> and
</Window> elements to <Page> and </Page> and double-click the file to view them within Internet Explorer.

A Survey of the WPF Control Library
Unless you are very new to the concept of building graphical user interfaces, the intrinsic set of WPF
controls should not raise any eyebrows, regardless of which GUI toolkit you have used in the past
(MFC, Java AWT/Swing, Windows Forms, VB 6.0, Mac OS X [Cocoa], GTK+/GTK#, etc.). Table 29-1
provides a road map of the core WPF controls, grouped by related functionality.

1055

C H A P T E R 2 9

8849CH29.qxd 10/16/07 12:17 PM Page 1055

Table 29-1. The Core WPF Controls

WPF Control Category Example Members Meaning in Life

Core user input controls Button, RadioButton, ComboBox, As expected, WPF provides a
CheckBox, Expander, ListBox whole family of controls that
Slider, ToggleButton, TreeView, can be used to build the crux of
ContextMenu, ScrollBar, Slider, a user interface.
TabControl, TextBox, RepeatButton,
RichTextBox, Label

Window frame Menu, ToolBar, StatusBar, ToolTip, These UI elements are used to
adornment controls ProgressBar decorate the frame of a Window

object with input devices (such
as the Menu) and user
informational elements
(StatusBar, ToolTip, etc.).

Media controls Image, MediaElement, These provide support for
SoundPlayerAction audio/video playback and

image display.

Layout controls Border, Canvas, DockPanel, Grid, WPF provides numerous
GridView, GroupBox, Panel, controls that allow you to group
StackPanel, Viewbox, WrapPanel and organize other controls for

the purpose of layout
management.

Beyond the GUI types in Table 29-1, WPF defines additional controls for advanced document
processing (DocumentViewer, FlowDocumentReader, etc.) as well as types to support the Ink API (useful
for tablet PC development) and various canned dialog boxes (PasswordBox, PrintDialog, FileDialog,
OpenFileDialog, and SaveFileDialog).

■Note The FileDialog, OpenFileDialog, and SaveFileDialog types are defined within the Microsoft.
Win32 namespace of the PresentationFramework.dll assembly.

If you are coming to WPF from a Windows Forms background, you may notice that the current
offering of intrinsic controls is somewhat less than that of Windows Forms (for example, WPF does
not have “spin button” controls). The good news is that many of these missing controls can be
expressed in XAML quite quickly and can even be modeled as a user control or custom control for
reuse between projects.

■Note This edition of the text does not cover the construction of custom WPF user controls or WPF control
libraries. If you are interested in learning how to do so, consult the .NET Framework 3.5 SDK documentation.

WPF Controls and Visual Studio 2008
When you create a new WPF Application project using Visual Studio 2008 (see the previous chap-
ter), you will see a majority of controls exposed from the Toolbox (grouped by related category), as
shown in Figure 29-1.

Like a Windows Forms project, these controls can be dragged onto the visual designer and con-
figured with the Properties window. Furthermore, recall from Chapter 28 that if you handle events
using the XAML editor, the IDE will autogenerate an appropriate event handler in your code file.

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1056

8849CH29.qxd 10/16/07 12:17 PM Page 1056

Figure 29-1. The Visual Studio 2008 Toolbox exposes the intrinsic WPF controls.

The Details Are in the Documentation
Now, despite what you may be thinking, the intent of this chapter is not to walk through each and
every member of each and every WPF control. Rather, you will receive an overview of the core con-
trols with emphasis on the underlying programming model (dependency properties, routed events,
commands, etc.) and key services common to most WPF controls.

To round out your understanding of the particular functionality of a given control, be sure to
consult the .NET Framework 3.5 SDK documentation—specifically, the “Control Library” section
of the help system, located under .NET Framework Development ➤ Windows Presentation
Foundation ➤ Controls (see Figure 29-2).

Figure 29-2. Full details of each WPF control is just a keypress away (F1).

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1057

8849CH29.qxd 10/16/07 12:17 PM Page 1057

Here you will find full details of each control, various code samples (in XAML as well as C#) and
information regarding a control’s inheritance chain, implemented interfaces, and applied attrib-
utes. With this disclaimer aside, let’s begin with a quick review of declaring and configuring controls
in XAML, and using them within a related C# code file.

Declaring Controls in XAML
Over the course of many years, developers have been conditioned to see controls as fairly fixed and
predictable entities. For example, Label widgets always have textual content and seldom have a visi-
ble border (although they could). Buttons are gray rectangles that have textual content and may on
occasion have an embedded image. When a project demanded that a “standard” widget (such as a
Button) needed to be customized (such as a Button control rendered as a circular image), develop-
ers were often forced to build a customized control through code.

WPF radically changes the way we look at controls. Not only do we have the option to express a
control’s look and feel through markup, but also many WPF controls (specifically, any descendant of
ContentControl) have been designed to contain any sort of content you desire. Recall from Chapter 28
that the Content property may be set explicitly (as an attribute within an element’s opening tag) or
implicitly by specifying nested content as the child element of the root.

Assume you have a new Visual Studio 2008 WPF Application project named ControlReview.
Rather than assuming that “all Buttons are gray rectangles that have text and maybe an image,” we
can describe via XAML the following implicit content for a Button type (assume this is declared
within the <Grid> element of your initial <Window>):

<!-- A custom button with built-in selections! -->
<Button Name="btnPurchaseOptions" Height="100" Width = "300">
<StackPanel>
<Label Name="lblInstructions" Foreground = "DarkGreen"

Content = "Select Your Options and Press to Commit"/>
<StackPanel Orientation = "Horizontal">
<Expander Name="colorExpander" Header = "Color">
<!-- Assume items are placed here... -->

</Expander>
<Expander Name="MakeExpander" Header = "Make">
<!-- Assume items are placed here... -->

</Expander>
<Expander Name="paymentExpander" Header = "Payment Plan">
<!-- Assume items are placed here... -->

</Expander>
</StackPanel>
</StackPanel>

</Button>

Notice that this <Button> type contains three <Expander> types (explained in detail later in this
chapter), which are arranged within a set of <StackPanel> types (also explained later in this chap-
ter). Without getting too hung up on the functionality of each widget, consider Figure 29-3, which
shows the rendered output.

Figure 29-3. A customized Button declared via XAML

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1058

8849CH29.qxd 10/16/07 12:17 PM Page 1058

By way of a simple compare and contrast, consider how this same control would be built using
Windows Forms. Under this API, you could achieve this control only by building a custom Button-
derived type that manually handled the rendering of the graphical content, updated the internal
controls collection, overrode various event handlers, and so forth.

Given the birth of desktop markup, the only compelling reasons to build custom WPF controls
are if you need a widget that supports custom behaviors (events, overriding of virtual methods, sup-
port for additional interface types, etc.) or must support customized design-time configuration
utilities. If you are only concerned with generating a customized rendering, XAML fits the bill.

Interacting with Controls in Code Files
Recall from the previous chapter that the properties of a WPF type can be set using attributes within
an element’s opening tag (or alternatively using property-element syntax). In the majority of cases,
attributes of an XAML element directly map to the properties and events of the control’s class repre-
sentation within the System.Windows.Controls namespace. As such, you always have the option to
define a control completely in markup or completely in code, or to use a mix of the two.

■Note You can only gain direct access to a control within a related code file if it has been declared using the
Name attribute in the opening element of the XAML definition.

Given that the previous XAML markup contains types that have been assigned a Name attribute,
you can directly access the type in your code file as well as handle any declared events. For example,
we could change the value of the Label’s FontSize property as follows:

public partial class MainWindow : System.Windows.Window
{
public MainWindow()
{
InitializeComponent();

// Change FontSize of Label.
lblInstructions.FontSize = 14;

}
}

This is possible because controls that are given a Name attribute in the XAML definition result in
a member variable in the autogenerated *.g.cs file (see Chapter 28):

public partial class MainWindow : System.Windows.Window,
System.Windows.Markup.IComponentConnector

{
// Member variables defined based on the XAML markup.
internal System.Windows.Controls.Button btnPurchaseOptions;
internal System.Windows.Controls.Label lblInstructions;
internal System.Windows.Controls.Expander colorExpander;
internal System.Windows.Controls.Expander MakeExpander;
internal System.Windows.Controls.Expander paymentExpander;

...
}

When you wish to handle events for a given control, you are able to assign a method name to a
given event in your XAML definition as follows:

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1059

8849CH29.qxd 10/16/07 12:17 PM Page 1059

<Button Name="btnPurchaseOptions"
Click="btnPurchaseOptions_Click"
Height="100" Width = "300">

...
</Button>

The related code file would contain a definition of this method, whose format will be based on
the underlying delegate (recall again that the Visual Studio 2008 IDE will update your code file auto-
matically):

private void btnPurchaseOptions_Click(object sender, RoutedEventArgs e)
{
MessageBox.Show("Button has been clicked");

}

On a related note, you are free to handle your events entirely in code. For example, if the previ-
ous Click event XAML definition were deleted, you could update your Window’s constructor as
follows:

public MainWindow()
{
InitializeComponent();

// Change FontSize of Label.
lblInstructions.FontSize = 14;

// Handle Click event for button.
btnPurchaseOptions.Click +=
new RoutedEventHandler(btnPurchaseOptions_Click);

}

Now that the basic control model is fresh in your mind, the next task is to examine the details
of two important (but somewhat challenging) aspects of the WPF control model: dependency prop-
erties and routed events. While the details of these concepts are typically hidden from view during
your day-to-day WPF programming tasks, the more you understand these lower-level details, the
better prepared you will be to dive into more advanced WPF programming tasks in the future.

■Source Code The ControlReview project is included under the Chapter 29 subdirectory.

Understanding the Role of Dependency Properties
As you would assume, the Windows Presentation Foundation APIs make use of each member of the
.NET type system (classes, structures, interfaces, delegates, enumerations) and each possible type
member (properties, methods, events, constant data/read-only fields, etc.) within its implementa-
tion. However, WPF introduces a new programming mechanism termed a dependency property.

■Note Dependency properties are a WPF-specific programming construct. To date, no .NET programming lan-
guage has a native syntax to define this particular flavor of a property. However, the C# “propdp” code snippet will
generate the skeleton of a new dependency property (see Chapter 2 for coverage of code snippets).

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1060

8849CH29.qxd 10/16/07 12:17 PM Page 1060

Like a “normal” .NET property (often termed a CLR property in the WPF literature), depend-
ency properties can be set declaratively using XAML or programmatically within a code file.
Furthermore, dependency properties (like CLR properties) exist to encapsulate data fields and
can be configured as read-only, write-only, or read-write, and so forth.

To make matters more interesting, in most cases you will be blissfully unaware that you have
actually set a dependency property as opposed to a CLR property! For example, the Height and
Width members WPF controls inherit from FrameworkElement, as well as the Content member inher-
ited from ControlContent, are all dependency properties:

<!-- You just set three dependency properties! -->
<Button Name = "btnMyButton" Height = "50" Width = "100" Content = "OK"/>

Given all of these similarities, you may wonder exactly why WPF has introduced a new term for
a familiar concept. The answer lies in how a dependency property is implemented under the hood.
Once implemented, dependency properties provide a number of powerful features that are used by
various WPF technologies including data binding, animation services, themes and styles, and so
forth. In a nutshell, dependency properties provide the following benefits above and beyond the
simple data encapsulation found with a CLR property:

• Dependency properties can inherit their values from a parent element’s XAML definition.

• Dependency properties support the ability to have values set by external types (recall from
Chapter 28 that attached properties do this very thing, as attached properties are based on
dependency properties).

• Dependency properties allow WPF to compute a value based on multiple external values.

• Dependency properties provide the infrastructure for callback notifications and triggers
(used quite often when building animations, styles, and themes).

• Dependency properties allow for static storage of their data (which helps conserve memory
consumption).

One key difference of a dependency property is that it allows WPF to compute a value based on
values from multiple property inputs. The other properties in question could include OS system
properties (including systemwide user preferences), values based on data binding and animation/
storyboard logic, resources and styles, or values known through parent/child relationships with
other XAML elements.

Another major difference is that dependency properties can be configured to monitor changes
of the property value to force external actions to occur. For example, changing the value of a
dependency property might cause WPF to change the layout of controls on a Window, rebind to
external data sources, or move through the steps of a custom animation.

Examining an Existing Dependency Property
To be completely honest, the chances that you will need to manually build a dependency property
for your WPF projects are quite slim. In reality, the only time you will typically need to do so is if you
are building a custom WPF control, where you have subclassed an existing control to modify its
behaviors. In this case, if you are creating a property that needs to work with the WPF data-binding
engine, theme engine, or animation engine, or if the property must broadcast when it has changed,
a dependency property is the correct course of action. In all other cases, a normal CLR property
will do.

While this is true, it is helpful to understand the basic composition of a dependency property,
as it will make some of the more “mysterious” features of WPF less so and deepen your understand-
ing of underlying WPF programming model. To illustrate the internal composition of a dependency

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1061

8849CH29.qxd 10/16/07 12:17 PM Page 1061

property, consider the following C# code, which approximates the implementation of the Height
property of the FrameworkElement class type:

public class FrameworkElement : UIElement, IFrameworkInputElement,
IInputElement, ISupportInitialize, IHaveResources

{
...
// Notice this is a static field of type DependencyProperty
public static readonly DependencyProperty HeightProperty;

// The static DependencyProperty field is created and "registered"
// in the static constructor.
static FrameworkElement()
{
HeightProperty = DependencyProperty.Register(
"Height",
typeof(double),
typeof(FrameworkElement),
new FrameworkPropertyMetadata((double) 1.0 / (double) 0.0,
FrameworkPropertyMetadataOptions.AffectsMeasure,
new PropertyChangedCallback(FrameworkElement.OnTransformDirty)),

new ValidateValueCallback(FrameworkElement.IsWidthHeightValid));
}

// Note that the Height property still has get/set blocks.
// However, the implemention is using the inherited
// GetValue()/SetValue() methods.
public double Height
{
get { return (double) base.GetValue(HeightProperty); }
set { base.SetValue(HeightProperty, value); }

}
}

As you can see, dependency properties require quite a bit of additional logic from a typical
CLR property! Here is a breakdown of what is happening: First and foremost, dependency proper-
ties are represented using the System.Windows.DependencyProperty class type and are almost always
declared as public, static read-only fields. Recall that one benefit of dependency properties is that
they are not directly tied to an object instance (which helps memory consumption), hence the use
of static data.

Registering Dependency Property
Given that dependency properties are declared as static, they are assigned an initial value within the
static constructor of the type. However, unlike a simple numerical field, the DependencyProperty
object is created indirectly by capturing the return value of the static DependencyProperty.
Register() method. This method has been overloaded a number of times; however, in this
example, Register() is invoked as follows:

HeightProperty = DependencyProperty.Register(
"Height",
typeof(double),
typeof(FrameworkElement),
new FrameworkPropertyMetadata((double) 1.0 / (double) 0.0,
FrameworkPropertyMetadataOptions.AffectsMeasure,
new PropertyChangedCallback(FrameworkElement.OnTransformDirty)),

new ValidateValueCallback(FrameworkElement.IsWidthHeightValid));

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1062

8849CH29.qxd 10/16/07 12:17 PM Page 1062

The first argument to Register() is the name of the “normal” CLR property on the class that
makes use of the DependencyProperty field (Height in this case), while the second argument is the
type information of the underlying data type it is bound to (a double).

The third argument specifies the type information of the class that this property belongs to
(FrameworkElement in this case). While this might seem redundant (after all, the HeightProperty field
is already defined within the FrameworkElement class), this is a very clever aspect of WPF in that it
allows one type to “attach” properties to another type (even if the class definition has been sealed!).

■Note Recall that C# 2008 extension methods (see Chapter 13) also allow you to add new members to sealed
types. Extension methods would be the most direct way of adding new functionality to types that do not need to
participate in WPF-centric services (e.g., animation).

The final arguments passed to Register() are what really give dependency properties their
own flavor. Here we are able to provide a FrameworkPropertyMetadata object that describes all of the
details regarding how WPF should handle this property with respect to callback notifications (if the
property needs to notify others when the value changes), how the value will be validated, and vari-
ous options (represented by the FrameworkPropertyMetadataOptions enum) that control what is
effected by the property in question (does it work with data binding, can it be inherited, etc.).

Defining a Wrapper Property for a DependencyProperty Field
Once the details of configuring the DependencyProperty object have been established within a static
constructor, the final task is to wrap the field within a typical CLR property (Height in this case).
Notice, however, that the “get” and “set” scopes do not simply return or set a class-level double-
member variable, but do so indirectly using the GetValue() and SetValue() methods from the
System.Windows.DependencyObject base class:

public double Height
{
get { return (double) base.GetValue(HeightProperty); }
set { base.SetValue(HeightProperty, value); }

}

■Note Strictly speaking, you do not need to build a wrapper property for a DependencyProperty field, if the
field is public, as you can access it statically when calling the inherited GetValue()/SetValue() public methods.
In practice, most dependency properties do have a friendly wrapper, as it is very XAML-friendly.

Now that you have seen the details of how a dependency property is assembled under the
hood, be aware that it would be entirely possible to use a normal CLR property that supported the
same services as a WPF dependency property (notifications, static memory allocation, etc.). How-
ever, to do so would require a good deal of boilerplate code that you would need to author by hand
and replicate in numerous places. Using the intrinsic DependencyProperty type (and additional bits
of infrastructure), we are provided with an out-of-the-box implementation of the same services.

Because a dependency property is built using various WPF-centric types, it would certainly be
possible for you to build your own dependency properties, which will not be necessary for the
examples in this text. However, the following code summarizes the core pieces of a dependency
property declaration (note here we are registering the property at the time we declare the static
read-only DependencyProperty type):

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1063

8849CH29.qxd 10/16/07 12:17 PM Page 1063

public class MyOwnerClass : DependencyObject
{
// Using a DependencyProperty as the backing store for MyProperty.
// This enables animation, styling, binding, etc...
public static readonly DependencyProperty MyPropertyProperty =
DependencyProperty.Register("MyProperty", typeof(int),
typeof(OwnerClass), new UIPropertyMetadata(0));

// XAML-friendly wrapper for the
// static read-only field. This is necessary,
// as we can't call methods (GetValue/SetValue)
// in XAML.
public int MyProperty
{
// GetValue/SetValue come from the
// DependencyObject base class.
get { return (int)GetValue(MyPropertyProperty); }
set { SetValue(MyPropertyProperty, value); }

}
}

If you are interested in learning further details regarding this WPF programming construct,
check out the topic “Custom Dependency Properties” within the .NET Framework 3.5 SDK docu-
mentation.

Understanding Routed Events
Properties are not the only .NET programming construct to be given a facelift to work well within
the WPF API. The standard CLR event model has also been refined just a bit to ensure that events
can be processed in a manner that is fitting for XAML’s description of a tree of objects. Assume you
have a new WPF Application project named WPFControlEvents. Now, update the initial XAML
description of the initial window by adding the following <Button> type within the initial <Grid>:

<Button Name="btnClickMe" Height="75" Width = "250" Click ="btnClickMe_Clicked">
<StackPanel Orientation ="Horizontal">
<Label Height="50" FontSize ="20">Fancy Button!</Label>
<Canvas Height ="50" Width ="100" >
<Ellipse Name = "outerEllipse" Fill ="Green" Height ="25"

Width ="50" Cursor="Hand" Canvas.Left="25" Canvas.Top="12"/>
<Ellipse Name = "innerEllipse" Fill ="Yellow" Height = "15" Width ="36"

Canvas.Top="17" Canvas.Left="32"/>
</Canvas>

</StackPanel>
</Button>

Notice in the <Button>’s opening definition we have handled the Click event by specifying
the name of a method to be called when the event is raised. The Click event works with the
RoutedEventHandler delegate, which expects an event handler that takes an object as the first
parameter and a System.Windows.RoutedEventArgs as the second:

public void btnClickMe_Clicked(object sender, RoutedEventArgs e)
{
// Do something when button is clicked.
MessageBox.Show("Clicked the button");

}

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1064

8849CH29.qxd 10/16/07 12:17 PM Page 1064

Figure 29-4 shows the expected output when clicking the current control (for display purposes,
I changed the initial <Grid> type to a <StackPanel>, which explains why the Button is mounted on
the top-center of this Window, rather than positioned in the center).

Figure 29-4. Handling events for a composite Button type

Now, consider the current composition of our Button. It contains numerous nested elements
to fully represent its user interface (Canvas, Ellipse, Label, etc.). Imagine how tedious WPF event
handling would be if we were forced to handle a Click event for each and every one of these subele-
ments. After all, the end user could click anywhere within the scope of the button’s boundaries (on
the Label, on the green area of the oval, on the surface of the button, etc.). Not only would the cre-
ation of separate event handlers for each aspect of the Button be labor intensive, we would end up
with some mighty nasty code to maintain down the road.

Under the Windows Forms event model, a custom control such as this would require us to
handle the Click event for each item on the button. Thankfully, WPF routed events take care of this
automatically. Simply put, the routed events model automatically propagates an event up (or down)
a tree of objects, looking for an appropriate handler.

Specifically speaking, a routed event can make use of three “routing strategies.” If an event is
moving from the point of origin up to other defining scopes within the object tree, the event is said
to be a bubbling event. Conversely, if an event is moving from its point of origin down into related
subelements, the event is said to be a tunneling event. Finally, if an event is raised and handled only
by the originating element (which is what could be described as a normal CLR event), it is said to be
a direct event.

■Note Like dependency properties, routed events are a WPF-specific construct implemented using WPF-specific
helper types. Thus, there is no special C# syntax you need to learn to handle routed events.

The Role of Routed Bubbling Events
In the current example, if the user clicks the inner yellow oval, the Click event bubbles out to the
next level of scope (the Canvas), and then to the StackPanel, and finally to the Button where the
Click event handler is handled. In a similar way, if the user clicks the Label, the event is bubbled to
the StackPanel and then finally to the Button type.

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1065

8849CH29.qxd 10/16/07 12:17 PM Page 1065

Given this routed bubbling event pattern, we have no need to worry about registering specific
Click event handlers for all members of a composite control. However, if you wished to perform
custom clicking logic for multiple elements within the same object tree, you can do so. By way of
illustration, assume you need to handle the clicking of the outerEllipse control in a unique man-
ner. First, handle the MouseDown event for this subelement (graphically rendered types such as the
Ellipse do not support a “click” event; however, they can monitor mouse button activity via
MouseDown, MouseUp, etc.):

<Button Name="btnClickMe" Height="75" Width = "250" Click ="btnClickMe_Clicked">
<StackPanel Orientation ="Horizontal">
<Label Height="50" FontSize ="20">Fancy Button!</Label>
<Canvas Height ="50" Width ="100" >
<Ellipse Name = "outerEllipse" Fill ="Green"

Height ="25" MouseDown ="outerEllipse_MouseDown"
Width ="50" Cursor="Hand" Canvas.Left="25" Canvas.Top="12"/>

<Ellipse Name = "innerEllipse" Fill ="Yellow" Height = "15" Width ="36"
Canvas.Top="17" Canvas.Left="32"/>

</Canvas>
</StackPanel>

</Button>

Then implement an appropriate event handler, which for illustrative purposes will simply
change the Title property of the main window:

public void outerEllipse_MouseDown(object sender, RoutedEventArgs e)
{
// Change title of window.
this.Title = "You clicked the outer ellipse!";

}

With this, we now can take different courses of action depending on where the end user has
clicked (which boils down to the outer ellipse and everywhere else within the button’s scope).

■Note Routed bubbling events always move from the point of origin to the next defining scope. Thus, in this
example, if we were to click the innerEllipse object, the event would be bubbled to the Canvas, not to the
outerEllipse, as they are both Ellipse types within the scope of Canvas.

Continuing or Halting Bubbling
Currently, if the user clicks the outerEllipse object, it will trigger the registered MouseDown event
handler for this Ellipse type, at which the bubbling logic stops (therefore, we would not see the
Button’s Click event handler execute). Most of the time, this is the effect you desire; however, if you
wish to inform WPF to continue bubbling up the object tree, you can set the Handled property of the
RountedEventArgs type to false:

public void outerEllipse_MouseDown(object sender, RoutedEventArgs e)
{
// Change title of window.
this.Title = "You clicked the outer ellipse!";

// Keep bubbling!
e.Handled = false;

}

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1066

8849CH29.qxd 10/16/07 12:17 PM Page 1066

In this case, we would find that the title of the window is changed, followed by the launching of
the MessageBox displayed within the Click event handler of the Button type. In a nutshell, routed
bubbling events make it possible to allow a complex group of content to act either as a single logical
element (e.g., a Button) or as discrete items (e.g., an Ellipse within the Button).

The Role of Routed Tunneling Events
Strictly speaking, routed events can be bubbling (as just described) or tunneling in nature. Tunnel-
ing events (which all begin with the Preview suffix—e.g., PreviewMouseDown) drill down from the
originating element into the inner scopes of the object tree. By and large, each bubbling event in the
WPF base class libraries is paired with a related tunneling event that fires before the bubbling coun-
terpart. For example, before the bubbling MouseDown event fires, the tunneling PreviewMouseDown
event fires first.

Handling a tunneling event looks just like the processing of handling any other events; simply
assign the event handler name in XAML (or, if needed, using the corresponding C# event-handling
syntax in your code file) and implement the handler in the code file. Just to illustrate the interplay of
tunneling and bubbling events, begin by handling the PreviewMouseDown event for the outerEllipse
object:

<Ellipse Name = "outerEllipse" Fill ="Green" Height ="25"
MouseDown ="outerEllipse_MouseDown"
PreviewMouseDown ="outerEllipse_PreviewMouseDown"
Width ="50" Cursor="Hand" Canvas.Left="25" Canvas.Top="12"/>

Next, retrofit the current C# class definition by updating each event handler (for all types) to
append data to and eventually display the value within a new string member variable. This will
allow us to observe the flow of events firing in the background:

public partial class MainWindow : System.Windows.Window
{
// This is used to hold data on the mouse-related
// activity.
string mouseActivity = string.Empty;

public MainWindow()
{
InitializeComponent();

}

public void btnClickMe_Clicked(object sender, RoutedEventArgs e)
{
// Show the final string.
mouseActivity += "Button Click event fired!\n";
MessageBox.Show(mouseActivity);

// Clear string for next test.
mouseActivity = string.Empty;

}

public void outerEllipse_MouseDown(object sender, RoutedEventArgs e)
{
// Add data to string.
mouseActivity += "MouseDown event fired!\n";

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1067

8849CH29.qxd 10/16/07 12:17 PM Page 1067

// Keep bubbling!
e.Handled = false;

}

public void outerEllipse_PreviewMouseDown(object sender, RoutedEventArgs e)
{
// Add data to string.
mouseActivity = "PreviewMouseDown event fired!\n";

// Keep bubbling!
e.Handled = false;

}
}

When you run the program and do not click within the bounds of the outer ellipse, you will
simply see the message “Button Click event fired!” displayed within the message box. However, if
you do click within the outer ellipse image, the message box shown in Figure 29-5 will display.

Figure 29-5. Tunneling first, bubbling second

So you may be wondering why in the world WPF events typically tend to come in pairs (one
tunneling and one bubbling)? The answer is that by previewing events, you have the power to
perform any special logic (data validation, disable bubbling action, etc.) before the bubbling coun-
terpart fires. In a vast majority of cases, you will not need to handle the Preview prefixed tunneling
events and simply have to worry about the (non–Preview-prefixed) bubbling events.

Much like the task of manually authoring a dependency property, the need to handle tunneling
events is typically only necessary when subclassing an existing WPF control. On a related note, if
you are building a custom WPF control, be aware that you can create custom routed events (which
may be bubbling or tunneling) using a mechanism similar to that of building a custom dependency
property. If you are interested, check out the topic “How to: Create a Custom Routed Event” within
the .NET Framework 3.5 SDK documentation.

■Source Code The WPFControlEvents project is included under the Chapter 29 subdirectory.

Working with Button Types
Now that you have examined the details of dependency properties and routed events, you are in a
good position to better understand the WPF controls themselves, beginning with button types.
Instinctively, we all know the role of button types. They are UI elements that can be pressed via the
mouse or via the keyboard (with the Enter key or spacebar) if they have the current focus. In WPF,

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1068

8849CH29.qxd 10/16/07 12:17 PM Page 1068

the ButtonBase class serves as a parent for three core derived types: Button, RepeatButton, and
ToggleButton.

The ButtonBase Type
Like any parent class, ButtonBase provides a polymorphic interface for derived types (in addition to
the members inherited from its base class ContentControl). For example, it is ButtonBase that
defines the Click event. As well, this parent class defines the IsPressed property, which allows you
to take a course of action when the derived type has been pressed, but not yet released. In addition,
Table 29-2 describes some other members of interest for the ButtonBase abstract base class.

Table 29-2. Select Members of the ButtonBase Type

ButtonBase Member Meaning in Life

ClickMode This property allows you to establish when the Click event should fire,
based on values from the ClickMode enumeration.

Command As explained later in this chapter, many UI elements can have an
associated “command” that can be attached to a UI element by assigning
the Command property.

CommandParameter This property allows you to pass parameters to the item specified by the
Command property.

CommandTarget This property allows you to establish the recipient of the command set by
the Command property.

Beyond the command-centric members (examined at the conclusion of this chapter), the most
interesting member would be ClickMode, which allows you to specify three different modes of click-
ing a button. This property can be assigned any value from the related System.Windows.Controls.
ClickMode enumeration:

public enum ClickMode
{
Release,
Press,
Hover

}

For example, assume you have the following XAML description for a Button type using the
ClickMode.Hover value for the ClickMode property:

<Button Name = "bntHoverClick" ClickMode = "Hover" Click ="btnHoverClick_Click"/>

With this, the Click event will fire as soon as the mouse cursor is anywhere within the bounds
of the Button type. While this may not be the most helpful course of action for a typical push button,
hover mode can be useful when building custom styles, templates, or animations.

The Button Type
The first derived type, Button, provides two properties of immediate interest, IsCancel and
IsDefault, which are very helpful when building dialog boxes containing OK and Cancel buttons.
When IsCancel is set to true, the button will be artificially clicked when the user presses the Esc key.
If IsDefault is set to true, the button will be artificially clicked when the user presses the Enter key.
Consider the following XAML description of two Button types:

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1069

8849CH29.qxd 10/16/07 12:17 PM Page 1069

<!-- Assume these are defined within a <StackPanel> of a Window type -->
<Button Name ="btnOK" IsDefault = "true" Click ="btnOK_Click" Content = "OK"/>
<Button Name ="btnCancel" IsCancel= "true"

Click ="btnCancel_Click" Content = "Cancel"/>

If you were to implement each of the declared event handlers in a related code file, you will be
able to run the application and verify the correct handler is invoked when the Enter key or Esc key is
pressed. This would be the case even if another UI element of the window (such as a text entry area)
has the current focus.

The ToggleButton Type
The ToggleButton type (defined in the System.Windows.Controls.Primitives namespace) has by
default a UI identical to the Button type; however, it has the unique ability to hold its pressed state
when clicked. To account for this, ToggleButton provides an IsChecked property, which toggles
between true and false when the end user clicks the UI element. Furthermore, ToggleButton pro-
vides two events (Checked and Unchecked) that can be handled to intercept this state change. Here is
an XAML description of a simple toggle that handles each event on two unique event handlers:

<!-- A Yes/No toggle button -->
<ToggleButton Name ="toggleOnOffButton"
Checked ="toggleOnOffButton_Checked"
Unchecked ="toggleOnOffButton_Unchecked">
Off!

</ToggleButton >

The event handlers simply update the Content property with a fitting textual message:

protected void toggleOnOffButton_Checked(object sender, RoutedEventArgs e)
{
toggleOnOffButton.Content = "On!";

}

protected void toggleOnOffButton_Unchecked(object sender, RoutedEventArgs e)
{
toggleOnOffButton.Content = "Off!";

}

If you wish to consolidate your code-behind file to use a single handler for each event, you
could update your XAML definition so that the Checked and Unchecked events both point to a single
handler (say, toggleOnOffButtonPressed), and then use the IsChecked property to flip between the
message:

protected void toggleOnOffButtonPressed(object sender, RoutedEventArgs e)
{
if (toggleOnOffButton.IsChecked == false)
toggleOnOffButton.Content = "Off!";

else
toggleOnOffButton.Content = "On!";

}

Finally, be aware that ToggleButton also supports tri-state functionality (via the IsThreeState
property and Indeterminate event), allowing you to test if the widget is checked, unchecked, or nei-
ther. While it might seem odd for a button to monitor itself in this manner, it makes perfect sense
for types that derive from ToggleButton, such as the CheckBox type examined in just a moment.

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1070

8849CH29.qxd 10/16/07 12:17 PM Page 1070

■Note As a general rule, types defined in the System.Windows.Controls.Primitives namespace (including
the ToggleButton) are not assumed to be very useful out of the box without additional customizations.

The RepeatButton Type
The final ButtonBase-derived type to discuss is the RepeatButton type, also defined within
System.Windows.Controls.Primitives. This type also has a default look and feel to a standard
Button; however, it supports the ability to continuously fire its Click event when the end user
has the widget in a pressed state. The frequency in which it will fire the Click event is dependent
upon the values you assign to the Delay and Interval properties (both of which are recorded in
milliseconds).

In reality, the RepeatButton type (like the ToggleButton type) is not that useful on its own. How-
ever, the exposed behavior is useful when constructing customized user interfaces. To illustrate,
consider the fact that unlike Windows Forms, the initial release of WPF does not supply a spin
button control, which allows the user to adjust a numerical value using up and down arrows.
Composing a spin button widget can be done quite simply in XAML given the functionality of
RepeatButton.

To illustrate, create a new Visual Studio WPF Application project named CustomSpinButtonApp.
Replace the initial <Grid> definition with a <StackPanel> containing the following markup:

<Window x:Class="CustomSpinButtonApp.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="CustomSpinButtonApp" Height="300" Width="300">
<StackPanel>
<!-- The 'Up' button -->
<RepeatButton Height ="25" Width = "25" Name ="repeatAddValueButton"
Delay ="200" Interval ="1" Click ="repeatAddValueButton_Click"
Content = "+"/>

<!-- Displays the current value -->
<Label Name ="lblCurrentValue" Background ="LightGray"

Height ="30" Width = "25"VerticalContentAlignment="Center"
HorizontalContentAlignment="Center" FontSize="15"/>

<!-- The 'Down' button -->
<RepeatButton Height ="25" Width = "25" Name ="repeatRemoveValueButton"
Delay ="200" Interval ="1"
Click ="repeatRemoveValueButton_Click" Content = "-"/>

</StackPanel>
</Window>

Notice how each RepeatButton type handles the Click event with a unique event handler. With
this, we can author the following C# logic to increase or decrease the value displayed within the
<Label> (feel free to add extra logic to trap maximum and minimum values if you so choose):

public partial class MainWindow : System.Windows.Window
{
private int currValue = 0;

public MainWindow()
{
InitializeComponent();
lblCurrentValue.Content = currValue;

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1071

8849CH29.qxd 10/16/07 12:17 PM Page 1071

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

}
protected void repeatAddValueButton_Click(object sender, RoutedEventArgs e)
{
// Add 1 to the current value and show in label.
currValue++;
lblCurrentValue.Content = currValue;

}

protected void repeatRemoveValueButton_Click(object sender, RoutedEventArgs e)
{
// Subtract 1 from the current value and show in label.
currValue--;
lblCurrentValue.Content = currValue;

}
}

As you can see, when the user clicks either RepeatButton, we increment or decrement the pri-
vate currValue accordingly, and set the Content property of the Label type. Figure 29-6 shows our
custom spin button UI in action.

Figure 29-6. Building a spin button using RepeatButton as a starting point

■Source Code The CustomSpinButtonApp project is included under the Chapter 29 subdirectory.

Working with CheckBoxes and RadioButtons
As mentioned previously, CheckBox “is-a” ToggleButton, which “is-a” ButtonBase, which may seem
very odd given that the UI of a button looks very different from that of a check box. However, a
CheckBox type, like a Button, can be clicked, responds to mouse and keyboard input, and follows the
WPF content model. Given all of these similarities, it turns out that the CheckBox type simply over-
rides various virtual members of ToggleButton to establish a check box look and feel (recall that a
major motivator of WPF is to decouple the display of a control from its functionality). Consider the
following <CheckBox> declarations, which yield the output shown in Figure 29-7:

<StackPanel>
<!-- CheckBox types -->
<CheckBox Name ="checkInfo" >Send me more information</CheckBox>
<CheckBox Name ="checkPhoneContact" >Contact me over the phone</CheckBox>

</StackPanel>

Figure 29-7. Simple CheckBox types

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1072

8849CH29.qxd 10/16/07 12:17 PM Page 1072

RadioButton is another type that “is-a” ToggleButton. Unlike the CheckBox type, however, it has
the innate ability to ensure all RadioButtons in the same container (such as a StackPanel, Grid, or
whatnot) are mutually exclusive without any additional work on your part. Consider the following:

<StackPanel>
<!-- RadioButton types for music selection -->
<Label FontSize = "15" Content = "Select Your Music Media"/>
<RadioButton>CD Player</RadioButton>
<RadioButton>MP3 Player</RadioButton>
<RadioButton>8-Track</RadioButton>

<!-- RadioButton types for color selection -->
<Label FontSize = "15" Content = "Select Your Color Choice"/>
<RadioButton>Red</RadioButton>
<RadioButton>Green</RadioButton>
<RadioButton>Blue</RadioButton>

</StackPanel>

If you were to test this XAML, you would find that you can only select one of the six options,
which is probably not what is intended, as there seem to be two separate groups within the mix
(radio options and color options).

Establishing Logical Groupings
When you wish to have a single container with multiple RadioButton types, which behave as distinct
physical groupings, you can do so setting the GroupName property on the opening element of the
RadioButton type:

<StackPanel>
<!-- The Music group -->
<Label FontSize = "15" Content = "Select Your Music Media"/>
<RadioButton GroupName = "Music" >CD Player</RadioButton>
<RadioButton GroupName = "Music" >MP3 Player</RadioButton>
<RadioButton GroupName = "Music" >8-Track</RadioButton>

<!—The Color group (optional for this example, see Note below) -->
<Label FontSize = "15" Content = "Select Your Color Choice"/>
<RadioButton GroupName = "Color">Red</RadioButton>
<RadioButton GroupName = "Color">Green</RadioButton>
<RadioButton GroupName = "Color">Blue</RadioButton>

</StackPanel>

With this, we will now be able to set each logical grouping independently, even though they are
in the same physical container.

■Note By default, all RadioButtons in a container that do not have a GroupName value work as a single physi-
cal group. Therefore, in the previous example, the color-centric buttons would have been mutually exclusive, even
with the GroupName omitted, given the presence of the Music group.

Framing Related Elements in GroupBoxes
When you design a collection of radio buttons or check boxes, it is common to surround them with
a visual container to denote that they behave as a group. The most common way to do so is using a
GroupBox control. As the Header property is prototyped to operate on a System.Object, you are able

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1073

8849CH29.qxd 10/16/07 12:17 PM Page 1073

to assign any object to function as the header (a simple string, a colored rectangle, a button, etc.).
Consider the following two GroupBox declarations, which frame the previous RadioButtons in vari-
ous manners:

<StackPanel>
<GroupBox Header = "Select Your Music Media" BorderBrush ="Black">
<StackPanel>
<RadioButton GroupName = "Music" >CD Player</RadioButton>
<RadioButton GroupName = "Music" >MP3 Player</RadioButton>
<RadioButton GroupName = "Music" >8-Track</RadioButton>

</StackPanel>
</GroupBox>

<GroupBox BorderBrush ="Black">
<GroupBox.Header>
<Label Background = "Blue" Foreground = "White"

FontSize = "15" Content = "Select your color choice"/>
</GroupBox.Header>
<StackPanel>
<RadioButton>Red</RadioButton>
<RadioButton>Green</RadioButton>
<RadioButton>Blue</RadioButton>

</StackPanel>
</GroupBox>

</StackPanel>

The output can be seen in Figure 29-8.

Figure 29-8. GroupBox types framing RadioButton types

Framing Related Elements in Expanders
In addition to the customary group box, WPF ships with a new UI element that can group a collec-
tion of UI elements that can be hidden or shown via a toggle. This element, the Expander type,
allows you to define the direction elements will be displayed (up, down, left, or right) using the
ExpandDirection property. Consider the following XAML (which basically just changes <GroupBox>
to <Expander>):

<StackPanel>
<Expander Header = "Select Your Music Media" BorderBrush ="Black">
<StackPanel>
<RadioButton GroupName = "Music" >CD Player</RadioButton>
<RadioButton GroupName = "Music" >MP3 Player</RadioButton>
<RadioButton GroupName = "Music" >8-Track</RadioButton>

</StackPanel>
</Expander>

<Expander BorderBrush ="Black">
<Expander.Header>
<Label Background = "Blue" Foreground = "White"

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1074

8849CH29.qxd 10/16/07 12:17 PM Page 1074

FontSize = "15" Content = "Select your color choice"/>
</Expander.Header>
<StackPanel>
<RadioButton>Red</RadioButton>
<RadioButton>Green</RadioButton>
<RadioButton>Blue</RadioButton>

</StackPanel>
</Expander >

</StackPanel>

Figure 29-9 shows each Expander in the collapsed state.

Figure 29-9. Collapsed Expanders

Figure 29-10 shows each Expander (pardon the redundancy) expanded.

Figure 29-10. Expanded Expanders

■Source Code The CheckRadioGroup.xaml file is included under the Chapter 29 subdirectory.

Working with the ListBox and ComboBox Types
As you would hope, WPF provides types that contain a group of selectable items, such as ListBox
and ComboBox, both of which derive from the ItemsControl abstract base class. Most importantly,
this parent class defines a property named Items, which returns a strongly typed ItemCollection
object that holds onto the subitems. As it turns out, the ItemCollection type has been constructed
to operate on System.Object types, and therefore it can contain anything whatsoever. If you wish to
fill an ItemsControl-derived type with simply textual data via markup, you can do so using a set of
<ListBoxItem> types. For example, consider the following XAML:

<!-- Simple list box -->
<ListBox Name = "lstVideoGameConsoles">
<ListBoxItem>Microsoft XBox 360</ListBoxItem>
<ListBoxItem>Sony Playstation 3</ListBoxItem>
<ListBoxItem>Nintendo Wii</ListBoxItem>
<ListBoxItem>Sony PSP</ListBoxItem>
<ListBoxItem>Nintendo DS</ListBoxItem>

</ListBox>

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1075

8849CH29.qxd 10/16/07 12:17 PM Page 1075

<!-- Simple combo box -->
<ComboBox Name = "comboVideoGameConsoles">
<ListBoxItem>Microsoft XBox 360</ListBoxItem>
<ListBoxItem>Sony Playstation 3</ListBoxItem>
<ListBoxItem>Nintendo Wii</ListBoxItem>
<ListBoxItem>Sony PSP</ListBoxItem>
<ListBoxItem>Nintendo DS</ListBoxItem>

</ComboBox>

■Note ComboBox types can also be populated using <ComboBoxItem> elements, rather than <ListBoxItem>.
By doing so, you gain access to the IsHighlighted property, which is not used by the ListBoxItem type.

Not surprisingly, we find the rendering shown in Figure 29-11.

Figure 29-11. A simple ListBox and ComboBox

Filling List Controls Programmatically
Oftentimes, the data contained within a list control is not known until runtime; for example, you
may need to fill items in a list box based on values returned from a database read, invoking a WCF
service, or reading an external file. When you need to populate a ListBox or ComboBox control pro-
grammatically, simply use the members of the ItemCollection type to do so (Add(), Remove(), etc.).
Assume you have a new Visual Studio 2008 WPF Application project named ListControls. The previ-
ous XAML declaration of the lstVideoGameConsole type could be defined in XAML as follows:

<Window x:Class="ListControls.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="ListControls" Height="300" Width="300" >
<StackPanel>
<!-- This is filled via code -->
<ListBox Name = "lstVideoGameConsoles">
</ListBox>

</StackPanel>
</Window>

and populated in a related code file as follows:

public partial class MainWindow : System.Windows.Window
{
public MainWindow()
{
InitializeComponent();

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1076

8849CH29.qxd 10/16/07 12:17 PM Page 1076

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

FillListBox();
}

private void FillListBox()
{
// Add items to the list box.
lstVideoGameConsoles.Items.Add("Microsoft XBox 360");
lstVideoGameConsoles.Items.Add("Sony Playstation 3");
lstVideoGameConsoles.Items.Add("Nintendo Wii");
lstVideoGameConsoles.Items.Add("Sony PSP");
lstVideoGameConsoles.Items.Add("Nintendo DS");

}
}

One thing that might strike you as odd is that in the XAML description of the ListBox, we made
use of <ListBoxItem> types to populate the items; however, here we have made use of string types
when calling the Add() method. The short explanation is that when using XAML, <ListBoxItem>
types are more convenient in that they are defined within the http://schemas.microsoft.com/
winfx/2006/xaml/presentation XML namespace, and therefore we have a direct reference to them.

Under the hood, ToString() is called on each <ListBoxItem> type, so the end result is identical.
If you truly wanted to use a System.String to fill the ListBox (or ComboBox) type in XAML, you would
need to define a new XML namespace to bring in mscorlib.dll (see Chapter 28 for more details):

<StackPanel xmlns:CorLib = "clr-namespace:System;assembly=mscorlib">
<ListBox Name = "lstVideoGameConsoles">
<CorLib:String>Microsoft XBox 360</CorLib:String>
<CorLib:String>Sony Playstation 3</CorLib:String>
<CorLib:String>Nintendo Wii</CorLib:String>
<CorLib:String>Sony PSP</CorLib:String>
<CorLib:String>Nintendo DS</CorLib:String>

</ListBox>
</StackPanel>

Conversely, if you really wanted to, you could programmatically populate an ItemsControl-
derived type using strongly typed ListBoxItem objects; however, you really gain nothing for the
current example and have in fact created additional work for yourself (as the ListBoxItem does not
have a constructor to set the Content property!).

Adding Arbitrary Content
Because ListBox and ComboBox both have ContentControl in their inheritance chain, they can con-
tain data well beyond a simple string. Consider the following ComboBox, which contains various
<StackPanels> containing 2D graphical objects and a descriptive label:

<StackPanel>
<!-- A ListBox with content! -->
<ListBox Name = "lstColors">
<StackPanel Orientation ="Horizontal">
<Ellipse Fill ="Yellow" Height ="50" Width ="50"/>
<Label FontSize ="20" HorizontalAlignment="Center"

VerticalAlignment="Center">Yellow</Label>
</StackPanel>
<StackPanel Orientation ="Horizontal">
<Ellipse Fill ="Blue" Height ="50" Width ="50"/>
<Label FontSize ="20" HorizontalAlignment="Center"

VerticalAlignment="Center">Blue</Label>
</StackPanel>

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1077

8849CH29.qxd 10/16/07 12:17 PM Page 1077

http://schemas.microsoft.com

<StackPanel Orientation ="Horizontal">
<Ellipse Fill ="Green" Height ="50" Width ="50"/>
<Label FontSize ="20" HorizontalAlignment="Center"

VerticalAlignment="Center">Green</Label>
</StackPanel>

</ListBox>
</StackPanel>

Figure 29-12 shows the output of our current list types.

Figure 29-12. ItemsControl-derived types can contain any sort of content you desire.

Determining the Current Selection
Once you have populated a ListBox or ComboBox type, the next obvious issue is how to determine at
runtime which item the user has selected. As it turns out, you have three ways to do so. If you are
interested in finding the numerical index of the item selected, you can use the SelectedIndex
property (which is zero based; a value of -1 represents no selection). If you wish to obtain the
object within the list that has been selected, the SelectedItem property fits the bill. Finally, the
SelectedValue allows you to obtain the value of the selected object (typically obtained via a call to
ToString()).

Sounds simple enough, right? Well, to test how each property behaves, assume you have
defined two new Button types for the current window, both of which handle the Click event:

<!-- Buttons to get the selected items -->
<Button Name ="btnGetGameSystem" Click ="btnGetGameSystem_Click">
Get Video Game System

</Button>
<Button Name ="btnGetColor" Click ="btnGetColor_Click">
Get Color

</Button>

The Click handler for btnGetGameSystem will obtain the values of the SelectedIndex,
SelectedItem, and SelectedValue properties of the lstVideoGameConsoles object and display
them in a message box:

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1078

8849CH29.qxd 10/16/07 12:17 PM Page 1078

protected void btnGetGameSystem_Click(object sender, RoutedEventArgs args)
{
string data = string.Empty;
data += string.Format("SelectedIndex = {0}\n",
lstVideoGameConsoles.SelectedIndex);

data += string.Format("SelectedItem = {0}\n",
lstVideoGameConsoles.SelectedItem);

data += string.Format("SelectedValue = {0}\n",
lstVideoGameConsoles.SelectedValue);

MessageBox.Show(data, "Your Game Info");
}

If you were to select “Nintendo Wii” from the list of game consoles and click the related button,
you would find the message box shown in Figure 29-13.

Figure 29-13. Finding a selected string

However, what about obtaining the selected color?

Determining the Current Selection for Nested Content
Assume the Click event handler for the btnGetColor Button has implemented btnGetColor_Click()
to print out the current selection, index, and value of the lstColors ListBox object. Now, if you were
to select the first item in the lstColors list box (and click the related button), you may be surprised
to find the output shown in Figure 29-14.

Figure 29-14. Finding a selected . . . StackPanel?

The reason for this output is the fact that the lstColors object is maintaining three StackPanel
objects, each of which contains nested content. Therefore, SelectedItem and SelectedValue are
simply calling ToString() on the StackPanel type, which returns its fully qualified name.

While you would be able to simply figure out which item was selected using the numerical
value returned from SelectedIndex, another approach is to drill into the StackPanel’s child

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1079

8849CH29.qxd 10/16/07 12:17 PM Page 1079

collection to grab the Content value of the Label using the StackPanel’s internally maintained
Children collection as follows:

protected void btnGetColor_Clicked(object sender, RoutedEventArgs args)
{
// Get the Content value in the selected Label in the StackPanel.
StackPanel selectedStack =
(StackPanel)lstColors.Items[lstColors.SelectedIndex];

string color = ((Label)(selectedStack.Children[1])).Content.ToString();

string data = string.Empty;
data += string.Format("SelectedIndex = {0}\n", lstColors.SelectedIndex);
data += string.Format("Color = {0}", color);
MessageBox.Show(data, "Your Game Info");

}

While this does the trick, this solution is very fragile in that we have hard-coded positions
within the StackPanel (the second child, being the Label) and are required to perform numerous
casting operations. Another alternative is to set the Tag property of each StackPanel, which is
defined in the FrameworkElement base class:

<ListBox Name = "lstColors">
<StackPanel Orientation ="Horizontal" Tag ="Yellow">

...
</StackPanel>
<StackPanel Orientation ="Horizontal" Tag ="Blue">

...
</StackPanel>
<StackPanel Orientation ="Horizontal" Tag ="Green">

...
</StackPanel>

</ListBox>

Using this approach, our code cleans up considerably, as we can pluck out the value assigned
to Tag programmatically as follows:

protected void btnGetColor_Clicked(object sender, RoutedEventArgs args)
{
string data = string.Empty;
data += string.Format("SelectedIndex = {0}\n", lstColors.SelectedIndex);
data += string.Format("SelectedItem = {0}\n", lstColors.SelectedItem);
data += string.Format("SelectedValue = {0}",
(lstColors.Items[lstColors.SelectedIndex] as StackPanel).Tag);

MessageBox.Show(data, "Your Color Info");
}

While this approach is a bit cleaner than our first attempt, there are other manners in which
you can capture values from a complex control using data templates. To do so requires an under-
standing of the WPF data-binding engine, which you will examine at the conclusion of this chapter.

■Source Code The ListControls project is included under the Chapter 29 subdirectory.

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1080

8849CH29.qxd 10/16/07 12:17 PM Page 1080

Working with Text Areas
WPF ships with a number of UI elements that allow you to gather textual-based user input. The
most primitive types would be TextBox and PasswordBox, which we will examine here using a new
Visual Studio 2008 WPF Application named TextControls.

Working with the TextBox Type
Like other TextBox types you have used in the past, the WPF TextBox type can be configured to hold
a single line of text (the default setting) or multiple lines of text if the AcceptReturn property is set
to true. Information within a TextBox will always be treated as character data, and therefore the
“content” is always a string type that can be set and retrieved using the Text property:

<TextBox Name ="txtData" Text = "Hello!" BorderBrush ="Blue" Width ="100"/>

One aspect of the WPF TextBox type that is very unique is that it has the built-in ability to check
the spelling of the data entered within it by setting the SpellCheck.IsEnabled property to true.
When you do so, you will notice that like Microsoft Office, misspelled words are underlined in a red
squiggle. Even better, there is an underlying programming model that gives you access to the spell-
checker engine, which allows you to get a list of suggestions for misspelled words.

Update your current window XAML definition to make use of a Label, TextBox, and Button as
follows (notice this TextBox supports multiple lines of text and has enabled spell checking):

<Window x:Class="TextControls.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="TextControls" Height="204" Width="292" >

<StackPanel>
<Label FontSize ="15">Is this word spelled correctly?</Label>
<TextBox SpellCheck.IsEnabled ="True" AcceptsReturn ="True"
Name ="txtData" FontSize ="12"
BorderBrush ="Blue" Height ="100">

</TextBox>
<Button Name ="btnOK" Content ="Get Selections"

Width = "100" Click ="btnOK_Click"/>
</StackPanel>

</Window>

With just this much functionality, you will already notice that when you type misspelled words
into your TextBox, errors are marked as such. To complete our simple spell checker, update the
Click event handler for the Button type as follows:

protected void btnOK_Click(object sender, RoutedEventArgs args)
{
string spellingHints = string.Empty;

// Try to get a spelling error at the current caret location.
SpellingError error = txtData.GetSpellingError(txtData.CaretIndex);
if (error != null)
{
// Build a string of spelling suggestions.
foreach (string s in error.Suggestions)
{
spellingHints += string.Format("{0}\n", s);

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1081

8849CH29.qxd 10/16/07 12:17 PM Page 1081

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

}

// Show suggestions.
MessageBox.Show(spellingHints, "Try these instead");

}
}

The code is quite simple. We simply figure the current location of the caret in the text box using
the CaretIndex property in order to extract a SpellingError object. If there is an error at said loca-
tion (meaning the value is not null), we loop over the list of suggestions via the aptly named
Suggestions property. Finally, we display the possibilities using a simple MessageBox.Show() request.
Figure 29-15 shows a possible test run when the caret is within the misspelled word “auromatically.”

Figure 29-15. A custom spell checker!

Working with the PasswordBox Type
The PasswordBox type, not surprisingly, allows you to define a safe place to enter sensitive text
data. By default, the password character is a circle type; however, this can be changed using the
PasswordChar property. To obtain the value entered by the end user, simply check the Password
property. Let’s update our current spell-checking application by requiring the correct password
to see the list of spelling suggestions. First, update your existing <StackPanel> with a nested
<StackPanel> that places the PasswordBox horizontally alongside the existing <Button>:

<StackPanel>
<Label FontSize ="15">Is this word spelled correctly?</Label>
<TextBox SpellCheck.IsEnabled ="True" AcceptsReturn ="True"

Name ="txtFavoriteColor" FontSize ="14"
BorderBrush ="Blue" Height ="100">

</TextBox>
<StackPanel Orientation ="Horizontal">
<PasswordBox Name ="pwdText" BorderBrush ="Black" Width ="100"></PasswordBox>
<Button Name ="btnOK" Content ="Get Selections"

Width = "100" Click ="btnOK_Click"/>
</StackPanel>

</StackPanel>

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1082

8849CH29.qxd 10/16/07 12:17 PM Page 1082

Now update your current Button Click event handler to make a call to a helper function named
CheckPassword(), which tests against a hard-coded string. Be sure to only allow the suggestions to
be presented if the check is successful. Here are the relevant updates:

public partial class MainWindow : System.Windows.Window
{
...
protected void btnOK_Click(object sender, RoutedEventArgs args)
{
if (CheckPassword())
{
// Same spell-checking logic as before...

}
else
MessageBox.Show("Security error!!");

}

private bool CheckPassword()
{
if (pwdText.Password == "Chucky")
return true;

else
return false;

}
}

Beyond TextBox and PasswordBox, do be aware that if you are building an application that has a
text area that can contain any type of content (graphical renderings, text, etc.), WPF also provides
the RichTextBox. Furthermore, if you require the horsepower to build an extremely text-intensive
application, WPF provides an entire document presentation API represented primarily within the
System.Windows.Documents namespace.

Here you will find types that allow you to build flow documents, which allow you to program-
matically represent (in XAML or C# code) paragraphs, sections of related text blocks, sticky notes,
annotations, tables, and other rich document-centric types. This edition of the text does not cover
the RichTextBox or the flow document API, however; be sure to consult the .NET Framework 3.5
SDK documentation for further details if you are so inclined.

■Source Code The TextControls project is included under the Chapter 29 subdirectory.

That wraps up our initial look at the WPF control set. You’ll see how to build menu systems,
status bars, and toolbars later in this chapter. The next task, however, is to learn how to arrange UI
elements within a Window type using any number of panel types.

Controlling Content Layout Using Panels
A real-world WPF application invariability contains a good number of UI elements (user input con-
trols, graphical content, menu systems, status bars, etc.) that need to be well organized within the
containing window. As well, once the UI widgets have been placed in their new home, you will want
to make sure they behave as intended when the end user resizes the window or possibly a portion of
the window (as in the case of a splitter window). To ensure your WPF controls retain their position
within the hosting window, we are provided with a good number of panel types.

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1083

8849CH29.qxd 10/16/07 12:17 PM Page 1083

As you may recall from the previous chapter, when you place content within a window that
does not make use of panels, it is positioned dead center within the container. Consider the follow-
ing simple window declaration containing a single Button type. Regardless of how you resize the
window, the UI widget is always equidistant on all four sizes of the client area.

<!-- This button is in the center of the window at all times-->
<Window x:Class="MyWPFApp.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Fun with Panels!" Height="285" Width="325">
<Button Name="btnOK" Height = "100" Width="80">OK</Button>

</Window>

Also recall that if you attempt to place multiple elements directly within the scope of a
<Window>, you will receive markup and/or compile-time errors. The reason for these errors is that a
window (or any descendant of ContentControl for that matter) can assign only a single object to its
Content property:

<!-- Error! Content property is implicitly set more than once!-->
<Window x:Class="MyWPFApp.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Fun with Panels!" Height="285" Width="325">

<!-- Ack! Two direct child elements of the <Window>!
<Label Name="lblInstructions"
Width="328" Height="27" FontSize="15">Enter Car Information</Label>

<Button Name="btnOK" Height = "100" Width="80">OK</Button>
</Window>

Obviously a window that can only contain a single item is of little use. When a window needs to
contain multiple elements, they must be arranged within any number of panels. The panel will con-
tain all of the UI elements that represent the window, after which the panel itself is used as the
object assigned to the Content property.

The Core Panel Types of WPF
The System.Windows.Controls namespace System.Windows.Controls namespace provides numer-
ous panel types, each of which controls how subelements are positioned. Using panels, you can
establish how the widgets behave when the end user resizes the window, if they remain exactly
where placed at design time, if they reflow horizontally left to right or vertically top to bottom,
and so forth.

To build complex user interfaces, panel controls can be intermixed (e.g., a DockPanel that con-
tains a StackPanel) to provide for a great deal of flexibility and control. Furthermore, the panel types
can work in conjunction with other document-centric controls (such as the ViewBox, TextBlock,
TextFlow, and Paragraph types) to further customize how content is arranged within a given panel.
Table 29-3 documents the role of some commonly used WPF panel controls.

Table 29-3. Core WPF Panel Controls

Panel Control Meaning in Life

Canvas Provides a “classic” mode of content placement. Items stay exactly where you put
them at design time.

DockPanel Locks content to a specified side of the panel (Top, Bottom, Left, or Right).

Grid Arranges content within a series of cells, maintained within a tabular grid.

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1084

8849CH29.qxd 10/16/07 12:17 PM Page 1084

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Panel Control Meaning in Life

StackPanel Stacks content in a vertical or horizontal manner, as dictated by the Orientation
property.

WrapPanel Positions content from left to right, breaking the content to the next line at the
edge of the containing box. Subsequent ordering happens sequentially from top
to bottom or from right to left, depending on the value of the Orientation
property.

To illustrate the use of these commonly used panel types, in the next sections we’ll build the UI
shown in Figure 29-16 within various panels and observe how the positioning changes when the
window is resized.

Figure 29-16. Our target UI layout

Positioning Content Within Canvas Panels
Far and away, the simplest panel is Canvas. Most likely, Canvas is the panel you will feel most at
home with, as it emulates the default layout of a Windows Forms application. Simply put, a Canvas
panel allows for absolute positioning of UI content. If the end user resizes the window to an area
that is smaller than the layout maintained by the Canvas panel, the internal content will not be visi-
ble until the container is stretched to a size equal to or larger than the Canvas area.

To add content to a Canvas, define the required subelements within the scope of the opening
<Canvas> and closing </Canvas> tags and specify the location where rendering should occur (note
that the content position can be relative to the left/right or top/bottom of the Canvas, but not both).
If you wish to have the Canvas stretch over the entire surface of the container, simply omit the
Height and Width properties. Consider the following XAML markup, which defines the layout shown
in Figure 29-16:

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Fun with Panels!" Height="285" Width="325">

<Canvas Background="LightSteelBlue">
<Button Canvas.Left="212" Canvas.Top="203" Name="btnOK" Width="80">OK</Button>
<Label Canvas.Left="17" Canvas.Top="14" Name="lblInstructions"

Width="328" Height="27" FontSize="15">Enter Car Information</Label>
<Label Canvas.Left="17" Canvas.Top="60" Name="lblMake">Make</Label>

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1085

8849CH29.qxd 10/16/07 12:17 PM Page 1085

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

<TextBox Canvas.Left="94" Canvas.Top="60" Name="txtMake"
Width="193" Height="25"/>

<Label Canvas.Left="17" Canvas.Top="109" Name="lblColor">Color</Label>
<TextBox Canvas.Left="94" Canvas.Top="107" Name="txtColor"

Width="193" Height="25"/>
<Label Canvas.Left="17" Canvas.Top="155" Name="lblPetName">Pet Name</Label>
<TextBox Canvas.Left="94" Canvas.Top="153" Name="txtPetName"

Width="193" Height="25"/>
</Canvas>

</Window>

In this example, each item within the <Canvas> scope is qualified by a Canvas.Left and Canvas.
Top value, which control the content’s top-left positioning within the panel, using attached property
syntax (see Chapter 28). As you may have gathered, vertical positioning is controlled using the Top
or Bottom property, while horizontal positioning is established using Left or Right.

Given that each widget has been placed within the <Canvas> element, we find that as the win-
dow is resized, widgets are covered up if the container’s surface area is smaller than the content (see
Figure 29-17).

Figure 29-17. Content in a Canvas panel allows for absolute positioning.

The order you declare content within a Canvas is not used to calculate placement, as this is
based on the control’s size and the Canvas.Top, Canvas.Bottom, Canvas.Left, and Canvas.Right
properties. Given this, the following markup (which groups together like-minded controls) results
in an identical rendering:

<Canvas Background="LightSteelBlue">
<TextBox Canvas.Left="94" Canvas.Top="153" Name="txtColor"

Width="193" Height="25"/>
<TextBox Canvas.Left="94" Canvas.Top="60" Name="txtPetName"

Width="193" Height="25"/>
<TextBox Canvas.Left="94" Canvas.Top="107" Name="txtMake"

Width="193" Height="25"/>

<Label Canvas.Left="17" Canvas.Top="14" Name="lblInstructions"
Width="328" Height="27" FontSize="15">Enter Car Information</Label>
<Label Canvas.Left="17" Canvas.Top="109" Name="lblColor">Color</Label>
<Label Canvas.Left="17" Canvas.Top="155" Name="lblMake">Pet Name</Label>
<Label Canvas.Left="17" Canvas.Top="60" Name="lblPetName">Make</Label>

<Button Canvas.Left="212" Canvas.Top="203" Name="btnOK" Width="80">OK</Button>
</Canvas>

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1086

8849CH29.qxd 10/16/07 12:17 PM Page 1086

■Note If subelements within a Canvas do not define a specific location using attached property syntax, they
automatically attach to the extreme upper-left corner of the Canvas.

Although using the Canvas type may seem like a preferable way to arrange content (because it
feels so familiar), it does suffer from some limitations. First of all, items within a Canvas do not
dynamically resize themselves when applying styles or templates (e.g., their font sizes are unaf-
fected). The other obvious limitation is that the Canvas will not attempt to keep elements visible
when the end user resizes the window to a smaller surface.

Perhaps the best use of the Canvas type is to position graphical content. For example, if you
were building a custom image using XAML, you certainly would want the lines, shapes, and text to
remain in the same location, rather than having them dynamically repositioned as the user resizes
the window! You’ll revisit the Canvas in the next chapter when we examine WPF’s graphical render-
ing services.

■Source Code The SimpleCanvas.xaml file can be found under the Chapter 29 subdirectory.

Positioning Content Within WrapPanel Panels
A WrapPanel allows you to define content that will flow across the panel as the window is resized.
When positioning elements in a WrapPanel, you do not specify top, bottom, left, and right docking
values as you typically do with the Canvas. However, each subelement is free to define a Height and
Width value (among other property values) to control its overall size in the container.

Because content within a WrapPanel does not “dock” to a given side of the panel, the order in
which you declare the elements is critical (content is rendered from the first element to the last).
Consider the following XAML snippet:

<WrapPanel Background="LightSteelBlue">
<Label Name="lblInstruction" Width="328"

Height="27" FontSize="15">Enter Car Information</Label>
<Label Name="lblMake">Make</Label>
<TextBox Name="txtMake" Width="193" Height="25"/>
<Label Name="lblColor">Color</Label>
<TextBox Name="txtColor" Width="193" Height="25"/>
<Label Name="lblPetName">Pet Name</Label>
<TextBox Name="txtPetName" Width="193" Height="25"/>
<Button Name="btnOK" Width="80">OK</Button>

</WrapPanel>

When you view this markup, the content will look out of sorts as you resize the width, as it is
flowing left to right across the window (see Figure 29-18).

Figure 29-18. Content in a WrapPanel behaves much like a vanilla-flavored HTML page.

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1087

8849CH29.qxd 10/16/07 12:17 PM Page 1087

By default, content within a WrapPanel flows left to right. However, if you change the value of
the Orientation property to Vertical, you can have content wrap in a top-to-bottom manner:

<WrapPanel Background="LightSteelBlue" Orientation ="Vertical">

A WrapPanel (as well as some other panel types) may be declared by specifying ItemWidth and
ItemHeight values, which control the default size of each item. If a subelement does provide its own
Height and/or Width value, it will be positioned relative to the size established by the panel. Con-
sider the following markup:

<WrapPanel Background="LightSteelBlue" ItemWidth ="200" ItemHeight ="30">
<Label Name="lblInstruction"

FontSize="15">Enter Car Information</Label>
<Label Name="lblMake">Make</Label>
<TextBox Name="txtMake"/>
<Label Name="lblColor">Color</Label>
<TextBox Name="txtColor"/>
<Label Name="lblPetName">Pet Name</Label>
<TextBox Name="txtPetName"/>
<Button Name="btnOK" Width ="80">OK</Button>

</WrapPanel>

When rendered, we find the output shown in Figure 29-19 (notice the size and position of the
Button widget).

Figure 29-19. A WrapPanel can establish the width and height of a given item.

As you might agree after looking at Figure 29-19, a WrapPanel is not typically the best choice for
arranging content directly in a window, as the elements can become scrambled as the user resizes
the window. In most cases, a WrapPanel will be a subelement to another panel type, to allow a small
area of the window to wrap its content when resized.

■Source Code The SimpleWrapPanel.xaml file can be found under the Chapter 29 subdirectory.

Positioning Content Within StackPanel Panels
Like a WrapPanel, a StackPanel control arranges content into a single line that can be oriented hori-
zontally or vertically (the default), based on the value assigned to the Orientation property. The
difference, however, is that the StackPanel will not attempt to wrap the content as the user resizes
the window. Rather, the items in the StackPanel will simply stretch (based on their orientation) to
accommodate the size of the StackPanel itself. For example, the following markup results in the
output shown in Figure 29-20:

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1088

8849CH29.qxd 10/16/07 12:17 PM Page 1088

<StackPanel Background="LightSteelBlue">
<Label Name="lblInstruction"

FontSize="15">Enter Car Information</Label>
<Label Name="lblMake">Make</Label>
<TextBox Name="txtMake"/>
<Label Name="lblColor">Color</Label>
<TextBox Name="txtColor"/>
<Label Name="lblPetName">Pet Name</Label>
<TextBox Name="txtPetName"/>
<Button Name="btnOK">OK</Button>

</StackPanel>

Figure 29-20. Vertical stacking of content

If we assign the Orientation property to Horizontal as follows, the rendered output will match
that of Figure 29-21:

<StackPanel Background="LightSteelBlue" Orientation ="Horizontal">

Figure 29-21. Horizontal stacking of content

Again, like the WrapPanel, you will seldom want to use a StackPanel to directly arrange content
within a window. Rather, a StackPanel is better suited as a subpanel to a master panel.

■Source Code The SimpleStackPanel.xaml file can be found under the Chapter 29 subdirectory.

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1089

8849CH29.qxd 10/16/07 12:17 PM Page 1089

Positioning Content Within Grid Panels
Of all the panels provided with the WPF APIs, Grid is far and away the most flexible. Like an HTML
table, the Grid can be carved up into a set of cells, each one of which provides content. When defin-
ing a Grid, you perform three steps:

1. Define and configure each column.

2. Define and configure each row.

3. Assign content to each cell of the grid using attached property syntax.

■Note If you do not define any rows or columns, the <Grid> defaults to a single cell that fills the entire surface
of the window. Furthermore, if you do not assign a cell value for a subelement within a <Grid>, it automatically
attaches to column 0, row 0.

The first two steps (defining the columns and rows) are achieved by using the <Grid.
ColumnDefinitions> and <Grid.RowDefinitions> elements, which contain a collection of
<ColumnDefinition> and <RowDefinition> elements, respectively. Because each cell within a grid is
indeed a true .NET type, you can configure the look and feel and behavior of each item as you see
fit. Here is a rather simple <Grid> definition that arranges our UI content as shown in Figure 29-22:

<Grid ShowGridLines ="True" Background ="AliceBlue">
<!-- Define the rows/columns -->
<Grid.ColumnDefinitions>
<ColumnDefinition/>
<ColumnDefinition/>

</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition/>
<RowDefinition/>

</Grid.RowDefinitions>

<!-- Now add the elements to the grid's cells-->
<Label Name="lblInstruction" Grid.Column ="0" Grid.Row ="0"

FontSize="15">Enter Car Information</Label>
<Button Name="btnOK" Height ="30" Grid.Column ="0" Grid.Row ="0" >OK</Button>
<Label Name="lblMake" Grid.Column ="1" Grid.Row ="0">Make</Label>
<TextBox Name="txtMake" Grid.Column ="1" Grid.Row ="0" Width="193" Height="25"/>
<Label Name="lblColor" Grid.Column ="0" Grid.Row ="1" >Color</Label>
<TextBox Name="txtColor" Width="193" Height="25" Grid.Column ="0" Grid.Row ="1" />

<!-- Just to keep things interesting, add some color to the pet name cell -->
<Rectangle Fill ="LightGreen" Grid.Column ="1" Grid.Row ="1" />
<Label Name="lblPetName" Grid.Column ="1" Grid.Row ="1" >Pet Name</Label>
<TextBox Name="txtPetName" Grid.Column ="1" Grid.Row ="1"

Width="193" Height="25"/>
</Grid>

Notice that each element (including a light green Rectangle element, thrown in for good meas-
ure) connects itself to a cell in the grid using the Grid.Row and Grid.Column attached properties. By
default, the ordering of cells in a grid begins at the upper left, which is specified via Grid.Column="0"
Grid.Row="0". Given that our grid defines a total of four cells, the bottom-right cell can be identified
via Grid.Column="1" Grid.Row="1".

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1090

8849CH29.qxd 10/16/07 12:17 PM Page 1090

Figure 29-22. The Grid panel in action

■Source Code The SimpleGrid.xaml file can be found under the Chapter 29 subdirectory.

Grids with GridSplitter Types
Grid types can also support splitters. As you most likely know, splitters allow the end user to resize
rows or columns of a grid type. As this is done, the content within each resizable cell will reshape
itself based on how the items have been contained. Adding splitters to a Grid is very easy to do;
simply define the <GridSplitter> type, using attached property syntax to establish which row or
column it affects. Do be aware that you must assign a Width or Height value (depending on vertical
or horizontal splitting) in order to be visible on the screen. Consider the following simple Grid type
with a splitter on the first column (Grid.Column = "0"):

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="FunWithPanels" Height="191" Width="436">
<Grid Background ="AliceBlue">
<!-- Define columns -->
<Grid.ColumnDefinitions>
<ColumnDefinition Width ="Auto"/>
<ColumnDefinition/>

</Grid.ColumnDefinitions>

<!-- Add this label to cell 0 -->
<Label Name="lblLeft" Background ="GreenYellow"

Grid.Column="0" Content ="Left!"/>

<!-- Define the splitter -->
<GridSplitter Grid.Column ="0" Width ="5"/>

<!-- Add this label to cell 1 -->
<Label Name="lblRight" Grid.Column ="1" Content ="Right!"/>

</Grid>
</Window>

First and foremost, notice that the column that will support the splitter has a Width property of
Auto. Next, notice that the <GridSplitter> makes use of attached property syntax to establish which
column it is working with. If you were to view this output, you would find a 5-pixel splitter that
allows you to resize each Label (because we have not specified Height or Width properties for either
Label, they fill up the entire cell). See Figure 29-23.

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1091

8849CH29.qxd 10/16/07 12:17 PM Page 1091

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Figure 29-23. Grid types containing splitters

■Source Code The GridWithSplitter.xaml file can be found under the Chapter 29 subdirectory.

Positioning Content Within DockPanel Panels
DockPanel is typically used as a master panel that contains any number of additional panels for
grouping of related content. DockPanels make use of attached property syntax as seen with the
Canvas type, to control where their upper-left corner (the default) will attach itself within the panel.
Here is a very simple DockPanel definition, which results in the output shown in Figure 29-24:

<DockPanel LastChildFill ="True">
<!-- Dock items to the panel -->
<Label DockPanel.Dock ="Top" Name="lblInstruction"

FontSize="15">Enter Car Information</Label>
<Label DockPanel.Dock ="Left" Name="lblMake">Make</Label>
<Label DockPanel.Dock ="Right" Name="lblColor">Color</Label>
<Label DockPanel.Dock ="Bottom" Name="lblPetName">Pet Name</Label>
<Button Name="btnOK">OK</Button>

</DockPanel>

Figure 29-24. A simple DockPanel

■Note If you add multiple elements to the same side of a DockPanel, they will be stacked along the specified
edge in the order that they are declared.

The benefit of using DockPanel types is that as the user resizes the window, each element
remains “connected” to the specified side of the panel (via DockPanel.Dock). Also notice that the
opening <DockPanel> element sets the LastChildFill attribute to true. Given that the Button type
has not specified any DockPanel.Dock value, it will therefore be stretched within the remaining
space.

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1092

8849CH29.qxd 10/16/07 12:17 PM Page 1092

■Source Code The SimpleDockPanel.xaml file can be found under the Chapter 29 subdirectory.

Enabling Scrolling for Panel Types
It is worth pointing out the WPF supplies a <ScrollViewer> type, which provides automatic scrolling
behaviors for nested panel types:

<ScrollViewer>
<StackPanel>
<Button Content ="First" Background = "Green" Height ="40"/>
<Button Content ="Second" Background = "Red" Height ="40"/>
<Button Content ="Third" Background = "Pink" Height ="40"/>
<Button Content ="Fourth" Background = "Yellow" Height ="40"/>
<Button Content ="Fifth" Background = "Blue" Height ="40"/>

</StackPanel>
</ScrollViewer>

The result of the previous XAML definition is shown in Figure 29-25.

Figure 29-25. Working with the ScrollViewer type

■Source Code The ScrollViewer.xaml file can be found under the Chapter 29 subdirectory.

As you would expect, each panel provides numerous members that allow you to fine-tune con-
tent placement. On a related note, WPF controls all support two properties of interest (Padding and
Margin) that allow the control itself to inform the panel how it wishes to be treated. Specifically, the
Padding property controls how much extra space should surround the interior control, while Margin
controls the extra space around the exterior of a control.

This wraps up our look at the major panel types of WPF, and the various ways they position
their content. Next, we will see an example using nested panels to create a layout system for a main
window. To do so, we will enhance the functionality of the TextControls project (e.g., the spell-
checker app) to support a main menu, a status bar, and a toolbar.

Building a Window’s Frame Using Nested Panels
This updated version of the application (which we will assume is a new Visual Studio 2008 WPF
Application project named MySpellChecker) will be extended and finalized over the pages to come,
so for the time being, you will construct the core layout and base functionality.

Our goal is to construct a layout where the main window has a topmost menu system, a tool-
bar, and a status bar mounted on the bottom of the window. The status bar will contain a pane to
hold text prompts that are displayed when the user selects a menu item (or toolbar button), while

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1093

8849CH29.qxd 10/16/07 12:17 PM Page 1093

the menu system and toolbar will offer UI triggers to close the application and display spelling sug-
gestions in an Expander widget. Figure 29-26 shows the initial layout we are shooting for, displaying
spelling suggestions for “XAML.”

Figure 29-26. Using nested panels to establish a window’s UI

Notice that our two toolbar buttons are not supporting an expected image, but a simple text
value. While this would not be sufficient for a production-level application, assigning images to
toolbar buttons typically involves using embedded resources, a topic that you will examine in
Chapter 30 (so text data will do for now). Also note that as the mouse button is placed over the
Check button, the mouse cursor changes and the single pane of the status bar displays a useful UI
message.

To begin building this UI, update the initial XAML definition for your Window type to make use
of a <DockPanel> child element, rather than the default <Grid>:

<Window x:Class="MySpellChecker.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="MySpellChecker" Height="331" Width="508"
WindowStartupLocation ="CenterScreen" >

<!-- This panel establishes the content for the window -->
<DockPanel>
</DockPanel>

</Window>

Building the Menu System
Menu systems in WPF are represented by the Menu type, which maintains a collection of MenuItem
objects. When building a menu system in XAML, each MenuItem may handle various events, most
notably Click, which occurs when the end user selects a subitem. In our example, we will build two
topmost menu items (File and Tools), which expose Exit and Spelling Hints subitems (respectively).
In addition to handling the Click event for each subitem, we will also handle the MouseEnter and
MouseExit events, which will be used to set the status bar text in a later step. Add the following
markup within your <DockPanel> scope:

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1094

8849CH29.qxd 10/16/07 12:17 PM Page 1094

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

<!--Doc menu system on the top-->
<Menu DockPanel.Dock ="Top"

HorizontalAlignment="Left" Background="White" BorderBrush ="Black">
<MenuItem Header="_File" Click ="FileExit_Click" >
<Separator/>
<MenuItem Header ="_Exit" MouseEnter ="MouseEnterExitArea"

MouseLeave ="MouseLeaveArea" Click ="FileExit_Click"/>
</MenuItem>
<MenuItem Header="_Tools">
<MenuItem Header ="_Spelling Hints" MouseEnter ="MouseEnterToolsHintsArea"

MouseLeave ="MouseLeaveArea" Click ="ToolsSpellingHints_Click"/>
</MenuItem>

</Menu>

Notice that we have docked the menu system to the top of the DockPanel. As well, the
<Separator> element has been used to insert a thin horizontal line in the menu system, directly
before the Exit option. Also notice that the Header values for each MenuItem contain an embedded
underbar token (for example, _Exit). This is used to establish which letter will be underlined when
the end user presses the Alt key (for keyboard shortcuts).

The complete the menu system definition, we now need to implement the various event han-
dlers. First, we have the File ➤ Exit handler, FileExit_Click(), which will simply terminate the
application via Application.Current.Shutdown(). The MouseEnter and MouseExit event handlers for
each subitem will eventually update our status bar; however, for now, we will simply provide shells.
Finally, the ToolsSpellingHints_Click() handler for the Tools ➤ Spelling Hints menu item will also
be a shell for the time being. Here are the current updates to your code-behind file:

public partial class MainWindow : System.Windows.Window
{
public MainWindow()
{
InitializeComponent();

}

protected void FileExit_Click(object sender, RoutedEventArgs args)
{
// Terminate the application.
Application.Current.Shutdown();

}

protected void ToolsSpellingHints_Click(object sender, RoutedEventArgs args)
{
}
protected void MouseEnterExitArea(object sender, RoutedEventArgs args)
{
}
protected void MouseEnterToolsHintsArea(object sender, RoutedEventArgs args)
{
}
protected void MouseLeaveArea(object sender, RoutedEventArgs args)
{
}

}

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1095

8849CH29.qxd 10/16/07 12:17 PM Page 1095

Building the ToolBar Type
Toolbars (represented by the ToolBar type in WPF) typically provide an alternative manner to acti-
vate a menu option. Add the following markup directly after the closing scope of your <Menu>
definition:

<!-- Put Toolbar under the Menu -->
<ToolBar DockPanel.Dock ="Top" >
<Button Content ="Exit" MouseEnter ="MouseEnterExitArea"

MouseLeave ="MouseLeaveArea" Click ="FileExit_Click"/>
<Separator/>
<Button Content ="Check" MouseEnter ="MouseEnterToolsHintsArea"

MouseLeave ="MouseLeaveArea" Click ="ToolsSpellingHints_Click"
Cursor="Help" />

</ToolBar>

Our <ToolBar> type consists of two Button types, which just so happen to handle the same
events and are handled by the same methods in our code file. Using this technique, we are able to
double-up our handlers to serve both menu items and toolbar buttons. Although this toolbar is
making use of the typical push buttons, do know that the ToolBar type “is-a” ContentControl, and
therefore you are free to embed any types into its surface (drop-down lists, images, graphics, etc.).
The only other point of interest is that the Check button supports a custom mouse cursor via the
Cursor property.

■Note The ToolBar type may optionally be wrapped within a <ToolBarTray> element, which controls layout,
docking, and drag-and-drop operations for a set of ToolBar objects. Consult the .NET Framework 3.5 SDK docu-
mentation for details.

Building the StatusBar Type
The StatusBar type will be docked to the lower portion of the <DockPanel> and contain a single
<TextBlock> type, which up until this point in the chapter we have not made use of. Like a TextBox,
a TextBlock can be used to hold text. In addition, TextBlock types honor the use of numerous tex-
tual annotations such as bold text, underlined text, line breaks, and so forth. While our StatusBar
does not technically need this support, another benefit of a TextBlock type is that it is optimized for
small blurbs of text, such as UI prompts in a status bar pane. Add the following markup directly
after the previous ToolBar definition:

<!-- Put a StatusBar at the bottom -->
<StatusBar DockPanel.Dock ="Bottom" Background="Beige" >
<StatusBarItem>
<TextBlock Name="statBarText">Ready</TextBlock>

</StatusBarItem>
</StatusBar>

At this point, your Visual Studio designer should look something like Figure 29-27.

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1096

8849CH29.qxd 10/16/07 12:17 PM Page 1096

Figure 29-27. The current user interface of our spell-checker application

Finalizing the UI Design
The final aspect of our UI design is to define a splittable Grid type that defines two columns. On
the left will be the Expander type that will display a list of spelling suggestions, wrapped within a
<StackPanel>. On the right will be a TextBox type that supports multiple lines and has enabled spell
checking. The entire <Grid> will be mounted to the left of the parent <DockPanel>. Add the following
XAML markup to complete the definition of our Window’s UI:

<Grid DockPanel.Dock ="Left" Background ="AliceBlue">
<!-- Define the rows and columns -->
<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />

</Grid.ColumnDefinitions>
<GridSplitter Grid.Column ="0" Width ="5" Background ="Gray" />
<StackPanel Grid.Column="0" VerticalAlignment ="Stretch" >
<Label Name="lblSpellingInstructions" FontSize="14" Margin="10,10,0,0">
Spelling Hints
</Label>

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1097

8849CH29.qxd 10/16/07 12:17 PM Page 1097

<Expander Name="expanderSpelling" Header ="Try these!" Margin="10,10,10,10">
<!-- This will be filled programmatically -->
<Label Name ="lblSpellingHints" FontSize ="12"/>

</Expander>
</StackPanel>

<!-- This will be the area to type within -->
<TextBox Grid.Column ="1"

SpellCheck.IsEnabled ="True"
AcceptsReturn ="True"
Name ="txtData" FontSize ="14"
BorderBrush ="Blue">

</TextBox>
</Grid>

Finalizing the Implementation
At this point, your UI is complete. The only remaining tasks are to provide an implementation for
the remaining event handlers. Here is the relevant code in question, which requires little comment
by this point in the chapter:

public partial class MainWindow : System.Windows.Window
{
...
protected void ToolsSpellingHints_Click(object sender, RoutedEventArgs args)
{
string spellingHints = string.Empty;

// Try to get a spelling error at the current caret location.
SpellingError error = txtData.GetSpellingError(txtData.CaretIndex);
if (error != null)
{
// Build a string of spelling suggestions.
foreach (string s in error.Suggestions)
{
spellingHints += string.Format("{0}\n", s);

}

// Show suggestions on Label within Expander.
lblSpellingHints.Content = spellingHints;

// Expand the expander.
expanderSpelling.IsExpanded = true;

}
}
protected void MouseEnterExitArea(object sender, RoutedEventArgs args)
{
statBarText.Text = "Exit the Application";

}
protected void MouseEnterToolsHintsArea(object sender, RoutedEventArgs args)
{
statBarText.Text = "Show Spelling Suggestions";

}
protected void MouseLeaveArea(object sender, RoutedEventArgs args)
{

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1098

8849CH29.qxd 10/16/07 12:17 PM Page 1098

statBarText.Text = "Ready";
}

}

So there you have it! With just a few lines of procedural code (and a healthy dose of XAML), we
have the beginnings of a functioning word processor. To add just a bit more pizzazz requires an
understanding of control commands.

Understanding WPF Control Commands
The next major discussion of this chapter is to examine the topic of control commands. Windows
Presentation Foundation provides support for what might be considered “control-agnostic events”
via control commands. As you know, a typical .NET event is defined within a specific base class and
can only be used by that class or a derivative thereof. Furthermore, normal .NET events are tightly
coupled to the class in which they are defined.

In contrast, WPF control commands are event-like entities that are independent from a specific
control and in many cases can be successfully applied to numerous (and seemingly unrelated) con-
trol types. By way of a few examples, WPF supports Copy, Paste, and Cut commands, which can be
applied to a wide variety of UI elements (menu items, toolbar buttons, custom buttons) as well as
keyboard shortcuts (Ctrl+C, Ctrl+V, etc.).

While other UI toolkits (such as Windows Forms) provided standard events for such purposes,
the end result was typically redundant and hard to maintain code. Under the WPF model, com-
mands can be used as an alternative. The end result typically yields a smaller and more flexible
code base.

The Intrinsic Control Command Objects
WPF ships with numerous built-in control commands, all of which can be configured with associ-
ated keyboard shortcuts (or other input gestures). Programmatically speaking, a WPF control
command is any object that supports a property (often called Command) that returns an object imple-
menting the ICommand interface, shown here:

public interface ICommand
{
// Occurs when changes occur that affect whether
// or not the command should execute.
event EventHandler CanExecuteChanged;

// Defines the method that determines whether the command
// can execute in its current state.
bool CanExecute(object parameter);

// Defines the method to be called when the command is invoked.
void Execute(object parameter);

}

While you could provide your own implementation of this interface to account for a control
command, the chances that you will need to are slim, given functionality provided by the five WPF
command objects out of the box. These static classes define numerous properties that expose
objects that implement ICommand, most commonly the RoutedUICommand type, which adds support
for the WPF routed event model.

Table 29-4 documents some core properties exposed by each of the intrinsic command objects
(be sure to consult the .NET Framework 3.5 SDK documentation for complete details).

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1099

8849CH29.qxd 10/16/07 12:17 PM Page 1099

Table 29-4. The Intrinsic WPF Control Command Objects

WPF Control Command Object Example Control Command Properties Meaning in Life

ApplicationCommands Close, Copy, Cut, Delete, Find, Open, Defines properties that
Paste, Save, SaveAll, Redo, Undo represent application-

level commands

ComponentsCommands MoveDown, MoveFocusBack, MoveLeft, Defines properties that
MoveRight, ScrollToEnd, map to common
ScrollToHome commands performed by

UI elements

MediaCommands BoostBase, ChannelUp, ChannelDown, Defines properties that
FastForward, NextTrack, Play, allow various media-
Rewind, Select, Stop centric controls to issue

common commands

NavigationCommands BrowseBack, BrowseForward, Defines numerous
Favorites, LastPage, NextPage, properties that are used
Zoom for the applications that

utilize the WPF
navigation model

EditingCommands AlignCenter, CorrectSpellingError, Defines numerous
DecreaseFontSize, EnterLineBreak, properties typically used
EnterParagraphBreak, MoveDownByLine, when programming with
MoveRightByWord objects exposed by the

WPF document API

Connecting Commands to the Command Property
If you wish to connect any of these command properties to a UI element that supports the Command
property (such as a Button or MenuItem), you have very little work to do. To see how to do so, update
the current menu system to support a new topmost menu item named Edit and three subitems to
account for copying, pasting, and cutting of textual data:

<Menu DockPanel.Dock ="Top"
HorizontalAlignment="Left" Background="White" BorderBrush ="Black">

<MenuItem Header="_File" Click ="FileExit_Click" >
<Separator/>
<MenuItem Header ="_Exit" MouseEnter ="MouseEnterExitArea"

MouseLeave ="MouseLeaveArea" Click ="FileExit_Click"/>
</MenuItem>

<!-- New menu item with commands! -->
<MenuItem Header="_Edit">
<MenuItem Command ="ApplicationCommands.Copy"/>
<MenuItem Command ="ApplicationCommands.Cut"/>
<MenuItem Command ="ApplicationCommands.Paste"/>

</MenuItem>

<MenuItem Header="_Tools">
<MenuItem Header ="_Spelling Hints" MouseEnter ="MouseEnterToolsHintsArea"
MouseLeave ="MouseLeaveArea" Click ="ToolsSpellingHints_Click"/>

</MenuItem>
</Menu>

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1100

8849CH29.qxd 10/16/07 12:17 PM Page 1100

Notice that each subitem has a value assigned to the Command property. By doing so, the menu
items automatically receive the correct name and shortcut key (for example, Ctrl+C for a cut
operation) in the menu item UI and the application is now “copy, cut, and paste” aware with no
procedural code. Thus, if you were to run the application and select some of your text, you will
be able to use your new menu items out of the box, as shown in Figure 29-28.

Figure 29-28. Command objects provide a good deal of canned functionality for free.

Connection Commands to Arbitrary UI Elements
If you wish to connect a command to a UI element that does not support the Command property,
doing so requires you to drop down to procedural code. Doing so is certainly not complex, but it
does involve a bit more logic than you see in XAML. For example, what if you wished to have the
entire window respond to the F1 key, so that when the end user presses this key, he or she would
activate an associated help system?

Assume your code file for the main window defines a new method named
SetF1CommandBinding(), which is called within the constructor after the call to InitializeComponent().
This new method will programmatically create a new CommandBinding object, which is configured to
operate with the ApplicationCommands.Help option, which is automatically F1-aware:

private void SetF1CommandBinding()
{
CommandBinding helpBinding = new CommandBinding(ApplicationCommands.Help);
helpBinding.CanExecute += CanHelpExecute;
helpBinding.Executed += HelpExecuted;
CommandBindings.Add(helpBinding);

}

Most CommandBinding objects will want to handle the CanExecute event (which allows you to
specify whether the command occurs or not based on the operation of your program) and the
Executed event (which is where you can author the content that should occur once the command
occurs). Add the following event handlers to your Window-derived type (take note of the format of
each method as required by the associated delegates):

private void CanHelpExecute(object sender, CanExecuteRoutedEventArgs e)
{
// Here, you can set CanExecute to false if you wish to prevent the
// command from executing if you desire.

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1101

8849CH29.qxd 10/16/07 12:17 PM Page 1101

e.CanExecute = true;
}

private void HelpExecuted(object sender, ExecutedRoutedEventArgs e)
{
MessageBox.Show("Dude, it is not that difficult. Just type something!",

"Help!");
}

Here, we have implemented CanHelpExecute() to always allow F1 help to occur by simply
returning true. However, if you have certain situations where the help system should not display,
you can account for this and return false when necessary. Our “help system” displayed within
HelpExecute() is little more than a message box. At this point, you can run your application. When
you press the F1 key on your keyboard, you will see your (less than helpful, if not a bit insulting)
user guidance system (see Figure 29-29).

Figure 29-29. Our custom help system

■Source Code The MySpellChecker project can be found under the Chapter 29 subdirectory.

Understanding the WPF Data-Binding Model
Controls are often the target of various data-binding operations. Simply put, data binding is the act
of connecting control properties to data values that may change over the course of your applica-
tion’s lifetime. By doing so, a user interface element can display the state of a variable in your code;
for example:

• Checking a CheckBox control based on a Boolean property of a given object

• Displaying data in TextBox types from a relational database table

• A Label connected to an integer representing the number of files in a folder

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1102

8849CH29.qxd 10/16/07 12:17 PM Page 1102

When using the intrinsic WPF data-binding engine, you must be aware of the distinction
between the source and the destination of the binding operation. As you might expect, the source of
a data-binding operation is the data itself (a Boolean property, relational data, etc.), while the desti-
nation (or target) is the UI control property that will use the data content (a CheckBox, TextBox, and
so on).

■Note The target property of a data-binding operation must be a dependency property of the UI control.

Truth be told, using the WPF data-binding infrastructure is always optional. If a developer were
to roll his or her own data-binding logic, the connection between a source and destination typically
would involve handling various events and authoring procedural code to connect the source and
destination. For example, if you had a ScrollBar on a window that needed to display its value on a
Label type, you might handle the ScrollBar’s ValueChange event and update the Label’s content
accordingly.

However, using WPF data binding, you can connect the source and destination directly in
XAML (or using C# code in your code file) without the need to handle various events or hard-code
the connections between the source/destination. As well, based on how you set up your data-binding
logic, you can ensure that the source and destination stay in sync if either of their values change.

A First Look at Data Binding
To begin examining WPF’s data-binding capabilities, assume you have a new WPF Application proj-
ect (named SimpleDataBinding) that defines the following markup for a Window type:

<Window x:Class="SimpleDataBinding.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Simple Data Binding" Height="152" Width="300"
WindowStartupLocation="CenterScreen">

<StackPanel Width="250">
<Label Content="Move the scroll bar to see the current value"/>

<!-- The scrollbar's value is the source of this data bind -->
<ScrollBar Orientation="Horizontal" Height="30" Name="mySB"

Maximum = "100" LargeChange="1" SmallChange="1"/>

<!-- The label's content value is the target of the data bind -->
<Label Height="30" BorderBrush="Blue" BorderThickness="2"

Content = "{Binding ElementName=mySB, Path=Value}"
/>

</StackPanel>
</Window>

Notice that the <ScrollBar> type (which we have named mySB) has been configured with a
range between 0 and 100. As you reposition the thumb of the scrollbar (or click the left or right
arrow), the Label will be automatically updated with the current value. The “glue” that makes this
happen is the {Binding} markup extension that has been assigned to the Label’s Content property.
Here, the ElementName value represents the source of the data-binding operation (the ScrollBar
object), while the Path value represents (in this case) the property of the element to obtain.

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1103

8849CH29.qxd 10/16/07 12:17 PM Page 1103

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

■Note ElementName and Path may seem oddly named, as you might expect to find more intuitive names such
as “Source” and “Destination.” However, as you will see later in this chapter, XML documents can be the source of
a data-binding operation (typically using XPath). In this case, the names ElementName and Path fit the bill.

As an alternative format, it is possible to break out the values specified by the {Binding}
markup extension by explicitly setting the DataContext property to the source of the binding opera-
tion as follows:

<!-- Breaking object/value apart via DataContext -->
<Label Height="30" BorderBrush="Blue" BorderThickness="2"
DataContext = "{Binding ElementName=mySB}"
Content = "{Binding Path=Value}"

/>

In either case, if you were to run this application, you would be pleased to find this Label
updating without the need to write any procedural C# code (see Figure 29-30).

Figure 29-30. Binding the ScrollBar value to a Label

The DataContext Property
In the current example, you have seen two approaches to establish the source and destination of a
data-binding operation, both of which resulted in the same output. Given this point, you might
wonder when you would want to explicitly set the DataContext property. This property can be very
helpful in that it is a dependency property, and therefore its value can be inherited by subelements.
In this way, you can easily set the same data source to a family of controls, rather than having to
repeat a bunch of redundant "{Binding ElementName=X, Path=Y}" XAML values to multiple con-
trols. Consider the following updated XAML definition for our current <StackPanel>:

<!-- Note the StackPanel sets the DataContext property -->
<StackPanel Width="250" DataContext = "{Binding ElementName=mySB}">
<Label Content="Move the scroll bar to see the current value"/>

<ScrollBar Orientation="Horizontal" Height="30" Name="mySB"
Maximum = "100" LargeChange="1" SmallChange="1"/>

<!-- Now both UI elements use the scrollbar's value in unique ways. -->
<Label Height="30" BorderBrush="Blue" BorderThickness="2"

Content = "{Binding Path=Value}"/>

<Button Content="Click" Height="200"
FontSize = "{Binding Path=Value}"/>

</StackPanel>

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1104

8849CH29.qxd 10/16/07 12:17 PM Page 1104

Here, the DataContext property has been set on the <StackPanel> directly. Therefore, as we
move the thumb, not only will we see the current value on the Label, but we will also find the font
size of the Button grow and shrink accordingly based on the same value. Figure 29-31 shows one
possible output.

Figure 29-31. Binding the ScrollBar value to a Label and a Button

The Mode Property
When establishing a data-binding operation, you are able to choose among various modes of oper-
ation by setting a value to the Mode property at the time you establish the Path value. By default, the
Mode property is set to the value OneWay, which specifies that changes in the target do not affect the
source. In our example, changing the Content property of the Label does not set the position of the
ScrollBar’s thumb.

If you wish to keep changes between the source and the target in sync, you can set the Mode
property to TwoWay. Thus, changing the value of the Label’s content changes the value of the scroll-
bar’s thumb position. Of course, the end user would be unable to change the content of the Label,
as the content is presented in a read-only manner (we could of course change the value program-
matically).

To illustrate the use of the TwoWay mode, assume we have replaced the Label displaying the cur-
rent scrollbar value with the following TextBox (note the value of the Text property). In this case,
when you type a new value into the text area, the thumb position (and font of the Button type) auto-
matically update when you tab off the TextBox object:

<TextBox Height="30" BorderBrush="Blue"
BorderThickness="2" Text = "{Binding Path=Value}"/>

■Note You may also set the Mode property to OneTime. This option sets the target when initialized but does not
track further changes.

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1105

8849CH29.qxd 10/16/07 12:17 PM Page 1105

Data Conversion Using IValueConverter
The ScrollBar type uses a double to represent the value of the thumb, rather than an expected
whole number (e.g., an integer). Therefore, as you drag the thumb, you will find various floating-
point numbers displayed within the TextBox (such as 61.0576923076923), which would be rather
unintuitive to the end user, who is most likely expecting to see whole numbers (such as 61, 62, 63,
and so on).

When you wish to convert the value of a data-binding operation into an alternative format, one
way to do so is to create a custom class type that implements the IValueConverter interface of the
System.Windows.Data namespace. This interface defines two members that allow you to perform the
conversion to and from the target and destination. Once you define this class, you can use it to fur-
ther qualify the processing of your data-binding operation.

■Note While any data-binding operation can be achieved entirely using procedural code, the following examples
will make use of XAML to convert between data types. Doing so involves the use of custom resources, which will
be fully examined in Chapter 30. Therefore, don’t fret if some of the markup appears unfamiliar.

Assuming that you wish to display whole numbers within the TextBox control, you could build
the following class type (be sure you import the System.Windows.Data namespace in the defining
file):

class MyDoubleConverter : IValueConverter
{
public object Convert(object value, Type targetType, object parameter,

System.Globalization.CultureInfo culture)
{
// Convert the double to an int.
double v = (double)value;
return (int)v;

}

public object ConvertBack(object value, Type targetType, object parameter,
System.Globalization.CultureInfo culture)

{
// Return the incoming value directly.
// This will be used for 2-way bindings.
// In our example, when the user tabs
// off the TextBlock.
return value;

}
}

The Convert() method will be called when the value is transferred from the source (the
ScrollBar) to the destination (the Text property of the TextBox). While we receive a number of
incoming arguments, for this conversion we only need to manipulate the incoming object, which is
the value of the current double. Using this type, we simply cast the type into an integer and return
the new number.

The ConvertBack() method will be called when the value is passed from the destination to the
source (if you have enabled a two-way binding mode). Here, we simply return the value straight-
away. By doing so, we are able to type a floating-point value into the TextBox (such as 99.9) and have
it automatically convert to a whole number value (99) when the user tabs off the control. This “free”
conversion happens due to the fact that the Convert() method is called once again after a call to

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1106

8849CH29.qxd 10/16/07 12:17 PM Page 1106

ConvertBack(). If you were to simply return null from ConvertBack(), your binding would appear to
be out of sync, as the text box would still be displaying a floating-point number!

With this class in place, consider the following XAML updates, which will leverage our custom
converter class to display data in the TextBox:

<Window x:Class="SimpleDataBinding.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

<!-- Need to define a CLR namespace to gain access to our type -->
xmlns:myConverters ="clr-namespace:SimpleDataBinding"

Title="Simple Data Binding" Height="334" Width="288"
WindowStartupLocation="CenterScreen">

<!-- Resource dictionaries allow us to define objects that can
be obtained by their key. More details in Chapter 30. -->

<Window.Resources>
<myConverters:MyDoubleConverter x:Key="DoubleConverter"/>

</Window.Resources>

<!-- The panel is setting the data context to the scrollbar object -->
<StackPanel Width="250" DataContext = "{Binding ElementName=mySB}">

<Label Content="Move the scroll bar to see the current value"/>

<ScrollBar Orientation="Horizontal" Height="30" Name="mySB"
Maximum = "100" LargeChange="1" SmallChange="1"/>

<!-- Notice that the {Binding} extension now sets the Converter property. -->
<TextBox Height="30" BorderBrush="Blue" BorderThickness="2" Name="txtThumbValue"
Text = "{Binding Path=Value, Converter={StaticResource DoubleConverter}}"/>

<Button Content="Click" Height="200"
FontSize = "{Binding Path=Value}"/>

</StackPanel>
</Window>

Once we define a custom XML namespace that maps to our project’s root namespace (see
Chapter 28), we add to the Window’s resource dictionary an instance of our MyDoubleConverter type,
which we can obtain later in the XAML file by the key name DoubleConverter. The Text property of
the TextBox has been modified to make use of our MyDoubleConverter type, assigning the Converter
property to yet another markup extension named StaticResource. Again, full details of the WPF
resource system can be found in Chapter 30. In any case, if you were to run your application, you
would find that only whole numbers will be displayed in the TextBox.

Converting Between Diverse Data Types
An implementation of the IValueConverter interface can be used to convert between any data
types, even if they do not seem related on the surface. In reality, you are able to use the current
value of the ScrollBar’s thumb to return any object type to connect to a dependency property. Con-
sider the following ColorConverter type, which uses the value of the thumb to return a new green
SolidColorBrush (with a green value between 155 and 255):

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1107

8849CH29.qxd 10/16/07 12:17 PM Page 1107

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

class MyColorConverter : IValueConverter
{
public object Convert(object value, Type targetType, object parameter,
System.Globalization.CultureInfo culture)

{
// Use value of thumb to build a varied green brush.
double d = (double)value;
byte v = (byte)d;

Color color = new Color();
color.A = 255;
color.G = (byte) (155 + v);
return new SolidColorBrush(color);

}

public object ConvertBack(object value, Type targetType, object parameter,
System.Globalization.CultureInfo culture)

{
return value;

}
}

If we were to add a new member to our resource dictionary as follows:

<Window.Resources>
<myConverters:MyDoubleConverter x:Key="DoubleConverter"/>
<myConverters:MyColorConverter x:Key="ColorConverter"/>

</Window.Resources>

we could then use the key name to set the Background property of our Button type as follows:

<Button Content="Click" Height="200"
FontSize = "{Binding Path=Value}"
Background= "{Binding Path=Value, Converter={StaticResource ColorConverter}}"/>

Sure enough, if you run your application once again, you’ll find the color of the Button change
based on the scrollbar’s position. To wrap up our look at WPF data binding, let’s check out how to
map custom objects and XML document data to our UI layer.

■Source Code The SimpleDataBinding project can be found under the Chapter 29 subdirectory.

Binding to Custom Objects
The next flavor of data binding we will examine is how to connect the properties of custom objects
to your UI layer. Begin by creating a new WPF Application project named CarViewerApp and, using
the steps outlined in Chapter 28, change the name of your initial Window1 type to MainWindow. Next,
handle the Loaded event of MainWindow, and update the <Grid> definition to contain two rows and
two columns:

<Window x:Class="CarViewerApp.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Car Viewer Application" Height="294" Width="502"
ResizeMode="NoResize" WindowStartupLocation="CenterScreen"
Loaded="Window_Loaded"

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1108

8849CH29.qxd 10/16/07 12:17 PM Page 1108

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

>
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="200"/>
<ColumnDefinition Width="*"/>

</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="*"/>

</Grid.RowDefinitions>
</Grid>
</Window>

The first row of the <Grid> will consist of a menu system containing a File menu with two sub-
menus (Add New Car and Exit). Notice that we are handling the Click event of each submenu, and
that we are assigning an “input gesture” to the Exit menu to allow the item to be activated when the
user presses the Alt+F4 keystroke. Finally, notice the value of Grid.ColumnSpan has been set to 2,
allowing the menu system to be positioned within each cell of the first row.

<!-- Menu Bar -->
<DockPanel
Grid.Column="0"
Grid.ColumnSpan="2"
Grid.Row="0">
<Menu DockPanel.Dock ="Top" HorizontalAlignment="Left" Background="White">
<MenuItem Header="File">
<MenuItem Header="New Car" Click="AddNewCarWizard"/>
<Separator />
<MenuItem Header="Exit" InputGestureText="Alt-F4"
Click="ExitApplication"/>

</MenuItem>
</Menu>

</DockPanel>

The remaining left portion of the <Grid> consists of a <DockPanel> containing a ListBox, while
the right portion of the <Grid> contains a single TextBlock. The ListBox type will eventually become
the destination for a data-binding operation involving a collection of custom objects, so set the
ItemsSource property to the {Binding} markup extension (the source of the binding will be specified
in code in just a bit). As the user selects one of the items in the ListBox, we will capture the
SelectionChanged event in order to update the content within the TextBlock. Here is the definition
of these remaining types:

<!-- Left pane of grid -->
<ListBox Grid.Column="0"
Grid.Row="2" Name="allCars" SelectionChanged="ListItemSelected"
Background="LightBlue" ItemsSource="{Binding}">

</ListBox>

<!-- Right pane of grid -->
<TextBlock Name="txtCarStats" Background="LightYellow"
Grid.Column="1" Grid.Row="2"/>

At this point, the UI of your window should look like what you see in Figure 29-32.
Before we implement the data-binding logic, finalize the File ➤ Exit menu handler as follows:

private void ExitApplication(object sender, RoutedEventArgs e)
{
Application.Current.Shutdown();

}

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1109

8849CH29.qxd 10/16/07 12:17 PM Page 1109

Figure 29-32. The UI of our main window

Working with the ObservableCollection<T> Type
.NET 3.0 introduced a new collection type within the System.Collections.ObjectModel namespace
named ObservableCollection<T>. The benefit of working with this type is that when its contents are
updated, it will send notifications to interested listeners, such as the destination of a data-binding
operation. Insert a new C# file into your application that defines a class named CarList that extends
ObservableCollection<T>, where T is of type Car. This iteration of the Car type makes use of C# auto-
matic properties to establish some basic state data (which can be set using a custom constructor),
and provides a fitting implementation of ToString():

using System;
using System.Collections.ObjectModel;

namespace CarViewerApp
{
public class CarList : ObservableCollection<Car>
{
public CarList()
{
// Add a few entries to the list.
Add(new Car(40, "BMW", "Black", "Sidd"));
Add(new Car(55, "VW", "Black", "Mary"));
Add(new Car(100, "Ford", "Tan", "Mel"));
Add(new Car(0, "Yugo", "Green", "Clunker"));

}
}

public class Car
{
public int Speed { get; set; }
public string Make { get; set; }
public string Color { get; set; }
public string PetName { get; set; }

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1110

8849CH29.qxd 10/16/07 12:17 PM Page 1110

public Car(int speed, string make, string color, string name)
{
Speed = speed; Make = make; Color = color; PetName = name;

}
public Car(){}

public override string ToString()
{
return string.Format("{0} the {1} {2} is going {3} MPH",
PetName, Color, Make, Speed);

}
}

}

Now, open the code file for your MainWindow class and define a member variable of type CarList
named myCars. Within the Loaded event handler of your Window type, set the DataContext property
of the allCars ListBox to the myCars object (recall we did not set this value via XAML with the
{Binding} extension, therefore for a change of pace, we will do so using procedural code):

private void Window_Loaded(object sender, RoutedEventArgs e)
{
// Set the data context.
allCars.DataContext = myCars;

}

At this point, you should be able to run your application and see the ListBox containing the
ToString() values for each Car in the custom ObservableCollection<T>, as shown in Figure 29-33.

Figure 29-33. The initial data-binding operation

Creating a Custom Data Template
Currently, ListBox is displaying each item in the CarList object; however, because we have not
specified a binding path, each list entry is simply the result of calling ToString() on the subobjects.
As we have already examined how to establish simple binding paths, this time we will construct a
custom data template. Simply put, a data template can be used to inform the destination of a data-
binding operation how to display the data connected to it. Our template will fill each item in the
ListBox with a <StackPanel> that consists of an Ellipse object and a TextBlock that has been bound
to the PetName property of each item in the CarList type. Here is the modified markup of the
ListBox type.

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1111

8849CH29.qxd 10/16/07 12:17 PM Page 1111

<ListBox Grid.Column="0"
Grid.Row="2" Name="allCars" SelectionChanged="ListItemSelected"
Background="LightBlue" ItemsSource="{Binding}">
<ListBox.ItemTemplate>
<DataTemplate>
<StackPanel Orientation="Horizontal">
<Ellipse Height="10" Width="10" Fill="Blue"/>
<TextBlock FontStyle="Italic" FontSize="14" Text="{Binding Path=PetName}"/>

</StackPanel>
</DataTemplate>

</ListBox.ItemTemplate>
</ListBox>

Here we connect our <DataTemplate> to the ListBox using the <ListBox.ItemTemplate> ele-
ment. Before we see the result of this data template, implement the SelectionChanged handler of
your ListBox to display the ToString() of the current selection within the rightmost TextBlock:

private void ListItemSelected(object sender, SelectionChangedEventArgs e)
{
// Get correct car from the ObservableCollection based
// on the selected item in the list box. Then call toString().
txtCarStats.Text = myCars[allCars.SelectedIndex].ToString();

}

With this update, you should now see a more stylized display of our data, as shown Figure 29-34.

Figure 29-34. Data binding with a custom data template

Binding UI Elements to XML Documents
The next task is to build a custom dialog box that will use data binding to display the content of an
external XML file within a stylized ListView object. First, insert the Inventory.xml file you created in
Chapter 24 during the NavigationWithLinqToXml project using the Project ➤ Add Existing Item
menu option. Select this item within the Solution Explorer, and using the Properties window, set the
Copy to Output Directory option to Copy Always. This will ensure that when you compile your
application, the Inventory.xml file will be copied to your \bin\Debug folder.

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1112

8849CH29.qxd 10/16/07 12:17 PM Page 1112

Building a Custom Dialog
Insert a new WPF Window type into your project (named AddNewCarDialog) using the Project ➤ Add
Window menu option of Visual Studio 2008. This new Window will display the content of the
Inventory.xml file within a customized ListView type, via data binding. The first step is to author
the XAML to define the look and feel of this new window. Here is the full markup, with analysis to
follow:

<Window x:Class="CarViewerApp.AddNewCarDialog"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="AddNewCarDialog" Height="234" Width="529"
ResizeMode="NoResize" WindowStartupLocation="CenterScreen" >

<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="144" />
<RowDefinition Height="51" />

</Grid.RowDefinitions>

<!-- Use the XmlDataProvider-->
<Grid.Resources>
<XmlDataProvider x:Key="CarsXmlDoc"
Source="Inventory.xml"/>

</Grid.Resources>

<!-- Now, build a grid of data, mapping attributes/elements to columns
using XPath expressions -->

<ListView Name="lstCars" Grid.Row="0"ItemsSource=
"{Binding Source={StaticResource CarsXmlDoc}, XPath=/Inventory/Car}"

>
<ListView.View>
<GridView>
<GridViewColumn Width="100" Header="ID"

DisplayMemberBinding="{Binding XPath=@carID}"/>
<GridViewColumn Width="100" Header="Make"

DisplayMemberBinding="{Binding XPath=Make}"/>
<GridViewColumn Width="100" Header="Color"

DisplayMemberBinding="{Binding XPath=Color}"/>
<GridViewColumn Width="150" Header="Pet Name"

DisplayMemberBinding="{Binding XPath=PetName}"/>
</GridView>

</ListView.View>
</ListView>

<WrapPanel Grid.Row="1">
<Label Content="Select a Row to Add to your car collection" Margin="10" />
<Button Name="btnOK" Content="OK" Width="80" Height="25"

Margin="10" IsDefault="True" TabIndex="1" Click="btnOK_Click"/>
<Button Name="btnCancel" Content="Cancel" Width="80" Height="25"

Margin="10" IsCancel="True" TabIndex="2"/>
</WrapPanel>

</Grid>
</Window>

Starting at the top, notice that the opening <Window> element has been defined by specifying a
value of NoResize to the ResizeMode attribute, given that most dialog boxes do not allow the user to
alter the size of the window’s dimensions.

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1113

8849CH29.qxd 10/16/07 12:17 PM Page 1113

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Beyond carving up our <Grid> into two rows of a given size, the next point of interest is that we
are placing into the grid’s resource dictionary a new object of type XmlDataProvider. This type can
be connected to an external *.xml file (or an XML data island within the XAML file) via the Source
attribute. As we have configured the Inventory.xml file to be located within the application direc-
tory of our current project, we have no need to worry about hard-coding a fixed path.

The real bulk of this markup takes place within the definition of the ListView type. First of all,
notice that the ItemsSource attribute has been assigned to the CarsXmlDoc resource, which is quali-
fied using the XPath attribute. Based on your experience, you may know that XPath is an XML
technology that allows you to navigate within an XML document using a query-like syntax. Here we
are saying that our initial data-binding path begins with the <Car> element of the <Inventory> root.

To inform the ListView type to display a grid-like front end, we next make use of the
<ListView.View> element to define a <GridView> consisting of four <GridViewColumns>. Each of these
types specifies a Header value (for display purposes) and most importantly a DisplayMemberBinding
data-binding value. Given that the <ListView> itself has already specified the initial path within the
XML document to be the <Car> subelement of <Inventory>, each of the XPath bindings for the col-
umn types use this as a starting point.

The first <GridViewColumn> is displaying the ID attribute of the <Car> element using an XPath-
specific syntax for plucking our attribute values (@caID). The remaining columns simply further
qualify the path within the XML document by appending the next subelement using the XPath qual-
ifier of the {Binding} markup extension.

Last but not least, the final row of the <Grid> contains a <WrapPanel> that contains two Buttons
(and a descriptive Label) to complete the UI. The only points of interest here would be that we are
handling the Click event of the OK button and the use of the IsDefault and IsCancel properties.
These establish which button on a window should respond to the Click event when the Enter key or
Esc key is pressed.

Finally, note that these Button types specify a TabIndex value and a Margin value, the latter of
which allows you to define spacing around each item in the <WrapPanel>.

Assigning the DialogResult Value
Before we display this new dialog box, we need to implement the Click handler for the OK button.
Similar to Windows Forms (see Chapter 27), WPF dialog boxes can inform the caller which button
has been clicked via the DialogResult property. However, unlike the DialogResult property found in
Windows Forms, in the WPF model, this property operates on a nullable Boolean value, rather than
a strongly typed enumeration. Thus, if you wish to inform the caller the user wishes to employ the
data in the dialog box for use within the program (typically indicated by clicking an OK, a Yes, or an
Accept button), set the inherited DialogResult property to true in the Click handler of said button:

private void btnOK_Click(object sender, RoutedEventArgs e)
{
DialogResult = true;

}

As the default value of DialogResult is false, we have no need to do anything if the user clicks
the Cancel button.

Obtaining the Current Selection
Finally, add a custom read-only property to your AddNewCarDialog named SelectedCar, which
returns a new Car object to the caller based on the values of the selected row of the grid:

public Car SelectedCar
{
get

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1114

8849CH29.qxd 10/16/07 12:17 PM Page 1114

{
// Cast selected item on grid to an XmlElement.
System.Xml.XmlElement carRow =
(System.Xml.XmlElement)lstCars.SelectedItem;

// Make sure the user selected something!
if (carRow == null)
{
return null;

}
else
{
// Generate a random speed.
Random r = new Random();
int speed = r.Next(100);

// Return new Car based on the data in selected XmlElement/speed.
return new Car(speed, carRow["Make"].InnerText,
carRow["Color"].InnerText, carRow["PetName"].InnerText);

}
}

}

Notice we cast the return value of the SelectedItem property (which is of type System.Object)
into an XmlElement type. This is possible because our ListView is indeed connected to the
Inventory.xml file via our data-binding operation. Once we nab the current XmlElement, we are able
to access the Make, Color, and PetName elements (using the type indexer) and extract out the values
by calling InnerText.

■Note If you have never worked with the types of the System.Xml namespace, simply know that the
InnerText property obtains the value between the opening and closing elements of an XML node. For example,
the inner text of <Make>Ford</Make> would be Ford.

Displaying a Custom Dialog Box
Now that our dialog box is complete, we are able to launch it from the Click handler of the File ➤
Add New Car menu option:

private void AddNewCarWizard(object sender, RoutedEventArgs e)
{
AddNewCarDialog dlg = new AddNewCarDialog();
if (true == dlg.ShowDialog())
{
if (dlg.SelectedCar != null)
{
myCars.Add(dlg.SelectedCar);

}
}

}

Like Windows Forms, a WPF dialog box may be shown as a modal dialog box (by calling
ShowDialog()) or as a modaless dialog (by calling Show()). If the return value of ShowDialog() is true,
we ask the dialog box for the new Car object and add it to our ObservableCollection<T>. Because
this collection type sends out notifications when its contents are altered, you will find your ListBox

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS 1115

8849CH29.qxd 10/16/07 12:17 PM Page 1115

will automatically refresh itself as you insert new items. Figure 29-35 shows the UI of our custom
dialog box.

Figure 29-35. A custom grid of data, bound to an XML document

■Source Code The CarViewerApp project can be found under the Chapter 29 subdirectory.

That wraps up our look at the WPF data-binding engine and the core controls found within this
UI API. In the next chapter, you will complete your investigation of Windows Presentation Founda-
tion by examining the role of graphical rendering, resource management, and the construction of
custom themes.

Summary
This chapter examined several aspects of WPF controls, beginning with a discussion of dependency
properties and routed events. These WPF mechanisms are very important for several aspects of WPF
programming including data binding, animation services, and a slew of other features. Over the
course of this chapter, you have had a chance to configure and tweak several controls and learned
to arrange your UI content in various panel types.

More importantly, you examined the use of WPF commands. Recall that these control-agnostic
events can be attached to a UI element or an input gesture to automatically inherit out-of-the-box
services (such as clipboard operations). You also dove into the mechanics of the WPF data-binding
engine and learned how to bind property values, custom objects, and XML documents to your UI
layer. At this time, you also learned how to build WPF dialog boxes and discovered the role of the
IValueConverter and ObservableCollection<T> types.

CHAPTER 29 ■ PROGRAMMING WITH WPF CONTROLS1116

8849CH29.qxd 10/16/07 12:17 PM Page 1116

WPF 2D Graphical Rendering,
Resources, and Themes

The purpose of this chapter is to examine three ultimately independent, yet interrelated topics,
which will enable you to build more sophisticated Windows Presentation Foundation (WPF) appli-
cations than shown in the previous two chapters. The first order of business is to investigate the
WPF 2D graphical programming APIs. Here you will examine numerous ways to render 2D geomet-
ric images (via shapes, drawings, and visuals) and work with graphical primitives such as brushes
and pens. Along the way, you will also be introduced to the topic of WPF animation services and the
types of the System.Windows.Media.Animation namespace.

Once you understand the basic 2D graphical rendering/animation primitives of WPF, we will
then move on to an examination of how WPF allows you to define, embed, and reference applica-
tion resources. Generally speaking, the term “application resources” refers to string tables, image
files, icons, and other non-code-based entities used by an application. While this is still true under
WPF, a “resource” can also represent custom graphical and UI objects you wish to embed into an
assembly for later use.

The final topic of this chapter closes the gap between these two seemingly unrelated topics by
examining how to define styles and templates for your control types. As you will see, creating styles
and templates almost always involves making extensive use of WPF’s graphical rendering/animation
services and packaging them into your assembly as application resources.

■Note You may recall from Chapter 28 that WPF provides comprehensive support for 3D graphics programming,
which is beyond the scope of this text. If you require details regarding this aspect of WPF, check out Pro WPF in C#
2008: Windows Presentation Foundation with .NET 3.5, Second Edition by Matthew MacDonald (Apress, 2008).

The Philosophy of WPF Graphical Rendering
Services
WPF makes use of a particular flavor of graphical rendering that goes by the term retained mode
graphics. Simply put, this means that as you are using XAML or procedural code to generate graphi-
cal renderings, it is the responsibility of WPF to persist these visual items and ensure they are
correctly redrawn and refreshed in an optimal manner. Thus, when you render graphical data, it is
always present regardless of whether the end user hides the image by resizing the window, minimiz-
ing the window, covering the window with another, and so forth.

In stark contrast, previous Microsoft graphical rendering APIs (including GDI+) were immedi-
ate mode graphics systems. Under this model, it is up to the programmer to ensure that rendered

1117

C H A P T E R 3 0

8849CH30.qxd 10/16/07 12:29 PM Page 1117

visuals are correctly “remembered” and updated during the life of the application. For example,
recall from Chapter 27 that under GDI+, rendering a rectangle involves handling the Paint event (or
overriding the virtual OnPaint() method), obtaining a Graphics object to draw the rectangle and,
most important, adding the infrastructure to ensure that the image is persisted when the user
resizes the window (e.g., create member variables to represent the position of the rectangle, call
Invalidate() throughout your program, etc.). This conceptual shift from immediate mode to
retained mode graphics is indeed a good thing, as programmers have much less grungy graphics
code to author and maintain.

However, this point is not to suggest that the WPF graphics API is completely different from ear-
lier rendering toolkits. For example, like GDI+, WPF supports various brush types and pen types, the
ability to render graphics at runtime through code, techniques for hit-testing support, and so forth.
So to this end, if you currently have a background in GDI+ (or C/C++-based GDI), you already know
a good deal about how to perform basic renderings under WPF.

WPF Graphical Rendering Options
Like other aspects of WPF development, you have a number of choices regarding how you will per-
form your graphical rendering, above and beyond the decision to do so via XAML or procedural C#
code. Specifically, WPF provides three distinct ways to render graphical data:

• System.Windows.Shapes: This namespace defines a number of types used to render 2D geo-
metric objects (rectangles, ellipses, polygons, etc.). While these types are very simple to use,
they do come with a good deal of overhead.

• System.Windows.Media.Drawing: This abstract base class defines a more lightweight set of
services for a number of derived types (GeometryDrawing, ImageDrawing, etc.).

• System.Windows.Media.Visual: This abstract base class provides the most lightweight
approach to render graphical data; however, it also requires authoring a fair amount of
procedural code.

The motivation behind offering a number of different ways to do the exact same thing (e.g.,
render graphical data) has to do with memory usage and ultimately application performance. Given
that WPF is such a graphically intensive system, it is not unreasonable for an application to render
hundreds of different images upon a window’s surface, and your choice of implementation (shapes,
drawings, or visuals) could have a huge impact.

To set the stage for the sections to come, let’s begin with a brief overview of each option, from
the “heaviest” to the “lightest.” If you wish to try out each option firsthand, create a new WPF Win-
dows Application named WPFGraphicsOptions, change the name of your initial Window type to
MainWindow, and replace the window’s initial XAML <Grid> definition with a <StackPanel> type:

<Window x:Class="WPFGraphicsOptions.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="WPFGraphicsOptions" Height="300" Width="300" >
<StackPanel>

</StackPanel>
</Window>

Use of the Shape-Derived Types
The members of the System.Windows.Shapes namespace (Ellipse, Line, Path, Polygon, Polyline, and
Rectangle) are the absolute simplest way to render a 2D image and are appropriate when you need

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES1118

8849CH30.qxd 10/16/07 12:29 PM Page 1118

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

to render infrequently used images (such as a region of a stylized button) or you need a graphical
image that can support user interaction. Using these types typically entails selecting a “brush” for
the interior fill and a “pen” for the border outline (you’ll examine WPF’s brush and pen options
later in this chapter). To illustrate the basic use of shape types, if you add the following to your
<StackPanel>, you will find a simple light blue rectangle with a blue outline:

<!-- Draw a rectangle using Shape types -->
<Rectangle Height="55" Width="105" Stroke="Blue"
StrokeThickness="5" Fill="LightBlue"/>

While these types are ridiculously simple to use, they are a bit on the bloated side due to the
fact that their parent class, Sysem.Windows.Shapes.Shape, attempts to be all things to all people (if
you will). Shape inherits a ton of services from its long list of parents in the inheritance chain: Shape
is-a FrameworkElement, which is-a UIElement, which is-a Visual, which is-a DependencyObject,
DispatcherObject, and Object!

Collectively, these base classes provide the derived types with support for styles and temples,
data binding support, resource management, the ability to send numerous events, the ability to
monitor keyboard and mouse input, complex layout management, and animation services. Figure
30-1 illustrates the inheritance of the Shape type, as seen through the eyes of the Visual Studio object
browser.

Figure 30-1. Shape-derived types gain a ton of functionality from their parent types.

While each parent adds various bits of functionality, UIElement is a key culprit. For example,
UIElement defines over 80 events to handle numerous forms of input (mouse, keyboard, and stylus
for Tablet PCs). FrameworkElement is the other suspect, in that this type provides members for
changing the mouse cursor, various events representing object lifetime, context menus support,
and so on. Given this, the Shape-derived types can be as interactive as other UI elements such as
Buttons, ProgressBars, and other widgets.

The bottom line is that while the Shape-derived types are very simple to use and quite powerful,
this very fact makes them the heaviest option for rendering 2D graphics. Again, using these types is
just fine for “occasional rendering” (the definition of which can be more of a gut feel than a hard sci-
ence) or when you honestly do need a graphical rendering that is responsive to user interaction.
However, if you are designing a more graphically intensive application, you will likely find some
performance gains by using the Drawing-derived types.

Use of the Drawing-Derived Types
The System.Windows.Media.Drawing abstract base class represents the bare bones of a two-
dimensional surface. The derived types (such as GeometryDrawing, ImageDrawing, and VideoDrawing)
are more lightweight than the Shape-derived types in that neither UIElement nor FrameworkElement is

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES 1119

8849CH30.qxd 10/16/07 12:29 PM Page 1119

in the inheritance chain. Given this, Drawing-derived types do not have intrinsic support for han-
dling input events (although it is possible to programmatically perform hit-testing logic); however,
they can be animated due to the fact that Animatable is in the family (see Figure 30-2).

Figure 30-2. Drawing-derived types are significantly more lightweight than Shape-derived types.

Another key difference between Drawing-derived types and Shape-derived types is that
Drawing-derived types have no ability to render themselves, as they do not derive from UIElement!
Rather, derived types must be placed within a hosting object (such as DrawingImage, DrawingBrush,
or DrawingVisual) to display their content. This decoupling of composition from display makes the
Drawing-derived types much more lightweight than the Shape-derived types, while still retaining
key services.

Without getting too hung up on the details for the time being, consider how the previous
Rectangle could be rendered using the drawing-centric types (add this markup directly after your
previous <Rectangle> if you are following along):

<!-- Draw a rectangle using Drawing types -->
<Image Height="55" Width="105">
<Image.Source>
<DrawingImage>
<DrawingImage.Drawing>
<GeometryDrawing Brush="LightBlue">
<GeometryDrawing.Pen>
<Pen Brush="Blue" Thickness="5"/>
</GeometryDrawing.Pen>
<GeometryDrawing.Geometry>
<RectangleGeometry Rect="0,0,100,50"/>
</GeometryDrawing.Geometry>

</GeometryDrawing>
</DrawingImage.Drawing>

</DrawingImage>
</Image.Source>

</Image>

While the output is identical to the previous <Rectangle>, it is clearly more verbose. What we
have here is the classic “more code for better performance” dilemma. Thankfully, when you make
use of XAML graphical design tools (such as Microsoft Expression Blend or Microsoft Expression
Design), the underlying markup is rendered behind the scenes (see Chapter 28 for details of the
Microsoft Expression product family).

Use of the Visual-Derived Types
The abstract System.Windows.Media.Visual class type provides a minimal and complete set of serv-
ices to render a derived type (rendering, hit testing, transformation), but it does not provide support
for addition nonvisual services, which can lead to code bloat (input events, layout services, styles,
and data binding). Given this, the Visual-derived types (DrawingVisual, Viewport3DVisual, and

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES1120

8849CH30.qxd 10/16/07 12:29 PM Page 1120

ContainerVisual) are the most lightweight of all graphical rendering options and offer the best per-
formance. Notice the simple inheritance chain of the Visual type, as shown in Figure 30-3.

Figure 30-3. The Visual type provides basic hit testing, coordinate transformation, and bounding box
calculations.

Because the Visual type exposes the lowest level of functionality, it has limited support for
direct XAML definitions (unless you use a Visual within a type that can be expressed in XAML).
Using these types feels a bit closer to making use of GDI/GDI+ rendering APIs, in that they are often
manipulated through procedural code. When doing so, you are manually populating the object
graph representing your window with custom Visual-derived types. Furthermore, you are required
to override various virtual methods that will be called by the WPF graphics system to figure out how
many items you are rendering, and the Visual item itself to be rendered.

To illustrate how you can use the Visual-derived types to render 2D data, open the code file for
your main window type and comment out the entire definition (so you can restore it shortly, with
minimal effort):

/*
public partial class MainWindow : System.Windows.Window
{
public MainWindow()
{
InitializeComponent();

}
}
*/

Now create the following Window-derived type that renders a rectangle directly on the surface of
the window, bypassing any content defined in the XAML markup (your previous XAML descriptions
will be ignored and not displayed):

public partial class MainWindow : System.Windows.Window
{
// Our single drawing visual.
private DrawingVisual rectVisual = new DrawingVisual();
private const int NumberOfVisualItems = 1;

public MainWindow()
{
InitializeComponent();

// Helper function to create the rectangle.
CreateRectVisual();

}

private void CreateRectVisual()
{
using (DrawingContext drawCtx = rectVisual.RenderOpen())
{
// The top, left, bottom, and right position of the rectangle.

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES 1121

8849CH30.qxd 10/16/07 12:29 PM Page 1121

Rect rect = new Rect(50, 50, 105, 55);
drawCtx.DrawRectangle(Brushes.AliceBlue, new Pen(Brushes.Blue, 5), rect);

}

// Register our visual with the object tree,
// to ensure it supports routed events, hit testing, etc.
AddVisualChild(rectVisual);
AddLogicalChild(rectVisual);

}

// Necessary overrides. The WPF graphics system
// will call these to figure out how many items to
// render and what to render.
protected override int VisualChildrenCount
{
get { return NumberOfVisualItems; }

}

protected override Visual GetVisualChild(int index)
{
// Collection is zero based, so subtract 1.
if (index != (NumberOfVisualItems – 1))
throw new ArgumentOutOfRangeException("index", "Don't have that visual!");

return rectVisual;
}

}

Notice that the DrawingVisual type (rectVisual) provides the RenderOpen() method, which will
return a DrawingContext object. Similar to GDI+’s Graphics object, DrawingContext has numerous
methods that can be used to render a variety of items (DrawRectangle(), DrawEllipse(), etc.). Once
you have constructed your rectangle, you make calls to two inherited methods (AddVisualChild()
and AddLogicalChild()) which, while technically optional, ensure your custom Visual-derived type
integrates into the window’s tree of objects.

Last but not least, you are required to override the virtual VisualChildrenCount read-only prop-
erty and GetVisualChild() method. These members are called by the WPF graphics engine to
determine exactly what to render (a single DrawingVisual in this example).

As you can see, as soon as you move into the realm of working with Visual-derived types, you
are knee-deep in procedural code and therefore have a great deal of control and power (and the
associated complexity that follows).

Building a Custom Visual Rendering Agent
Your current custom Visual rendering operation was set up in such a way that the window’s content
(e.g., the <StackPanel>) was blown away and therefore not rendered, in favor of the hard-coded
DrawingVisual. Just to dig a bit deeper into the Visual programming layer, what if you wished to use
XAML descriptions for a majority of your window’s rendering and dip into the Visual layer for just a
small portion of the overall UI?

One approach to do so is to define a custom class deriving from FrameworkElement and override
the virtual OnRender() method. This method (which is in fact what the Shape-derived types use to
render their output) can contain the same sort of code found in our previous CreateRectVisual()
helper method. Once you have defined this custom class, you can then refer to your custom class
type from within a window’s XAML description.

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES1122

8849CH30.qxd 10/16/07 12:29 PM Page 1122

To illustrate, to your current project add a new class named MyCustomRenderer, which extends
the FrameworkElement base class (be sure to import the System.Windows and System.Windows.Media
namespaces into your new file). Now, implement your type as so:

public class MyCustomRenderer : FrameworkElement
{
// Default size for our rectangle.
double rectWidth = 105, rectHeight = 55;

// Allow user to override the defaults.
public double RectHeight
{
set { rectHeight = value; }
get { return rectHeight; }

}
public double RectWidth
{
set { rectWidth = value; }
get { return rectWidth; }

}

protected override void OnRender(DrawingContext drawCtx)
{
// Do parent rendering first.
base.OnRender(drawCtx);

// Add our custom rendering.
Rect rect = new Rect();
rect.Width = rectWidth;
rect.Height = rectHeight;
drawCtx.DrawRectangle(Brushes.LightBlue, new Pen(Brushes.Blue, 5), rect);

}
}

Most of the action of our custom type takes place in the OnRender() implementation. Notice
that we have set the size of the local Rect variable based on our rectHeight and rectWidth members
which, while not necessary, allow the creator to define the overall size of the image.

Gaining access to this type in XAML is simply a matter of defining a custom XML namespace
that maps to the name of our type and using this prefix to create our type. Here are the relevant
updates to the <StackPanel> type (recall from Chapter 28 that XML namespaces that map to your
own .NET namespaces must be defined using the clr-namespace token):

<StackPanel xmlns:custom = "clr-namespace:WPFGraphicsOptions">
...
<custom:MyCustomRenderer RectHeight ="100" RectWidth ="100"/>

</StackPanel>

Before you run your application, be sure to uncomment your original main window definition
and comment out your custom window definition. Once you do, you can run your application and
see three rectangular renderings, using each of the WPF 2D graphics programming techniques (see
Figure 30-4).

■Source Code The WPFGraphicsOptions project can be found under the Chapter 30 subdirectory.

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES 1123

8849CH30.qxd 10/16/07 12:29 PM Page 1123

Figure 30-4. Three rectangles, three approaches

Picking Your Poison
At this point you have seen three different approaches to interacting with the WPF 2D graphical ren-
dering services (shapes, drawings, and visuals). By and large, the need to render graphics using the
Visual-derived types is only necessary if you are building custom controls, or you need a great deal
of control over the rendering process. This is a good thing, as working with Visual and friends
entails a healthy amount of effort compared to simple XAML descriptions. Given this, I will not
dive into the Visual rending APIs beyond this point in the chapter (do feel free to consult the .NET
Framework 3.5 SDK documentation for further details if you are interested).

Using the Drawing-derived types is a perfect middle-of-the-road approach, as these types still
support core non-UI services (such as hit testing, etc.) at a lower cost than the Shape types. While
this approach does entail more markup than required by the Shape types, you end up with an appli-
cation using less overhead. We will examine more details of the Drawing-derived types a bit later in
this chapter.

That being said, however, the Shape types are still a perfectly valid approach when you need to
render a handful of 2D images within a given window. Recall that if you truly do need 2D shapes
that are just about as capable as traditional UI elements, the Shape types are a perfect choice, given
that the required infrastructure is already in place.

■Note Always remember that your choice of rendering services can affect your application’s performance.
Thankfully, we are provided with a collection of various WPF profiling utilities to monitor your current application.
Look up the topic “Performance Profiling Tools for WPF” within the .NET Framework 3.5 SDK documentation for
further details.

Exploring the Shape-Derived Types
To continue exploring 2D graphical rendering, let’s start by digging into the details of the members
of the System.Windows.Shapes namespace. Recall these types provide the most straightforward,
yet most bloated, way to render a two-dimensional image. This namespace (defined in the
PresentationFramework.dll assembly) is quite small and consists of only six sealed types that
extend the abstract Shape base class: Ellipse, Line, Path, Polygon, Polyline, and Rectangle.

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES1124

8849CH30.qxd 10/16/07 12:29 PM Page 1124

Because the Shape base class is-a FrameworkElement, you are able to assign derived types as
content using XAML or procedural C# code without the additional complexities of working with
drawing geometries:

<Window x:Class="SomeShapes.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Height="300" Width="300" >

<!-- A window with a circle as content -->
<Ellipse Height = "100" Width = "100" Fill = "Black" />

</Window>

Like any other UI element, if you are building a window that requires multiple contained
widgets, you will need to define your 2D types within a panel type, as described in Chapter 29.

The Functionality of the Shape Base Class
While most of Shape’s functionality comes from its long list of parent classes, this type does define
some specific properties (most of which are dependency properties) that are common to the child
types, some of the more interesting of which are shown in Table 30-1.

Table 30-1. Key Properties of the Shape Base Class

Properties Meaning in Life

Fill Allows you to specify a brush type to render the interior part of a
derived type.

GeometryTransform Allows you to apply a transformation to the rendering of the derived
type.

Stretch Describes how to fill a shape within its allocated space. This is
controlled using the corresponding System.Windows.Media.Stretch
enumeration.

Stroke, StrokeDashArray, These (and other) stroke-centric properties control how lines are
StrokeEndLineCap, configured when drawing the border of a shape.
StrokeThickness

Also recall that Shape-derived types have support for hit testing, themes and styles, tool tips,
and numerous services.

Working with Rectangles, Ellipses, and Lines
To check out some of the derived types firsthand, create a new Visual Studio WPF Windows Applica-
tion named FunWithSystemWindowsShapes. Declaring Rectangle, Ellipse, and Line types in XAML
is quite straightforward and requires little comment. One interesting feature of the Rectangle type is
that it defines RadiusX and RadiusY properties to allow you to render curved corners if you require.
Line represents its starting and end points using the X1, X2, Y1, and Y2 properties (given that “height”
and “width” make little sense when describing a line). Without belaboring the point, consider the
following <StackPanel>:

<StackPanel>
<!-- A line that monitors the mouse entering its area -->
<Line Name ="SimpleLine" X1 ="0" X2 ="50" Y1 ="0" Y2 ="50"
Stroke ="DarkOliveGreen" StrokeThickness ="5"
ToolTip ="This is a line!" MouseEnter ="SimpleLine_MouseEnter"/>

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES 1125

8849CH30.qxd 10/16/07 12:29 PM Page 1125

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

<!-- A rectangle with curved corners -->
<Rectangle RadiusX ="20" RadiusY ="50"

Fill ="DarkBlue" Width ="150" Height ="50"/>
</StackPanel>

The MouseEnter event of the SimpleLine object simply updates the Title property of the win-
dow with the location of the mouse cursor at the time it entered the Line object:

protected void SimpleLine_MouseEnter(object sender, MouseEventArgs args)
{
this.Title = String.Format("Mouse entered at: {0}",
args.GetPosition(SimpleLine));

}

Working with Polylines, Polygons, and Paths
The Polyline type allows you define a collection of (x, y) coordinates (via the Points property) to
draw a series of connected line segments that do not require connecting ends. The Polygon type is
similar; however, it is programmed in such a way that it will always close the starting and ending
points. Consider the following additions to the current <StackPanel>:

<!-- Polyline types do not have connecting ends -->
<Polyline Stroke ="Red" StrokeThickness ="20" StrokeLineJoin ="Round"
Points ="10,10 40,40 10,90 300,50"/>

<!-- A Polygon always closes the end points-->
<Polygon Fill ="AliceBlue" StrokeThickness ="5" Stroke ="Green"
Points ="40,10 70,80 10,50" />

Figure 30-5 shows the rendered output for each of these Shape-derived types.

Figure 30-5. Rendered Shape-derived types

The final type, Path (not examined here), can be considered the superset of Rectangle, Ellipse,
Polyline, and Polygon in that Path can render any of these types. In fact, all 2D types could be ren-
dered using nothing but Path (however, doing so would require additional work).

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES1126

8849CH30.qxd 10/16/07 12:29 PM Page 1126

■Source Code The FunWithSystemWindowsShapes project can be found under the Chapter 30 subdirectory.

Working with WPF Brushes
Each of the WPF graphical rendering options (shape types, drawing types, and visual types) makes
extensive use of brushes, which allow you to control how the interior of a 2D surface is filled. WPF
provides six different brush types, all of which extend System.Windows.Media.Brush. While Brush is
abstract, the descendents described in Table 30-2 can be used to fill a region with just about any
conceivable option.

Table 30-2. WPF Brush-Derived Types

Brush Type Meaning in Life

DrawingBrush Paints an area with a Drawing-derived object (GeometryDrawing,
ImageDrawing, or VideoDrawing)

ImageBrush Paints an area with an image (represented by an ImageSource object)

LinearGradientBrush A brush used to paint an area with a linear gradient

RadialGradientBrush A brush used to paint an area with a radial gradient

SolidColorBrush A brush consisting of a single color, set with the Color property

VisualBrush Paints an area with a Visual-derived object (DrawingVisual,
Viewport3DVisual, and ContainerVisual)

The DrawingBrush and VisualBrush types allow you to build a brush based on the Drawing- or
Visual-derived types examined at the beginning of this chapter. The remaining brush types are
quite straightforward to make use of and are very close in functionality to similar types found
within GDI+. The following sections present a quick overview of SolidColorBrush,
LinearGradientBrush, RadialGradientBrush, and ImageBrush.

■Note Given that these examples will not respond to any events, you can enter each of the following examples
directly into the custom XAML viewer you created in Chapter 28, rather than creating new Visual Studio 2008 WPF
Application project workspaces.

Building Brushes with Solid Colors
The SolidColorBrush type provides the Color property to establish a solid colored brush type. The
Color property takes a System.Windows.Media.Color type, which contains various properties (such
as A, R, G, and B) to establish the color itself. While the capability to have solid colors is useful, ironi-
cally you typically will not need to directly create a SolidColorBrush explicitly, given that XAML
supports a type converter that maps known color names (e.g., "Blue") to a SolidColorBrush object
behind the scenes. Consider the following approaches to fill an Ellipse with a solid color:

<StackPanel>
<!-- Solid brush using type converter -->
<Ellipse Fill ="DarkRed" Height ="50" Width ="50"/>

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES 1127

8849CH30.qxd 10/16/07 12:29 PM Page 1127

<!-- Using the SolidColorBrush type -->
<Ellipse Height ="50" Width ="50">
<Ellipse.Fill>
<SolidColorBrush Color ="DarkGoldenrod"/>

</Ellipse.Fill>
</Ellipse>

<!-- Using the SolidColorBrush and Color type -->
<Ellipse Height ="50" Width ="50">
<Ellipse.Fill>
<SolidColorBrush>
<SolidColorBrush.Color>
<Color A ="40" R ="100" G ="87" B ="98"/>

</SolidColorBrush.Color>
</SolidColorBrush>

</Ellipse.Fill>
</Ellipse>

</StackPanel>

The output is what you would expect (three circles of various solid colors); however, the
approach you take to define the color scheme will be based on the level of flexibility you require. For
example, if you do need to change the value of the Opacity property (to control transparency), you
will need to declare a <SolidColorBrush> element to gain direct access to its members. In all other
cases, you are able to make use of a simple string value assigned to the Fill property.

■Note The WPF graphics API provides a helper class named Brushes, which defines properties for dozens of
predefined colors. This is very useful when you need a solid colored brush in procedural code.

Working with Gradient Brushes
The two gradient brush types (LinearGradientBrush and RadialGradientBrush) allow you to fill
an area by transitioning between two (or more) colors. The distinction is that while a
LinearGradientBrush always transitions between colors using a straight line (which could, of
course, be rotated into any position using a graphical transformation or by setting the starting and
ending point), a RadialGradientBrush transitions from a specified starting point outward within an
elliptical boundary. Consider the following:

<!-- A rectangle with a linear fill -->
<Rectangle RadiusX ="15" RadiusY ="15" Height ="40" Width ="100">
<Rectangle.Fill>
<LinearGradientBrush StartPoint="0,0.5" EndPoint="1,0.5">
<GradientStop Color="LimeGreen" Offset="0.0" />
<GradientStop Color="Orange" Offset="0.25" />
<GradientStop Color="Yellow" Offset="0.75" />
<GradientStop Color="Blue" Offset="1.0" />

</LinearGradientBrush>
</Rectangle.Fill>

</Rectangle>

<!-- An ellipse with a radial fill -->
<Ellipse Height ="75" Width ="75">
<Ellipse.Fill>
<RadialGradientBrush GradientOrigin="0.5,0.5"
Center="0.5,0.5" RadiusX="0.5" RadiusY="0.5">

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES1128

8849CH30.qxd 10/16/07 12:29 PM Page 1128

<GradientStop Color="Yellow" Offset="0" />
<GradientStop Color="Red" Offset="0.25" />
<GradientStop Color="Blue" Offset="0.75" />
<GradientStop Color="LimeGreen" Offset="1" />

</RadialGradientBrush>
</Ellipse.Fill>

</Ellipse>

Notice how both brush types maintain a list of <GradientStop> types (which can be of any
number) that specify a color and offset value, which specifies where in the image the next color
will peak to blend with the previous color.

The ImageBrush Type
The final brush type we will examine here is ImageBrush, which as the name suggests allows you to
load an external image file (or better yet, to load an embedded image resource) as the basis of a
brush type. To assign an external file to an ImageBrush, one approach requires you to set the
ImageSource property to a valid BitmapImage object. Consider the following simple definition, which
assumes you have a *.jpg file, Gooseberry0007.JPG, located in the same location as this *.xaml file:

<!-- A large rectangle built using an image brush-->
<Rectangle Height ="100" Width ="300">
<Rectangle.Fill>
<ImageBrush>
<ImageBrush.ImageSource>
<BitmapImage UriSource ="Gooseberry0007.JPG"/>

</ImageBrush.ImageSource>
</ImageBrush>

</Rectangle.Fill>
</Rectangle>

Figure 30-6 shows each of our brush types in action.

Figure 30-6. Numerous brushes at work

■Source Code The FunWithBrushes.xaml file can be found under the Chapter 30 subdirectory.

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES 1129

8849CH30.qxd 10/16/07 12:29 PM Page 1129

Working with WPF Pens
In comparison to brushes, the topic of pens is trivial, as the Pen type is really nothing more than a
Brush in disguise. Specifically, Pen represents a brush type that has a specified thickness, repre-
sented by a double value. Given this point, you could create a Pen that has a Thickness property
value so large that it appears to be, in fact, a brush! However, in most cases you will build a Pen of
more modest thickness to represent how to render the outline of a 2D image.

In many cases, you will not directly need to create a Pen type, as this will be done indirectly
when you assign a value to properties such as StrokeThickness. However, building a custom Pen
type is very handy when working with Drawing-derived types (described next). Before we see a cus-
tomized pen doing something useful, consider the following example:

<Pen Thickness="10" LineJoin="Round" EndLineCap="Triangle" StartLineCap="Round" />

This particular Pen type has set the LineJoin property, which controls how to render the con-
nection point between two lines (e.g., the corners). EndLineCap, as the name suggests, controls how
to render the endpoint of a line stroke (a triangle in this case), while StartLineCap controls the same
setting at the line’s point of origin.

A Pen can also be configured to make use of a dash style, which affects how the pen draws the
line itself. The default setting is to use a solid color (as dictated by a given brush); however, the
DashStyle property may be assigned to any custom DashStyle object. While creating a custom
DashStyle object gives you complete control over how a Pen should render its data, the DashStyles
helper class defines a number of static members that provide common default styles. Because these
are static members of a class rather than values from an enumeration, we must make use of the
XAML {x:Static} markup extension:

<Pen Thickness="10" LineJoin="Round" EndLineCap="Triangle"
StartLineCap="Round" DashStyle = "{x:Static DashStyles.DashDotDot}" />

Now that you have a better idea of the Pen type, let’s make use of some of them within various
Drawing-derived types.

Exploring the Drawing-Derived Types
Recall that while the Shape types allow you to generate any sort of interactive two-dimensional sur-
face, they entail quite a bit of overhead due to their rich inheritance chain. As an alternative, WPF
provides a sophisticated drawing and geometry programming interface, which renders more light-
weight 2D images. The entry point into this API is the abstract System.Windows.Media.Drawing class,
which on its own does little more than define a bounding rectangle to hold the rendering. WPF pro-
vides five types that extend Drawing, each of which represents a particular flavor of drawing content,
as described in Table 30-3.

Table 30-3. WPF Drawing-Derived Types

Type Meaning in Life

DrawingGroup Used to combine a collection of separate Drawing-derived types into a single
composite rendering.

GeometryDrawing Used to render 2D shapes.

GlyphRunDrawing Used to render textual data using WPF graphical rendering services.

ImageDrawing Used to render an image file into a bounding rectangle.

VideoDrawing Used to play (not “draw”) an audio file or video file. This type can only be fully
exploited using procedural code. If you wish to play videos via XAML, the
MediaPlayer type is a better choice.

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES1130

8849CH30.qxd 10/16/07 12:29 PM Page 1130

While each of these types is useful in its own right, GeometryDrawing is the type of interest when
you wish to render 2D images, and it is the one we will focus on during this section. In a nutshell,
the GeometryDrawing type represents a geometric type detailing the structure of the 2D image, a
Brush-derived type to fill its interior, and a Pen to draw its border.

The Role of Geometry Types
The geometric structure described by a GeometryDrawing type is actually one of the WPF geometry-
centric class types, or possibly a collection of geometry-centric types that work together as a single
unit. Each of these geometries can be expressed in XAML or via C# code. All of the geometries
derive from the System.Windows.Media.Geometry base class, which defines a number of useful
members common to all derived types, some of which appear in Table 30-4.

Table 30-4. Select Members of the System.Windows.Media.Geometry Type

Member Meaning in Life

Bounds A property used to establish the current bounding rectangle.

FillContains() Allows you to determine if a given Point (or other Geometry type) is within
the bounds of a particular Geometry-derived type. Obviously, this is useful
for hit-testing calculations.

GetArea() Returns a double that represents the entire area a Geometry-derived type
occupies.

GetRenderBounds() Returns a Rect that contains the smallest possible rectangle that could be
used to render the Geometry-derived type.

Transform Allows you to assign a Transform object to the geometry to alter the
rendering.

WPF provides a good number of Geometry-derived types out of the box, and these can be
grouped into two simple categories: basic shapes and paths. The first batch of geometric types,
RectangleGeometry, EllipseGeometry, LineGeometry, and PathGeometry, are used to render basic
shapes. As luck would have it, these four types mimic the functionality of the System.Windows.
Media.Shapes types you have already examined (and in many cases they have identical members).

For many of your rendering operations, the basic shape types will do just fine. Do be aware,
however, that if you require more exotic geometries, WPF supplies numerous auxiliary types that
work in conjunction with the PathGeometry type. In a nutshell, PathGeometry maintains a collection
of “path segments,” which can be any of the following: ArchSegment, BezierSegment, LineSegment,
PolyBezierSegment, PolyLineSegment, PolyQuadraticBezierSegment, and QuadraticBezierSegment.

Dissecting a Simple Drawing Geometry
Let’s take a closer look at the <GeometryDrawing> type created at the beginning of this chapter:

<GeometryDrawing Brush ="LightBlue">
<GeometryDrawing.Pen>
<Pen Brush ="Blue" Thickness ="5"/>

</GeometryDrawing.Pen>
<GeometryDrawing.Geometry>
<RectangleGeometry Rect="0,0,100,50"/>

</GeometryDrawing.Geometry>
</GeometryDrawing>

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES 1131

8849CH30.qxd 10/16/07 12:29 PM Page 1131

Recall that a <GeometryDrawing> consists of a brush, pen, and any of the WPF geometry types.
Here, we have indirectly defined a light blue SolidColorBrush using the Brush property in the open
element. The Pen type is declared using property-element syntax, to define a blue brush with a spe-
cific thickness. Here, we are making use of a <RectangleGeometry> as the value assigned to the
Geometry property of the <GeometryDrawing> type.

If you attempt to author this XAML directly within a <Page> scope using xamlpad.exe (or within
any ContentControl-derived type), you will generate a markup error that essentially tells you that
<GeometryDrawing> does not extend the UIElement base class and therefore cannot be used as a
value to the Content property.

This brings up an interesting aspect of working with the Drawing-derived types: they do not
have any user interface in and of themselves! Types such as <GeometryDrawing> simply describe how
a 2D element would look if placed into a suitable container. WPF provides three different hosting
objects for Drawing objects: DrawingImage, DrawingBrush, and DrawingVisual.

Containing Drawing Types in a DrawingImage
The DrawingImage type allows you to plug your drawing geometry into a WPF <Image> control. Thus,
if you wish to render the previous <GeometryDrawing>, you would need to wrap it as so:

<Image>
<Image.Source>
<DrawingImage>
<DrawingImage.Drawing>
<GeometryDrawing Brush ="LightBlue">
...

</GeometryDrawing>
</DrawingImage.Drawing>

</DrawingImage>
</Image.Source>

</Image>

Notice how the Source property of the Image type is assigned a Drawing-derived type.

Containing Drawing Types in a DrawingBrush
If you instead wrap a <GeometryDrawing> using a DrawingBrush type, you have essentially created a
complex custom brush, given that DrawingBrush is actually one of the Brush-derived types (more
information on brushes in the next section). You could then use it anywhere a Brush type is
required, such as the Background property of the <Window> type:

<Window x:Class="FunWithDrawingAndGeometries.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="FunWithDrawingAndGeometries" Height="190" Width="224">

<!-- Set the background of this window to a custom DrawingBrush -->
<Window.Background>
<DrawingBrush>
<DrawingBrush.Drawing>
<GeometryDrawing Brush ="LightBlue">
<GeometryDrawing.Pen>
<Pen Brush ="Blue" Thickness ="5"/>

</GeometryDrawing.Pen>

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES1132

8849CH30.qxd 10/16/07 12:29 PM Page 1132

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

<GeometryDrawing.Geometry>
<RectangleGeometry Rect="0,0,100,50"/>

</GeometryDrawing.Geometry>
</GeometryDrawing>

</DrawingBrush.Drawing>
</DrawingBrush>

</Window.Background>
</Window>

A More Complex Drawing Geometry
A DrawingImage object can be composed of multiple individual Drawing objects, placed in a
<DrawingGroup> in order to build much more elaborate 2D images. Consider the following Image
type, which uses a <DrawingImage> as its source:

<Image>
<Image.Source>
<DrawingImage>
<DrawingImage.Drawing>
<!-- A group of various geometries -->
<DrawingGroup>
<GeometryDrawing>
<GeometryDrawing.Geometry>
<GeometryGroup>
<RectangleGeometry Rect="0,0,20,20" />
<RectangleGeometry Rect="160,120,20,20" />
<EllipseGeometry Center="75,75" RadiusX="50" RadiusY="50" />
<LineGeometry StartPoint="75,75" EndPoint="180,0" />

</GeometryGroup>
</GeometryDrawing.Geometry>
<!-- A custom pen to draw the borders -->
<GeometryDrawing.Pen>
<Pen Thickness="10" LineJoin="Round"

EndLineCap="Triangle" StartLineCap="Round">
<Pen.Brush>
<LinearGradientBrush>
<GradientStop Offset="0.0" Color="Red" />
<GradientStop Offset="1.0" Color="Green" />

</LinearGradientBrush>
</Pen.Brush>

</Pen>
</GeometryDrawing.Pen>

</GeometryDrawing>
</DrawingGroup>

</DrawingImage.Drawing>
</DrawingImage>

</Image.Source>
</Image>

The <DrawingImage> is composed of a <DrawingGroup> that contains a <GeometryGroup> to build
an image consisting of two rectangles, an ellipse, and a line. The borders of our images are rendered
using a custom pen type, which is in turn composed of a custom LinearGradientBrush. The end
result can be seen in Figure 30-7.

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES 1133

8849CH30.qxd 10/16/07 12:29 PM Page 1133

Figure 30-7. An image consisting of a DrawingGroup

If we were to update our Pen type to make use of a DashStyle such as DashStyles.DashDotDot
(seen previously)

<Pen Thickness="10" LineJoin="Round"
EndLineCap="Triangle" StartLineCap="Round"
DashStyle = "{x:Static DashStyles.DashDotDot}" >
<Pen.Brush>
<LinearGradientBrush>

<GradientStop Offset="0.0" Color="Red" />
<GradientStop Offset="1.0" Color="Green" />

</LinearGradientBrush>
</Pen.Brush>

</Pen>

we would now find the rendering shown in Figure 30-8.

Figure 30-8. A Pen with a DashStyle setting of dash-dot-dot

■Source Code The FunWithDrawingGeometries.xaml file can be found under the Chapter 30 subdirectory.

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES1134

8849CH30.qxd 10/16/07 12:29 PM Page 1134

The Role of UI Transformations
Before moving on to the topic of animation services, allow me to wrap up our look at 2D graphic
rendering by examining the topic of transformations. WPF ships with numerous types that extend
the Transform abstract base class, which can be applied to any FrameworkElement (e.g., descendents
of Shape as well as UI elements such as Buttons, TextBoxes, etc.). Using these types, you are able to
render a FrameworkElement at a given angle, skew the image across a surface, and expand or shrink
the image in a variety of ways.

Transform-Derived Types
Table 30-5 documents many of the key out-of-the-box Transform types.

Table 30-5. Key Descendents of the System.Windows.Media.Transform Type

Type Meaning in Life

MatrixTransform Creates an arbitrary matrix transformation that is used to manipulate
objects or coordinate systems in a 2D plane

RotateTransform Rotates an object clockwise about a specified point in a 2D (x, y) coordinate
system

ScaleTransform Scales an object in the 2D (x, y) coordinate system

SkewTransform Skews an object in the 2D (x, y) coordinate system

TransformGroup Represents a composite Transform composed of other Transform objects

Once you create a Transform-derived object, you can apply it to two properties provided by the
FrameworkElement base class. The LayoutTransform property is helpful in that the transformation
occurs before elements are rendered into a panel. The RenderTransform property, on the other hand,
occurs after the items are in their container, and therefore it is quite possible that elements can be
transformed in such a way that they overlap each other. As well, types that extend UIElement can
also assign a value to the RenderTransformOrigin property, which simply specifies an (x, y) position
to begin the transformation.

Applying Transformations
Assume we have a <Grid> containing a single row with four columns. Within each cell, we will
rotate, skew, and scale various UIElements, for example:

<!-- A Rectangle with a rotate transformation -->
<Rectangle Height ="100" Width ="40" Fill ="Red" Grid.Row="0" Grid.Column="0">
<Rectangle.LayoutTransform>
<RotateTransform Angle ="45"/>

</Rectangle.LayoutTransform>
</Rectangle>

<!-- A Button with a skew transformation -->
<Button Content ="Click Me!" Grid.Row="0" Grid.Column="1" Width="95" Height="40">
<Button.RenderTransform>
<SkewTransform AngleX ="20" AngleY ="20"/>

</Button.RenderTransform>
</Button>

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES 1135

8849CH30.qxd 10/16/07 12:29 PM Page 1135

<!-- An Ellipse that has been scaled by 20% -->
<Ellipse Fill ="Blue" Grid.Row="0" Grid.Column="2" Width="5" Height="5">
<Ellipse.RenderTransform>
<ScaleTransform ScaleX ="20" ScaleY ="20"/>

</Ellipse.RenderTransform>
</Ellipse>

<!-- A Button that has been skewed, rotated, and skewed again -->
<Button Content ="Me Too!" Grid.Row="0" Grid.Column="3" Width="50" Height="40">
<Button.RenderTransform>
<TransformGroup>
<SkewTransform AngleX ="20" AngleY ="20"/>
<RotateTransform Angle ="45"/>
<SkewTransform AngleX ="5" AngleY ="20"/>
</TransformGroup>

</Button.RenderTransform>
</Button>

Our first type, the <Rectangle>, makes use of the RotateTransform type that renders the UI item
at a 45-degree angle via the Angle property. The first <Button> type uses a SkewTransform object,
which slants the rendering of the widget based on (at minimum) the AngleX and AngleY properties.
The <ScaleTransform> type used by the <Ellipse> grows the height and width of the circle quite a
bit. Notice, for example, that the Height and Width properties of the <Ellipse> are set to 5, while
the rendered output is much larger. Last but not least, the final <Button> type makes use of the
<TransformGroup> type to apply a skew and a rotation. Figure 30-9 shows the rendered output.

Figure 30-9. Applying transformations

■Source Code The FunWithTransformations.xaml file can be found under the Chapter 30 subdirectory.

Understanding WPF’s Animation Services
In addition to providing a full-fledged API to support 2D (and 3D) graphical rendering, WPF sup-
plies a programming interface to support animation services. The term “animation” may bring to
mind visions of spinning company logos, a sequence of rotating image resources (to provide the
illusion of movement), text bouncing across the screen, or specific types of programs such as video
games or multimedia applications.

While WPF’s animation APIs could certainly be used for such purposes, animation can be used
anytime you wish to give an application additional flair. For example, you could build an animation

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES1136

8849CH30.qxd 10/16/07 12:29 PM Page 1136

for a button on a screen that magnifies slightly in size when the mouse cursor hovers within its
boundaries (and shrinks back once the mouse cursor moves beyond the boundaries). Perhaps you
wish to animate a window so that it closes using a particular visual appearance (such as slowly fad-
ing into transparency). The short answer is that WPF’s animation support can be used within any
sort of application (business application, multimedia programs/video games, etc.) whenever you
wish to provide a more engaging user experience.

Like many other aspects of WPF, the notion of building animations is nothing new in and of
itself. However, unlike other APIs you may have used in the past (including GDI+), developers are
not required to author the necessary infrastructure by hand. Under WPF, we have no need to create
the background threads (or timers) used to advance the animation sequence, define custom types
to represent the animation, or bother with numerous mathematical calculations.

Like other aspects of WPF, we are able to build an animation entirely using XAML, entirely
using C# code, or a combination of the two. Furthermore, Microsoft Expression Blend (mentioned a
few times within these WPF-centric chapters) can be used to design an animation using integrated
tools and wizards without seeing a bit of C# or XAML in the foreground. This approach is ideal for
graphic artists, who may not feel comfortable viewing such details.

The Role of Animation-Suffixed Types
To understand WPF’s animation support, we must begin by examining the core animation types
within the System.Windows.Media.Animation namespace of PresentationCore.dll. Here you will
find a number of class types that all take the Animation suffix (ByteAnimation, ColorAnimation,
DoubleAnimation, In32Animation, etc.). Obviously, these types are not used to somehow provide an
animation sequence directly to a variable to a particular data type (after all, how exactly could we
animate the value “9” using an Int32Animation?). Rather, these Animation-suffixed types can be con-
nected to any dependency property of a given type that matches the underlying types.

■Note Allow me to repeat this key point: Animation-suffixed types can only work in conjunction with depend-
ency properties, not normal CLR properties (see Chapter 29). If you attempt to apply animation objects to CLR
properties, you will receive a compile-time error.

For example, consider the Label type’s Height and Width properties, both of which are depend-
ency properties wrapping a double. If you wish to define an animation that would increase the
height of a label over a time span, you could connect a DoubleAnimation object to the Height prop-
erty and allow WPF to take care of the details of performing the actual animation itself. By way of
another example, if you wish to transition the color of a brush type from green to yellow, you could
do so using the ColorAnimation type.

Regardless of which Animation-suffixed type you wish to make use of, they all define a handful
of key properties that control the starting and ending values used to perform the animation:

• To: This property represents the animation’s ending value.

• From: This property represents the animation’s starting value.

• By: This property represents the total amount by which the animation changes its starting
value.

Despite the fact that all Animation-suffixed types support the To, From, and By properties, they
do not receive them via virtual members of a base class. The reason for this is that the underlying
types wrapped by these properties vary greatly (integers, colors, Thickness objects, etc.), and repre-
senting all possibilities using a System.Object would cause numerous boxing/unboxing penalties
for stack-based data.

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES 1137

8849CH30.qxd 10/16/07 12:29 PM Page 1137

You might also wonder why .NET generics were not used to define a single animation class
with a single type parameter (e.g., Animate<T>). Again, given that there are so many underlying data
types (colors, vectors, ints, strings, etc.) used by animated dependency properties, it would not be
as clean a solution as you might expect (not to mention XAML has only limited support for generic
types).

The Role of the Timeline Base Class
Although a single base class was not used to define virtual To, From, and By properties, the Animation-
suffixed types do share a common base class: System.Windows.Media.Timeline. This type provides a
number of additional properties that control the pacing of the animation, as described in Table 30-6.

Table 30-6. Key Members of the Timeline Base Class

Properties Meaning in Life

AccelerationRatio, DecelerationRatio, These properties can be used to control the overall
SpeedRatio pacing of the animation sequence.

AutoReverse This property gets or sets a value that indicates whether
the timeline plays in reverse after it completes a
forward iteration.

BeginTime This property gets or sets the time at which this
timeline should begin. The default value is 0, which
begins the animation immediately.

Duration This property allows you to set a duration of time to
play the timeline.

FillBehavior, RepeatBehavior These properties are used to control what should
happen once the timeline has completed (e.g., repeat
the animation, do nothing, etc.).

Authoring an Animation in C# Code
Our first look at WPF’s animation services will make use of the DoubleAnimation type to control vari-
ous properties of various Label types on a main window. Create a new WPF Windows Application
named AnimatedLabel, and design a <Grid> consisting of two rows and two columns. Into the first
column place a Button type in each cell and handle the Click event for each widget. In the second
column, place a Label type into each cell (named lblHeight and lblTransparency). Figure 30-10
shows one possible UI.

Figure 30-10. The initial UI of the AnimatedLabel application

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES1138

8849CH30.qxd 10/16/07 12:29 PM Page 1138

Now, within each Click event handler, author the following code:

public partial class MainWindow : System.Windows.Window
{
public MainWindow()
{
InitializeComponent();

}

protected void btnAnimatelblMessage_Click(object sender, RoutedEventArgs args)
{
// This will grow the height of the label.
DoubleAnimation dblAnim = new DoubleAnimation();
dblAnim.From = 40;
dblAnim.To = 60;
lblHeight.BeginAnimation(Label.HeightProperty, dblAnim);

}

protected void btnAnimatelblTransparency_Click(object sender,
RoutedEventArgs args)

{
// This will change the opacity of the label.
DoubleAnimation dblAnim = new DoubleAnimation();
dblAnim.From = 1.0;
dblAnim.To = 0.0;
lblTransparency.BeginAnimation(Label.OpacityProperty, dblAnim);

}
}

Notice in each Click event handler we set the From and To values of the DoubleAnimation type to
represent the beginning and ending value. After this point, we call BeginAnimation() on the correct
Label object, passing in the correct dependency property field of the related widget (again, the
Label) followed by the Animation-suffixed object used to perform the animation.

■Note Recall from our examination of dependency properties in Chapter 29 that public read-only static fields of
type DependencyObject are used to represent a given dependency property exposed by the (optional) CLR prop-
erty wrapper.

If you now run your application and click each button, you will find that the lblHeight label
will grow in size, while the lblTransparency button will slowly fade from view.

Controlling the Pacing of an Animation
By default, an animation will take approximately one second to transition between the values
assigned to the From and To properties. For example, if you were to modify the Click event handler
that grows the Height of the Label from 40 to 200 (a larger increase than what we currently have in
place), it would still take approximately one second to do so.

If you wish to define a custom amount of time for an animation’s transition, you may do so via
the Duration property, which can be set to an instance of a Duration object. Typically, the time span
is established by passing a TimeSpan object to the Duration’s constructor. Consider the following
update to the current Click handlers, which will grow the label’s height over four seconds and fade
the other label from view over the course of ten seconds:

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES 1139

8849CH30.qxd 10/16/07 12:29 PM Page 1139

protected void btnAnimatelblMessage_Click(object sender, RoutedEventArgs args)
{
// Take 4 seconds to complete the animation.
DoubleAnimation dblAnim = new DoubleAnimation();
dblAnim.From = 40;
dblAnim.To = 200;

dblAnim.Duration = new Duration(TimeSpan.FromSeconds(4));
lblHeight.BeginAnimation(Label.HeightProperty, dblAnim);

}

protected void btnAnimatelblTransparency_Click(object sender, RoutedEventArgs args)
{
// This will change the opacity of the label
DoubleAnimation dblAnim = new DoubleAnimation();
dblAnim.From = 1.0;
dblAnim.To = 0.0;
dblAnim.Duration = new Duration(TimeSpan.FromSeconds(10));
lblTransparency.BeginAnimation(Label.OpacityProperty, dblAnim);

}

■Note The BeginTime property of an Animation-suffixed type also takes a TimeSpan object. Recall this prop-
erty can be set to establish a wait time before starting an animation sequence.

Reversing and Looping an Animation
You can also tell Animation-suffixed types to play an animation in reverse at the completion of the
animation sequence by setting the AutoReverse property to true. For example, the following update
to our Click event handler will cause the Label to grow from 40 to 100 pixels in height, after which it
will “shrink” from 100 back to 40 (over the course of eight seconds, four seconds each “direction”):

// Reverse when done.
dblAnim.AutoReverse = true;

If you wish to have an animation repeat some number of times (or to never stop once acti-
vated), you can do so using the RepeatBehavior property, which is common to all Animation-suffixed
types. The RepeatBehavior property is set to an object of the same name. If you pass in a simple
numerical value to the constructor, you can specify a hard-coded number of times to repeat. On the
other hand, if you pass in a TimeSpan object to the constructor, you can establish an amount of time
the animation should repeat. Finally, if you wish an animation to loop ad infinitum, you can simply
specify RepeatBehavior.Forever. Consider the following ways we could change the height of our
Label object:

// Loop forever.
dblAnim.RepeatBehavior = RepeatBehavior.Forever;

// Loop three times.
dblAnim.RepeatBehavior = new RepeatBehavior(3);

// Loop for 30 seconds.
dblAnim.RepeatBehavior = new RepeatBehavior(TimeSpan.FromSeconds(30));

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES1140

8849CH30.qxd 10/16/07 12:29 PM Page 1140

■Source Code The AnimatedLabel project can be found under the Chapter 30 subdirectory.

Authoring an Animation in XAML
When you need to dynamically interact with the state of an animation, your best approach is to do
so in procedural code, as we have just done. However, if you have a “fixed” animation that is prede-
fined and will not require runtime interaction, you can author your entire animation sequence in
XAML. For the most part, this process is identical to what you have already seen; however, the vari-
ous Animation-suffixed types are wrapped within storyboard types. The storyboard types in turn are
associated to an event trigger.

Let’s walk through a complete example of an animation defined in terms of XAML, followed by
a detailed breakdown. Our goal is to represent the eternally growing and shrinking Label of the pre-
vious example using XAML. Consider the following markup, which will be examined in the next
several sections:

<Label Content = "Interesting...">
<Label.Triggers>
<EventTrigger RoutedEvent = "Label.Loaded">
<EventTrigger.Actions>
<BeginStoryboard>
<Storyboard TargetProperty = "Height">
<DoubleAnimation From ="40" To = "200" Duration = "0:0:4"

RepeatBehavior = "Forever"/>
</Storyboard>

</BeginStoryboard>
</EventTrigger.Actions>

</EventTrigger>
</Label.Triggers>

</Label>

The Role of Storyboards
Working from the innermost element outward, we first encounter the <DoubleAnimation> type,
which is making use of the same properties we set in procedural code (To, From, Duration, and
RepeatBehavior). As mentioned, Animation-suffixed types are placed within a <Storyboard> type,
which is used to map the animation to a given property on the parent type via the TargetProperty
property (which again in this case is Height).

The reason for this level of indirection is that XAML does not support a syntax to invoke
methods on objects, such as the necessary BeginAnimation() method of the Label. Essentially a
<Storyboard> and the <BeginStoryboard> parent are the XAML-centric version of specifying the
following procedural code:

// This necessary animation logic is represented with storyboards in XAML.
lblHeight.BeginAnimation(Label.HeightProperty, dblAnim);

The Use of <EventTrigger>
Once the <Storyboard> has been defined, we next need to define an event trigger to contain it. WPF
supports three different types of triggers that allow you to define a set of actions that will occur
when a given routed event is raised.

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES 1141

8849CH30.qxd 10/16/07 12:29 PM Page 1141

The first type of trigger observes conditions for dependency properties on a type. When defin-
ing triggers for dependency properties, you will do so by defining the trigger using <Trigger>
elements. The second type of trigger accounts for “normal” .NET property types and is defined
within a <DataTrigger> element. This flavor of trigger can be helpful for data binding operations. We
will look at the <Trigger> element later in this chapter during our examination of styles and themes.

The final type of trigger relevant for the current example is an event trigger (defined within an
<EventTrigger> element), which is used when building WPF animations. Here, our <EventTrigger>
is connected to the Loaded event of the Label. When this event fires, the action to take is to execute
the <DoubleAnimation> sequence on the Label’s Height property.

■Source Code The AnimationInXaml.xaml file can be found under the Chapter 30 subdirectory.

The Role of Animation Key Frames
The final aspect of the WPF animation system we will examine is the use of key frames. The System.
Windows.Media.Animation namespace also contains a number of members that end with the
AnimationUsingKeyFrames suffix (ByteAnimationUsingKeyFrames, ColorAnimationUsingKeyFrames,
DoubleAnimationUsingKeyFrames, In32AnimationUsingKeyFrames, etc.). Each of these types provides a
Duration property, which controls how long the entire animation sequence should take. However, it
is up to the key frames themselves to inform the animation system when they are up for duty.

Unlike the Animation-suffixed types, which can only move between a starting point and an
ending point, the key frame counterparts allow us to create a collection of specific values for an ani-
mation that should take place at specific times. For example, the AnimationUsingKeyFrames-suffixed
types could allow us to create an animation that bounces a circle around window, causes a custom
image to move around the outline of a geometric shape, or cycles the colors within a text box over a
time slice.

Within the scope of an AnimationUsingKeyFrames-suffixed element, you may add a collection of
three different key frame types, each of which controls that frame of movement of the animated
item:

• LinearXXXKeyFrame: The linear key frame types are used to move an item between points on a
straight line.

• SplineXXXKeyFrame: The spline key frame types are used to move an item along a Bezier
curve, using the KeySpline property.

• DiscreteXXXKeyFrame: The discrete key frame types do not provide a transition between key
frames. For example, this can be useful when “animating” string data that grows in size or a
border that “animates” between various colors.

Following a similar pattern, the exact name of the subelements will be based on the type of
item you are animating (doubles, colors, bools, etc.). Here, XXX is obviously being used as a place-
holder. The real names of any of these three key frame types would be along the lines of
LinearDoubleKeyFrame, SplineDoubleKeyFrame, and DiscreteDoubleKeyFrame.

Animation Using Discrete Key Frames
To illustrate the use of a discrete key frame type, assume you wish to build a Button type that ani-
mates its content in such a way that over the course of three seconds, the value “OK!” appears one
character at a time. Also assume that this behavior should happen as soon as the button has loaded
into memory, and it should repeat continuously. To see this behavior firsthand, author the following
XAML within the SimpleXamlApp.exe program you created in Chapter 28:

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES1142

8849CH30.qxd 10/16/07 12:29 PM Page 1142

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
<Grid>
<Button Name="myButton" Height="40"
FontSize="16pt" FontFamily="Verdana" Width = "100">
<Button.Triggers>
<EventTrigger RoutedEvent="Button.Loaded">
<BeginStoryboard>
<Storyboard>
<StringAnimationUsingKeyFrames RepeatBehavior = "Forever"
Storyboard.TargetName="myButton" Storyboard.TargetProperty="Content"
Duration="0:0:3" FillBehavior="HoldEnd">
<DiscreteStringKeyFrame Value="" KeyTime="0:0:0" />
<DiscreteStringKeyFrame Value="O" KeyTime="0:0:1" />
<DiscreteStringKeyFrame Value="OK" KeyTime="0:0:1.5" />
<DiscreteStringKeyFrame Value="OK!" KeyTime="0:0:2" />

</StringAnimationUsingKeyFrames>
</Storyboard>

</BeginStoryboard>
</EventTrigger>

</Button.Triggers>
</Button>

</Grid>
</Window>

Notice first of all that we have defined an event trigger for our button to ensure that our story-
board executes when the button has loaded. The StringAnimationUsingKeyFrames type is in charge
of changing the content of our button, via the Storyboard.TargetName and Storyboard.
TargetProperty values. Within the scope of our <StringAnimationUsingKeyFrames> element, we have
defined three DiscreteStringKeyFrame types, which change the button’s content over the course of
two seconds (note that the duration established by StringAnimationUsingKeyFrames is a total of
three seconds, so we will see a slight pause between the final “!” and looping “O”).

■Source Code The AnimatedButtonWithDiscreteKeyFrames.xaml file can be found under the Chapter 30
subdirectory.

Animation Using Linear Key Frames
To see the use of a linear key frame at work, consider the following XAML, which spins a Button in a
complete circle using the center of the button as the point of origin. Once the 360-degree rotation
has completed, the button will then flip itself upside down (and then right side up again). Assume
this XAML markup is defined within a <Grid> type:

<!-- This button will rotate in a circle, then flip, when clicked -->
<Button Name="myAnimatedButton" Width="120" Height = "40"
RenderTransformOrigin="0.5,0.5" Content = "OK">

<Button.RenderTransform>
<RotateTransform Angle="0"/>

</Button.RenderTransform>

<!-- The animation is triggered when the button is clicked -->
<Button.Triggers>
<EventTrigger RoutedEvent="Button.Click">

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES 1143

8849CH30.qxd 10/16/07 12:29 PM Page 1143

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

<BeginStoryboard>
<Storyboard>
<DoubleAnimationUsingKeyFrames
Storyboard.TargetName="myAnimatedButton"
Storyboard.TargetProperty=
"(Button.RenderTransform).(RotateTransform.Angle)"
Duration="0:0:2" FillBehavior="Stop">
<DoubleAnimationUsingKeyFrames.KeyFrames>
<LinearDoubleKeyFrame Value="360" KeyTime="0:0:1" />
<DiscreteDoubleKeyFrame Value="180" KeyTime="0:0:1.5" />

</DoubleAnimationUsingKeyFrames.KeyFrames>
</DoubleAnimationUsingKeyFrames>

</Storyboard>
</BeginStoryboard>

</EventTrigger>
</Button.Triggers>

</Button>

This Button’s definition begins by specifying a value to the RenderTransformOrigin property,
which ensures the rotation occurs using the dead center of the button as the turning point. Next,
we establish the initial starting value for the rendering transformation, using the nested <Button.
RenderTransform> scope (note the starting angle is zero). Finally, we define an event trigger to
ensure our storyboard will execute when the end user clicks the Button widget.

With these initial settings complete, we create a <Storyboard> scope that makes use of the
DoubleAnimationUsingKeyFrames type. Notice that the target of this storyboard is our Button
instance (myAnimatedButton) and the property we are targeting on this object is ultimately the Angle
property. However, notice the new bit of XAML syntax that we must use when assigning a depend-
ency property to a property value:

<DoubleAnimationUsingKeyFrames
Storyboard.TargetName="myAnimatedButton"
Storyboard.TargetProperty="(Button.RenderTransform).(RotateTransform.Angle)"
Duration="0:0:2" FillBehavior="Stop">

As you can see, we must wrap dependency properties within parentheses; therefore, the
single bold line of code allows us to say in effect, “I am animating the Angle property of the
RotateTransform object exposed by the button.” This point aside, the total time allowed for this
animation is set to two seconds.

Within the scope of our DoubleAnimationUsingKeyFrames type, we add two key frame types. The
first (LinearDoubleKeyFrame) will rotate the button 360 degrees over a one-second time period.
Approximately half a second later, the DiscreteDoubleKeyFrame flips the button 180 degrees (turning
the button upside down). Finally, once the animation expires (again, half a second later, given our
Duration property of the DoubleAnimationUsingKeyFrames type), the button flips right side up again,
as the DoubleAnimationUsingKeyFrames type has a FillBehavior value of Stop (which returns the
item to the initial state).

■Source Code The SpinButtonWithLinearKeyFrames.xaml file can be found under the Chapter 30
subdirectory.

That wraps up our look at the basic animation services (and 2D rendering techniques) that are
baked into WPF. Both of these topics could easily require a book of their own to cover all of the bells
and whistles. Nevertheless, at this time you should be in a solid position for further exploration.
Next up, we will turn our attention to how to package application resources.

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES1144

8849CH30.qxd 10/16/07 12:29 PM Page 1144

Understanding the WPF Resource System
Our next task is to examine the seemingly unrelated topic of embedding and accessing application
resources. WPF supports two flavors of resources, the first of which is binary resources, which repre-
sents what most programmers consider a “resource” in the traditional sense of the word (bitmap
files, icons, string tables, etc.).

The second flavor of resources, termed object resources or logical resources, represents any type
of .NET object that is named and embedded within an assembly. As you will see, logical resources
are extremely helpful when working with graphical data of any sort, given that you can define com-
monly used graphic primitives (brushes, pens, animations, etc.) within a resources dictionary.

Working with Binary Resources
As mentioned, binary resources are the auxiliary bits used by a .NET application, such as string
tables, icons, and image files (e.g., company logos, images for an animation, etc.). If you are creating
a WPF application using Visual Studio, you are able to instruct the compiler to embed an external
resource into the assembly simply by specifying the Resource build option. To illustrate, create a
new WPF Windows Application named FunWithResources. Update your initial XAML definition for
the main window with a three-column <Grid>, where the first cell contains an Image widget:

<Window x:Class="FunWithResources.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="FunWithResources" Height="207" Width="612"
WindowStartupLocation="CenterScreen">
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition/>
<ColumnDefinition/>
<ColumnDefinition/>

</Grid.ColumnDefinitions>
<Image Grid.Column ="0" Name ="companyLogo"/>

</Grid>
</Window>

The first goal is to embed an image file into our application as a binary resource, which will be
used to set the Source property of the companyLogo Image control. Using your image file of choice,
add it into your current project using the Project ➤ Add Existing Item menu option of Visual Studio
(here, I am assuming a file named IntertechBlue.gif).

The Resource Build Action
Once you have added an external image file to your application, you should now see it listed within
Solution Explorer. When selected, the Properties can now be used to instruct the compiler how to
process these external files using the Build Action option (see Figure 30-11).

If you select the default setting, Resource, the compiler will embed the data into the .NET
assembly, and therefore these external files do not need to be shipped with the completed applica-
tion. Assuming you have set the Build Action of your image file to Resources, you can update the
XAML definition of the Image control as so (notice you refer to the name of the binary resource by
name):

<Image Grid.Column ="0" Name ="companyLogo" Source ="IntertechBlue.gif"/>

When you now compile and run your program, you should see your image file stretched within
the first cell of your <Grid>.

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES 1145

8849CH30.qxd 10/16/07 12:29 PM Page 1145

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Figure 30-11. Options for packaging binary resources

■Note Be careful that your WPF applications use the Resource option to embed resources, which is a WPF-
aware option. The tempting-sounding Embedded Resource option is used for Windows Forms application.

If you load your compiled application into reflector.exe (see Chapter 2), you can view the
embedded resource directly, as shown in Figure 30-12.

Figure 30-12. An embedded binary resource

The Content Build Action
It is also possible to set the Build Action of a related external file to Content, rather than Resource.
When you do so, your assembly is compiled in such a way that it is aware of the relative location of
the external file, but does not actually contain the binary data. This setting can be helpful when you
deploy an application that contains a subfolder (or two) containing external resources that need to
be replaced from time to time, or when the location of external resources is on a network share
point.

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES1146

8849CH30.qxd 10/16/07 12:29 PM Page 1146

In these cases, the WPF resource management system defines a number of additional URI for-
mats (including a syntax to load resources embedded in an external assembly) beyond a simple
file name. If you are interested in examining the various URI formats that can be used with local
resources not compiled into the current assembly, look up the topic “Pack URIs in WPF” within the
.NET Framework 3.5 SDK documentation.

The Role of Object (a.k.a. Logical) Resources
WPF resources really come into their own when you embed custom .NET objects into an assembly
for use within your application. At first glance, this may seem like a very odd thing to do. However,
by doing so you can define commonly used graphical elements (brushes, pens, etc.) for use by mul-
tiple areas of your program. This technique is often used when creating custom themes and styles
for your WPF applications, which we will examine next.

Defining and Applying Styles for WPF Controls
When you are building the UI of a WPF application, it is not uncommon for a family of widgets to
all have a shared look and feel. For example, you may wish to ensure that all button types have the
same height, width, background color, and font size for their string content. While you could do so
by setting each button’s individual properties to identical values, this approach certainly makes it
difficult to implement changes down the road, as you would need to reset the same set of properties
on multiple objects for every change.

Thankfully, WPF offers numerous ways to change the look and feel of UI elements (styles, tem-
plates, skins, etc.) with minimal fuss and bother. As you will see, building such styles entails the use
of each topic presented thus far in this chapter (2D graphics, animations, and resources). To get the
ball rolling, let’s begin by examining the use of styles.

Working with Inline Styles
The first way in which you can change the look and feel of a WPF widget is through styles. A style is a
kindred spirit to a web-based style sheet, in that styles do not have a UI of their own, but simply
establish a number of property settings that other UI elements can adopt. Any descendent of
Control has the ability to support styles (via the Style property), including, of course, the Window
itself. When you wish to author a style, one possible approach is to make use of property-element
syntax that allows you to assign a style “inline.”

To illustrate, update your current <Grid> definition of the FunWithResources project to define
a Button within the remaining two cells. Now, consider the following markup, which establishes a
custom style for a button named btnClickMe (but not the second button, btnClickMeToo):

<Window x:Class="FunWithResources.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="FunWithResources" Height="207" Width="612"
WindowStartupLocation="CenterScreen">
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition/>
<ColumnDefinition/>
<ColumnDefinition/>

</Grid.ColumnDefinitions>
<Image Grid.Column ="0" Name ="companyLogo" Source ="IntertechBlue.gif"/>

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES 1147

8849CH30.qxd 10/16/07 12:29 PM Page 1147

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

<!-- This button has an inline style! -->
<Button Grid.Column ="1" Name="btnClickMe" Height="80"
Width = "100" Content ="Click Me">
<Button.Style>
<Style>
<Setter Property ="Button.FontSize" Value ="20"/>
<Setter Property ="Button.Background">
<Setter.Value>
<LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
<GradientStop Color="Green" Offset="0" />
<GradientStop Color="Yellow" Offset="0.25" />
<GradientStop Color="Pink" Offset="0.75" />
<GradientStop Color ="Red" Offset="1" />

</LinearGradientBrush>
</Setter.Value>

</Setter>
</Style>

</Button.Style>
</Button>

<!-- No style for this button! -->
<Button Grid.Column ="2" Name="btnClickMeToo"
Height="80" Width = "100" Content ="Me Too"/>
</Grid>

</Window>

As you can see, a WPF style is defined using the <Style> element. Within this scope, we define
any number of <Setter> elements, which are used to establish the name/value pairs of the proper-
ties we wish to set. Here we have established a FontSize property of the Button to be 20, and the
Background property of the Button type via a LinearGradientBrush type that is composed of four
interconnected colors.

■Note If necessary, you can programmatically establish a style in your code file. Simply set the Style property
on the control-derived type.

While this approach to building a style is syntactically correct, one obvious limitation is that
inline styles are bound to a specific instance of a UI type (btnClickMe in our example), not each
button within the scope. In Figure 30-13, notice that the second Button type, btnClickMeToo, is unaf-
fected by the style assigned to btnClickMe.

Figure 30-13. Inline styles are bound to the control that defined them.

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES1148

8849CH30.qxd 10/16/07 12:29 PM Page 1148

Working with Named Styles
To define a style that can be used by multiple UI elements of the same type (e.g., all Buttons, all
ListBoxes, etc.), you may define the style within a container’s resource dictionary, thereby defining
an object (a.k.a. logical) resource. For example, you could add a named style to the <Window>’s
resource dictionary and identify it by name through the Key property. That way, the same theme
can be referenced everywhere in your XAML document. Consider the following update:

<Window x:Class="FunWithResources.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="FunWithResources" Height="207"
Width="612" WindowStartupLocation="CenterScreen">

<!-- Add a logical resource to the window's resource dictionary -->
<Window.Resources>
<Style x:Key ="MyFunkyStyle">
<Setter Property ="Button.FontSize" Value ="20"/>
<Setter Property ="Button.Background">
<Setter.Value>
<LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
<GradientStop Color="Green" Offset="0" />
<GradientStop Color="Yellow" Offset="0.25" />
<GradientStop Color="Pink" Offset="0.75" />
<GradientStop Color ="Red" Offset="1" />

</LinearGradientBrush>
</Setter.Value>

</Setter>
</Style>

</Window.Resources>
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition/>
<ColumnDefinition/>
<ColumnDefinition/>

</Grid.ColumnDefinitions>
<Image Grid.Column ="0" Name ="companyLogo" Source ="IntertechBlue.gif"/>

<!-- Both buttons now use the same style -->
<Button Grid.Column ="1" Name="btnClickMe" Height="80" Width = "100"

Style ="{StaticResource MyFunkyStyle}" Content = "Click Me"/>
<Button Grid.Column ="2" Name="btnClickMeToo" Height="80" Width = "100"

Style ="{StaticResource MyFunkyStyle}" Content = "Me Too"/>
</Grid>

</Window>

This time, note that the style has been defined within the scope of a <Window.Resources>
element and has been assigned the name MyFunkyStyle via the Key attribute. Beyond these points,
the style declaration itself is identical to the previous style we created inline. Also notice that
when we want to apply a style (as we do within the <Button> definitions), we do so using the
StaticResource markup extension (see Chapter 28). With this update, each button takes on the
same look and feel, as shown in Figure 30-14.

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES 1149

8849CH30.qxd 10/16/07 12:29 PM Page 1149

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Figure 30-14. Named styles can be used by multiple UI elements in the same scope.

Overriding Style Settings
It is important to point out that when a UI element adopts a particular style (either an inline style or
a named style) it has the freedom to “override” a property setting. For example, assume you want
the second Button type to make use of the Background setting established by MyFunkyStyle, but you
prefer a smaller font. To do so, simply assign a new value to the property you wish to change within
the opening XAML element:

<Button Grid.Column ="2" Name="btnClickMeToo" Height="80" Width = "100"
Style ="{StaticResource MyFunkyStyle}" FontSize = "10" Content = "Me Too"/>

Subclassing Existing Styles
It is also possible to build new styles using an existing style, via the BasedOn property, provided the
style you are extending has been given a specific name via the Key property. For example, the follow-
ing NewFunkyStyle style (which is added as a new child element of the <Window.Resources> scope)
gathers the font size and background color of MyFunkyStyle, but rotates the UI element 20 degrees:

<Style x:Key ="NewFunkyStyle" BasedOn = "{StaticResource MyFunkyStyle}">
<Setter Property = "Button.Foreground" Value = "Blue"/>
<Setter Property = "Button.RenderTransform">
<Setter.Value>
<RotateTransform Angle = "20"/>

</Setter.Value>
</Setter>

</Style>

Figure 30-15 shows the new style in action when applied to each button.

Figure 30-15. Using a derived style

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES1150

8849CH30.qxd 10/16/07 12:29 PM Page 1150

Widening Styles
Moving a style into a resource dictionary is a step in the right direction to be sure. However, what if
you want to use the same style for multiple UI elements? Currently, MyFunkyStyle can only be
applied to button widgets, given that the style explicitly references the Button type using property-
element syntax.

One of the very interesting aspects of WPF styles is that the values assigned within a <Setter>
scope honor the concept of inheritance. Thus, if we set properties on the common parent of all UI
elements (System.Windows.Controls.Control) within our style, we can effectively define a style that
is common to all WPF controls. For example, the following style update:

<Window.Resources>
<Style x:Key ="MyFunkyStyle">
<Setter Property ="Control.FontSize" Value ="20"/>
<Setter Property ="Control.Background">
<Setter.Value>
<LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
<GradientStop Color="Green" Offset="0" />
<GradientStop Color="Yellow" Offset="0.25" />
<GradientStop Color="Pink" Offset="0.75" />
<GradientStop Color ="Red" Offset="1" />

</LinearGradientBrush>
</Setter.Value>

</Setter>
</Style>

...
</Window.Resources>

allows us to apply MyFunkyStyle to TextBox types as well as Button types (or to any item extending
Control, for that matter). Assume the following new UI element added within a new column of the
current <Grid>:

<TextBox Grid.Column ="3" Name="txtAndMe" Height="40" Width = "100"
Style ="{StaticResource MyFunkyStyle}" Text = "And me!"/>

■Note When you are building a style that is making use of a base class type, you needn’t be concerned if you
assign a value to a dependency property not supported by derived types. If the derived type does not support a
given dependency property, it is ignored.

Narrowing Styles
If you wish to define a style that can be applied only to certain types of UI elements (e.g., only
Buttons and nothing else), you can do so by setting the TargetType property on the style’s opening
element. This property expects a metadata description of the target widget, so you will make use of
the x:Type markup extension (see Chapter 28). By way of illustration, we could update MyFunkyStyle
as follows. With this update, it would now be a markup error for the previous TextBox to attempt to
apply this style.

<Style x:Key ="MyFunkyStyle" TargetType = "{x:Type Button}">
...
</Style>

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES 1151

8849CH30.qxd 10/16/07 12:29 PM Page 1151

Assigning Styles Implicitly
WPF styles also support the ability to be implicitly set to all UI widgets within a given XAML scope.
When you build a named style, assigning a Key property is technically optional, if you have nar-
rowed the application of your style using the TargetType property:

<Style TargetType = "{x:Type Button}">
...
</Style>

By doing so, all Button types within scope will implicitly take on the MyFunkyStyle style, even
though they are not making use of the StaticResource markup extension:

<Button Grid.Column ="1" Name="btnClickMe"
Height="80" Width = "100" Content = "Click Me"/>

<Button Grid.Column ="2" Name="btnClickMeToo"
Height="80" Width = "100" Content = "Me Too"/>

Be aware that when you define a style using the TargetType property that does not have a Key
value established, the style is applied only to identically named types. Therefore, if we were to
update the current style to the following:

<Style TargetType = "{x:Type Control}">
...

</Style>

neither the Button nor the TextBox type would adopt the style! Again, the reason is that this iteration
of our style is targeting the Control base class. Always remember that the notion of a style repre-
senting a class or a derivative thereof works only for named styles.

■Source Code The FunWithResources project can be found under the Chapter 30 subdirectory.

Defining Styles with Triggers
The next aspect of WPF styles to examine here is the notion of triggers, which allow you to define
certain <Setter> elements in such a way that they will only be applied if a given condition is true.
For example, perhaps you want to increase the size of a font when the mouse is over a button. Or
maybe you want to make sure that the text box with the current focus is highlighted with a given
color. Triggers are very useful for these sorts of situations, in that they allow you to take specific
actions when a property changes without the need to author explicit C# code in a code-behind file.

The following XAML markup defines three TextBox types, all of which have their Style property
set to the TextBoxStyle style. While all text boxes will have a shared look and feel (height, width,
etc.), only the text box that has the current focus will receive a yellow background.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<Window.Resources>
<Style x:Key ="TextBoxStyle" TargetType = "{x:Type TextBox}">
<Setter Property = "Foreground" Value = "Black"/>
<Setter Property = "Background" Value = "LightGray"/>
<Setter Property = "Height" Value = "30"/>
<Setter Property = "Width" Value = "100"/>

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES1152

8849CH30.qxd 10/16/07 12:29 PM Page 1152

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

<!-- The following setter will only be applied when the text box is
in focus. -->

<Style.Triggers>
<Trigger Property = "IsFocused" Value = "True">
<Setter Property = "Background" Value = "Yellow"/>

</Trigger>
</Style.Triggers>

</Style>
</Window.Resources>

<StackPanel>
<TextBox Name = "txtOne" Style = "{StaticResource TextBoxStyle}" />
<TextBox Name = "txtTwo" Style = "{StaticResource TextBoxStyle}" />
<TextBox Name = "txtThree" Style = "{StaticResource TextBoxStyle}" />
</StackPanel>

</Window>

If you type the previous XAML into the SimpleXamlPad.exe application, you will now find that
as you tab between your TextBox objects, the currently selected widget has a bright yellow back-
ground, while the others receive the default assigned background color of gray. Triggers are also
very smart, in that when the trigger’s condition is not true, the widget automatically receives the
default value assignment. Therefore, as soon as a TextBox loses focus, it also automatically becomes
the default assigned color without any work on your part.

Triggers can also be designed in such a way that the defined <Setter> elements will be applied
when multiple conditions are true (similar to building an if statement for multiple conditions).
Let’s say that we want to set the background of a text box to yellow only if it has the active focus and
the mouse is hovering within its boundaries. To do so, we can make use of the <MultiTrigger>
element to define each condition:

<Window.Resources>
<Style x:Key ="TextBoxStyle" TargetType = "{x:Type TextBox}">
<Setter Property = "Foreground" Value = "Black"/>
<Setter Property = "Background" Value = "LightGray"/>
<Setter Property = "Height" Value = "30"/>
<Setter Property = "Width" Value = "100"/>
<!-- The following setter will only be applied when the text box is

in focus and the mouse is over the text box. -->
<Style.Triggers>
<MultiTrigger>
<MultiTrigger.Conditions>
<Condition Property = "IsFocused" Value = "True"/>
<Condition Property = "IsMouseOver" Value = "True"/>

</MultiTrigger.Conditions>
<Setter Property = "Background" Value = "Yellow"/>

</MultiTrigger>
</Style.Triggers>

</Style>
</Window.Resources>

■Source Code The StyleWithTriggers.xaml file can be found under the Chapter 30 subdirectory.

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES 1153

8849CH30.qxd 10/16/07 12:29 PM Page 1153

Assigning Styles Programmatically
To conclude our examination of styles, let’s now build a simple application that illustrates how you
can assign styles to UI elements in code using a new Visual Studio WPF Windows Application proj-
ect named StylesAtRuntime.

Our goal is to define three different styles for a Button type within the resource dictionary of
the <Window> element. The first style, TiltStyle, rotates the button 10 degrees. The second style,
GreenStyle, simply sets the Background, Foreground, and FontSize properties to preset values. The
final style, MouseOverStyle, is based on GreenStyle, but adds a trigger condition that will increase
the font size and text of the button widget. Here are the XAML descriptions for each style:

<Window.Resources>
<!-- This style tilts buttons at a 10-degree angle -->
<Style x:Key ="TiltStyle" TargetType = "{x:Type Button}">
<Setter Property = "RenderTransform">
<Setter.Value>
<RotateTransform Angle = "10"/>

</Setter.Value>
</Setter>

</Style>

<!-- This style gives buttons a springtime feel -->
<Style x:Key ="GreenStyle" TargetType = "{x:Type Button}">
<Setter Property = "Background" Value ="Green"/>
<Setter Property = "Foreground" Value ="Yellow"/>
<Setter Property ="FontSize" Value ="15" />

</Style>

<!-- This style increases the size of a button when
the mouse is over it -->

<Style x:Key ="MouseOverStyle" BasedOn ="{StaticResource GreenStyle}"
TargetType = "{x:Type Button}">

<Style.Triggers>
<Trigger Property ="IsMouseOver" Value ="True">
<Setter Property ="FontSize" Value ="20" />
<Setter Property ="Foreground" Value ="Black" />

</Trigger>
</Style.Triggers>

</Style>
</Window.Resources>

The Window object will maintain a Grid that maps out locations for a TextBlock, ListBox, and
Button. This ListBox will contain the names of each theme and will handle the SelectionChanged
event. Here is the relevant XAML for the UI:

<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />

</Grid.ColumnDefinitions>
<StackPanel Grid.Column="0">
<TextBlock TextWrapping ="Wrap" FontSize ="20"
Padding="5,5,5,5">
Please select a style for the button on the left.

</TextBlock>
<ListBox Name ="lstStyles" Height ="60" Background = "Yellow"
SelectionChanged ="comboStyles_Changed" />

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES1154

8849CH30.qxd 10/16/07 12:29 PM Page 1154

</StackPanel>
<Button Name="btnMouseOverStyle" Grid.Column="1"
Height="40" Width="100">My Button</Button>

</Grid>

The final task it to fill the ListBox and handle the SelectionChanged event in the related code
file. Notice in the following code how we are able to extract the current resource by name, using the
inherited FindResource() method:

public partial class MainWindow : Window
{
public MainWindow()
{
InitializeComponent();

// Add items to our list box.
lstStyles.Items.Add("TiltStyle");
lstStyles.Items.Add("GreenStyle");
lstStyles.Items.Add("MouseOverStyle");

}

protected void comboStyles_Changed(object sender, RoutedEventArgs args)
{
// Get the selected style name from the list box.
System.Windows.Style currStyle = (System.Windows.Style)
FindResource(lstStyles.SelectedValue);

// Set the style of the button type.
this.btnMouseOverStyle.Style = currStyle;

}
}

Once we have done so, we can compile the application. As you click each list item, you can
watch the button take on a new identity (see Figure 30-16).

Figure 30-16. Setting styles programmatically

■Source Code The StylesAtRuntime project can be found under the Chapter 30 subdirectory.

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES 1155

8849CH30.qxd 10/16/07 12:29 PM Page 1155

Altering a Control’s UI Using Templates
Styles are a great (and simple) way to change the basic look of a WPF control, by establishing a
default set of values for a widget’s property set. However, even though styles allow us to change vari-
ous UI settings, the overall look and feel of the widget remains intact. Regardless of how we style a
Button using various properties, it is basically still the same rectangular widget we have come to
know over the years. However, what if you wish to completely replace the look and feel of the Button
type (such as a hexagonal 3D image) while still having it behave as a Button? What if you wish to use
the functionality of the WPF progress bar, but you would rather have it render its UI as a pie chart to
show the completion percentage? Rather than building a custom control by hand (as we would have
to do with many other GUI toolkits), WPF provides control templates.

Templates provide a clear separation between the UI of a control (i.e., the look and feel) and
the behavior of the control (i.e., its set of events and methods). Using templates, you are free to
completely change the rendered output of a WPF widget. Programmatically speaking, control tem-
plates are represented by the ControlTemplate base class, which can be expressed in XAML using
the identically named <ControlTemplate> element. Once you have established your template, you
can then attach it to WPF pages, windows, or controls using the Template property.

One interesting aspect of building a control template is that you have full control over how the
widget’s content is positioned within the template using the <ContentPresenter> element. Using
this element, you are able to specify the location and UI of the content for a given control template.
More important, if you do not define a <ContentPresenter> element within a template, the control
that adopts it will not render any content, even if it defines it:

<!-- If the applied template does not have a <ContentPresenter>,
it will not display 'OK' -->

<Button Name ="myButton" Template ="{StaticResource roundButtonTemplate}">
Click!

</Button>

Beyond this point, when you are defining a control template, you may not be too surprised by
the fact that it feels similar to the process of building a style. For example, templates are typically
stored within a resource dictionary, can support triggers, and so on. Given this, you are already
quite well equipped to build templates. Let’s see some in action using a new WPF Windows Applica-
tion project named ControlTemplates.

Building a Custom Template
Here is a simple template that defines a round button using two <Ellipse> types contained within a
<Grid>. The content will be in the dead center of the control, as we have set the HorizontalAlignment
and VerticalAlignment properties to Center. Notice that our template has been given the name of
roundButtonTemplate (via a resource key), which is made reference to when assigning the Template
property of the Button:

<Window x:Class="ControlTemplates.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Fun with Control Templates" Height="162" Width="281" >
<Grid>
<Grid.Resources>
<!-- A simple template for a round button for items in this grid -->
<ControlTemplate x:Key ="roundButtonTemplate" TargetType ="{x:Type Button}">
<Grid>
<Ellipse Name ="OuterRing" Width ="75" Height ="75" Fill ="DarkGreen"/>
<Ellipse Name ="InnerRing" Width ="60" Height ="60" Fill ="MintCream"/>
<ContentPresenter HorizontalAlignment="Center"

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES1156

8849CH30.qxd 10/16/07 12:29 PM Page 1156

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

VerticalAlignment="Center"/>
</Grid>

</ControlTemplate>
</Grid.Resources>

<!-- Applying our template to a Button -->
<Button Name ="myButton" Foreground ="Black" FontSize ="20" FontWeight ="Bold"

Template ="{StaticResource roundButtonTemplate}"
Click ="myButton_Click"> Click!

</Button>
</Grid>

</Window>

Also notice that our Button type is handling the Click event (assume the Click event handler
simply displays an informative message via the MessageBox.Show() method). This is significant, as
the Button—despite the fact that it no longer looks anything like a traditional “gray rectangle”—is
still a System.Windows.Controls.Button type and has all of the same properties, methods, and
events as the canned UI look and feel. Figure 30-17 shows our custom button type in action.

Figure 30-17. A simple template for the Button type

Adding Triggers to Templates
Currently, our control template allows a Button type to render itself in a circular fashion. However, if
you actually click the button, you will notice that the Click event does fire (as the MessageBox.
Show() method will display your string data); however, there is no visual sign of the button being
pressed. The reason is that the default push-button animation has been gutted and replaced by our
custom UI! If you wish to put back (or replace) this notion of push-button animation, you will need
to add your own custom triggers.

Here is an update to our current template that handles two triggers. The first trigger will moni-
tor if the mouse is over the button. If so, we will change the background color of the outer ellipse (a
simple visual effect). The second trigger will monitor if the mouse is clicked over the surface of the
button. If this is the case, we will increase the Height and Width values of the outer ellipse to provide
visual feedback to the user:

<Grid.Resources>
<!-- A simple template for a round button-->
<ControlTemplate x:Key ="roundButtonTemplate" TargetType ="{x:Type Button}">
<Grid>
<Ellipse Name ="OuterRing" Width ="75" Height ="75" Fill ="DarkGreen"/>
<Ellipse Name ="InnerRing" Width ="60" Height ="60" Fill ="MintCream"/>
<ContentPresenter HorizontalAlignment="Center"

VerticalAlignment="Center"/>
</Grid>
<!-- Triggers to give the 'push' effect -->
<ControlTemplate.Triggers>

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES 1157

8849CH30.qxd 10/16/07 12:29 PM Page 1157

<Trigger Property ="IsMouseOver" Value ="True">
<Setter TargetName ="OuterRing" Property ="Fill" Value ="MediumSeaGreen"/>

</Trigger>
<Trigger Property ="IsPressed" Value ="True">
<Setter TargetName ="OuterRing" Property ="Height" Value ="90"/>
<Setter TargetName ="OuterRing" Property ="Width" Value ="90"/>

</Trigger>
</ControlTemplate.Triggers>

</ControlTemplate>
</Grid.Resources>

Figure 30-18 shows the effect of the IsMouseOver trigger, and Figure 30-19 shows the result of
the IsPressed trigger.

Figure 30-18. The IsMouseOver trigger in action

Figure 30-19. The IsPressed trigger in action

Incorporating Templates into Styles
Currently, our template simply defines the look and feel of the Button type. The process of establish-
ing the basic properties of the widget (content, font size, font weight, etc.) is the responsibility of the
Button itself:

<!-- Currently the Button must set basic property values, not the template -->
<Button Name ="myButton" Foreground ="Black" FontSize ="20" FontWeight ="Bold"
Template ="{StaticResource roundButtonTemplate}" Click ="myButton_Click">

It would be ideal to establish these values in the template. By doing so, we can effectively create
a default look and feel. As you may have already realized, this is a job for WPF styles. When you build
a style (to account for basic property settings), you can define a template within the style! Here is
our updated grid resource, with analysis to follow:

<Grid.Resources>
<!-- Our style defines basic settings for the Button here -->
<Style x:Key ="roundButtonTemplate" TargetType ="{x:Type Button}">

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES1158

8849CH30.qxd 10/16/07 12:29 PM Page 1158

<Setter Property ="Foreground" Value ="Black"/>
<Setter Property ="FontSize" Value ="20"/>
<Setter Property ="FontWeight" Value ="Bold"/>

<!-- Here is our template! -->
<Setter Property ="Template">
<Setter.Value>
<!-- A simple template for a round button-->
<ControlTemplate TargetType ="{x:Type Button}">
<Grid>
<Ellipse Name ="OuterRing" Width ="75" Height ="75" Fill ="DarkGreen"/>
<Ellipse Name ="InnerRing" Width ="60" Height ="60" Fill ="MintCream"/>
<ContentPresenter HorizontalAlignment="Center"

VerticalAlignment="Center"/>
</Grid>

<!-- A trigger to give the 'push' effect -->
<ControlTemplate.Triggers>
<Trigger Property ="IsMouseOver" Value ="True">
<Setter TargetName ="OuterRing"
Property ="Fill" Value ="MediumSeaGreen"/>

</Trigger>
<Trigger Property ="IsPressed" Value ="True">
<Setter TargetName ="OuterRing" Property ="Height" Value ="90"/>
<Setter TargetName ="OuterRing" Property ="Width" Value ="90"/>

</Trigger>
</ControlTemplate.Triggers>

</ControlTemplate>
</Setter.Value>

</Setter>
</Style>

</Grid.Resources>

First of all, notice that the <Style> has now been given the resource key value, rather than the
<ControlTemplate>. Next, notice that the style is setting the same basic properties we were setting in
the Button type’s declaration (Foreground, FontSize, and FontWeight). The <ControlTemplate> ele-
ment is defined using a normal style <Setter> element by tweaking the Template property. With this
update, we can now create our custom button types by setting the Style property as so:

<!-- Applying our style/template to a Button -->
<Button Name ="myButton"
Style ="{StaticResource roundButtonTemplate}"
Click ="myButton_Click">
Click!

</Button>

While the rendering and behavior of the button is identical, the benefit of nesting templates
within styles is that you are able to provide a canned set of values for common properties. Recall, of
course, that you are free to change these defaults on a widget-by-widget value:

<!-- Get style, but change foreground color -->
<Button Name =" myButton"
Style ="{StaticResource roundButtonTemplate}"
Click ="myButton_Click" Foreground ="Red">
Click!

</Button>

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES 1159

8849CH30.qxd 10/16/07 12:29 PM Page 1159

■Source Code The ControlTemplates project can be found under the Chapter 30 subdirectory.

That wraps up our look at the styling and template mechanism of WPF. As you have seen, tem-
plates are typically composed on numerous graphical types and are ultimately bundled into your
application as binary resources.

For that matter, this concludes our examination of WPF itself for this edition of the text. Over
the last three chapters, you have learned quite a bit about the underlying WPF programming model,
the syntax of XAML, control manipulation, and the generation of graphical content. While there is
certainly much more to WPF than examined here, you should be in a solid position for further
exploration as you see fit.

Summary
Given that fact that Windows Presentation Foundation (WPF) is such a graphically intensive GUI
API, it comes as no surprise that we are provided with a number of ways to render graphical output.
This chapter began by examining each of three ways a WPF application can do so (shapes, drawings
and visuals), and along the way discussed various rendering primitives such as brushes, pens, and
transformations.

Next, you covered the role of WPF animation services, from the perspective of procedural C#
code as well as XAML declarations. Here you learned various details regarding timelines, story-
boards, and key frames. You were exposed to the WPF resource management APIs and came to see
that WPF resources can entail items other than the expected set of string tables, icons, and bitmap
types, but can also represent custom objects that can be held in a resource dictionary.

The chapter wrapped up by pulling together all of these topics into a cohesive unit and explor-
ing the role of WPF styles and templates. As shown, WPF makes it very simple to stylize the look and
feel of a control using graphical primitives, animation services, and a collection of embedded
resources.

CHAPTER 30 ■ WPF 2D GRAPHICAL RENDERING, RESOURCES, AND THEMES1160

8849CH30.qxd 10/16/07 12:29 PM Page 1160

Building Web Applications
with ASP.NET

P A R T 7

8849CH31.qxd 10/22/07 1:59 PM Page 1161

8849CH31.qxd 10/22/07 1:59 PM Page 1162

Building ASP.NET Web Pages

Until now, all of the example applications in this text have focused on console-based and desktop
GUI-based front ends. In the next three chapters, you’ll explore how the .NET platform facilitates
the construction of browser-based presentation layers using a technology named ASP.NET. To
begin, you’ll quickly review a number of key web-centric concepts (HTTP, HTML, client-side script-
ing, and server-side scripting) and examine the role of Microsoft’s commercial web server (IIS) as
well as the ASP.NET development web server, WebDev.WebServer.exe.

With this web primer out of the way, the remainder of this chapter concentrates on the struc-
ture of ASP.NET web pages (including the single-page and code-behind model) and examines the
composition of a Page-derived type. This chapter also introduces the role of the Web.config file,
which will be used in the web-centric chapters to come.

The Role of HTTP
Web applications are very different animals from traditional desktop applications (to say the least).
The first obvious difference is that a production-level web application will always involve at least
two networked machines (of course, during development it is entirely possible to have a single
machine play the role of both the browser-based client and the web server itself). Given the nature
of web applications, the networked machines in question must agree upon a particular wire proto-
col to determine how to send and receive data. The wire protocol that connects the computers in
question is the Hypertext Transfer Protocol (HTTP).

The HTTP Request/Response Cycle
When a client machine launches a web browser (such as Opera, Mozilla Firefox, or Microsoft Inter-
net Explorer), an HTTP request is made to access a particular resource (typically a web page) on
the remote server machine. HTTP is a text-based protocol that is built upon a standard request/
response paradigm. For example, if you navigate to http://www.intertech.com, the browser soft-
ware leverages a web technology termed Domain Name Service (DNS) that converts the registered
URL into a four-part, 32-bit numerical value, termed an IP address. At this point, the browser opens
a socket connection (typically via port 80 for a nonsecure connection) and sends the HTTP request
for processing to the target site.

The web server receives the incoming HTTP request and may choose to process out any client-
supplied input values (such as values within a text box, check box selections, etc.) in order to format
a proper HTTP response. Web programmers may leverage any number of technologies (CGI, ASP,
ASP.NET, JSP, etc.) to dynamically generate the content to be emitted into the HTTP response. At
this point, the client-side browser renders the HTML sent from the web server. Figure 31-1 illus-
trates the basic HTTP request/response cycle.

1163

C H A P T E R 3 1

8849CH31.qxd 10/22/07 1:59 PM Page 1163

http://www.intertech.com

Figure 31-1. The HTTP request/response cycle

HTTP Is a Stateless Protocol
Another aspect of web development that is markedly different from traditional desktop program-
ming is the fact that HTTP is essentially a stateless wire protocol. As soon as the web server emits a
response to the client, everything about the previous interaction is forgotten. This is certainly not
the case for a traditional desktop application, where the state of the executable is most often alive
and kicking until the user shuts down the application in question.

Given this point, as a web developer, it is up to you take specific steps to “remember” informa-
tion (such as items in a shopping cart, credit card numbers, home and work addresses, etc.) about
the users who are currently logged on to your site. As you will see in Chapter 33, ASP.NET provides
numerous ways to handle state, many of which are commonplace to any web platform (session
variables, cookies, and application variables) as well as some .NET-particular techniques such as
the ASP.NET profile management API.

Understanding Web Applications and Web Servers
A web application can be understood as a collection of files (*.htm, *.asp, *.aspx, image files, XML-
based file data, etc.) and related components (such as a .NET code library or legacy COM server)
stored within a particular set of directories on a given web server. As shown in Chapter 33, ASP.NET
web applications have a specific life cycle and provide numerous events (such as initial startup or
final shutdown) that you can hook into to perform specialized processing during your website’s
operation.

A web server is a software product in charge of hosting your web applications, and it typically
provides a number of related services such as integrated security, File Transfer Protocol (FTP) sup-
port, mail exchange services, and so forth. Internet Information Services (IIS) is Microsoft’s
enterprise-level web server product, and as you would guess, it has intrinsic support for classic
ASP as well as ASP.NET web applications.

When you build production-ready ASP.NET web applications, you will often need to interact
with IIS. Be aware, however, that IIS is not automatically selected as an installation option when you
install the Windows operating system (also be aware that not all versions of Windows can support
IIS, such as Windows XP Home). Thus, depending on the configuration of your development
machine, you may wish to install IIS before proceeding through this chapter. To do so, simply access
the Add/Remove Program applet from the Control Panel folder and select Add/Remove Windows
Components. Consult the Windows help system if you require further details.

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES1164

8849CH31.qxd 10/22/07 1:59 PM Page 1164

■Note Ideally, your development machine will have IIS installed before you install Visual Studio 2008. If you
install IIS after you install Visual Studio 2008, none of your ASP.NET web applications will execute correctly (you
will simply get back a blank page). Luckily, you can reconfigure IIS to host .NET applications by running the
aspnet_regiis.exe command-line tool and specifying the /i option.

Assuming you have IIS properly installed on your workstation, you can interact with IIS from
the Administrative Tools folder (located in the Control Panel folder) by double-clicking the Internet
Information Services applet. For the purposes of this chapter, you are concerned only with the
Default Web Site node (see Figure 31-2).

Figure 31-2. The IIS applet

The Role of IIS Virtual Directories
A single IIS installation is able to host numerous web applications, each of which resides in a virtual
directory. Each virtual directory is mapped to a physical directory on the hard drive. Therefore, if
you create a new virtual directory named CarsRUs, the outside world can navigate to this site using
a URL such as http://www.CarsRUs.com (assuming your site’s IP address has been registered with the
world at large). Under the hood, this virtual directory maps to a physical root directory on the web
server, such as C:\inetpub\wwwroot\AspNetCarsSite, which contains the content of the CarsRUs
web application.

As you will see later in this chapter, when you create ASP.NET web applications using Visual
Studio 2008, you have the option of having the IDE generate a new virtual directory for the current
website automatically. If required, you are certainly able to manually create a virtual directory by
hand by right-clicking the Default Web Site node of IIS and selecting New ➤ Virtual Directory (or on
Vista, simply Add Virtual Directory) from the context menu.

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES 1165

8849CH31.qxd 10/22/07 1:59 PM Page 1165

http://www.CarsRUs.com

When you select the option to create a new virtual directory, you will be prompted for the
name and physical folder that will contain the web content. To illustrate working with IIS (and to
set us up for our first web example), create a new directory on your hard drive that will hold yet-
to-be-generated web content. For this discussion I’ll assume this directory to be C:\CodeTests\
CarsWebSite. Now, right-click the Default Web Site node of IIS to create a new virtual directory
named Cars that maps to this new directory. Figure 31-3 shows the end result.

Figure 31-3. The Cars virtual directory

We will add some content to this website in just a moment.

The ASP.NET Development Server
Prior to .NET 2.0, ASP.NET developers were required to make use of IIS virtual directories during the
development and testing of their web content. In many cases, this tight dependency on IIS made
team development more complex than necessary (not to mention that many network administra-
tors frowned upon installing IIS on every developer’s machine). Thankfully, we now have the option
to use a lightweight web server named WebDev.WebServer.exe. This utility allows developers to host
an ASP.NET web application outside the bounds of IIS. Using this tool, you can build and test your
web pages from any directory on your machine. This is quite helpful for team development scenar-
ios and for building ASP.NET web programs on versions of Windows that do not support IIS
installations (such as Windows XP Home).

■Note WebDev.WebServer.exe cannot be used to test or host classic (COM-based) ASP web applications. This
web server can host only ASP.NET web applications and/or .NET-based XML web services.

When building a website with Visual Studio 2008, you have the option of using WebDev.
WebServer.exe to host your pages (as you will see a bit later in this chapter). However, you are also
able to manually interact with this tool from a Visual Studio 2008 command prompt. If you enter the
following command:

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES1166

8849CH31.qxd 10/22/07 1:59 PM Page 1166

WebDev.WebServer.exe -?

you will be presented with a message box that describes the valid command-line options. In a nut-
shell, you will need to specify an unused port (via the /port: option), the root directory of the web
application (via the /path: option), and an optional virtual path using the /vpath: option (if you do
not supply a /vpath: option, the default is simply /). Consider the following usage, which opens an
arbitrary port to view content in the C:\CodeTests\CarsWebSite directory created previously:

WebDev.WebServer.exe /port:12345 /path:"C:\CodeTests\CarsWebSite"

Once you have entered this command, you can launch your web browser of choice to request
pages. Thus, if the CarsWebSite folder had a file named Default.aspx, you could enter the following
URL:

http://localhost:12345/CarsWebSite/Default.aspx

Many of the examples in this chapter and the next will make use of WebDev.WebServer.exe via
Visual Studio 2008, rather than hosting web content under an IIS virtual directory. While this
approach can simplify the development of your web application, do be aware that this web server is
not intended to host production-level web applications. It is intended purely for development and
testing purposes. Once a web application is ready for prime time, your site will need to be copied to
an IIS virtual directory.

■Note The Mono project (see Appendix B) provides a free ASP.NET plug-in for the Apache web server. This
makes it possible to build and host ASP.NET web applications on operating systems other than Microsoft Windows.
If you are interested, check out http://www.mono-project.com/ASP.NET for details.

The Role of HTML
Now that you have configured a directory to host your web application, and you have chosen a web
server to serve as the host, you need to create the content itself. Recall that “web application” is sim-
ply the term given to the set of files that constitute the functionality of the site. To be sure, a vast
number of these files will contain tokens defined by Hypertext Markup Language (HTML). HTML is
a standard markup language used to describe how literal text, images, external links, and various
HTML-based UI widgets are to be rendered within the client-side browser.

This particular aspect of web development is one of the major reasons why many programmers
dislike building web-based programs. While it is true that modern IDEs (including Visual Studio
2008) and web development platforms (such as ASP.NET) generate much of the HTML automati-
cally, you will do well to have a working knowledge of HTML as you work with ASP.NET.

■Note Recall from Chapter 2 that Microsoft has released a number of free IDEs under the Express family of
products (such as Visual C# Express). If you are interested in web development, you may wish to also download
Visual Web Developer Express. This free IDE is geared exclusively at the construction of ASP.NET web applications.

While this section will most certainly not cover all aspects of HTML (by any means), let’s check
out some basics and build a simple web application using HTML, classic (COM-based) ASP, and IIS.
This will serve as a road map for those of you coming to ASP.NET from a traditional desktop appli-
cation development background.

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES 1167

8849CH31.qxd 10/22/07 1:59 PM Page 1167

http://localhost:12345/CarsWebSite/Default.aspx
http://www.mono-project.com/ASP.NET

■Note If you are already comfortable with the overall process of web page development, feel free to skip ahead
to the section “Problems with Classic ASP.”

HTML Document Structure
An HTML file consists of a set of tags that describe the look and feel of a given web page. As you
would expect, the basic structure of an HTML document tends to remain the same. For example,
*.htm files (or, equivalently, *.html files) open and close with <html> and </html> tags, typically
define a <body> section, and so forth. Keep in mind that traditional HTML is not case sensitive.
Therefore, in the eyes of the hosting browser, <HTML>, <html>, and <HtmL> are identical.

To illustrate some HTML basics, open Visual Studio 2008, create an empty HTML file using the
File ➤ New ➤ File menu selection, and save this file under your C:\CodeTests\CarsWebSite direc-
tory as default.htm. As you can see, the initial markup is rather uneventful:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
<title>Untitled Page</title>

</head>
<body>

</body>
</html>

First of all, notice that this HTML file opens with a DOCTYPE processing instruction. This informs
the IDE that the contained HTML tags should be validated against the XHTML standard. As sug-
gested, traditional HTML was very “loose” in its syntax. For example, it was permissible to define an
opening element (such as
, for a line break) that did not have a corresponding closing break
(</br> in this case), was not case sensitive, and so forth. The XHTML standard is a W3C specifica-
tion that adds some much-needed rigor to the HTML markup language.

■Note By default, Visual Studio 2008 validates all HTML documents against the XHTML 1.0 Transitional valida-
tion scheme. Simply put, HTML validation schemes are used to ensure the markup is in sync with specific
standards. If you wish to specify an alternative validation scheme, activate the Tools ➤ Options dialog box, and
then select the Validation node under HTML. If you would rather not see validation errors, simply uncheck the
Show Errors check box.

The <html> and </html> tags are used to mark the beginning and end of your document. Notice
that the opening <html> tag is further qualified with an xmlns (XML namespace) attribute that quali-
fies the various tags that may appear within this document (again, by default these tags are based
on the XHTML standard). Web browsers use these particular tags to understand where to begin
applying the rendering formats specified in the body of the document. The <body> scope is where
the vast majority of the actual content is defined. To spruce things up just a bit, update the title of
your page as follows:

<head>
<title>This Is the Cars Web site</title>

</head>

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES1168

8849CH31.qxd 10/22/07 1:59 PM Page 1168

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

Not surprisingly, the <title> tags are used to specify the text string that should be placed in the
title bar of the calling web browser.

HTML Form Development
The real meat of most *.htm files occurs within the scope of the <form> elements. An HTML form is
simply a named group of related UI elements used to gather user input, which is then transmitted
to the web application via an HTTP request. Do not confuse an HTML form with the entire display
area shown by a given browser. In reality, an HTML form is more of a logical grouping of widgets
placed in the <form> and </form> tag set:

<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
<title>This Is the Cars Web site</title>

</head>
<body>
<form id="defaultPage">
<!-- Insert web UI content here ->

</form>
</body>
</html>

This form has been assigned the ID and name of "defaultPage". Typically, the opening <form>
tag supplies an action attribute that specifies the URL to which to submit the form data, as well as
the method of transmitting that data itself (POST or GET). You will examine this aspect of the <form>
tag in just a bit. For the time being, let’s look at the sorts of items that can be placed in an HTML
form (beyond simple literal text). Visual Studio 2008 provides an HTML tab on the Toolbox that
allows you to select each HTML-based UI widget, as shown in Figure 31-4.

Figure 31-4. The HTML tab of the Toolbox

Similar to the process of building a Windows Forms or WPF application, these HTML controls
can be dragged onto the HTML designer surface. By default, the bottom pane of the HTML editor

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES 1169

8849CH31.qxd 10/22/07 1:59 PM Page 1169

http://www.w3.org/1999/xhtml

will display the HTML visual layout, while the upper pane will show the related markup. Another
benefit of this editor is that as you select markup or an HTML UI element, the corresponding
representation is highlighted. This makes it very simple to see the scope of your changes (see
Figure 31-5).

Figure 31-5. The Visual Studio 2008 HTML editor displays markup and UI layout.

Building an HTML-Based User Interface
Before you add the HTML widgets to the HTML <form>, it is worth pointing out that Visual Studio
2008 allows you to edit the overall look and feel of the *.htm file itself using the integrated HTML
designer and the Properties window. If you select DOCUMENT from the drop-down list of the Prop-
erties window, as shown in Figure 31-6, you are able to configure various aspects of the HTML page,
such as the background color, background image, title, and so forth.

Update the <body> of the default.htm file to display some literal text that prompts the user to
enter a username and password, and choose a background color of your liking (be aware that you
can enter and format literal textual content by typing directly in the HTML designer):

<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
<title>This is the Cars Web site</title>

</head>
<body bgcolor="NavajoWhite">
<!-- Prompt for user input-->
<h1 align="center"> The Cars Login Page</h1>
<p align="center">

Please enter your <i>user name</i> and <i>password</i>.

</p>
<form id="defaultPage">
</form>

</body>
</html>

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES1170

8849CH31.qxd 10/22/07 1:59 PM Page 1170

http://www.w3.org/1999/xhtml

Figure 31-6. Editing an HTML document via the Visual Studio 2008 Properties window

Now let’s build the HTML form itself. In general, each HTML widget is described using a name
attribute (used to identify the item programmatically) and a type attribute (used to specify which UI
element you are interested in placing in the <form> declaration). Depending on which UI widget
you manipulate, you will find additional attributes specific to that particular item that can be modi-
fied using the Properties window.

The UI you will build here will contain two text fields (one of which is a Password widget) and
two button types (one to submit the form data and the other to reset the form data to the default
values):

<!-- Build a form to get user info -->
<form id="defaultPage">
<p align="center">
User Name:
<input id="txtUserName" type="text" name="txtUserName"/></p>

<p align="center">
Password:
<input name="txtPassword" type="password" id="txtPassword"/></p>

<p align="center">
<input name="btnSubmit" type="submit" value="Submit" id="btnSubmit"/>
<input name="btnReset" type="reset" value="Reset" id="btnReset"/>

</p>
</form>

Notice that you have assigned relevant names and IDs to each widget (txtUserName,
txtPassword, btnSubmit, and btnReset). Of greater importance, note that each input item has an
extra attribute named type that marks these buttons as UI items that automatically clear all fields
to their initial values (type="reset"), mask the input as a password (type="password"), or send the
form data to the recipient (type="submit"). Figure 31-7 displays the page thus far.

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES 1171

8849CH31.qxd 10/22/07 1:59 PM Page 1171

Figure 31-7. The initial crack at the default.htm page

The Role of Client-Side Scripting
In addition to HTML UI elements, a given *.htm file may contain blocks of script code that will be
emitted into the response stream and processed by the requesting browser. There are two major
reasons why client-side scripting is used:

• To validate user input in the browser before posting back to the web server

• To interact with the Document Object Model (DOM) of the target browser

Regarding the first point, understand that the inherent evil of a web application is the need to
make frequent round-trips (termed postbacks) to the server machine to update the HTML rendered
into the browser. While postbacks are unavoidable, you should always be mindful of ways to mini-
mize travel across the wire. One technique that saves round-trips is to use client-side scripting to
validate user input before submitting the form data to the web server. If an error is found (such as
not supplying data within a required field), you can alert the user to the error without incurring the
cost of posting back to the web server (after all, nothing is more annoying to users than posting
back on a slow connection, only to receive instructions to address input errors!).

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES1172

8849CH31.qxd 10/22/07 1:59 PM Page 1172

■Note Do be aware that even when performing client-side validation (for improved response time), validation
should also occur on the web server itself. This will help ensure that the data has not been tampered with as it
was sent across the wire. As explained in the following chapter, the ASP.NET validation controls will automatically
perform client- and server-side validation.

In addition to validating user input, client-side scripts can also be used to interact with the
underlying object model (the DOM) of the web browser itself. Most commercial browsers expose a
set of objects that can be leveraged to control how the browser should behave. One major annoy-
ance is the fact that different browsers tend to expose similar, but not identical, object models.
Thus, if you emit a block of client-side script code that interacts with the DOM, it may not work
identically on all browsers.

■Note ASP.NET provides the HttpRequest.Browser property, which allows you to determine at runtime the
capacities of the browser that sent the current request.

There are many scripting languages that can be used to author client-side script code. Two of
the more popular ones are VBScript and JavaScript. VBScript is a subset of the Visual Basic 6.0 pro-
gramming language. Be aware that Microsoft Internet Explorer is the only web browser that has
built-in support for client-side VBScript support (other browsers may or may not provide optional
plug-ins). Thus, if you wish your HTML pages to work correctly in any commercial web browser, do
not use VBScript for your client-side scripting logic.

The other popular scripting language is JavaScript. Be very aware that JavaScript is in no way,
shape, or form a subset of the Java language. While JavaScript and Java have a somewhat similar
syntax, JavaScript is not a full-fledged OOP language, and thus it is far less powerful than Java. The
good news is that all modern-day web browsers support JavaScript, which makes it a natural candi-
date for client-side scripting logic.

■Note To further confuse the issue, recall that JScript .NET is a managed language that can be used to build
valid .NET assemblies using a scriptlike syntax.

A Client-Side Scripting Example
To illustrate the role of client-side scripting, let’s first examine how to intercept events sent from
client-side HTML GUI widgets. Assume you have added an additional HTML button (btnHelp) to
your default.htm page that allows the user to view help information. To capture the Click event for
this button, select btnHelp from the upper-left drop-down list of the HTML form designer and select
the onclick event from the right drop-down list. This will add an onclick attribute to the definition
of the new Button type:

<input id="btnHelp" type="button" value="Help" language="javascript"
onclick="return btnHelp_onclick()" />

Visual Studio 2008 will also create an empty JavaScript function that will be called when the
user clicks the button. Within this stub, simply make use of the alert() method to display a client-
side message box:

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES 1173

8849CH31.qxd 10/22/07 1:59 PM Page 1173

<script language="javascript" type="text/javascript">
// <!CDATA[
function btnHelp_onclick() {
alert("Dude, it is not that hard. Click the Submit button!");

}
//]]>
</script>

Note that the scripting block has been wrapped within a CDATA section. The reason for this is
simple. If your page ends up on a browser that does not support JavaScript, the code will be treated
as a comment block and ignored. Of course, your page may be less functional, but the upside is that
your page will not blow up when rendered by the browser.

Validating the default.htm Form Data
Now, let’s update the default.htm page to support some client-side validation logic. The goal is to
ensure that when the user clicks the Submit button, you call a JavaScript function that checks each
text box for empty values. If this is the case, you pop up an alert that instructs the user to enter the
required data. First, handle an onclick event for the Submit button:

<input name="btnSubmit" type="submit" value="Submit" id="btnSubmit"
language="javascript" onclick="return btnSubmit_onclick()">

Implement this handler like so:

function btnSubmit_onclick(){
// If they forget either item, pop up a message box.
if((defaultPage.txtUserName.value == "") ||
(defaultPage.txtPassword.value == ""))

{
alert("You must supply a user name and password!");
return false;

}
return true;

}

At this point, save your work. You can open your browser of choice, navigate to the default.htm
page hosted by your Cars virtual directory, and test out your client-side script logic:

http://localhost/Cars/default.htm

If you click the Help or Submit button, you should find the correct message box launched by
your browser of choice. Do notice that if you enter some random data into your text boxes, you will
not see the validation error displayed when you do click the Submit button.

Submitting the Form Data (GET and POST)
Now that you have a simple HTML page, you need to examine how to transmit the form data back
to the web server for processing. When you build an HTML form, you typically supply an action
attribute on the opening <form> tag to specify the recipient of the incoming form data. Possible
receivers include mail servers, other HTML files, an Active Server Pages (ASP) file, and so forth. For
this example, you’ll use a classic ASP file named ClassicAspPage.asp. Update your default.htm file
by specifying the following attribute in the opening <form> tag:

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES1174

8849CH31.qxd 10/22/07 1:59 PM Page 1174

http://localhost/Cars/default.htm

<form name="defaultPage" id="defaultPage"
action="http://localhost/Cars/ClassicAspPage.asp" method="GET">
...
</form>

These extra attributes ensure that when the Submit button for this form is clicked, the form
data is sent to the ClassicAspPage.asp at the specified URL. When you specify method="GET" as the
mode of transmission, the form data is appended to the query string as a set of name/value pairs
separated by ampersands:

http://localhost/Cars/ClassicAspPage.asp?txtUserName=
Andrew&txtPassword=Foo$&btnSubmit=Submit

The other method of transmitting form data to the web server is to specify method="POST":

<form name="defaultPage" id="defaultPage"
action="http://localhost/Cars/ClassicAspPage.asp" method = "POST">

...
</form>

In this case, the form data is not appended to the query string, but instead is written to a sepa-
rate line within the HTTP header. Using POST, the form data is not directly visible to the outside
world. More important, POST data does not have a character-length limitation (many browsers
have a limit for GET queries). For the time being, make use of HTTP GET to send the form data to
the receiving *.asp page.

Building a Classic ASP Page
A classic ASP page is a hodgepodge of HTML and server-side script code. If you have never worked
with classic ASP, understand that the goal of ASP is to dynamically build HTML on the fly using a
server-side script using a small set of COM objects and a bit of elbow grease. For example, you may
have a server-side VBScript (or JavaScript) block that reads a table from a data source using classic
ADO and returns the rows as a generic HTML table.

For this example, the ASP page uses the intrinsic ASP Request COM object to read the values of
the incoming form data (appended to the query string) and echo them back to the caller (not terri-
bly exciting, but it illustrates the basic operation of the request/response cycle). The server-side
script logic will make use of VBScript (as denoted by the language directive).

To do so, create a new HTML file using Visual Studio 2008 and save this file under the name
ClassicAspPage.asp into the folder to which your virtual directory has been mapped (e.g.,
C:\CodeTests\CarsWebSite). Implement this page as follows:

<%@ language="VBScript" %>
<html>
<head>
<title>The Cars Page</title>

</head>
<body>
<h1 align="center">Here is what you sent me:</h1>
<P align="center"> User Name:
<%= Request.QueryString("txtUserName") %>

Password:
<%= Request.QueryString("txtPassword") %>

</P>

</body>
</html>

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES 1175

8849CH31.qxd 10/22/07 1:59 PM Page 1175

http://localhost/Cars/ClassicAspPage.asp
http://localhost/Cars/ClassicAspPage.asp?txtUserName=
http://localhost/Cars/ClassicAspPage.asp

Here, you use the classic ASP Request COM object to call the QueryString() method to examine
the values contained in each HTML widget submitted via method="GET". The <%= ...%> notation is a
shorthand way of saying, “Insert the following directly into the outbound HTTP response.” To gain a
finer level of flexibility, you could interact with the ASP Response COM object within a full server-
side script block (denoted by the <%, %> notation). You have no need to do so here; however, the
following is a simple example:

<%
Dim pwd
pwd = Request.QueryString("txtPassword")
Response.Write(pwd)

%>

Obviously, the Request and Response objects of classic ASP provide a number of additional
members beyond those shown here. Furthermore, classic ASP also defines a small number of addi-
tional COM objects (Session, Server, Application, etc.) that you can use while constructing your
web application.

■Note Under ASP.NET, these COM objects are officially dead. However, you will see that the System.Web.UI.
Page base class defines identically named properties that expose objects with similar functionality.

At this point be sure to save each of your web files. To test the ASP logic, simply load the
default.htm page from a browser and submit the form data. Once the script is processed on the
web server, you are returned a brand-new (dynamically generated) HTML display, as you see in
Figure 31-8.

Figure 31-8. The dynamically generated HTML

Currently, your default.htm file specifies HTTP GET as the method of sending the form data to
the target *.asp file. Using this approach, the values contained in the various GUI widgets are
appended to the end of the query string. It is important to note that the ASP Request.QueryString()
method is only able to extract data submitted via the GET method.

If you would rather submit form data to the web resource using HTTP POST, you can use the
Request.Form collection to read the values on the server, for example:

<body>
<h1 align="center">Here is what you sent me:</h1>
<P align="center">
User Name:
<%= Request.Form("txtUserName") %>

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES1176

8849CH31.qxd 10/22/07 1:59 PM Page 1176

Password:
<%= Request.Form("txtPassword") %>

</P>
</body>

That wraps up our web-centric primer. Hopefully, if you’re new to web development you now
have a better understanding of the basic building blocks of a web-based application. However,
before we check out how the ASP.NET web platform improves upon the current state of affairs, let’s
take a brief moment to critique classic ASP and understand its core limitations.

■Source Code The ClassicAspCars project is included under the Chapter 31 subdirectory.

Problems with Classic ASP
While many successful websites have been created using classic ASP, this architecture is not without
its downsides. Perhaps the biggest downside of classic ASP is the same thing that makes it a power-
ful platform: server-side scripting languages. Scripting languages such as VBScript and JavaScript
are interpreted, typeless entities that do not lend themselves to robust OO programming techniques.

Another problem with classic ASP is the fact that an *.asp page does not yield very modular-
ized code. Given that ASP is a blend of HTML and script in a single page, most ASP web applications
are a confused mix of two different programming techniques. While it is true that classic ASP allows
you to partition reusable code into distinct include files, the underlying object model does not sup-
port true separation of concerns. In an ideal world, a web framework would allow the presentation
logic (i.e., HTML tags) to exist independently from the business logic (i.e., functional code).

A final issue to consider here is the fact that classic ASP demands a good deal of boilerplate,
redundant script code that tends to repeat between projects. Almost all web applications need to
validate user input, repopulate the state of HTML widgets before emitting the HTTP response, gen-
erate an HTML table of data, and so forth.

Major Benefits of ASP.NET 1.x
The first release of ASP.NET (version 1.x) did a fantastic job of addressing each of the limitations
found with classic ASP. In a nutshell, the .NET platform brought about the following techniques to
the Microsoft web development paradigm:

• ASP.NET provides a model termed code-behind, which allows you to separate presentation
logic from business logic.

• ASP.NET pages are coded using .NET programming languages, rather than interpreted
scripting languages. The code files are compiled into valid .NET assemblies (which translates
into much faster execution).

• Web controls allow programmers to build the GUI of a web application in a manner similar
to building a Windows Forms/WPF application.

• ASP.NET web controls automatically maintain their state during postbacks using a hidden
form field named __VIEWSTATE.

• ASP.NET web applications are completely object-oriented and make use of the Common
Type System (CTS).

• ASP.NET web applications can be easily configured using standard IIS settings or using a web
application configuration file (Web.config).

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES 1177

8849CH31.qxd 10/22/07 1:59 PM Page 1177

Major Enhancements of ASP.NET
While ASP.NET 1.x was a major step in the right direction, ASP.NET 2.0 provided additional bells and
whistles. Consider this partial list:

• Introduction of the WebDev.WebServer.exe testing web server

• A large number of additional web controls (navigation controls, security controls, new data
controls, new UI controls, etc.)

• The introduction of master pages, which allow you to attach a common UI frame to a set of
related pages

• Support for themes, which offer a declarative manner to change the look and feel of the
entire web application

• Support for Web Parts, which can be used to allow end users to customize the look and feel
of a web page

• Introduction of a web-based configuration and management utility that maintains your
Web.config files

Major .NET 3.5 Web Enhancements
As you would expect, .NET 3.5 further increases the scope of the ASP.NET programming model.
Perhaps most important, we now have

• New controls to support Silverlight development (recall that this is a WPF-based API for
designing rich media content for a website)

• Integrated support for Ajax-style development, which essentially allows for “micro-
postbacks” to refresh part of a web page as quickly as possible

Given that this book is not focused exclusively on web development, be sure to consult the
.NET Framework 3.5 documentation for details of topics not covered here. The truth of the matter
is that if I were to truly do justice to every aspect of ASP.NET, this book would easily double in size.
Rest assured that by the time you complete this section of the text, you will have a solid ASP.NET
foundation to build upon as you see fit.

■Note If you require a comprehensive examination of ASP.NET, I suggest picking up a copy of Pro ASP.NET 3.5 in
C# 2008, Second Edition by Matthew MacDonald (Apress, 2007).

The ASP.NET Namespaces
As of .NET 3.5, there are well over 30 web-centric namespaces in the base class libraries. From a
high level, these namespaces can be grouped into several major categories:

• Core functionality (e.g., types that allow you to interact with the HTTP request and response,
Web Form infrastructure, theme and profiling support, Web Parts, security, etc.)

• Web Form and HTML controls

• Mobile web development

• Silverlight development

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES1178

8849CH31.qxd 10/22/07 1:59 PM Page 1178

• Ajax development

• XML web services

Table 31-1 describes several of the core ASP.NET namespaces.

Table 31-1. The Core ASP.NET Web-Centric Namespaces

Namespaces Meaning in Life

System.Web Defines types that enable browser/web server communication
(such as request and response capabilities, cookie manipulation,
and file transfer)

System.Web.Caching Defines types that facilitate caching support for a web
application

System.Web.Hosting Defines types that allow you to build custom hosts for the
ASP.NET runtime

System.Web.Management Defines types for managing and monitoring the health of an
ASP.NET web application

System.Web.Profile Defines types that are used to implement ASP.NET user profiles

System.Web.Security Defines types that allow you to programmatically secure your site

System.Web.SessionState Defines types that allow you to maintain stateful information on
a per-user basis (e.g., session state variables)

System.Web.UI, Define a number of types that allow you to build a GUI front end
System.Web.UI.WebControls, for your web application
System.Web.UI.HtmlControls

The ASP.NET Web Page Code Model
ASP.NET web pages can be constructed using one of two approaches. You are free to create a single
*.aspx file that contains a blend of server-side code and HTML (much like classic ASP). Using the
single-file page model, server-side code is placed within a <script> scope, but the code itself is not
script code proper (e.g., VBScript/JScript). Rather, the code statements within a <script> block are
written in your .NET language of choice (C#, Visual Basic, etc.).

If you are building a page that contains very little code (but a good deal of HTML), a single-file
page model may be easier to work with, as you can see the code and the markup in one unified
*.aspx file. In addition, placing your procedural code and HTML markup into a single *.aspx file
provides a few other advantages:

• Pages written using the single-file model are slightly easier to deploy or to send to another
developer.

• Because there is no dependency between files, a single-file page is easier to rename.

• Managing files in a source code control system is slightly easier, as all the action is taking
place in a single file.

The default approach taken by Visual Studio 2008 (when creating a new website solution) is to
make use of a technique known as code-behind, which allows you to separate your programming
code from your HTML presentation logic using two distinct files. This model works quite well when
your pages contain a significant amount of code or when multiple developers are working on the
same website. The code-behind model offers several benefits as well:

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES 1179

8849CH31.qxd 10/22/07 1:59 PM Page 1179

• Because code-behind pages offer a clean separation of HTML markup and code, it is possi-
ble to have designers working on the markup while programmers author the C# code.

• Code is not exposed to page designers or others who are working only with the page markup
(as you might guess, HTML folks are not always interested in viewing reams of C# code).

• Code files can be used across multiple *.aspx files.

Regardless of which approach you take, do know that there is no difference in terms of per-
formance. In fact, many ASP.NET web applications will benefit by building sites that make use of
both approaches.

Building a Data-Centric Single-File Test Page
First up, let’s examine the single-file page model. Our goal is to build an *.aspx file that displays the
Inventory table of the AutoLot database (created in Chapter 22). While you could build this page
using nothing but Notepad, Visual Studio 2008 can simplify matters via IntelliSense, code comple-
tion, and a visual page designer.

To begin, open Visual Studio 2008 and create a new Web Form using the File ➤ New ➤ File
menu option (see Figure 31-9). Once you have done so, save this file (with the name Default.aspx)
under a new directory on your hard drive named C:\CodeTests\SinglePageModel.

Figure 31-9. Creating a new *.aspx file

Manually Referencing AutoLotDAL.dll
Next, use Windows Explorer to create a subdirectory under the SinglePageModel folder named
“bin”. The specially named bin subdirectory is a registered name with the ASP.NET runtime engine.
Into the \bin folder of a website’s root, you are able to deploy any private assemblies used by the
web application. For this example, place a copy of AutoLotDAL.dll (see Chapter 22) into the
C:\CodeTests\SinglePageModel\bin folder.

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES1180

8849CH31.qxd 10/22/07 1:59 PM Page 1180

■Note As shown later in this chapter, when you use Visual Studio 2008 to create a full-blown ASP.NET web
application, the IDE will maintain the \bin folder on your behalf.

Designing the UI
Now, using the Visual Studio 2008 Toolbox, select the Standard tab and drag and drop a Button,
Label, and GridView control onto the page designer (the GridView widget can be found under the
Data tab of the Toolbox). Feel free to make use of the Properties window (or the HTML IntelliSense)
to set various UI properties and give each web widget a proper name via the ID property. Figure 31-10
shows one possible design. (I kept the example’s look and feel intentionally bland to minimize the
amount of generated control markup, but feel free to spruce things up to your liking.)

Figure 31-10. The Default.aspx UI

Now, locate the <form> section of your page. Notice how each web control has been defined
using an <asp:> tag. Before the closing tag, you will find a series of name/value pairs that
correspond to the settings you made in the Properties window:

<form id="form1" runat="server">
<div>
<asp:Label ID="lblInfo" runat="server"
Text="Click on the Button to Fill the Grid">

</asp:Label>

<asp:GridView ID="carsGridView" runat="server">
</asp:GridView>

<asp:Button ID="btnFillData" runat="server" Text="Fill Grid" />

</div>
</form>

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES 1181

8849CH31.qxd 10/22/07 1:59 PM Page 1181

You will dig into the full details of ASP.NET web controls later in Chapter 32. Until then, under-
stand that web controls are objects processed on the web server that emit back their HTML
representation into the outgoing HTTP response automatically (that’s right—you don’t author the
HTML!). Beyond this major benefit, ASP.NET web controls mimic a desktoplike programming
model, given that the names of the properties, methods, and events typically echo a Windows
Forms/WPF equivalent.

Adding the Data Access Logic
Handle the Click event for the Button type using either the Visual Studio Properties window (via the
lightning bolt icon) or using the drop-down boxes mounted at the top of the designer window. Once
you do, you will find your Button’s definition has been updated with an OnClick attribute that is
assigned to the name of your Click event handler:

<asp:Button ID="btnFillData" runat="server"
Text="Fill Grid" OnClick="btnFillData_Click"/>

As well, you receive an empty <script> block to author your server-side Click event handler.
Add the following code, noticing that the incoming parameters are a dead-on match for the target
of the System.EventHandler delegate:

<script runat="server">
void btnFillData_Click(object sender, EventArgs args)
{
}

</script>

The next step is to populate the GridView using the functionality of your AutoLotDAL.dll
assembly. To do so, you must use the <%@ Import %> directive to specify you are using the
AutoLotConnectedLayer namespace. In addition, you need to inform the ASP.NET runtime that
this single-file page is referencing the AutoLotDAL.dll assembly, via the <%@ Assembly %> directive
(more details on directives in just a moment). Here is the remaining relevant page logic of the
Default.aspx file (modify your connection string as required):

<%@ Page Language="C#" %>
<%@ Import Namespace = "AutoLotConnectedLayer" %>
<%@ Assembly Name ="AutoLotDAL" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
void btnFillData_Click(object sender, EventArgs args)
{
InventoryDAL dal = new InventoryDAL();
dal.OpenConnection(@"Data Source=(local)\SQLEXPRESS;" +
"Initial Catalog=AutoLot;Integrated Security=True");

carsGridView.DataSource = dal.GetAllInventory();
carsGridView.DataBind();
dal.CloseConnection();

}
</script>
<html xmlns="http://www.w3.org/1999/xhtml" >
...
</html>

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES1182

8849CH31.qxd 10/22/07 1:59 PM Page 1182

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

Before we dive into the details behind the format of this *.aspx file, let’s try a test run. First,
save your *.aspx file. If you wish to make use of WebDev.WebServer.exe manually, open a .NET com-
mand prompt and run the WebDev.WebServer.exe utility, making sure you specify the path where
you saved your Default.aspx file, for example (here I specified an arbitrary port of 12345):

webdev.webserver.exe /port:12345 /path:"C:\CodeTests\SinglePageModel"

Now, using your browser of choice, enter the following URL:

http://localhost:12345/

When the page is served, you will initially see your Label and Button types. However, when you
click the button, a postback occurs to the web server, at which point the web controls render back
their corresponding HTML tags.

As a shortcut, you can indirectly launch WebDev.WebServer.exe from Visual Studio 2008. Simply
right-click the page you wish to browse and select the View In Browser menu option. In either case,
Figure 31-11 shows the output once you click the Fill Grid button.

Figure 31-11. Web-based data access

That was simple, yes? Of course, as they say, the devil is in the details, so let’s dig a bit deeper
into the composition of this *.aspx file, beginning by examining the role of the page directive.

Understanding the Role of ASP.NET Directives
The first thing to be aware of is that a given *.aspx file will typically open with a set of directives.
ASP.NET directives are always denoted with <%@ ... %> markers and may be qualified with various
attributes to inform the ASP.NET runtime how to process the attribute in question.

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES 1183

8849CH31.qxd 10/22/07 1:59 PM Page 1183

http://localhost:12345

Every *.aspx file must have at minimum a <%@Page%> directive that is used to define the man-
aged language used within the page (via the language attribute). Also, the <%@Page%> directive may
define the name of the related code-behind file (if any), enable tracing support, and so forth.
Table 31-2 documents some of the more interesting <%@Page%>-centric attributes.

Table 31-2. Select Attributes of the <%@Page%> Directive

Attribute Meaning in Life

CodePage Specifies the name of the related code-behind file

CompilerOptions Allows you to define any command-line flags (represented as a single string)
passed into the compiler when this page is processed

EnableTheming Establishes whether the controls on the *.aspx page support ASP.NET themes

EnableViewState Indicates whether view state is maintained across page requests (more
details on this property in Chapter 33)

Inherits Defines a class in the code-behind page the *.aspx file derives from, which
can be any class derived from System.Web.UI.Page

MasterPageFile Sets the master page used in conjunction with the current *.aspx page

Trace Indicates whether tracing is enabled

In addition to the <%@Page%> directive, a given *.aspx file may specify various <%@Import%>
directives to explicitly state the namespaces required by the current page and <%@Assembly%> direc-
tives to specify the external code libraries used by the site (typically placed under the \bin folder of
the website).

In this example, we specified we were making use of the types within the
AutoLotConnectedLayer namespace within the AutoLotDAL.dll assembly. As you would guess, if you
need to make use of additional .NET namespaces, you simply specify multiple <%@Import%>/
<%@Assembly%> directives.

Given your current knowledge of .NET, you may wonder how this *.aspx file avoided specifying
additional <%@Import%> directives to gain access to the System namespace in order to gain access to
the System.Object and System.EventHandler types (among others). The reason is that all *.aspx
pages automatically have access to a set of key namespaces that are defined within the machine.
config file under your installation path of the .NET platform. Within this XML-based file you would
find a number of autoimported namespaces:

<pages>
<namespaces>
<add namespace="System"/>
<add namespace="System.Collections"/>
<add namespace="System.Collections.Specialized"/>
<add namespace="System.Configuration"/>
<add namespace="System.Text"/>
<add namespace="System.Text.RegularExpressions"/>
<add namespace="System.Web"/>
<add namespace="System.Web.Caching"/>
<add namespace="System.Web.SessionState"/>
<add namespace="System.Web.Security"/>
<add namespace="System.Web.Profile"/>
<add namespace="System.Web.UI"/>
<add namespace="System.Web.UI.WebControls"/>
<add namespace="System.Web.UI.WebControls.WebParts"/>
<add namespace="System.Web.UI.HtmlControls"/>

...

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES1184

8849CH31.qxd 10/22/07 1:59 PM Page 1184

</namespaces>
</pages>

To be sure, ASP.NET does define a number of other directives that may appear in an *.aspx file
above and beyond <%@Page%>, <%@Import%>, and <%@Assembly%>; however, I’ll reserve commenting on
those for the time being.

Analyzing the Script Block
Under the single-file page model, an *.aspx file may contain server-side scripting logic that exe-
cutes on the web server. Given this, it is critical that all of your server-side code blocks are defined to
execute at the server, using the runat="server" attribute. If the runat="server" attribute is not sup-
plied, the runtime assumes you have authored a block of client-side script to be emitted into the
outgoing HTTP response:

<script runat="server">
void btnFillData_Click(object sender, EventArgs args)
{
InventoryDAL dal = new InventoryDAL();
dal.OpenConnection(@"Data Source=(local)\SQLEXPRESS;" +

"Initial Catalog=AutoLot;Integrated Security=True");
carsGridView.DataSource = dal.GetAllInventory();
carsGridView.DataBind();
dal.CloseConnection();

}
</script>

The signature of this helper method should look strangely familiar. Recall from our examina-
tion of Windows Forms (or WPF for that matter) that a given control event handler must match the
pattern defined by a related .NET delegate. And, just like Windows Forms, when you wish to handle
a server-side button click, the delegate in question is System.EventHandler which, as you recall,
can only call methods that take System.Object as the first parameter and System.EventArgs as the
second.

Looking at the ASP.NET Control Declarations
The final point of interest for this first example is the declaration of the Button, Label, and GridView
Web Form controls. Like classic ASP and raw HTML, ASP.NET web widgets are scoped within <form>
elements. This time, however, the opening <form> element is marked with the runat="server"
attribute. This again is critical, as this tag informs the ASP.NET runtime that before the HTML is
emitted into the response stream, the contained ASP.NET widgets have a chance to render their
HTML appearance:

<form id="form1" runat="server">
<div>
<asp:Label ID="lblInfo" runat="server"
Text="Click on the Button to Fill the Grid">

</asp:Label>

<asp:GridView ID="carsGridView" runat="server">
</asp:GridView>

<asp:Button ID="btnFillData" runat="server" Text="Fill Grid" />

</div>
</form>

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES 1185

8849CH31.qxd 10/22/07 1:59 PM Page 1185

Note that the ASP.NET web controls are declared with <asp> and </asp> tags, and they are also
marked with the runat="server" attribute. Within the opening tag, you will specify the name of the
Web Form control and any number of name/value pairs that will be used at runtime to render the
correct HTML.

■Source Code The SinglePageModel example is included under the Chapter 31 subdirectory.

Working with the Code-behind Page Model
To illustrate the code-behind page model, let’s re-create the previous example using the Visual Stu-
dio 2008 Web Site template. (Do know that Visual Studio 2008 is not required to build pages using
code-behind; however, this is the out-of-the-box behavior for new websites.) Activate the File ➤
New ➤ Web Site menu option, and select the ASP.NET Web Site template, as shown in Figure 31-12.

Figure 31-12. The Visual Studio 2008 ASP.NET Web Site template

Notice in Figure 31-12 that you are able to select the location of your new site. If you select
File System, your content files will be placed within a local directory and pages will be served via
WebDev.WebServer.exe. If you select FTP or HTTP, your site will be hosted within a new virtual direc-
tory maintained by IIS. For this example, it makes no difference which option you select, but for
simplicity I suggest selecting the File System option and specifying a new folder named
C:\CodeBehindPageModel.

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES1186

8849CH31.qxd 10/22/07 1:59 PM Page 1186

Once again, make use of the designer to build a UI consisting of a Label, Button, and GridView,
and make use of the Properties window to build a UI of your liking.

■Note When you wish to open an existing website into Visual Studio 2008, select the File ➤ Open ➤ Web Site
menu option and select the folder (or IIS virtual directory) containing the web content.

Note that the <%@Page%> directive has been updated with a few new attributes:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default" %>

The CodeFile attribute is used to specify the related external file that contains this page’s cod-
ing logic. By default, these code-behind files are named by adding the suffix .cs to the name of the
*.aspx file (Default.aspx.cs in this example). If you examine Solution Explorer, you will see this
code-behind file is visible via a subnode on the Web Form icon (see Figure 31-13).

Figure 31-13. The associated code-behind file for a given *.aspx file

If you were to open your code-behind file, you would find a partial class deriving from
System.Web.UI.Page with support for handling the Load event. Notice that the name of this class
(_Default) is identical to the Inherits attribute within the <%@Page%> directive:

public partial class _Default : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{

}
}

Referencing the AutoLotDAL.dll Assembly
As previously mentioned, when creating web application projects using Visual Studio 2008, you do
not need to manually build a \bin subdirectory and copy private assemblies by hand. For this
example, activate the Add Reference dialog box using the Website menu option and reference
AutoLotDAL.dll. When you do so, you will see the new \bin folder within Solution Explorer, as
shown in Figure 31-14.

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES 1187

8849CH31.qxd 10/22/07 1:59 PM Page 1187

Figure 31-14. Visual Studio typically maintains “special” ASP.NET folders

Updating the Code File
Handle the Click event for the Button type by double-clicking the Button placed on the designer. As
before, the Button definition has been updated with an OnClick attribute. However, the server-side
event handler is no longer placed within a <script> scope of the *.aspx file, but as a method of the
_Default class type.

To complete this example, add a using statement for AutoLotConnectedLayer inside your code-
behind file and implement the handler using the previous logic:

using AutoLotConnectedLayer;

public partial class _Default : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{

}
protected void btnFillData_Click(object sender, EventArgs e)
{
InventoryDAL dal = new InventoryDAL();
dal.OpenConnection(@"Data Source=(local)\SQLEXPRESS;" +
"Initial Catalog=AutoLot;Integrated Security=True");

carsGridView.DataSource = dal.GetAllInventory();
carsGridView.DataBind();
dal.CloseConnection();

}
}

If you selected the File System option, WebDev.WebServer.exe starts up automatically when you
run your web application (if you selected IIS, this obviously does not occur). In either case, the
default browser should now display the page’s content.

Debugging and Tracing ASP.NET Pages
By and large, when you are building ASP.NET web projects, you can use the same debugging tech-
niques as you would with any other sort of Visual Studio 2008 project type. Thus, you can set
breakpoints in your code-behind file (as well as embedded “script” blocks in an *.aspx file), start
a debug session (via the F5 key, by default), and step through your code.

However, to debug your ASP.NET web applications, your site must contain a properly config-
ured Web.config file. The conclusion of this chapter will introduce you to Web.config files, but in a

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES1188

8849CH31.qxd 10/22/07 1:59 PM Page 1188

nutshell these XML files have the same general purpose as an executable assembly’s App.config file.
By default, all Visual Studio 2008 web projects will automatically have a Web.config file. However,
debugging support is initially disabled (as this will degrade performance). When you start a debug-
ging session, the IDE will prompt you for permissions to enable debugging. Once you have opted to
do so, the <compilation> element of the Web.config file is updated like so:

<compilation debug="true"/>

On a related note, you are also able to enable tracing support for an *.aspx file by setting the
Trace attribute to true within the <%@Page%> directive (it is also possible to enable tracing for your
entire site by modifying the Web.config file):

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default" Trace="true" %>

Once you do, the emitted HTML contains numerous details regarding the previous HTTP
request/response (server variables, session and application variables, request/response, etc.). To
insert your own trace messages into the mix, you can use the Trace property of the System.Web.
UI.Page type. Anytime you wish to log a custom message (from a script block or C# source code
file), simply call the Write() method:

protected void btnFillData_Click(object sender, EventArgs e)
{
Trace.Write("My Category", "Filling the grid!");

...
}

If you run your project once again and post back to the web server, you will find your custom
category and custom message are present and accounted for. In Figure 31-15, take note of the high-
lighted message, which displays the trace information.

Figure 31-15. Logging custom trace messages

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES 1189

8849CH31.qxd 10/22/07 1:59 PM Page 1189

■Source Code The CodeBehindPageModel example is included under the Chapter 31 subdirectory.

Details of an ASP.NET Website Directory Structure
By default, new Visual Studio 2008 web applications will be provided with an initial web page, a
Web.config file, and a particular folder named App_Data (which is empty by default). ASP.NET web-
sites may contain any number of specifically named subdirectories, each of which has a special
meaning to the ASP.NET runtime. Table 31-3 documents these “special subdirectories.”

Table 31-3. Special ASP.NET Subdirectories

Subfolder Meaning in Life

App_Browsers Folder for browser definition files that are used to identify individual
browsers and determine their capabilities.

App_Code Folder for source code for components or classes that you want to
compile as part of your application. ASP.NET compiles the code in this
folder when pages are requested. Code in the App_Code folder is
automatically accessible by your application.

App_Data Folder for storing Access *.mdb files, SQL Express *.mdf files, XML files, or
other data stores.

App_GlobalResources Folder for *.resx files that are accessed programmatically from
application code.

App_LocalResources Folder for *.resx files that are bound to a specific page.

App_Themes Folder that contains a collection of files that define the appearance of
ASP.NET web pages and controls.

App_WebReferences Folder for proxy classes, schemas, and other files associated with using a
web service in your application.

Bin Folder for compiled private assemblies (*.dll files). Assemblies in the Bin
folder are automatically referenced by your application.

If you are interested in adding any of these known subfolders to your current web application,
you may do so explicitly using the Web Site ➤ Add Folder menu option. However, in many cases, the
IDE will automatically do so as you “naturally” insert related files into your site (e.g., inserting a new
class file into your project will automatically add an App_Code folder to your directory structure if
one does not currently exist).

Referencing Assemblies
As described in a few pages, ASP.NET web pages are eventually compiled into a .NET assembly.
Given this, it should come as no surprise that your websites can reference any number of private or
shared assemblies. Under ASP.NET, the manner in which your site’s externally required assemblies
are recorded is quite different from ASP.NET 1.x. The reason for this fundamental shift is that Visual
Studio 2008 treats websites in a projectless manner.

Although the Web Site template does generate an *.sln file to load your *.aspx files into the
IDE, there is no longer a related *.csproj file. As you may know, ASP.NET 1.x Web Application proj-
ects recorded all external assemblies within *.csproj. This fact brings up the obvious question,
where are the external assemblies recorded under ASP.NET?

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES1190

8849CH31.qxd 10/22/07 1:59 PM Page 1190

As you have seen, when you reference a private assembly, Visual Studio 2008 will automatically
create a \bin directory within your directory structure to store a local copy of the binary. When your
code base makes use of types within these code libraries, they are automatically loaded on demand.

If you reference a shared assembly, Visual Studio 2008 will automatically insert a Web.config file
into your current web solution (if one is not currently in place) and record the external reference
within the <assemblies> element. For example, if you again activate the Web Site ➤ Add Reference
menu option and this time select a shared assembly (such as System.Data.OracleClient.dll), you
will find that your Web.config file has been updated as follows:

<assemblies>
<add assembly="System.Data.OracleClient, Version=2.0.0.0,

Culture=neutral, PublicKeyToken=B77A5C561934E089"/>
</assemblies>

As you can see, each assembly is described using the same information required for a dynamic
load via the Assembly.Load() method (see Chapter 16).

The Role of the App_Code Folder
The App_Code folder is used to store source code files that are not directly tied to a specific web
page (such as a code-behind file) but are to be compiled for use by your website. Code within the
App_Code folder will be automatically compiled on the fly on an as-needed basis. After this point,
the assembly is accessible to any other code in the website. To this end, the App_Code folder is
much like the Bin folder, except that you can store source code in it instead of compiled code. The
major benefit of this approach is that it is possible to define custom types for your web application
without having to compile them independently.

A single App_Code folder can contain code files from multiple languages. At runtime, the
appropriate compiler kicks in to generate the assembly in question. If you would rather partition
your code, however, you can define multiple subdirectories that are used to hold any number of
managed code files (*.vb, *.cs, etc.).

For example, assume you have added an App_Code folder to the root directory of a website
application that has two subfolders (MyCSharpCode and MyVbNetCode) that contain language-
specific files. Once you do, you are able to update your Web.config file to specify these
subdirectories using a <codeSubDirectories> element nested within the <configuration> element:

<compilation debug="true" strict="false" explicit="true">
<codeSubDirectories>
<add directoryName="MyCSharpCode" />
<add directoryName="MyVbNetCode" />

</codeSubDirectories>
</compilation>

■Note The App_Code directory will also be used to contain files that are not language files, but are useful
nonetheless (*.xsd files, *.wsdl files, etc.).

Beyond Bin and App_Code, the App_Data and App_Themes folders are two additional “special
subdirectories” that you should be familiar with, both of which will be detailed in the next several
chapters. As always, consult the .NET Framework 3.5 SDK documentation for full details of the
remaining ASP.NET subdirectories if you require further information.

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES 1191

8849CH31.qxd 10/22/07 1:59 PM Page 1191

The ASP.NET Page Compilation Cycle
Regardless of which page model you make use of (single-file or code-behind), your *.aspx files (and
any related code-behind file) are compiled on the fly into a valid .NET assembly. This assembly is
then hosted by the ASP.NET worker process (aspnet_wp.exe) within its own application domain
boundary (see Chapter 17 for details on AppDomains). The manner in which your website’s assem-
bly is compiled under ASP.NET, however, is quite different.

Compilation Cycle for Single-File Pages
If you are making use of the single-file page model, the HTML markup, server side <script> blocks,
and web control definitions are dynamically compiled into a class type deriving from
System.Web.UI.Page. The name of this class is based on the name of the *.aspx file and takes an
_aspx suffix (e.g., a page named MyPage.aspx becomes a class type named MyPage_aspx). Figure 31-
16 illustrates the basic process.

Figure 31-16. The compilation model for single-file pages

This dynamically compiled assembly is deployed to a runtime-defined subdirectory under the
C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files root directory. The
path beneath this root will differ based on a number of factors (hash codes, etc.), but if you are
determined, eventually you will find the *.dll (and supporting files) in question. Figure 31-17
shows the generated assembly for the SinglePageModel example shown earlier in this chapter.

■Note Because these autogenerated assemblies are true-blue .NET binaries, if you were to open your web appli-
cations–related *.dll using ildasm.exe or reflector.exe you would indeed find CIL code, metadata, and an
assembly-level manifest.

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES1192

8849CH31.qxd 10/22/07 1:59 PM Page 1192

Figure 31-17. The ASP.NET autogenerated assembly

Compilation Cycle for Multifile Pages
The compilation process of a page making use of the code-behind model is similar to that of the
single-file model. However, the type deriving from System.Web.UI.Page is composed of three (yes,
three) files rather than the expected two.

Looking back at the previous CodeBehindPageModel example, recall that the Default.aspx file
was connected to a partial class named _Default within the code-behind file. If you have a back-
ground in ASP.NET 1.x, you may wonder what happened to the member variable declarations for
the various web controls as well as the code within InitializeComponent(), such as event-handling
logic. Under ASP.NET, these details are accounted for by a third aspect of the partial class generated
in memory. In reality, this is not a literal file, but an in-memory representation of the partial class.
Consider Figure 31-18.

In this model, the web controls declared in the *.aspx file are used to build the additional par-
tial class that defines each UI member variable and the configuration logic that used to be found
within the InitializeComponent() method of ASP.NET 1.x (we just never directly see it). This partial
class is combined at compile time with the code-behind file to result in the base class of the gener-
ated _aspx class type (in the single-file page compilation model, the generated _aspx file derived
directly from System.Web.UI.Page).

In either case, once the assembly has been created upon the initial HTTP request, it will be
reused for all subsequent requests, and thus will not have to be recompiled. Understanding this fac-
toid should help explain why the first request of an *.aspx page takes the longest, and subsequent
hits to the same page are extremely efficient.

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES 1193

8849CH31.qxd 10/22/07 1:59 PM Page 1193

Figure 31-18. The compilation model for multifile pages

■Note Under ASP.NET, it is now possible to precompile all pages (or a subset of pages) of a website using a
command-line tool named aspnet_compiler.exe. Check out the .NET Framework 3.5 SDK documentation for
details.

The Inheritance Chain of the Page Type
As you have just seen, the final generated class that represents your *.aspx file eventually derives
from System.Web.UI.Page. Like any base class, this type provides a polymorphic interface to all
derived types. However, the Page type is not the only member in your inheritance hierarchy. If you
were to locate the Page type (within the System.Web.dll assembly) using the Visual Studio 2008
object browser, you would find that Page “is-a” TemplateControl, which “is-a” Control, which “is-a”
Object (see Figure 31-19).

As you would guess, each of these base classes brings a good deal of functionality to each and
every *.aspx file. For the majority of your projects, you will make use of the members defined
within the Page and Control parent classes. By and large, the functionality gained from the System.
Web.UI.TemplateControl class is only of interest if you are building custom Web Form controls or
interacting with the rendering process.

The first parent class of interest is Page itself. Here you will find numerous properties that
enable you to interact with various web primitives such as application and session variables, the
HTTP request/response, theme support, and so forth. Table 31-4 describes some (but by no means
all) of the core properties.

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES1194

8849CH31.qxd 10/22/07 1:59 PM Page 1194

Figure 31-19. The derivation of an ASP.NET page

Table 31-4. Select Properties of the Page Type

Property Meaning in Life

Application Allows you to interact with application variables for the current website

Cache Allows you to interact with the cache object for the current website

ClientTarget Allows you to specify how this page should render itself based on the requesting
browser

IsPostBack Gets a value indicating whether the page is being loaded in response to a client
postback or whether it is being loaded and accessed for the first time

MasterPageFile Establishes the master page for the current page

Request Provides access to the current HTTP request

Response Allows you to interact with the outgoing HTTP response

Server Provides access to the HttpServerUtility object, which contains various
server-side helper functions

Session Allows you to interact with the session data for the current caller

Theme Gets or sets the name of the theme used for the current page

Trace Provides access to a TraceContext object, which allows you to log custom
messages during debugging sessions

Interacting with the Incoming HTTP Request
As you saw earlier in this chapter, the basic flow of a web session begins with a client logging on to a
site, filling in user information, and clicking a Submit button to post back the HTML form data to a
given web page for processing. In most cases, the opening tag of the form statement specifies an
action attribute and a method attribute that indicates the file on the web server that will be sent the
data in the various HTML widgets, as well as the method of sending this data (GET or POST):

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES 1195

8849CH31.qxd 10/22/07 1:59 PM Page 1195

<form name="defaultPage" id="defaultPage"
action="http://localhost/Cars/ClassicAspPage.asp" method = "GET">

...
</form>

Unlike classic ASP, ASP.NET does not support an object named Request. However, all ASP.NET
pages do inherit the System.Web.UI.Page.Request property, which provides access to an instance of
the HttpRequest class type. Table 31-5 lists some core members that, not surprisingly, mimic the
same members found within the legacy classic ASP Request object.

Table 31-5. Members of the HttpRequest Type

Member Meaning in Life

ApplicationPath Gets the ASP.NET application’s virtual application root path on the server

Browser Provides information about the capabilities of the client browser

Cookies Gets a collection of cookies sent by the client browser

FilePath Indicates the virtual path of the current request

Form Gets a collection of HTTP form variables

Headers Gets a collection of HTTP headers

HttpMethod Indicates the HTTP data transfer method used by the client (GET, POST)

IsSecureConnection Indicates whether the HTTP connection is secure (i.e., HTTPS)

QueryString Gets the collection of HTTP query string variables

RawUrl Gets the current request’s raw URL

RequestType Indicates the HTTP data transfer method used by the client (GET, POST)

ServerVariables Gets a collection of web server variables

UserHostAddress Gets the IP host address of the remote client

UserHostName Gets the DNS name of the remote client

In addition to these properties, the HttpRequest type has a number of useful methods, includ-
ing the following:

• MapPath(): Maps the virtual path in the requested URL to a physical path on the server for
the current request.

• SaveAs(): Saves details of the current HTTP request to a file on the web server (which can
prove helpful for debugging purposes).

• ValidateInput(): If the validation feature is enabled via the Validate attribute of the page
directive, this method can be called to check all user input data (including cookie data)
against a predefined list of potentially dangerous input data.

Obtaining Brower Statistics
The first interesting aspect of the HttpRequest type is the Browser property, which provides access to
an underlying HttpBrowserCapabilities object. HttpBrowserCapabilities in turn exposes numer-
ous members that allow you to programmatically investigate statistics regarding the browser that
sent the incoming HTTP request.

Create a new ASP.NET website named FunWithPageMembers (again, elect to use the File System
option). Your first task is to build a UI that allows users to click a Button web control (named

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES1196

8849CH31.qxd 10/22/07 1:59 PM Page 1196

http://localhost/Cars/ClassicAspPage.asp

btnGetBrowserStats) to view various statistics about the calling browser. These statistics will be gen-
erated dynamically and attached to a Label type (named lblOutput). The Click event handler is as
follows:

protected void btnGetBrowserStats_Click(object sender, EventArgs e)
{
string theInfo = "";
theInfo += string.Format("Is the client AOL? {0}",
Request.Browser.AOL);

theInfo += string.Format("Does the client support ActiveX? {0}",
Request.Browser.ActiveXControls);

theInfo += string.Format("Is the client a Beta? {0}",
Request.Browser.Beta);

theInfo += string.Format("Does the client support Java Applets? {0}",
Request.Browser.JavaApplets);

theInfo += string.Format("Does the client support Cookies? {0}",
Request.Browser.Cookies);

theInfo += string.Format("Does the client support VBScript? {0}",
Request.Browser.VBScript);

lblOutput.Text = theInfo;
}

Here you are testing for a number of browser capabilities. As you would guess, it is (very) help-
ful to discover a browser’s support for ActiveX controls, Java applets, and client-side VBScript code.
If the calling browser does not support a given web technology, your *.aspx page would be able to
take an alternative course of action.

Access to Incoming Form Data
Other aspects of the HttpResponse type are the Form and QueryString properties. These two proper-
ties allow you to examine the incoming form data using name/value pairs, and they function
identically to classic ASP. Recall from our earlier discussion of classic ASP that if the data is submit-
ted using HTTP GET, the form data is accessed using the QueryString property, whereas data
submitted via HTTP POST is obtained using the Form property.

While you could most certainly make use of the HttpRequest.Form and HttpRequest.
QueryString properties to access client-supplied form data on the web server, these old-school
techniques are (for the most part) unnecessary. Given that ASP.NET supplies you with server-side
web controls, you are able to treat HTML UI elements as true objects. Therefore, rather than obtain-
ing the value within a text box as follows:

protected void btnGetFormData_Click(object sender, System.EventArgs e)
{
// Get value for a widget with ID txtFirstName.
string firstName = Request.Form("txtFirstName");

// Use this value in your page...
}

you can simply ask the server-side widget directly via the Text property for use in your program:

protected void btnGetFormData_Click(object sender, System.EventArgs e)
{
// Get value for a widget with ID txtFirstName.
string firstName = txtFirstName.Text;

// Use this value in your page...
}

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES 1197

8849CH31.qxd 10/22/07 1:59 PM Page 1197

Not only does this approach lend itself to solid OO principles, but also you do not need to con-
cern yourself with how the form data was submitted (GET or POST) before obtaining the values.
Furthermore, working with the widget directly is much more type-safe, given that typing errors are
discovered at compile time rather than runtime. Of course, this is not to say that you will never need
to make use of the Form or QueryString property in ASP.NET; rather, the need to do so has greatly
diminished and is usually optional.

The IsPostBack Property
Another very important member of HttpRequest is the IsPostBack property. Recall that “postback”
refers to the act of returning to a particular web page while still in session with the server. Given this
definition, understand that the IsPostBack property will return true if the current HTTP request has
been sent by a currently logged-on user and false if this is the user’s first interaction with the page.

Typically, the need to determine whether the current HTTP request is indeed a postback is
most helpful when you wish to execute a block of code only the first time the user accesses a given
page. For example, you may wish to populate an ADO.NET DataSet when the user first accesses an
*.aspx file and cache the object for later use. When the caller returns to the page, you can avoid the
need to hit the database unnecessarily (of course, some pages may require that the DataSet always
be updated upon each request, but that is another issue). Assuming your *.aspx file has handled
the page’s Load event (described in detail later in this chapter), you could programmatically test for
postback conditions as follows:

protected void Page_Load(object sender, System.EventArgs e)
{
// Fill DataSet only the very first time
// the user comes to this page.
if (!IsPostBack)
{
// Populate DataSet and cache it!

}
// Use cached DataSet.

}

Interacting with the Outgoing HTTP Response
Now that you have a better understanding of how the Page type allows you to interact with the
incoming HTTP request, the next step is to see how to interact with the outgoing HTTP response. In
ASP.NET, the Response property of the Page class provides access to an instance of the HttpResponse
type. This type defines a number of properties that allow you to format the HTTP response sent
back to the client browser. Table 31-6 lists some core properties.

Table 31-6. Properties of the HttpResponse Type

Property Meaning in Life

Cache Returns the caching semantics of the web page (e.g., expiration time,
privacy, vary clauses)

ContentEncoding Gets or sets the HTTP character set of the output stream

ContentType Gets or sets the HTTP MIME type of the output stream

Cookies Gets the HttpCookie collection sent by the current request

IsClientConnected Gets a value indicating whether the client is still connected to the server

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES1198

8849CH31.qxd 10/22/07 1:59 PM Page 1198

Property Meaning in Life

Output Enables custom output to the outgoing HTTP content body

OutputStream Enables binary output to the outgoing HTTP content body

StatusCode Gets or sets the HTTP status code of output returned to the client

StatusDescription Gets or sets the HTTP status string of output returned to the client

SuppressContent Gets or sets a value indicating that HTTP content will not be sent to the
client

Also, consider the partial list of methods supported by the HttpResponse type described in
Table 31-7.

Table 31-7. Methods of the HttpResponse Type

Method Meaning in Life

AddCacheDependency() Adds an object to the application catch (see Chapter 33)

Clear() Clears all headers and content output from the buffer stream

End() Sends all currently buffered output to the client, and then closes the
socket connection

Flush() Sends all currently buffered output to the client

Redirect() Redirects a client to a new URL

Write() Writes values to an HTTP output content stream

WriteFile() Writes a file directly to an HTTP content output stream

Emitting HTML Content
Perhaps the most well-known aspect of the HttpResponse type is the ability to write content directly
to the HTTP output stream. The HttpResponse.Write() method allows you to pass in any HTML tags
and/or text literals. The HttpResponse.WriteFile() method takes this functionality one step further,
in that you can specify the name of a physical file on the web server whose contents should be ren-
dered to the output stream (this is quite helpful to quickly emit the contents of an existing *.htm
file).

To illustrate, assume you have added another Button type to your current *.aspx file that
implements the server-side Click event handler like so:

protected void btnHttpResponse_Click(object sender, EventArgs e)
{
Response.Write("My name is:
");
Response.Write(this.ToString());
Response.Write("

Here was your last request:
");
Response.WriteFile("MyHTMLPage.htm");

}

The role of this helper function (which you can assume is called by some server-side event
handler) is quite simple. The only point of interest is the fact that the HttpResponse.WriteFile()
method is now emitting the contents of a server-side *.htm file within the root directory of the
website.

Again, while you can always take this old-school approach and render HTML tags and content
using the Write() method, this approach is far less common under ASP.NET than with classic ASP.

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES 1199

8849CH31.qxd 10/22/07 1:59 PM Page 1199

The reason is (once again) due to the advent of server-side web controls. Thus, if you wish to render
a block of textual data to the browser, your task is as simple as assigning a string to the Text prop-
erty of a Label widget.

Redirecting Users
Another aspect of the HttpResponse type is the ability to redirect the user to a new URL:

protected void btnSomeTraining_Click(object sender, EventArgs e)
{
Response.Redirect("http://www.intertech.com");

}

If this event handler is invoked via a client-side postback, the user will automatically be redi-
rected to the specified URL.

■Note The HttpResponse.Redirect() method will always entail a trip back to the client browser. If you simply
wish to transfer control to an *.aspx file in the same virtual directory, the HttpServerUtility.Transfer()
method (accessed via the inherited Server property) is more efficient.

So much for investigating the functionality of System.Web.UI.Page. We will examine the role of
the System.Web.UI.Control base class in the next chapter. Next up, let’s examine the life and times
of a Page-derived object.

■Source Code The FunWithPageMembers files are included under the Chapter 31 subdirectory.

The Life Cycle of an ASP.NET Web Page
Every ASP.NET web page has a fixed life cycle. When the ASP.NET runtime receives an incoming
request for a given *.aspx file, the associated System.Web.UI.Page-derived type is allocated into
memory using the type’s default constructor. After this point, the framework will automatically fire a
series of events. By default, the Load event is automatically accounted for, where you can add your
custom code:

public partial class Default : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{
Response.Write("Load event fired!");

}
}

Beyond the Load event, a given Page is able to intercept any of the core events in Table 31-8,
which are listed in the order in which they are encountered (consult the .NET Framework 3.5 SDK
documentation for details on all possible events that may fire during a page’s lifetime).

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES1200

8849CH31.qxd 10/22/07 1:59 PM Page 1200

http://www.intertech.com
http://www.intertech.com

Table 31-8. Select Events of the Page Type

Event Meaning in Life

PreInit The framework uses this event to allocate any web controls, apply themes,
establish the master page, and set user profiles. You may intercept this
event to customize the process.

Init The framework uses this event to set the properties of web controls to their
previous values via postback or view state data.

Load When this event fires, the page and its controls are fully initialized, and
their previous values are restored. At this point, it is safe to interact with
each web widget.

“Event that triggered There is of course, no event of this name. This “event” simply refers to
the postback” whichever event caused the browser to perform the postback to the web

server (such as a Button click).

PreRender All control data binding and UI configuration has occurred and the
controls are ready to render their data into the outbound HTTP response.

Unload The page and its controls have finished the rendering process, and the
page object is about to be destroyed. At this point, it is a runtime error to
interact with the outgoing HTTP response. You may, however, capture
this event to perform any page-level cleanup (close file or database
connections, perform any form of logging activity, dispose of objects, etc.).

When a C# programmer needs to handle events beyond Load, you might be surprised to find
that there is no IDE support to do so! Rather, you must manually author a method in your code file
taking the name Page_NameOfEvent. For example, here is how you can handle the Unload event:

public partial class Default : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{
Response.Write("Load event fired!");

}

protected void Page_Unload(object sender, EventArgs e)
{
// No longer possible to emit data to the HTTP
// response, so we will write to a local file.
System.IO.File.WriteAllText(@"C:\MyLog.txt", "Page unloading!");

}
}

■Note Each event of the Page type works in conjunction with the System.EventHandler delegate; therefore,
the subroutines that handle these events always take an Object as the first parameter and an EventArgs as the
second parameter.

The Role of the AutoEventWireup Attribute
When you wish to handle events for your page, you will need to update your <script> block or
code-behind file with an appropriate event handler. However, if you examine the <%@Page%> direc-
tive, you will notice a specific attribute named AutoEventWireUp, which by default is set to true:

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES 1201

8849CH31.qxd 10/22/07 1:59 PM Page 1201

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default" %>

With this default behavior, each page-level event handler will automatically be handled if you
enter the appropriately named method. However, if you disable AutoPageWireUp by setting this
attribute to false:

<%@ Page Language="C#" AutoEventWireup="false"
CodeFile="Default.aspx.cs" Inherits="_Default" %>

the page-level events will no longer be captured. As its name suggests, this attribute (when enabled)
will generate the necessary event riggings within the autogenerated partial class described earlier in
this chapter. Even if you disable AutoEventWireup, you can still process page-level events by making
use of C# event-handling logic, for example:

public _Default()
{
// Explicitly hook into the Load and Unload events.
this.Load += new EventHandler(Page_Load);
this.Unload += new EventHandler(Page_Unload);

}

As you might suspect, by and large you will simply leave AutoEventWireup enabled.

The Error Event
Another event that may occur during your page’s life cycle is Error. This event will be fired if a
method on the Page-derived type triggered an exception that was not explicitly handled. Assume
that you have handled the Click event for a given Button on your page, and within the event han-
dler (which I named btnGetFile_Click), you attempt to write out the contents of a local file to the
HTTP response.

Also assume you have failed to test for the presence of this file via standard structured excep-
tion handling. If you have rigged up the page’s Error event in the default constructor, you have one
final chance to deal with the problem on this page before the end user finds an ugly error. Consider
the following code:

public partial class _Default : System.Web.UI.Page
{
void Page_Error(object sender, EventArgs e)
{
Response.Clear();
Response.Write("I am sorry...I can't find a required file.
");
Response.Write(string.Format("The error was: {0}",

Server.GetLastError().Message));
Server.ClearError();

}

protected void Page_Load(object sender, EventArgs e)
{
Response.Write("Load event fired!");

}

protected void Page_Unload(object sender, EventArgs e)
{
// No longer possible to emit data to the HTTP
// response at this point, so we will write to a local file.
System.IO.File.WriteAllText(@"C:\MyLog.txt", "Page unloading!");

}

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES1202

8849CH31.qxd 10/22/07 1:59 PM Page 1202

protected void btnPostback_Click(object sender, EventArgs e)
{
// Nothing happens here, this is just to ensure a
// postback to the page.

}
protected void btnTriggerError_Click(object sender, EventArgs e)
{
System.IO.File.ReadAllText(@"C:\IDontExist.txt");

}
}

Notice that your Error event handler begins by clearing out any content currently within the
HTTP response and emits a generic error message. If you wish to gain access to the specific System.
Exception object, you may do so using the HttpServerUtility.GetLastError() method exposed by
the inherited Server property.

Finally, note that before exiting this generic error handler, you are explicitly calling the
HttpServerUtility.ClearError() method via the Server property. This is required, as it informs the
runtime that you have dealt with the issue at hand and require no further processing. If you forget
to do so, the end user will be presented with the runtime’s error page. Figure 31-20 shows the result
of this error-trapping logic.

Figure 31-20. Page-level error handling

At this point, you should feel confident with the composition of an ASP.NET Page type. Now
that you have such a foundation, you can turn your attention to the role of ASP.NET web controls,
themes, and master pages, all of which are the subject of the next chapter. To wrap up this chapter,
however, let’s examine the role of the Web.config file.

■Source Code The PageLifeCycle files are included under the Chapter 31 subdirectory.

The Role of the Web.config File
By default, all C# ASP.NET web applications created with Visual Studio 2008 are automatically pro-
vided with a Web.config file. However, if you ever need to manually insert a Web.config file into your
site (e.g., when you are working with the single-page model and have not created a web solution),
you may do so using the using the Web Site ➤ Add New Item menu option. In either case, within
this scope of a Web.config file you are able to add settings that control how your web application
will function at runtime.

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES 1203

8849CH31.qxd 10/22/07 1:59 PM Page 1203

■Note It is not mandatory for your web applications to include a Web.config file. If you do not have such a file,
your website will be granted the default web-centric settings recorded in the machine.config file for your .NET
installation.

Recall during your examination of .NET assemblies (in Chapter 15) that you learned client
applications can leverage an XML-based configuration file to instruct the CLR how it should handle
binding requests, assembly probing, and other runtime details. The same holds true for ASP.NET
web applications, with the notable exception that web-centric configuration files are always
named Web.config (unlike *.exe configuration files, which are named based on the related client
executable).

The default structure of a Web.config file is rather verbose with the release of .NET 3.5, but the
essentials settings break down as follows. Table 31-9 outlines some of the more interesting sub-
elements that can be found within a Web.config file.

Table 31-9. Select Elements of a Web.config File

Element Meaning in Life

<appSettings> This element is used to establish custom name/value pairs that can be
programmatically read in memory for use by your pages using the
ConfigurationManager type.

<authentication> This security-related element is used to define the authentication mode for
this web application.

<authorization> This is another security-centric element used to define which users can
access which resources on the web server.

<connectionStrings> This element is used to hold external connection strings used within this
website.

<customErrors> This element is used to tell the runtime exactly how to display errors that
occur during the functioning of the web application.

<globalization> This element is used to configure the globalization settings for this web
application.

<namespaces> This element documents all of the namespaces to include if your web
application has been precompiled using the new aspnet_compiler.exe
command-line tool.

<sessionState> This element is used to control how and where session state data will be
stored by the .NET runtime.

<trace> This element is used to enable (or disable) tracing support for this web
application.

A Web.config file may contain additional subelements above and beyond the set presented in
Table 31-9. The vast majority of these items are security related, while the remaining items are use-
ful only during advanced ASP.NET scenarios such as creating with custom HTTP headers or custom
HTTP modules (topics that are not covered here).

If you wish to see the complete set of elements (and the related attributes) that can appear in a
Web.config file, you may do so using the .NET Framework 3.5 SDK documentation. Simply search
for the topic “ASP.NET Configuration Settings” as shown in Figure 31-21, and dive in.

You will come to know various aspects of the Web.config file over the remainder of this text.

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES1204

8849CH31.qxd 10/22/07 1:59 PM Page 1204

Figure 31-21. Documentation details of a Web.config file

The ASP.NET Website Administration Utility
Although you are always free to modify the content of a Web.config file directly using Visual Studio
2008, ASP.NET web projects can make use of a handy web-based editor that will allow you to graphi-
cally edit numerous elements and attributes of your project’s Web.config file. To launch this tool,
shown in Figure 31-22, simply activate the Web Site ➤ ASP.NET Configuration menu option.

Figure 31-22. The ASP.NET Web Site Administration tool

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES 1205

8849CH31.qxd 10/22/07 1:59 PM Page 1205

If you were to click the tabs located on the top of the page, you would quickly notice that most
of this tool’s functionality is used to establish security settings for your website. However, this tool
also makes it possible to add settings to your <appSettings> element, define debugging and tracing
settings, and establish a default error page.

You’ll see more of this tool in action where necessary; however, do be aware that this utility will
not allow you to add all possible settings to a Web.config file. There will most certainly be times
when you will need to manually update this file using your text editor of choice.

Summary
Building web applications requires a different frame of mind than is used to assemble traditional
desktop applications. In this chapter, you began with a quick and painless review of some core web
topics, including HTML, HTTP, the role of client-side scripting, and server-side scripts using classic
ASP. The bulk of this chapter was spent examining the architecture of an ASP.NET page. As you have
seen, each *.aspx file in your project has an associated System.Web.UI.Page-derived class. Using
this OO approach, ASP.NET allows you to build more reusable and OO-aware systems.

After examining some of the core functionality of a page’s inheritance chain, this chapter then
discussed how your pages are ultimately compiled into a valid .NET assembly. We wrapped up by
exploring the role of the Web.config file and overviewed the ASP.NET Web Site Administration tool.

CHAPTER 31 ■ BUILDING ASP.NET WEB PAGES1206

8849CH31.qxd 10/22/07 1:59 PM Page 1206

ASP.NET Web Controls, Themes, and
Master Pages

The previous chapter concentrated on the composition and behavior of ASP.NET Page objects.
This chapter will dive into the details of the web controls that make up a page’s user interface. After
examining the overall nature of an ASP.NET web control, you will come to understand how to make
use of several UI elements including the validation controls and data-centric controls.

The latter half of this chapter will examine the role of master pages and show how they provide
a simplified manner to define a common UI skeleton that will be replicated across the pages in your
website. I wrap up by showing you how to apply themes to your pages in order to define a consistent
look and feel for your page’s controls. As you will see, the ASP.NET theme engine provides a server-
side alternative to traditional client-side style sheets.

Understanding the Nature of Web Controls
A major benefit of ASP.NET is the ability to assemble the UI of your pages using the types defined in
the System.Web.UI.WebControls namespace. As you have seen, these controls (which go by the
names server controls, web controls, or Web Form controls) are extremely helpful in that they auto-
matically generate the necessary HTML for the requesting browser and expose a set of events that
may be processed on the web server. Furthermore, because each ASP.NET control has a correspon-
ding class in the System.Web.UI.WebControls namespace, it can be manipulated in an object-
oriented manner.

When you configure the properties of a web control using the Visual Studio 2008 Properties
window, your edits are recorded in the opening control declaration of a given element in the *.aspx
file as a series of name/value pairs. Thus, if you add a new TextBox to the designer of a given *.aspx
file and change the ID, BorderStyle, BorderWidth, BackColor, and Text properties, the opening
<asp:TextBox> tag is modified accordingly (note that the Text value becomes the inner text of the
TextBox scope):

<asp:TextBox ID="txtNameTextBox" runat="server"
BackColor="#C0FFC0" BorderStyle="Dotted"BorderWidth="5px">
Enter Your Name

</asp:TextBox>

Given that the HTML declaration of a web control eventually becomes a member variable from
the System.Web.UI.WebControls namespace (via the dynamic compilation cycle examined in Chap-
ter 31), you are able to interact with the members of this type within a server-side <script> block or
the page’s code-behind file. For example, if you handled the Click event for a given Button type, you
could change the background color of the TextBox as follows:

1207

C H A P T E R 3 2

8849CH32.qxd 10/16/07 12:51 PM Page 1207

partial class _Default : System.Web.UI.Page
{
protected void btnChangeTextBoxColor_Click(object sender, System.EventArgs e)
{
// Change color of text box object in code.
this.txtNameTextBox.BackColor = Drawing.Color.DarkBlue;

}
}

All ASP.NET web controls ultimately derive from a common base class named System.Web.UI.
WebControls.WebControl. WebControl in turn derives from System.Web.UI.Control (which derives
from System.Object). Control and WebControl each define a number of properties common to all
server-side controls. Before we examine the inherited functionality, let’s formalize what it means to
handle a server-side event.

Understanding Server-Side Event Handling
Given the current state of the World Wide Web, it is impossible to avoid the fundamental nature of
browser/web server interaction. Whenever these two entities communicate, there is always an
underlying, stateless, HTTP request-and-response cycle. While ASP.NET server controls do a great
deal to shield you from the details of the raw HTTP protocol, always remember that treating the
Web as an event-driven entity is just a magnificent smoke-and-mirrors show provided by the CLR,
and it is not identical to the event-driven model of a Windows-based UI.

For example, although the System.Windows.Forms, System.Windows.Controls, and System.Web.
UI.WebControls namespaces define types with the same simple names (Button, TextBox, Label, and
so on), they do not expose an identical set of events. For example, there is no way to handle a
server-side MouseMove event when the user moves the cursor over a Web Form Button type. Obvi-
ously, this is a good thing. (Who wants to post back to the server each time the user mouse moves
in the browser?)

The bottom line is that a given ASP.NET web control will expose a limited set of events, all of
which ultimately result in a postback to the web server. Any necessary client-side event processing
will require you to author blurbs of client-side JavaScript/VBScript script code to be processed by
the requesting browser’s scripting engine. Given that ASP.NET is primarily a server-side technology,
I will not be addressing the topic of authoring client-side scripts in this text.

■Note Handling an event for a given web control using Visual Studio 2008 can be done in an identical manner to
doing so for a Windows Forms control. Simply select the widget from the designer and click the “lightning bolt”
icon on the Properties window.

The AutoPostBack Property
It is also worth pointing out that many of the ASP.NET web controls support a property named
AutoPostBack (most notably, the CheckBox, RadioButton, and TextBox controls, as well as any widget
that derives from the abstract ListControl type). By default, this property is set to false, which dis-
ables the automatic processing of server-side events (even if you have indeed rigged up the event in
the code-behind file). In most cases, this is the exact behavior you require, given that UI elements
such as check boxes typically don’t require postback functionality (as the page object can obtain the
state of the widget within a more natural Button Click event handler).

However, if you wish to cause any of these widgets to post back to a server-side event handler,
simply set the value of AutoPostBack to true. This technique can be helpful if you wish to have the

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES1208

8849CH32.qxd 10/16/07 12:51 PM Page 1208

state of one widget automatically populate another value within another widget on the same page.
To illustrate, assume you have a web page that contains a single TextBox (named txtAutoPostback)
and a single ListBox control (named lstTextBoxData). Here is the relevant markup:

<form id="form1" runat="server">
<asp:TextBox ID="txtAutoPostback" runat="server"></asp:TextBox>

<asp:ListBox ID="lstTextBoxData" runat="server"></asp:ListBox>

</form>

Now, handle the TextChanged event of the TextBox, and within the server-side event handler,
populate the ListBox with the current value in the TextBox:

partial class _Default : System.Web.UI.Page
{
protected void txtAutoPostback_TextChanged(object sender, System.EventArgs e)
{
lstTextBoxData.Items.Add(txtAutoPostback.Text);

}
}

If you run the application as is, you will find that as you type in the TextBox, nothing happens.
Furthermore, if you type in the TextBox and tab to the next control, nothing happens. The reason is
that the AutoPostBack property of the TextBox is set to false by default. However, if you set this
property to true:

<asp:TextBox ID="txtAutoPostback"
runat="server" AutoPostBack="true">

</asp:TextBox>

you will find that when you tab away from the TextBox (or press the Enter key), the ListBox is auto-
matically populated with the current value in the TextBox. To be sure, beyond the need to populate
the items of one widget based on the value of another widget, you will typically not need to alter the
state of a widget’s AutoPostBack property (and even then, sometimes this can be accomplished
purely in client script, removing the need for server interaction at all).

The System.Web.UI.Control Type
The System.Web.UI.Control base class defines various properties, methods, and events that allow
the ability to interact with core (typically non-GUI) aspects of a web control. Table 32-1 documents
some, but not all, members of interest.

Table 32-1. Select Members of System.Web.UI.Control

Member Meaning in Life

Controls This property gets a ControlCollection object that represents the child controls
within the current control.

DataBind() This method binds a data source to the invoked server control and all its child
controls.

EnableTheming This property establishes whether the control supports theme functionality.

HasControls() This method determines whether the server control contains any child controls.

ID This property gets or sets the programmatic identifier assigned to the server
control.

Continued

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES 1209

8849CH32.qxd 10/16/07 12:51 PM Page 1209

Table 32-1. Continued

Member Meaning in Life

Page This property gets a reference to the Page instance that contains the server
control.

Parent This property gets a reference to the server control’s parent control in the page
control hierarchy.

SkinID This property gets or sets the “skin” to apply to the control. Under ASP.NET, it is
now possible to establish a control’s overall look and feel on the fly via skins.

Visible This property gets or sets a value that indicates whether a server control is
rendered as a UI element on the page.

Enumerating Contained Controls
The first aspect of System.Web.UI.Control we will examine is the fact that all web controls (includ-
ing Page itself) inherit a custom controls collection (accessed via the Controls property). Much like
in a Windows Forms application, the Controls property provides access to a strongly typed collec-
tion of WebControl-derived types. Like any .NET collection, you have the ability to add, insert, and
remove items dynamically at runtime.

While it is technically possible to add web controls directly to a Page-derived type, it is easier
(and more robust) to make use of a Panel widget. The Panel class represents a container of widgets
that may or may not be visible to the end user (based on the value of its Visible and BorderStyle
properties).

To illustrate, create a new website named DynamicCtrls. Using the Visual Studio 2008 page
designer, add a Panel type (named myPanel) that contains a TextBox, Button, and HyperLink widget
named whatever you choose (be aware that the designer requires that you drag internal items
within the UI of the Panel type). Once you have done so, the <form> element of your *.aspx file will
have been updated as follows:

<asp:Panel ID="myPanel" runat="server" Height="50px" Width="125px">
<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

<asp:Button ID="Button1" runat="server" Text="Button"/>

<asp:HyperLink ID="HyperLink1" runat="server">HyperLink
</asp:HyperLink>

</asp:Panel>

Next, place a Label widget outside the scope of the Panel (named lblControlInfo) to hold the
rendered output. Assume in the Page_Load() event you wish to obtain a list of all the controls con-
tained within the Panel and assign the results to the Label type (named lblControlInfo):

public partial class _Default : System.Web.UI.Page
{
private void ListControlsInPanel()
{
string theInfo = "";
theInfo = string.Format("Has controls? {0}
", myPanel.HasControls());
foreach (Control c in myPanel.Controls)
{
if (!object.ReferenceEquals(c.GetType(),
typeof(System.Web.UI.LiteralControl)))

{
theInfo += "***************************
";
theInfo += string.Format("Control Name? {0}
", c.ToString());
theInfo += string.Format("ID? {0}
", c.ID);

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES1210

8849CH32.qxd 10/16/07 12:51 PM Page 1210

theInfo += string.Format("Control Visible? {0}
", c.Visible);
theInfo += string.Format("ViewState? {0}
", c.EnableViewState);

}
}
lblControlInfo.Text = theInfo;

}

protected void Page_Load(object sender, System.EventArgs e)
{
ListControlsInPanel();

}
}

Here, you iterate over each WebControl maintained on the Panel and perform a check to see
whether the current type is of type System.Web.UI.LiteralControl. This type is used to represent lit-
eral HTML tags and content (such as
, text literals, etc.). If you do not do this sanity check, you
might be surprised to find a total of seven types in the scope of the Panel (given the *.aspx declara-
tion seen previously). Assuming the type is not literal HTML content, you then print out some
various statistics about the widget. Figure 32-1 shows the output.

Figure 32-1. Enumerating contained widgets

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES 1211

8849CH32.qxd 10/16/07 12:51 PM Page 1211

Dynamically Adding (and Removing) Controls
Now, what if you wish to modify the contents of a Panel at runtime? Let’s update the current page
to support an additional Button (named btnAddWidgets) that dynamically adds three new TextBox
types to the Panel, and another Button (named btnRemovePanelItems) that clears the Panel widget
of all controls. The Click event handlers for each are shown here:

protected void btnRemovePanelItems_Click(object sender, System.EventArgs e)
{
myPanel.Controls.Clear();
ListControlsInPanel();

}

protected void btnAddWidgets_Click(object sender, System.EventArgs e)
{
for (int i = 0; i < 3; i++)
{
// Assign a name so we can get
// the text value out later
// using the incoming form data.
TextBox t = new TextBox();
t.ID = string.Format("newTextBox{0}", i);
myPanel.Controls.Add(t);
ListControlsInPanel();

}
}

Notice that you assign a unique ID to each TextBox (e.g., newTextBox1, newTextBox2, and so on)
to obtain its contained text programmatically using the HttpRequest.Form collection.

To obtain the values within these dynamically generated TextBoxes, update your UI with one
additional Button and Label type. Within the Click event handler for the Button, loop over each
item contained within the HttpRequest.NameValueCollection type (accessed via HttpRequest.Form)
and concatenate the textual information to a locally scoped System.String. Once you have
exhausted the collection, assign this string to the Text property of the new Label widget named
lblTextBoxText:

protected void btnGetTextBoxValues_Click(object sender, System.EventArgs e)
{
string textBoxValues = "";
for (int i = 0; i < Request.Form.Count; i++)
{
textBoxValues += string.Format("{0}
", Request.Form[i]);

}
lblTextBoxText.Text = textBoxValues;

}

When you run the application, you will find that you are able to view the content of each text
box, including some rather long (unreadable) string data. This string contains the view state for
each widget on the page and will be examined later in the next chapter. Also, you will notice that
once the request has been processed, the text boxes disappear. Again, the reason has to do with the
stateless nature of HTTP. If you wish to maintain these dynamically created TextBoxes between
postbacks, you need to persist these objects using ASP.NET state programming techniques (also
examined in the next chapter).

■Source Code The DynamicCtrls project is included under the Chapter 32 subdirectory.

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES1212

8849CH32.qxd 10/16/07 12:51 PM Page 1212

The System.Web.UI.WebControls.WebControl Type
As you can tell, the Control type provides a number of non–GUI-related behaviors (the controls col-
lection, autopostback support, etc.). On the other hand, the WebControl base class provides a
graphical polymorphic interface to all web widgets, as suggested in Table 32-2.

Table 32-2. Select Properties of the WebControl Base Class

Property Meaning in Life

BackColor Gets or sets the background color of the web control

BorderColor Gets or sets the border color of the web control

BorderStyle Gets or sets the border style of the web control

BorderWidth Gets or sets the border width of the web control

Enabled Gets or sets a value indicating whether the web control is enabled

CssClass Allows you to assign a class defined within a Cascading Style Sheet to a web
widget

Font Gets font information for the web control

ForeColor Gets or sets the foreground color (typically the color of the text) of the web
control

Height, Width Get or set the height and width of the web control

TabIndex Gets or sets the tab index of the web control

ToolTip Gets or sets the tool tip for the web control to be displayed when the cursor is
over the control

Almost all of these properties are self-explanatory, so rather than drill through the use of all
these properties, let’s shift gears a bit and check out a number of ASP.NET Web Form controls in
action.

Major Categories of ASP.NET Web Controls
The types in System.Web.UI.WebControls can be broken down into several major categories:

• Simple controls

• Feature-rich controls

• Data-centric controls

• Input validation controls

• Web part controls

• Security controls

The simple controls are so named because they are ASP.NET web controls that map to standard
HTML widgets (buttons, lists, hyperlinks, image holders, tables, etc.). Next, we have a small set of
controls named the rich controls for which there is no direct HTML equivalent (such as the
Calendar, TreeView, Menu, Wizard, etc.). The data-centric controls are widgets that are typically popu-
lated via a given data connection. The best (and most exotic) example of such a control would be
the ASP.NET GridView. Other members of this category include “repeater” controls and the light-
weight DataList.

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES 1213

8849CH32.qxd 10/16/07 12:51 PM Page 1213

The validation controls are server-side widgets that automatically emit client-side JavaScript,
for the purpose of form field validation. Finally, the base class libraries ship with a number of
security-centric controls. These UI elements encapsulate the details of logging into a site, providing
password-retrieval services and managing user roles. The full set of ASP.NET web controls can be
seen using the Visual Studio 2008 Toolbox. In Figure 32-2, notice that related controls are grouped
together under a specifically named tab.

Figure 32-2. The ASP.NET web controls

A Brief Word Regarding System.Web.UI.HtmlControls
Truth be told, there are two distinct web control toolkits that ship with ASP.NET. In addition to the
ASP.NET web controls (within the System.Web.UI.WebControls namespace), the base class libraries
also provide the System.Web.UI.HtmlControls widgets.

The HTML controls are a collection of types that allow you to make use of traditional HTML
controls on a web forms page. However, unlike raw HTML tags, HTML controls are object-oriented
entities that can be configured to run on the server and thus support server-side event handling.
Unlike ASP.NET web controls, HTML controls are quite simplistic in nature and offer little function-
ality beyond standard HTML tags (HtmlButton, HtmlInputControl, HtmlTable, etc.). As you would
expect, Visual Studio 2008 provides a specific section of the Toolbox to contain the HTML control
types (see Figure 32-3).

The HTML controls provide a public interface that mimics standard HTML attributes. For
example, to obtain the information within an input area, you make use of the Value property, rather
than the web control–centric Text property. Given that the HTML controls are not as feature-rich as
the ASP.NET web controls, I won’t make further mention of them in this text. If you wish to investi-
gate these types, consult the .NET Framework 3.5 SDK documentation for further details.

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES1214

8849CH32.qxd 10/16/07 12:51 PM Page 1214

Figure 32-3. The HTML controls

■Note The HTML controls can be useful if your team has a clear division between those who build HTML UIs and
.NET developers. HTML folks can make use of their web editor of choice using familiar markup tags and pass the
HTML files to the development team. At this point, developers can configure these HTML controls to run as server
controls (by right-clicking an HTML widget within Visual Studio 2008). This will allow developers to handle server-
side events and work with the HTML widget programmatically.

Building a Feature-Rich ASP.NET Website
Given that many of the “simple” controls look and feel so close to their Windows Forms counter-
parts, I won’t bother to enumerate the details of the basic widgets (Buttons, Labels, TextBoxes, etc.).
Rather, let’s build a new website that illustrates working with several of the more exotic controls as
well as the ASP.NET master page model and enhanced data binding engine. Specifically, this next
example will illustrate the following techniques:

• Working with master pages

• Working with the Menu control

• Working with the GridView control

• Working with the Wizard control

To begin, create a new ASP.NET Web Application project named AspNetCarsSite.

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES 1215

8849CH32.qxd 10/16/07 12:51 PM Page 1215

Working with Master Pages
As I am sure you are aware, many websites provide a consistent look and feel across multiple pages
(a common menu navigation system, common header and footer content, company logo, etc.).
Under ASP.NET 1.x, developers made extensive use of UserControls and custom web controls to
define web content that was to be used across multiple pages. While UserControls and custom web
controls are still a very valid option under ASP.NET, we are now provided with the concept of master
pages, which complements these existing technologies.

Simply put, a master page is little more than an ASP.NET page that takes a *.master file exten-
sion. On their own, master pages are not viewable from a client-side browser (in fact, the ASP.NET
runtime will not serve this flavor of web content). Rather, master pages define a common UI frame
shared by all pages (or a subset of pages) in your site.

As well, a *.master page will define various content placeholder areas that establish a region of
UI real estate other *.aspx files may plug into. As you will see, *.aspx files that plug their content
into a master file look and feel a bit different from the *.aspx files we have been examining. Specifi-
cally, this flavor of an *.aspx file is termed a content page. Content pages are *.aspx files that do not
define an HTML <form> element (that is the job of the master page).

However, as far as the end user is concerned, a request is made to a given *.aspx file. On the
web server, the related *.master file and any related *.aspx content pages are blended into a single
unified page. To illustrate the use of master pages and content pages, begin by inserting a new mas-
ter page into your website via the Web Site ➤ Add New Item menu selection (Figure 32-4 shows the
resulting dialog box).

Figure 32-4. Inserting a new *.master file

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES1216

8849CH32.qxd 10/16/07 12:51 PM Page 1216

The initial markup of the MasterPage.master file looks like the following:

<%@ Master Language="C#" AutoEventWireup="true"
CodeFile="MasterPage.master.cs" Inherits="MasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
<title>Untitled Page</title>
<asp:ContentPlaceHolder id="head" runat="server">
</asp:ContentPlaceHolder>

</head>
<body>
<form id="form1" runat="server">
<div>
<asp:ContentPlaceHolder id="ContentPlaceHolder1" runat="server">
</asp:ContentPlaceHolder>

</div>
</form>

</body>
</html>

The first point of interest is the new <%@Master%> directive. For the most part, this directive sup-
ports the same attributes as the <%@Page%> directive described in the previous chapter. Like Page
types, a master page derives from a specific base class, which in this case is MasterPage. If you were
to open up your related code file, you would find the following class definition:

public partial class MasterPage : System.Web.UI.MasterPage
{
protected void Page_Load(object sender, EventArgs e)
{
}

}

The other point of interest within the markup of the master is the <asp:ContentPlaceHolder>
type. This region of a master page represents the area of the master that the UI widgets of the
related *.aspx content file may plug into, not the content defined by the master page itself. If you
flip to the designer surface of the *.master page, you will find that each <asp:ContentPlaceHolder>
element is accounted for, as shown in Figure 32-5.

If you do intend to blend an *.aspx file within this region, the scope within the
<asp:ContentPlaceHolder> and </asp:ContentPlaceHolder> tags will be empty. However, if you so
choose, you are able to populate this area with various web controls that function as a default UI to
use in the event that a given *.aspx file in the site does not supply specific content. For this exam-
ple, assume that each *.aspx page in your site will indeed supply custom content, and therefore our
<asp:ContentPlaceHolder> elements will be empty.

■Note A *.master page may define as many content placeholders as necessary. As well, a single *.master
page may nest additional *.master pages.

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES 1217

8849CH32.qxd 10/16/07 12:51 PM Page 1217

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

Figure 32-5. The design-time view of a *.master file’s <asp:ContentPlaceHolder> tags

As you would hope, you are able to build a common UI of a *.master file using the same Visual
Studio 2008 designers used to build *.aspx files. For this site, you will add a descriptive Label (to
serve as a common welcome message), an AdRotator control (which will randomly display one of
two images), and a Menu control (to allow the user to navigate to other areas of the site). Figure 32-6
shows one possible UI of the master page that we will be constructing (again notice that the content
placeholder is empty).

Figure 32-6. The *.master file’s shared UI

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES1218

8849CH32.qxd 10/16/07 12:51 PM Page 1218

Working with the Menu Control and *.sitemap Files
ASP.NET ships with several web controls that allow you to handle site navigation: SiteMapPath,
TreeView, and Menu. As you would expect, these web widgets can be configured in multiple ways. For
example, each of these controls can dynamically generate its nodes via an external XML file (or an
XML-based *.sitemap file), programmatically in code, or through markup using the designers of
Visual Studio 2008. Our menu system will be dynamically populated using a *.sitemap file. The ben-
efit of this approach is that we can define the overall structure of our website in an external file, and
then bind it to a Menu (or TreeView) widget on the fly. This way, if the navigational structure of our
website changes, we simply need to modify the *.sitemap file and reload the page. To begin, insert a
new Web.sitemap file into your project using the Web Site ➤ Add New Item menu option, to bring up
the dialog box shown in Figure 32-7.

Figure 32-7. Inserting a new Web.sitemap file

As you can see, the initial Web.sitemap file defines a topmost item with two subnodes:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
<siteMapNode url="" title="" description="">
<siteMapNode url="" title="" description="" />
<siteMapNode url="" title="" description="" />

</siteMapNode>
</siteMap>

If we were to bind this structure to a Menu control, we would find a topmost menu item with
two submenus. Therefore, when you wish to define subitems, simply define new <siteMapNode> ele-
ments within the scope of an existing <siteMapNode>. In any case, the goal is to define the overall
structure of your website within a Web.sitemap file using various <siteMapNode> elements. Each one
of these elements can define a title and URL attribute. The URL attribute represents which *.aspx
file to navigate to when the user clicks a given menu item (or node of a TreeView). Our site contains
three subelements, which are set up as follows:

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES 1219

8849CH32.qxd 10/16/07 12:51 PM Page 1219

http://schemas.microsoft.com/AspNet/SiteMap-File-1.0

• Home: Default.aspx

• Build a Car: BuildCar.aspx

• View Inventory: Inventory.aspx

Our menu system has a single topmost “Welcome” item with three subelements. Therefore, we
can update the Web.sitemap file as follows. (Be aware that each url value must be unique! If not, you
receive a runtime error.)

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
<siteMapNode url="" title="Welcome!" description="">
<siteMapNode url="~/Default.aspx" title="Home"
description="The Home Page" />

<siteMapNode url="~/BuildCar.aspx" title="Build a car"
description="Create your dream car" />

<siteMapNode url="~/Inventory.aspx" title="View Inventory"
description="See what is in stock" />

</siteMapNode>
</siteMap>

■Note The ~/ prefix before each page in the url attribute is a notation that represents the root of the website.

Now, despite what you may be thinking, you do not associate a Web.sitemap file directly to a
Menu or TreeView control using a given property. Rather, the *.master or *.aspx file that contains the
UI widget that will display the Web.sitemap file must contain a SiteMapDataSource component. This
type will automatically load the Web.sitemap file into its object model when the page is requested.
The Menu and TreeView types then set their DataSourceID property to point to the SiteMapDataSource
instance. The reason for this level of indirection is that it makes it possible for us to build a custom
provider to fetch the website’s structure from another source (such as a table in a database, an exist-
ing XML file, etc.). Figure 32-8 illustrates the interplay between a Web.sitemap, SiteMapDataSource,
and various UI elements.

Figure 32-8. The ASP.NET sitemap navigation model

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES1220

8849CH32.qxd 10/16/07 12:51 PM Page 1220

http://schemas.microsoft.com/AspNet/SiteMap-File-1.0

To add a new SiteMapDataSource to your *.master file and automatically set the DataSourceID
property, you can make use of the Visual Studio 2008 designer. Activate the inline editor of the Menu
widget and select New Data Source, as shown in Figure 32-9.

Figure 32-9. Adding a new SiteMapDataSource

From the resulting dialog box, select the SiteMap icon. This will set the DataSourceID property
of the Menu item as well as add a new SiteMapDataSource component to your page. This is all you
need to do to configure your Menu widget to navigate to the additional pages on your site. If you wish
to perform additional processing when the user selects a given menu item, you may do so by han-
dling the MenuItemClick event. There is no need to do so for this example, but be aware that you are
able to determine which menu item was selected using the incoming MenuEventArgs parameter.

Establishing Bread Crumbs with the SiteMapPath Type
Before moving on to the AdRotator control, add a SiteMapPath type onto your *.master file, beneath
the content placeholder element. This widget will automatically adjust its content based on the cur-
rent selection of the menu system. As you may know, this can provide a helpful visual cue for the
end user (formally, this UI technique is termed bread crumbs). Once you complete this example,
you will notice that when you select the Welcome ➤ Build a Car menu item, the SiteMapPath widget
updates accordingly automatically.

Working with the AdRotator
The role of the ASP.NET AdRotator widget is to randomly display a given image at some position in
the browser. When you first place an AdRotator widget on the designer, it is displayed as an empty
placeholder. Functionally, this control cannot do its magic until you assign the AdvertisementFile
property to point to the source file that describes each image. For this example, the data source will
be a simple XML file named Ads.xml.

Once you have inserted this new XML file to your site, specify a unique <Ad> element for
each image you wish to display. At minimum, each <Ad> element specifies the image to display
(ImageUrl), the URL to navigate to if the image is selected (TargetUrl), mouseover text
(AlternateText), and the weight of the ad (Impressions):

<Advertisements>
<Ad>
<ImageUrl>SlugBug.jpg</ImageUrl>
<TargetUrl>http://www.Cars.com</TargetUrl>

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES 1221

8849CH32.qxd 10/16/07 12:51 PM Page 1221

http://www.Cars.com</TargetUrl

<AlternateText>Your new Car?</AlternateText>
<Impressions>80</Impressions>

</Ad>
<Ad>
<ImageUrl>car.gif</ImageUrl>
<TargetUrl>http://www.CarSuperSite.com</TargetUrl>
<AlternateText>Like this Car?</AlternateText>
<Impressions>80</Impressions>

</Ad>
</Advertisements>

Here you have specified two image files (car.gif and slugbug.jpg), and therefore you will need
to ensure that these files are in the root of your website (these files have been included with this
book’s code download). To add them to your current project, simply select the Web Site ➤ Add Exist-
ing Item menu option. At this point, you can associate your XML file to the AdRotator controls via
the AdvertisementFile property (in the Properties window):

<asp:AdRotator ID="myAdRotator" runat="server"
AdvertisementFile="~/Ads.xml"/>

Later when you run this application and post back to the page, you will be randomly presented
with one of two image files. Figure 32-10 illustrates the final design-time UI of the master page.

Figure 32-10. The final design of the master page

Defining the Default.aspx Content Page
Now that you have a master page established, you can begin designing the individual *.aspx pages
that will define the UI content to merge within the <asp:ContentPlaceHolder> tag of the master
page. When you created this new website, Visual Studio 2008 automatically provided you with an
initial *.aspx file, but as the file now stands, it cannot be merged within the master page.

The reason is that it is the *.master file that defines the <form> section of the final HTML
page. Therefore, the existing <form> area within the *.aspx file will need to be replaced with an
<asp:content> scope. While you could update the markup of your initial *.aspx file by hand, go
ahead and delete Default.aspx from your project. When you wish to automatically insert a new
content page to your project, simply right-click anywhere on the designer surface of the *.master
file, and select the Add Content Page menu option. This will generate a new *.aspx file with the
following initial markup:

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES1222

8849CH32.qxd 10/16/07 12:51 PM Page 1222

http://www.CarSuperSite.com</TargetUrl

<%@ Page Language="C#" MasterPageFile="~/MasterPage.master"
AutoEventWireup="true" CodeFile="Default.aspx.cs"
Inherits="_Default" Title="Untitled Page" %>

<asp:Content ID="Content1"
ContentPlaceHolderID="head" Runat="Server">

</asp:Content>
<asp:Content ID="Content2"
ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">

</asp:Content>

First, notice that the <%@Page%> directive has been updated with a new MasterPageFile attribute
that is assigned to your *.master file. Also note that rather than having a <form> element, we have an
<asp:Content> scope (currently empty) that has set the ContentPlaceHolderID value identical to the
<asp:ContentPlaceHolder> component in the master file.

Given these associations, the content page understands where to “plug in” its content, while
the master’s content is displayed in a read-only nature on the content page. There is no need to
build a complex UI for your Default.aspx content area, so for this example, simply add some literal
text that provides some basic site instructions, as you see in Figure 32-11 (also notice on the upper
right of the content page that there is a link to switch to the related master file).

Figure 32-11. Authoring the first content page

Now, if you run your project, you will find that the UI content of the *.master and Default.aspx
files have been merged into a single stream of HTML. As you can see from Figure 32-12, the end

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES 1223

8849CH32.qxd 10/16/07 12:51 PM Page 1223

user is unaware that the master page even exists. Also, as you refresh the page (via the F5 key), you
should see the AdRotator randomly displaying one of two images.

Figure 32-12. At runtime, master files and content pages render back a single form.

■Note Do be aware that a Page object’s master page can be assigned programmatically within the PreInit
event of a Page derived type, using the Master property.

Designing the Inventory Content Page
To insert the Inventory.aspx content page into your current project, open the *.master page in the
IDE, select Web Site ➤ Add Content Page (if a *.master file is not the active item in the designer, this
menu option is not present), and rename this file to Inventory.aspx. The role of the Inventory con-
tent page is to display the contents of the Inventory table of the AutoLot database within a GridView
control.

Although this control behaves in many ways identically to the legacy ASP.NET 1.x DataGrid,
GridView has intrinsic support for the latest data binding engine of ASP.NET. Under the new model,
it is now possible to represent connection string data and SQL Select, Insert, Update, and Delete
statements (or alternatively stored procedures) in markup. Therefore, rather than authoring all of
the necessary ADO.NET code by hand, you can make use of the new SqlDataSource type. Using the
visual designers, you are able to declaratively create the necessary markup and then assign the
DataSourceID property of the GridView to the SqlDataSource component.

■Note Despite the name, the SqlDataSource provider can be configured to communicate with any ADO.NET
data provider (ODBC, Oracle, etc.) that ships with the Microsoft .NET platform; it is not limited to Microsoft SQL
Server. You may set the target DBMS with via the Provider property.

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES1224

8849CH32.qxd 10/16/07 12:51 PM Page 1224

With a few simple mouse clicks, you can configure the GridView to automatically select,
update, and delete records of the underlying data store. While this zero-code mindset greatly sim-
plifies the amount of boilerplate code, understand that this simplicity comes with a loss of control
and may not be the best approach for an enterprise-level application. This model can be wonderful
for low-trafficked pages, prototyping a website, or smaller in-house applications.

To illustrate how to work with the GridView (and the new data binding engine) in a declarative
manner, begin by updating the Inventory.aspx content page with a descriptive label. Next, open the
Server Explorer tool (via the View menu) and make sure you have added a data connection to the
AutoLot database created during our examination of ADO.NET (see Chapter 22 for a walkthrough of
the process of adding a data connection). Now, select the Inventory icon and drag it onto the con-
tent area of the Inventory.aspx file. Once you have done so, the IDE responds by performing the
following steps:

1. Your web.config file was updated with a new <connectionStrings> element.

2. A SqlDataSource component was configured with the necessary Select, Insert, Update, and
Delete logic.

3. The DataSourceID property of the GridView has been set to the new SqlDataSource
component.

■Note As an alternative, you can configure a GridView widget using the inline editor. Select New Data Source
from the Choose Data Source drop-down box. This will activate a wizard that walks you through a series of steps
to connect this component to the required data source.

If you examine the opening declaration of the GridView control, you will see that the
DataSourceID property has been set to the SqlDataSource you just defined:

<asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False"
CellPadding="4" DataKeyNames="CarID" DataSourceID="SqlDataSource1"
ForeColor="#333333" GridLines="None">

...
</asp:GridView>

The SqlDataSource type is where a majority of the action is taking place. In the markup that fol-
lows, notice that this type has recorded the necessary SQL statements (with parameterized queries
no less) to interact with the Inventory table of the AutoLot database. As well, using the $ syntax of
the ConnectionString property, this component will automatically read the <connectionString>
value from web.config:

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
ConnectionString="<%$ ConnectionStrings:CarsConnectionString1 %>"
DeleteCommand="DELETE FROM [Inventory] WHERE [CarID] = @CarID"
InsertCommand="INSERT INTO [Inventory] ([CarID], [Make], [Color], [PetName])
VALUES (@CarID, @Make, @Color, @PetName)"

ProviderName="<%$ ConnectionStrings:CarsConnectionString1.ProviderName %>"
SelectCommand="SELECT [CarID], [Make], [Color], [PetName] FROM [Inventory]"
UpdateCommand="UPDATE [Inventory] SET [Make] = @Make,
[Color] = @Color, [PetName] = @PetName WHERE [CarID] = @CarID">

<DeleteParameters>
<asp:Parameter Name="CarID" Type="Int32" />

</DeleteParameters>
<UpdateParameters>
<asp:Parameter Name="Make" Type="String" />
<asp:Parameter Name="Color" Type="String" />

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES 1225

8849CH32.qxd 10/16/07 12:51 PM Page 1225

<asp:Parameter Name="PetName" Type="String" />
<asp:Parameter Name="CarID" Type="Int32" />

</UpdateParameters>
<InsertParameters>
<asp:Parameter Name="CarID" Type="Int32" />
<asp:Parameter Name="Make" Type="String" />
<asp:Parameter Name="Color" Type="String" />
<asp:Parameter Name="PetName" Type="String" />

</InsertParameters>
</asp:SqlDataSource>

At this point, you are able to run your web program, click the View Inventory menu item, and
view your data, as shown in Figure 32-13. Also notice that the “bread crumbs” provided by the
SiteMapPath widget have updated automatically.

Figure 32-13. The “zero-code” model of the SqlDataSource component

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES1226

8849CH32.qxd 10/16/07 12:51 PM Page 1226

Enabling Sorting and Paging
The GridView control can easily be configured for sorting (via column name hyperlinks) and paging
(via numeric or next/previous hyperlinks). To do so, activate the inline editor and check the appro-
priate options, as shown in Figure 32-14.

Figure 32-14. Enabling sorting and paging

When you run your page again, you will be able to sort your data by clicking the column names
and scrolling through your data via the paging links (provided you have enough records in the
Inventory table!).

Enabling In-Place Editing
The final detail of this page is to enable the GridView control’s support for in-place activation. Given
that your SqlDataSource already has the necessary Delete and Update logic, all you need to do is
check the Enable Deleting and Enable Editing check boxes of the GridView (see Figure 32-14 for a
reference point). Sure enough, when you navigate back to the Inventory.aspx page, you are able to
edit and delete records, as shown in Figure 32-15, and update the underlying Inventory table of the
AutoLot database.

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES 1227

8849CH32.qxd 10/16/07 12:51 PM Page 1227

Figure 32-15. Editing and deleting functionality

■Note Enabling in-place editing for a GridView requires that the database table be assigned a primary key. If
you do not see these options enabled, chances are very good you forgot to set CarID as the primary key of the
Inventory table within the AutoLot database.

Designing the Build-a-Car Content Page
The final task for this example is to design the BuildCar.aspx content page. Insert this file into the
current project (via the Web Site ➤ Add Content Page menu option). This new page will make use of
the ASP.NET Wizard web control, which provides a simple way to walk the end user through a series
of related steps. Here, the steps in question will simulate the act of building an automobile for pur-
chase.

Place a descriptive Label and Wizard control onto the content area. Next, activate the inline
editor for the Wizard and click the Add/Remove WizardSteps link. Add a total of four steps, as shown
in Figure 32-16.

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES1228

8849CH32.qxd 10/16/07 12:51 PM Page 1228

Figure 32-16. Configurng our wizard

Once you have defined these steps, you will notice that the Wizard defines an empty content
area where you can now drag and drop controls for the currently selected step. For this example,
update each step with the following UI elements (be sure to provide a descent ID value for each
item using the Properties window):

• Pick Your Model: A TextBox control

• Pick Your Color: A ListBox control

• Name Your Car: A TextBox control

• Delivery Date: A Calendar control

The ListBox control is the only UI element of the Wizard that requires additional steps. Select
this item on the designer (making sure you first select the Pick Your Color link) and fill this widget
with a set of colors using the Items property of the Properties window. Once you do, you will find
markup much like the following within the scope of the Wizard definition:

<asp:ListBox ID="ListBoxColors" runat="server" Width="237px">
<asp:ListItem>Purple</asp:ListItem>
<asp:ListItem>Green</asp:ListItem>
<asp:ListItem>Red</asp:ListItem>
<asp:ListItem>Yellow</asp:ListItem>
<asp:ListItem>Pea Soup Green</asp:ListItem>
<asp:ListItem>Black</asp:ListItem>
<asp:ListItem>Lime Green</asp:ListItem>

</asp:ListBox>

Now that you have defined each of the steps, you can handle the FinishButtonClick event for
the autogenerated Finish button. Within the server-side event handler, obtain the selections from
each UI element and build a description string that is assigned to the Text property of an additional
Label type named lblOrder:

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES 1229

8849CH32.qxd 10/16/07 12:51 PM Page 1229

public partial class Default2 : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{
}

protected void carWizard_FinishButtonClick(object sender,
System.Web.UI.WebControls.WizardNavigationEventArgs e)

{
// Get each value.
string order = string.Format("{0}, your {1} {2} will arrive on {3}.",
txtCarPetName.Text, ListBoxColors.SelectedValue,
txtCarModel.Text,
carCalendar.SelectedDate.ToShortDateString());

// Assign to label
lblOrder.Text = order;

}
}

At this point your AspNetCarsSite web application is complete! Figure 32-17 shows the Wizard
in action.

Figure 32-17. The Wizard widget in action

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES1230

8849CH32.qxd 10/16/07 12:51 PM Page 1230

That wraps up our examination of various ASP.NET UI-centric web controls. Next up, let’s look
at the validation controls.

■Source Code The AspNetCarsSite project is included under the Chapter 32 subdirectory.

The Role of the Validation Controls
The next set of Web Form controls we will examine are known collectively as validation controls.
Unlike the other Web Form controls we’ve examined, validation controls are not used to emit HTML
for rendering purposes, but are used to emit client-side JavaScript (and possibly related server-side
code) for the purpose of form validation. As illustrated at the beginning of this chapter, client-side
form validation is quite useful in that you can ensure that various constraints are in place before
posting back to the web server, thereby avoiding expensive round-trips. Table 32-3 gives a rundown
of the ASP.NET validation controls.

Table 32-3. ASP.NET Validation Controls

Control Meaning in Life

CompareValidator Validates that the value of an input control is equal to a given value
of another input control or a fixed constant.

CustomValidator Allows you to build a custom validation function that validates a
given control.

RangeValidator Determines that a given value is in a predetermined range.

RegularExpressionValidator Checks whether the value of the associated input control matches
the pattern of a regular expression.

RequiredFieldValidator Ensures that a given input control contains a value (i.e., is not
empty).

ValidationSummary Displays a summary of all validation errors of a page in a list,
bulleted list, or single-paragraph format. The errors can be
displayed inline and/or in a pop-up message box.

All of the validation controls ultimately derive from a common base class named
System.Web.UI.WebControls.BaseValidator, and therefore they have a set of common features.
Table 32-4 documents the key members.

Table 32-4. Common Properties of the ASP.NET Validators

Member Meaning in Life

ControlToValidate Gets or sets the input control to validate

Display Gets or sets the display behavior of the error message in a validation
control

EnableClientScript Gets or sets a value indicating whether client-side validation is enabled

ErrorMessage Gets or sets the text for the error message

ForeColor Gets or sets the color of the message displayed when validation fails

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES 1231

8849CH32.qxd 10/16/07 12:51 PM Page 1231

To illustrate working with these validation controls, create a new Web Site project named
ValidatorCtrls. To begin, place four (well-named) TextBox types (with four corresponding and
descriptive Labels) onto your page. Next, place a RequiredFieldValidator, RangeValidator,
RegularExpressionValidator, and CompareValidator type adjacent to each respective field.
Finally, add a single Button and final Label (see Figure 32-18).

Figure 32-18. Various validators

Now that you have a UI, let’s walk through the process of configuring each member.

The RequiredFieldValidator
Configuring the RequiredFieldValidator is straightforward. Simply set the ErrorMessage and
ControlToValidate properties accordingly using the Visual Studio 2008 Properties window. Here
would be the resulting markup to ensure the txtRequiredField text box is not empty:

<asp:RequiredFieldValidator ID="RequiredFieldValidator1"
runat="server" ControlToValidate="txtRequiredField"
ErrorMessage="Oops! Need to enter data.">

</asp:RequiredFieldValidator>

The RequiredFieldValidator supports an InitialValue property. You can use this property to
ensure that the user enters any value other than the initial value in the related TextBox. For example,
when the user first posts to a page, you may wish to configure a TextBox to contain the value “Please
enter your name”. Now, if you did not set the InitialValue property of the RequiredFieldValidator,
the runtime would assume that the string “Please enter your name” is valid. Thus, to ensure a
required TextBox is valid only when the user enters anything other than “Please enter your name”,
configure your widgets as follows:

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES1232

8849CH32.qxd 10/16/07 12:51 PM Page 1232

<asp:RequiredFieldValidator ID="RequiredFieldValidator1"
runat="server" ControlToValidate="txtRequiredField"
ErrorMessage="Oops! Need to enter data."
InitialValue="Please enter your name">

</asp:RequiredFieldValidator>

The RegularExpressionValidator
The RegularExpressionValidator can be used when you wish to apply a pattern against the charac-
ters entered within a given input field. To ensure that a given TextBox contains a valid US Social
Security number, you could define the widget as follows:

<asp:RegularExpressionValidator ID="RegularExpressionValidator1"
runat="server" ControlToValidate="txtRegExp"
ErrorMessage="Please enter a valid US SSN."
ValidationExpression="\d{3}-\d{2}-\d{4}">

</asp:RegularExpressionValidator>

Notice how the RegularExpressionValidator defines a ValidationExpression property. If you
have never worked with regular expressions before, all you need to be aware of for this example is
that they are used to match a given string pattern. Here, the expression "\d{3}-\d{2}-\d{4}" is cap-
turing a standard US Social Security number of the form xxx-xx-xxxx (where x is any digit).

This particular regular expression is fairly self-explanatory; however, assume you wish to test
for a valid Japanese phone number. The correct expression now becomes much more complex:
"(0\d{1,4}-|\(0\d{1,4}\)?)?\d{1,4}-\d{4}". The good news is that when you select the
ValidationExpression property using the Properties window, you can pick from a predefined set
of common regular expressions by clicking the ellipse button.

■Note If you are interested in regular expressions, you will be happy to know that the .NET platform supplies two
namespaces (System.Text.RegularExpressions and System.Web.RegularExpressions) devoted to the pro-
grammatic manipulation of such patterns.

The RangeValidator
In addition to a MinimumValue and MaximumValue property, RangeValidators have a property named
Type. Because you are interested in testing the user-supplied input against a range of whole num-
bers, you need to specify Integer (which is not the default!):

<asp:RangeValidator ID="RangeValidator1"
runat="server" ControlToValidate="txtRange"
ErrorMessage="Please enter value between 0 and 100."
MaximumValue="100" MinimumValue="0" Type="Integer">

</asp:RangeValidator>

The RangeValidator can also be used to test whether a given value is between a currency value,
date, floating-point number, or string data (the default setting).

The CompareValidator
Finally, notice that the CompareValidator supports an Operator property:

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES 1233

8849CH32.qxd 10/16/07 12:51 PM Page 1233

<asp:CompareValidator ID="CompareValidator1" runat="server"
ControlToValidate="txtComparison"
ErrorMessage="Enter a value less than 20." Operator="LessThan"
ValueToCompare="20">

</asp:CompareValidator>

Given that the role of this validator is to compare the value in the text box against another value
using a binary operator, it should be no surprise that the Operator property may be set to values
such as LessThan, GreaterThan, Equal, and NotEqual. Also note that the ValueToCompare is used to
establish a value to compare against.

■Note The CompareValidator can also be configured to compare a value within another Web Form control
(rather than a hard-coded value) using the ControlToValidate property.

To finish up the code for this page, handle the Click event for the Button type and inform the
user he or she has succeeded in the validation logic:

public partial class _Default : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{

}
protected void btnPostback_Click(object sender, EventArgs e)
{
lblValidationComplete.Text = "You passed validation!";

}
}

Now, navigate to this page using your browser of choice. At this point, you should not see any
noticeable changes. However, when you attempt to click the Submit button after entering bogus
data, your error message is suddenly visible. Once you enter valid data, the error messages are
removed and postback occurs.

If you look at the HTML rendered by the browser, you see that the validation controls generate
a client-side JavaScript function that makes use of a specific library of JavaScript functions (con-
tained in the WebUIValidation.js file) that is automatically downloaded to the user’s machine. Once
the validation has occurred, the form data is posted back to the server, where the ASP.NET runtime
will perform the same validation tests on the web server (just to ensure that no along-the-wire tam-
pering has taken place).

On a related note, if the HTTP request was sent by a browser that does not support client-side
JavaScript, all validation will occur on the server. In this way, you can program against the validation
controls without being concerned with the target browser; the returned HTML page redirects the
error processing back to the web server.

Creating Validation Summaries
The next validation-centric topic we will examine here is the use of the ValidationSummary widget.
Currently, each of your validators displays its error message at the exact place in which it was posi-
tioned at design time. In many cases, this may be exactly what you are looking for. However, on a
complex form with numerous input widgets, you may not want to have random blobs of red text
pop up. Using the ValidationSummary type, you can instruct all of your validation types to display
their error messages at a specific location on the page.

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES1234

8849CH32.qxd 10/16/07 12:51 PM Page 1234

The first step is to simply place a ValidationSummary on your *.aspx file. You may optionally set
the HeaderText property of this type as well as the DisplayMode, which by default will list all error
messages as a bulleted list.

<asp:ValidationSummary id="ValidationSummary1"
runat="server" Width="353px"
HeaderText="Here are the things you must correct.">

</asp:ValidationSummary>

Next, you need to set the Display property to None for each of the individual validators (e.g.,
RequiredFieldValidator, RangeValidator, etc.) on the page. This will ensure that you do not see
duplicate error messages for a given validation failure (one in the summary pane and another at
the validator’s location). Figure 32-19 shows the summary pane in action.

Figure 32-19. Using a validation summary

Last but not least, if you would rather have the error messages displayed using a client-side
MessageBox, set the ShowMessageBox property to true and the ShowSummary property to false.

Defining Validation Groups
It is also possible to define groups for validators to belong to. This can be very helpful when you
have regions of a page that work as a collective whole. For example, you may have one group of
controls in a Panel object to allow the user to enter his or her mailing address and another Panel
containing UI elements to gather credit card information. Using groups, you can configure each
group of controls to be validated independently.

Insert a new page into your current project named ValidationGroups.aspx that defines two
Panels. The first Panel object expects a TextBox to contain some form of user input (via a
RequiredFieldValidator), while the second Panel expects a US SSN value (via a
RegularExpressionValidator). Figure 32-20 shows one possible UI.

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES 1235

8849CH32.qxd 10/16/07 12:51 PM Page 1235

Figure 32-20. These Panel objects will independently configure their input areas.

To ensure that the validators function independently, simply assign each validator and the con-
trol being validated to a uniquely named group using the ValidationGroup property. Here is some
possible markup (note that the Click event handlers used here are essentially empty stubs in the
code file, and they are only used to allow postback to occur to the web server):

<form id="form1" runat="server">

<asp:Panel ID="Panel1" runat="server" Height="83px" Width="296px">
<asp:TextBox ID="txtRequiredData" runat="server"

ValidationGroup="FirstGroup">
</asp:TextBox>
<asp:RequiredFieldValidator ID="RequiredFieldValidator1" runat="server"

ErrorMessage="*Required field!" ControlToValidate="txtRequiredData"
ValidationGroup="FirstGroup">

</asp:RequiredFieldValidator>
<asp:Button ID="bntValidateRequired" runat="server"

OnClick="bntValidateRequired_Click"
Text="Validate" ValidationGroup="FirstGroup" />

</asp:Panel>

<asp:Panel ID="Panel2" runat="server" Height="119px" Width="295px">
<asp:TextBox ID="txtSSN" runat="server"

ValidationGroup="SecondGroup">
</asp:TextBox>
<asp:RegularExpressionValidator ID="RegularExpressionValidator1"

runat="server" ControlToValidate="txtSSN"
ErrorMessage="*Need SSN" ValidationExpression="\d{3}-\d{2}-\d{4}"
ValidationGroup="SecondGroup">

</asp:RegularExpressionValidator>
<asp:Button ID="btnValidateSSN" runat="server"

OnClick="btnValidateSSN_Click" Text="Validate"
ValidationGroup="SecondGroup" />

</asp:Panel>

</form>

Now, right-click this page’s designer and select the View In Browser menu option to verify each
panel’s widgets operate in a mutually exclusive manner.

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES1236

8849CH32.qxd 10/16/07 12:51 PM Page 1236

■Source Code The ValidatorCtrls project is included under the Chapter 32 subdirectory.

Working with Themes
At this point, you have had the chance to work with numerous ASP.NET web controls. As you have
seen, each control exposes a set of properties (many of which are inherited by System.Web.UI.
WebControls.WebControl) that allow you to establish a given UI look and feel (background color,
font size, border style, and whatnot). Of course, on a multipaged website, it is quite common for
the site as a whole to define a common look and feel for various types of widgets. For example, all
TextBoxes might be configured to support a given font, all Buttons have a custom image, and all
Calendars have a light blue border.

Obviously it would be very labor intensive (and error prone) to establish the same property set-
tings for every widget on every page within your website. Even if you were able to manually update
the properties of each UI widget on each page, imagine how painful it would be when you now need
to change the background color for each TextBox yet again. Clearly there must be a better way to
apply sitewide UI settings.

One approach that can be taken to simplify applying a common UI look and feel is to define
style sheets. If you have a background in web development, you are aware that style sheets define a
common set of UI-centric settings that are applied on the browser. As you would hope, ASP.NET
web controls can be assigned a given style by assigning the CssStyle property.

However, ASP.NET ships with an alternative technology to define a common UI termed themes.
Unlike a style sheet, themes are applied on the web server (rather than the browser) and can be
done so programmatically or declaratively. Given that a theme is applied on the web server, it has
access to all the server-side resources on the website. Furthermore, themes are defined by author-
ing the same markup you would find within any *.aspx file (as you may agree, the syntax of a style
sheet is a bit on the terse side).

Recall from Chapter 31 that ASP.NET web applications may define any number of “special”
subdirectories, one of which is App_Theme. This single subdirectory may be further partitioned
with additional subdirectories, each of which represents a possible theme on your site. For example,
consider Figure 32-21, which illustrates a single App_Theme folder containing three subdirectories,
each of which has a set of files that make up the theme itself.

Figure 32-21. A single App_Theme folder may define numerous themes.

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES 1237

8849CH32.qxd 10/16/07 12:51 PM Page 1237

Understanding *.skin Files
The one file that every theme subdirectory is sure to have is a *.skin file. These files define the look
and feel for various web controls. To illustrate, create a new website named FunWithThemes. Next,
insert a new *.skin file (using the Web Site ➤ Add New Item menu option) named BasicGreen.skin,
as shown in Figure 32-22.

Figure 32-22. Inserting *.skin files

Visual Studio 2008 will prompt you to confirm this file can be added into an App_Theme folder
(which is exactly what we want). If you were now to look in your Solution Explorer, you would
indeed find your App_Theme folder has a subfolder named BasicGreen containing your new
BasicGreen.skin file.

Recall that a *.skin file is where you are able to define the look and feel for various widgets
using ASP.NET control declaration syntax. Sadly, the IDE does not provide designer support for
*.skin files. One way to reduce the amount of typing time is to insert a temporary *.aspx file into
your program (temp.aspx, for example) that can be used to build up the UI of the widgets using the
VS 2005 page designer.

The resulting markup can then be copied and pasted into your *.skin file. When you do so,
however, you must delete the ID attribute for each web control! This should make sense, given that
we are not trying to define a UI look and feel for a particular Button (for example) but all Buttons.

This being said, here is the markup for BasicGreen.skin, which defines a default look and feel
for the Button, TextBox, and Calendar types:

<asp:Button runat="server" BackColor="#80FF80"/>
<asp:TextBox runat="server" BackColor="#80FF80"/>
<asp:Calendar runat="server" BackColor="#80FF80"/>

Notice that each widget still has the runat="server" attribute (which is mandatory), and none
of the widgets have been assigned an ID attribute.

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES1238

8849CH32.qxd 10/16/07 12:51 PM Page 1238

Now, let’s define a second theme named CrazyOrange. Using the Solution Explorer, right-click
your App_Theme folder and add a new theme named CrazyOrange. This will create a new subdirec-
tory under your site’s App_Theme folder. Next, right-click the new CrazyOrange folder within the
Solution Explorer and select Add New Item. From the resulting dialog box, add a new *.skin file.
Update the CrazyOrange.skin file to define a unique UI look and feel for the same web controls. For
example:

<asp:Button runat="server" BackColor="#FF8000"/>
<asp:TextBox runat="server" BackColor="#FF8000"/>
<asp:Calendar BackColor="White" BorderColor="Black"
BorderStyle="Solid" CellSpacing="1"
Font-Names="Verdana" Font-Size="9pt" ForeColor="Black" Height="250px"
NextPrevFormat="ShortMonth" Width="330px" runat="server">
<SelectedDayStyle BackColor="#333399" ForeColor="White" />
<OtherMonthDayStyle ForeColor="#999999" />
<TodayDayStyle BackColor="#999999" ForeColor="White" />
<DayStyle BackColor="#CCCCCC" />
<NextPrevStyle Font-Bold="True" Font-Size="8pt" ForeColor="White" />
<DayHeaderStyle Font-Bold="True" Font-Size="8pt"
ForeColor="#333333" Height="8pt" />

<TitleStyle BackColor="#333399" BorderStyle="Solid"
Font-Bold="True" Font-Size="12pt"
ForeColor="White" Height="12pt" />

</asp:Calendar>

At this point, your Solution Explorer should like Figure 32-23.

Figure 32-23. A single website with multiple themes

So now that your site has a few themes defined, the next logical question is how to apply them
to your pages? As you might guess, there are many ways to do so.

■Note To be sure, these example themes are quite bland. Feel free to spruce things up to your liking.

Applying Sitewide Themes
If you wish to make sure that every page in your site adheres to the same theme, the simplest way to
do so is to update your web.config file. Open your current web.config file and locate the <pages>
element within the scope of your <system.web> root element. If you add a theme attribute to the

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES 1239

8849CH32.qxd 10/16/07 12:51 PM Page 1239

<pages> element, this will ensure that every page in your website is assigned the selected theme
(which is, of course, the name of one of the subdirectories under App_Theme). Here is the core
update:

<configuration>
<system.web>

...
<pages theme="BasicGreen">
...

</pages>
</system.web>

</configuration>

If you were to now place various Buttons, Calendars, and TextBoxes onto your Default.aspx file
and run the application, you would find each widget has the UI of BasicGreen. If you were to update
the theme attribute to CrazyOrange and run the page again, you would find the UI defined by this
theme is used instead.

Applying Themes at the Page Level
It is also possible to assign themes on a page-by-page level. This can be helpful in a variety of cir-
cumstances. For example, perhaps your web.config file defines a sitewide theme (as described in
the previous section); however, you wish to assign a different theme to a specific page. To do so, you
can simply update the <%@Page%> directive. If you are using Visual Studio 2008 to do so, you will be
happy to find that IntelliSense will display each defined theme within your App_Theme folder.

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default" Theme ="CrazyOrange" %>

Because we assigned the CrazyOrange theme to this page, but the Web.config file specified the
BasicGreen theme, all pages but this page will be rendered using BasicGreen.

The SkinID Property
Sometimes you wish to define a set of possible UI look and feels for a single widget. For example,
assume you want to define two possible UIs for the Button type within the CrazyOrange theme.
When you wish do so, you may differentiate each look and feel using the SkinID property:

<asp:Button runat="server" BackColor="#FF8000"/>
<asp:Button runat="server" SkinID = "BigFontButton"
Font-Size="30pt" BackColor="#FF8000"/>

Now, if you have a page that makes use of the CrazyOrange theme, each Button will by default
be assigned the unnamed Button skin. If you wish to have various buttons within the *.aspx file
make use of the BigFontButton skin, simply specify the SkinID property within the markup:

<asp:Button ID="Button2" runat="server"
SkinID="BigFontButton" Text="Button" />

As an example, Figure 32-24 shows a page that is making use of the CrazyOrange theme. The
topmost Button is assigned the unnamed Button skin, while the Button on the bottom of the page
has been assigned the SkinID of BigFontButton.

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES1240

8849CH32.qxd 10/16/07 12:51 PM Page 1240

Figure 32-24. Fun with SkinIDs

Assigning Themes Programmatically
Last but not least, it is possible to assign a theme in code. This can be helpful when you wish to
provide a way for end users to select a theme for their current session. Of course, we have not yet
examined how to build stateful web applications, so the current theme selection will be forgotten
between postbacks. In a production-level site, you may wish to store the user’s current theme selec-
tion within a session variable, or persist the theme selection to a database.

Although we really have not examined the use of session variables at this point in the text, to
illustrate how to assign a theme programmatically, update the UI of your Default.aspx file with
three new Button types as shown in Figure 32-25. Once you have done so, handle the Click event
for each Button type.

Figure 32-25. The updated UI

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES 1241

8849CH32.qxd 10/16/07 12:51 PM Page 1241

Now be aware that you can only assign a theme programmatically during specific phases of
your page’s life cycle. Typically, this will be done within the Page_PreInit event. This being said,
update your code file as follows:

partial class _Default : System.Web.UI.Page
{
protected void btnNoTheme_Click(object sender, System.EventArgs e)
{
// Empty strings result in no theme being applied.
Session["UserTheme"] = "";

// Triggers the PreInit event again.
Server.Transfer(Request.FilePath);

}

protected void btnGreenTheme_Click(object sender, System.EventArgs e)
{
Session["UserTheme"] = "BasicGreen";

// Triggers the PreInit event again.
Server.Transfer(Request.FilePath);

}

protected void btnOrangeTheme_Click(object sender, System.EventArgs e)
{
Session["UserTheme"] = "CrazyOrange";

// Triggers the PreInit event again.
Server.Transfer(Request.FilePath);

}

protected void Page_PreInit(object sender, System.EventArgs e)
{
try
{
Theme = Session["UserTheme"].ToString();

}
catch
{
Theme = "";

}
}

}

Notice that we are storing the selected theme within a session variable (see Chapter 33 for
details) named UserTheme, which is formally assigned within the Page_PreInit() event handler. Also
note that when the user clicks a given Button, we programmatically force the PreInit event to fire by
calling Server.Transfer() and requesting the current page once again. If you were to run this page,
you would now find that you can establish your theme via various Button clicks.

■Source Code The FunWithThemes project is included under the Chapter 32 subdirectory.

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES1242

8849CH32.qxd 10/16/07 12:51 PM Page 1242

Positioning Controls Using HTML Tables
If you are new to web development, you may have quickly noticed that positioning controls on a
designer surface is far from intuitive. For example, unlike with Windows Forms, you cannot (by
default) drag a UI element from the Toolbox and position it exactly where you want to (which as you
might agree is quite frustrating).

Earlier versions of ASP.NET provided two modes of positioning (GridLayout and FlowLayout)
that could be set via the pageLayout attribute of the DOCUMENT. When set to GridLayout, absolute
positioning was possible using DHTML. This, however, made ASP.NET 1.x web pages limited to
browsers that supported dynamic HTML. FlowLayout (the current default mode for ASP.NET) does
not provide for absolute position . . . which can be frustrating to develop with; however, it does
ensure every browser can correctly display the web content.

Strictly speaking, ASP.NET does still allow developers to define controls (manually) using
GridLayout semantics. However, the designers will complain, as the necessary infrastructure is not
considered valid within the XHTML specification. For example, consider the following *.aspx file,
which makes use of the style attribute to provide absolute position to a Button type using the style
attribute of the Button type:

<body MS_POSITIONING="GridLayout">
<form id="Form2" method="post" runat="server">

<asp:Button id="Button1" runat="server" Text="Button"
style="Z-INDEX: 101; LEFT: 106px; POSITION: absolute; TOP: 79px">

</asp:Button>

<asp:TextBox id="TextBox1" runat="server">
</asp:TextBox>

</form>
</body>

Rather than making use of non–XHTML-compliant code (and risk the chance of not working
within every browser), many web developers place widgets within HTML tables. The HTML table is
not literally visible in the browser; however, at design time, controls may be placed within the cells
to provide a level of absolute positioning.

Better yet, Visual Studio 2008 allows you to edit and manipulate these cells visually in a manner
similar to an Excel spreadsheet. For example, the Tab key moves you between each cell, and select-
ing multiple cells allows you to merge/resize them via the context menu. Furthermore, each cell can
be customized with various styles via the Properties window. By way of a quick example, consider
the designer snapshot of an HTML table control on an arbitrary *.aspx file shown in Figure 32-26.

Once you have configured the cells of your table (which typically include other nested tables),
you are then able to arrange the ASP.NET web controls in a manner of your choice. The benefit is
that as the user resizes the web browser, the controls retain their relative positioning.

■Note The remaining examples of this section of the book do not require you to design pages using HTML
tables; however, you should be aware of their usefulness in web development.

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES 1243

8849CH32.qxd 10/16/07 12:51 PM Page 1243

Figure 32-26. Visual Studio 2008 provides excellent HTML table configuration support.

Summary
This chapter examined how to make use of various ASP.NET web controls. We began by examining
the role of the Control and WebControl base classes, and you came to learn how to dynamically
interact with a panel’s internal controls collection. Along the way, you were exposed to the new site
navigation model (*.sitemap files and the SiteMapDataSource component), the new data binding
engine (via the SqlDataSource component and the new GridView type), and various validation
controls.

The latter half of this chapter examined the role of master pages and themes. Recall that master
pages can be used to define a common frame for a set of pages on your site. Also recall that the
*.master file defines any number of “content placeholders” to which content pages plug in their
custom UI content. Finally, as you were shown, the ASP.NET theme engine allows you to declara-
tively or programmatically apply a common UI look and feel to your widgets on the web server.

CHAPTER 32 ■ ASP.NET WEB CONTROLS, THEMES, AND MASTER PAGES1244

8849CH32.qxd 10/16/07 12:51 PM Page 1244

ASP.NET State Management
Techniques

The previous two chapters concentrated on the composition and behavior of ASP.NET pages and
the web controls they contain. This chapter builds on that information by examining the role of the
Global.asax file and the underlying HttpApplication type. As you will see, the functionality of
HttpApplication allows you to intercept numerous events that enable you to treat your web appli-
cations as a cohesive unit, rather than a set of stand-alone *.aspx files.

In addition to investigating the HttpApplication type, this chapter also addresses the all-
important topic of state management. Here you will learn the role of view state, session and
application variables (including the application cache), cookie data, and the ASP.NET Profile API.

The Issue of State
At the beginning of the Chapter 31, I pointed out that HTTP on the Web results in a stateless wire
protocol. This very fact makes web development extremely different from the process of building an
executable assembly. For example, when you are building a Windows Forms application, you can
rest assured that any member variables defined in the Form-derived class will typically exist in mem-
ory until the user explicitly shuts down the executable:

public partial class MainWindow : System.Windows.Forms.Form
{
// State data!
private string userFavoriteCar = "Yugo";

}

In the world of the World Wide Web, however, you are not afforded the same luxurious assump-
tion. To prove the point, create a new ASP.NET website named SimpleStateExample. Within the
code-behind file of your initial *.aspx file, define a page-level string variable named
userFavoriteCar:

public partial class _Default : System.Web.UI.Page
{
// State data?
private string userFavoriteCar = "Yugo";

protected void Page_Load(object sender, EventArgs e)
{

}
}

1245

C H A P T E R 3 3

8849CH33.qxd 10/17/07 5:52 PM Page 1245

Next, construct the web UI as shown in Figure 33-1.

Figure 33-1. The UI for the simple state page

The server-side Click event handler for the Set button (named btnSetCar) will allow the user to
assign the string member variable to the value within the TextBox (named txtFavCar):

protected void btnSetCar_Click(object sender, EventArgs e)
{
// Store fave car in member variable.
userFavoriteCar = txtFavCar.Text;

}

while the Click event handler for the Get button (btnGetCar) will display the current value of the
member variable within the page’s Label widget (lblFavCar):

protected void btnGetCar_Click(object sender, EventArgs e)
{
// Show value of member variable.
lblFavCar.Text = userFavoriteCar;

}

Now, if you were building a Windows Forms application, you would be right to assume that
once the user sets the initial value, it would be remembered throughout the life of the desktop
application. Sadly, when you run this web application, you will find that each time you post back to
the web server (by clicking either button), the value of the userFavoriteCar string variable is set
back to the initial value of “Yugo”; therefore, the Label’s text is continuously fixed.

Again, given that HTTP has no clue how to automatically remember data once the HTTP
response has been sent, it stands to reason that the Page object is destroyed almost instantly. There-
fore, when the client posts back to the *.aspx file, a new Page object is constructed that will reset
any page-level member variables. This is clearly a major dilemma. Imagine how useless online
shopping would be if every time you posted back to the web server, any and all information you
previously entered (such as the items you wished to purchase) were discarded. When you wish to
remember information regarding the users who are logged on to your site, you need to make use of
various state management techniques.

■Note This issue is in no way limited to ASP.NET. Java servlets, CGI applications, classic ASP, and PHP applica-
tions all must contend with the thorny issue of state management.

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES1246

8849CH33.qxd 10/17/07 5:53 PM Page 1246

To remember the value of the userFavoriteCar string type between postbacks, you are required
to store the value of this string type within a session variable. You will examine the exact details of
session state in the pages that follow. For the sake of completion, however, here are the necessary
updates for the current page (note that you are no longer using the private string member variable,
therefore feel free to comment out or remove the definition altogether):

public partial class _Default : System.Web.UI.Page
{
// State data?
// private string userFavoriteCar = "Yugo";

protected void Page_Load(object sender, EventArgs e)
{

}

protected void btnSetCar_Click(object sender, EventArgs e)
{
// Store value to be remembered in session variable.
Session["UserFavCar"] = txtFavCar.Text;

}

protected void btnGetCar_Click(object sender, EventArgs e)
{
// Get session variable value.
lblFavCar.Text = (string)Session["UserFavCar"];

}
}

If you now run the application, the value of your favorite automobile will be preserved across
postbacks, thanks to the HttpSessionState object manipulated indirectly by the inherited Session
property.

■Source Code The SimpleStateExample project is included under the Chapter 33 subdirectory.

ASP.NET State Management Techniques
ASP.NET provides several mechanisms that you can use to maintain stateful information in your
web applications. Specifically, you have the following options:

• Make use of ASP.NET view state.

• Make use of ASP.NET control state.

• Define application-level variables.

• Make use of the cache object.

• Define session-level variables.

• Define cookie data.

The one thing these approaches have in common is that they each demand that a given user is
in session and that the web application is loaded into memory. As soon as a user logs off (or times
out) from your site (or your website is shut down), your site is once again stateless. If you wish to

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES 1247

8849CH33.qxd 10/17/07 5:53 PM Page 1247

persist user data in a permanent manner, ASP.NET provides an out-of-the-box Profile API. We’ll
examine the details of each approach in turn, beginning with the topic of ASP.NET view state.

Understanding the Role of ASP.NET View State
The term view state has been thrown out a few times here and in the previous two chapters without
a formal definition, so let’s demystify this term once and for all. Under classic (COM-based) ASP,
web developers were required to manually repopulate the values of the incoming form widgets dur-
ing the process of constructing the outgoing HTTP response. For example, if the incoming HTTP
request contained five text boxes with specific values, the *.asp file required script code to extract
the current values (via the Form or QueryString collections of the Request object) and manually
place them back into the HTTP response stream (needless to say, this was a drag). If the developer
failed to do so, the caller was presented with a set of five empty text boxes!

Under ASP.NET, we are no longer required to manually scrape out and repopulate the values
contained within the HTML widgets because the ASP.NET runtime will automatically embed a hid-
den form field (named __VIEWSTATE), which will flow between the browser and a specific page. The
data assigned to this field is a Base64-encoded string that contains a set of name/value pairs that
represent the values of each GUI widget on the page at hand.

The System.Web.UI.Page base class’s Init event handler is the entity in charge of reading the
incoming values found within the __VIEWSTATE field to populate the appropriate member variables
in the derived class (which is why it is risky at best to access the state of a web widget within the
scope of a page’s Init event handler).

Also, just before the outgoing response is emitted back to the requesting browser, the
__VIEWSTATE data is used to repopulate the form’s widgets, to ensure that the current values of the
HTML widgets appear as they did prior to the previous postback.

Clearly, the best thing about this aspect of ASP.NET is that it just happens without any work on
your part. Of course, you are always able to interact with, alter, or disable this default functionality if
you so choose. To understand how to do this, let’s see a concrete view state example.

Demonstrating View State
First, create a new ASP.NET web application called ViewStateApp. On your initial *.aspx page, add
a single ASP.NET ListBox web control (named myListBox) and a single Button type (named
btnPostback). Handle the Click event for the Button to provide a way for the user to post back to
the web server:

public partial class _Default : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{
}
protected void btnPostback_Click(object sender, EventArgs e)
{
// No-op. This is just here to allow a postback.

}
}

Now, using the Visual Studio 2008 Properties window, access the Items property and add four
ListItems to the ListBox using the associated dialog box. The resulting markup looks like this:

<asp:ListBox ID="myListBox" runat="server">
<asp:ListItem>Item One</asp:ListItem>
<asp:ListItem>Item Two</asp:ListItem>

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES1248

8849CH33.qxd 10/17/07 5:53 PM Page 1248

<asp:ListItem>Item Three</asp:ListItem>
<asp:ListItem>Item Four</asp:ListItem>

</asp:ListBox>

Note that you are hard-coding the items in the ListBox directly within the *.aspx file. As you
already know, all <asp:> definitions found within an HTML form will automatically render back
their HTML representation before the final HTTP response (provided they have the runat="server"
attribute).

The <%@Page%> directive has an optional attribute called EnableViewState that by default is set
to true. To disable this behavior, simply update the <%@Page%> directive as follows:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default"
EnableViewState ="false" %>

So, what exactly does it mean to disable view state? The answer is, it depends. Given the previ-
ous definition of the term, you would think that if you disable view state for an *.aspx file, the
values within your ListBox would not be remembered between postbacks to the web server. How-
ever, if you were to run this application as is, you might be surprised to find that the information in
the ListBox is retained regardless of how many times you post back to the page.

In fact, if you examine the source HTML returned to the browser (by right-clicking the page
within the browser and selecting View Source), you may be further surprised to see that the hidden
__VIEWSTATE field is still present:

<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
value="/wEPDwUKLTM4MTM2MDM4NGRkqGC6gjEV25JnddkJiRmoIc10SIA=" />

The reason the view state string is still visible is the fact that the *.aspx file has explicitly
defined the ListBox items within the scope of the HTML <form> tags. Thus, the ListBox items will
be autogenerated each time the web server responds to the client.

However, assume that your ListBox is dynamically populated within the code-behind file
rather than within the HTML <form> definition. First, remove the <asp:ListItem> declarations from
the current *.aspx file:

<asp:ListBox ID="myListBox" runat="server">
</asp:ListBox>

Next, fill the list items within the Load event handler within your code-behind file:

protected void Page_Load(object sender, EventArgs e)
{
if (!IsPostBack)
{
// Fill ListBox dynamically!
myListBox.Items.Add("Item One");
myListBox.Items.Add("Item Two");
myListBox.Items.Add("Item Three");
myListBox.Items.Add("Item Four");

}
}

If you post to this updated page, you will find that the first time the browser requests the page,
the values in the ListBox are present and accounted for. However, on postback, the ListBox is sud-
denly empty. The first rule of ASP.NET view state is that its effect is only realized when you have
widgets whose values are dynamically generated through code. If you hard-code values within the
*.aspx file’s <form> tags, the state of these items is always remembered across postbacks (even when
you set EnableViewState to false for a given page).

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES 1249

8849CH33.qxd 10/17/07 5:53 PM Page 1249

Furthermore, view state is most useful when you have a dynamically populated web widget
that always needs to be repopulated for each and every postback (such as an ASP.NET GridView,
which is always filled using a database hit). If you did not disable view state for pages that contain
such widgets, the entire state of the grid is represented within the hidden __VIEWSTATE field. Given
that complex pages may contain numerous ASP.NET web controls, you can imagine how large this
string would become. As the payload of the HTTP request/response cycle could become quite
heavy, this may become a problem for the dial-up web surfers of the world. In cases such as these,
you may find faster throughput if you disable view state for the page.

If the idea of disabling view state for the entire *.aspx file seems a bit too aggressive, do know
that every descendent of the System.Web.UI.Control base class inherits the EnableViewState prop-
erty, which makes it very simple to disable view state on a control-by-control basis:

<asp:GridView id="myHugeDynamicallyFilledGridOfData" runat="server"
EnableViewState="false">
</asp:GridView>

■Note ASP.NET pages reserve a small part of the __VIEWSTATE string for internal use. Given this, you will find
that the __VIEWSTATE field will still appear in the client-side source even when the entire page (and all the con-
trols) have disabled view state.

Adding Custom View State Data
In addition to the EnableViewState property, the System.Web.UI.Control base class provides an
inherited property named ViewState. Under the hood, this property provides access to a System.
Web.UI.StateBag type, which represents all the data contained within the __VIEWSTATE field. Using
the indexer of the StateBag type, you can embed custom information within the hidden
__VIEWSTATE form field using a set of name/value pairs. Here’s a simple example:

protected void btnAddToVS_Click(object sender, EventArgs e)
{
ViewState["CustomViewStateItem"] = "Some user data";
lblVSValue.Text = (string)ViewState["CustomViewStateItem"];

}

Because the System.Web.UI.StateBag type has been designed to operate on any type-derived
System.Object, when you wish to access the value of a given key, you should explicitly cast it into
the correct underlying data type (in this case, a System.String). Be aware, however, that values
placed within the __VIEWSTATE field cannot literally be any object. Specifically, the only valid types
are Strings, Integers, Booleans, ArrayLists, Hashtables, or an array of these types.

So, given that *.aspx pages may insert custom bits of information into the __VIEWSTATE string,
the next logical question is when you would want to do so. Most of the time, custom view state data
is best suited for user-specific preferences. For example, you may establish a point of view state data
that specifies how a user wishes to view the UI of a GridView (such as a sort order). View state data is
not well suited for full-blown user data, such as items in a shopping cart or cached DataSets. When
you need to store this sort of complex information, you are required to work with session or appli-
cation data. Before we get to that point, you need to understand the role of the Global.asax file.

■Source Code The ViewStateApp project is included under the Chapter 33 subdirectory.

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES1250

8849CH33.qxd 10/17/07 5:53 PM Page 1250

A BRIEF WORD REGARDING CONTROL STATE

Since the release of .NET 2.0, a control’s state data can now be persisted via control state rather than view state.
This technique is most helpful if you have written a custom ASP.NET web control that must remember data between
round-trips. While the ViewState property can be used for this purpose, if view state is disabled at a page level,
the custom control is effectively broken. For this very reason, web controls now support a ControlState property.

Control state works identically to view state; however, it will not be disabled if view state is disabled at the
page level. As mentioned, this feature is most useful for those who are developing custom web controls (a topic not
covered in this text). Consult the .NET Framework 3.5 SDK documentation for further details.

The Role of the Global.asax File
At this point, an ASP.NET application may seem to be little more than a set of *.aspx files and their
respective web controls. While you could build a web application by simply linking a set of related
web pages, you will most likely need a way to interact with the web application as a whole. To this
end, your ASP.NET web applications may choose to include an optional Global.asax file via the Web
Site ➤ Add New Item menu option, as shown in Figure 33-2 (notice you are selecting the Global
Application Class icon).

Figure 33-2. The Global.asax file

Simply put, Global.asax is just about as close to a traditional double-clickable *.exe that we
can get in the world of ASP.NET, meaning this type represents the runtime behavior of the website
itself. Once you insert a Global.asax file into a web project, you will notice it is little more than a
<script> block containing a set of event handlers:

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES 1251

8849CH33.qxd 10/17/07 5:53 PM Page 1251

<%@ Application Language="C#" %>

<script runat="server">
void Application_Start(object sender, EventArgs e)
{
// Code that runs on application startup.

}

void Application_End(object sender, EventArgs e)
{
// Code that runs on application shutdown.

}

void Application_Error(object sender, EventArgs e)
{
// Code that runs when an unhandled error occurs.

}

void Session_Start(object sender, EventArgs e)
{
// Code that runs when a new session is started.

}

void Session_End(object sender, EventArgs e)
{
// Code that runs when a session ends.
// Note: The Session_End event is raised only when the sessionstate mode
// is set to InProc in the Web.config file. If session mode is set to
// StateServer or SQLServer, the event is not raised.

}
</script>

Looks can be deceiving, however. At runtime, the code within this <script> block is assembled
into a class type deriving from System.Web.HttpApplication (if you have a background in ASP.NET
1.x, you may recall that the Global.asax code-behind file literally did define a class deriving from
HttpApplication).

As mentioned, the members defined inside Global.asax are in event handlers that allow you to
interact with application-level (and session-level) events. Table 33-1 documents the role of each
member.

Table 33-1. Core Types of the System.Web Namespace

Event Handler Meaning in Life

Application_Start() This event handler is called the very first time the web application is
launched. Thus, this event will fire exactly once over the lifetime of a web
application. This is an ideal place to define application-level data used
throughout your web application.

Application_End() This event handler is called when the application is shutting down. This
will occur when the last user times out or if you manually shut down the
application via IIS.

Session_Start() This event handler is fired when a new user logs on to your application.
Here you may establish any user-specific data points.

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES1252

8849CH33.qxd 10/17/07 5:53 PM Page 1252

Event Handler Meaning in Life

Session_End() This event handler is fired when a user’s session has terminated (typically
through a predefined timeout).

Application_Error() This is a global error handler that will be called when an unhandled
exception is thrown by the web application.

The Global Last-Chance Exception Event Handler
First, let me point out the role of the Application_Error() event handler. Recall that a specific page
may handle the Error event to process any unhandled exception that occurred within the scope of
the page itself. In a similar light, the Application_Error() event handler is the final place to handle
an exception that was not handled by a given page. As with the page-level Error event, you are able
to access the specific System.Exception using the inherited Server property:

void Application_Error(object sender, EventArgs e)
{
// Obtain the unhandled error.
Exception ex = Server.GetLastError();

// Process error here...

// Clear error when finished.
Server.ClearError();

}

Given that the Application_Error() event handler is the last-chance exception handler for
your web application, it is quite common to implement this method in such a way that the user is
transferred to a predefined error page on the server. Other common duties may include sending an
e-mail to the web administrator or writing to an external error log.

The HttpApplication Base Class
As mentioned, the Global.asax script is dynamically generated into a class deriving from the
System.Web.HttpApplication base class, which supplies some of the same sort of functionality as
the System.Web.UI.Page type (without a visible user interface). Table 33-2 documents the key mem-
bers of interest.

Table 33-2. Key Members Defined by the System.Web.HttpApplication Type

Property Meaning in Life

Application This property allows you to interact with application-level variables, using the
exposed HttpApplicationState type.

Request This property allows you to interact with the incoming HTTP request, using the
underlying HttpRequest object.

Response This property allows you to interact with the incoming HTTP response, using the
underlying HttpResponse object.

Server This property gets the intrinsic server object for the current request, using the
underlying HttpServerUtility object.

Session This property allows you to interact with session-level variables, using the
underlying HttpSessionState object.

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES 1253

8849CH33.qxd 10/17/07 5:53 PM Page 1253

Again, given that the Global.asax file does not explicitly document that HttpApplication is the
underlying base class, it is important to remember that all of the rules of the “is-a” relationship do
indeed apply. For example, if you were to apply the dot operator to the base keyword within any of
the members within Global.asax, you would find you have immediate access to all members of the
chain of inheritance, as you see in Figure 33-3.

Figure 33-3. Remember that HttpApplication is the parent of the type lurking within Global.asax.

Understanding the Application/Session Distinction
Under ASP.NET, application state is maintained by an instance of the HttpApplicationState type.
This class enables you to share global information across all users (and all pages) who are logged on
to your ASP.NET application. Not only can application data be shared by all users on your site, but
also if the value of an application-level data point changes, the new value is seen by all users on
their next postback.

On the other hand, session state is used to remember information for a specific user (again,
such as items in a shopping cart). Physically, a user’s session state is represented by the
HttpSessionState class type. When a new user logs on to an ASP.NET web application, the runtime
will automatically assign that user a new session ID, which by default will expire after 20 minutes of
inactivity. Thus, if 20,000 users are logged on to your site, you have 20,000 distinct HttpSessionState
objects, each of which is automatically assigned a unique session ID. The relationship between a
web application and web sessions is shown in Figure 33-4.

As you may remember based on past experience, under classic ASP, application- and session-
state data is represented using distinct COM objects (e.g., Application and Session). Under
ASP.NET, Page-derived types as well as the HttpApplication type make use of identically named
properties (i.e., Application and Session), which expose the underlying HttpApplicationState and
HttpSessionState types.

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES1254

8849CH33.qxd 10/17/07 5:53 PM Page 1254

Figure 33-4. The application/session state distinction

Maintaining Application-Level State Data
The HttpApplicationState type enables developers to share global information across multiple
sessions in an ASP.NET application. For example, you may wish to maintain an application-wide
connection string that can be used by all pages, a common DataSet used by multiple pages, or any
other piece of data that needs to be accessed on an application-wide scale. Table 33-3 describes
some core members of this type.

Table 33-3. Members of the HttpApplicationState Type

Members Meaning in Life

Add() This method allows you to add a new name/value pair into
the HttpApplicationState type. Do note that this method is
typically not used in favor of the indexer of the
HttpApplicationState class.

AllKeys This property returns an array of System.String types that
represent all the names in the HttpApplicationState type.

Clear() This method deletes all items in the HttpApplicationState
type. This is functionally equivalent to the RemoveAll()
method.

Count This property gets the number of item objects in the
HttpApplicationState type.

Lock(), Unlock() These two methods are used when you wish to alter a set of
application variables in a thread-safe manner.

RemoveAll(), Remove(), RemoveAt() These methods remove a specific item (by string name)
within the HttpApplicationState type. RemoveAt() removes
the item via a numerical indexer.

To illustrate working with application state, create a new ASP.NET web application named
AppState and insert a new Global.asax file. When you create data members that can be shared
among all active sessions, you need to establish a set of name/value pairs. In most cases, the most

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES 1255

8849CH33.qxd 10/17/07 5:53 PM Page 1255

natural place to do so is within the Application_Start() event handler of the HttpApplication-
derived type, for example:

void Application_Start(Object sender, EventArgs e)
{
// Set up some application variables.
Application["SalesPersonOfTheMonth"] = "Chucky";
Application["CurrentCarOnSale"] = "Colt";
Application["MostPopularColorOnLot"] = "Black";

}

During the lifetime of your web application (which is to say, until the web application is manu-
ally shut down or until the final user times out), any user (on any page) may access these values as
necessary. Assume you have a page that will display the current discount car within a Label via a
button Click event handler:

protected void btnShowCarOnSale_Click(object sender, EventArgs arg)
{
lblCurrCarOnSale.Text = string.Format("Sale on {0}'s today!",
(string)Application["CurrentCarOnSale"]);

}

Like the ViewState property, notice how you should cast the value returned from the
HttpApplicationState type into the correct underlying type as the Application property operates
on general System.Object types.

Now, given that the HttpApplicationState type can hold any type, it should stand to reason
that you can place custom types (or any .NET object) within your site’s application state. Assume
you would rather maintain the three current application variables within a strongly typed class
named CarLotInfo:

public class CarLotInfo
{
public CarLotInfo(string s, string c, string m)
{
salesPersonOfTheMonth = s;
currentCarOnSale = c;
mostPopularColorOnLot = m;

}
// Public for easy access, could also make use of automatic
// property syntax.
public string salesPersonOfTheMonth;
public string currentCarOnSale;
public string mostPopularColorOnLot;

}

With this helper class in place, you could modify the Application_Start() event handler as
follows:

void Application_Start(Object sender, EventArgs e)
{
// Place a custom object in the application data sector.
Application["CarSiteInfo"] =
new CarLotInfo("Chucky", "Colt", "Black");

}

and then access the information using the public field data within a server-side Click event handler
for a Button type named btnShowAppVariables:

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES1256

8849CH33.qxd 10/17/07 5:53 PM Page 1256

protected void btnShowAppVariables_Click(object sender, EventArgs e)
{
CarLotInfo appVars =
((CarLotInfo)Application["CarSiteInfo"]);

string appState =
string.Format("Car on sale: {0}",
appVars.currentCarOnSale);

appState +=
string.Format("Most popular color: {0}",
appVars.mostPopularColorOnLot);

appState +=
string.Format("Big shot SalesPerson: {0}",
appVars.salesPersonOfTheMonth);

lblAppVariables.Text = appState;
}

Given that the current car-on-sale data is now exposed from a custom class type, your
btnShowCarOnSale Click event handler would also need to be updated like so:

protected void btnShowCarOnSale_Click1(object sender, EventArgs e)
{
lblCurrCarOnSale.Text = String.Format("Sale on {0}'s today!",
((CarLotInfo)Application["CarSiteInfo"]).currentCarOnSale);

}

If you now run this page, you will find that a list of each application variable is displayed on the
page’s Label types, as displayed in Figure 33-5.

Figure 33-5. Displaying application data

Modifying Application Data
You may programmatically update or delete any or all members using members of the
HttpApplicationState type during the execution of your web application. For example, to delete a
specific item, simply call the Remove() method. If you wish to destroy all application-level data, call
RemoveAll():

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES 1257

8849CH33.qxd 10/17/07 5:53 PM Page 1257

private void CleanAppData()
{
// Remove a single item via string name.
Application.Remove["SomeItemIDontNeed"];

// Destroy all application data!
Application.RemoveAll();

}

If you wish to simply change the value of an existing application-level variable, you only need
to make a new assignment to the data item in question. Assume your page now supports a new
Button type that allows your user to change the current hotshot salesperson by reading in a value
from a TextBox named txtNewSP. The Click event handler is as you would expect:

protected void btnSetNewSP_Click(object sender, EventArgs e)
{
// Set the new Salesperson.
((CarLotInfo)Application["CarSiteInfo"]).salesPersonOfTheMonth
= txtNewSP.Text;

}

If you run the web application, you will find that the application-level variable has been
updated. Furthermore, given that application variables are accessible from all user sessions, if you
were to launch three or four instances of your web browser, you would find that if one instance
changes the current hotshot salesperson, each of the other browsers displays the new value on
postback.

Understand that if you have a situation where a set of application-level variables must be
updated as a unit, you risk the possibility of data corruption (given that it is technically possible that
an application-level data point may be changed while another user is attempting to access it!).
While you could take the long road and manually lock down the logic using threading primitives of
the System.Threading namespace, the HttpApplicationState type has two methods, Lock() and
Unlock(), that automatically ensure thread safety:

// Safely access related application data.
Application.Lock();
Application["SalesPersonOfTheMonth"] = "Maxine";
Application["CurrentBonusedEmployee"] = Application("SalesPersonOfTheMonth");
Application.Unlock();

Handling Web Application Shutdown
The HttpApplicationState type is designed to maintain the values of the items it contains until one
of two situations occurs: the last user on your site times out (or manually logs out) or someone
manually shuts down the website via IIS. In each case, the Application_End() method of the
HttpApplication-derived type will automatically be called. Within this event handler, you are able
to perform whatever sort of cleanup code is necessary:

void Application_End(Object sender, EventArgs e)
{
// Write current application variables
// to a database or whatever else you need to do...

}

■Source Code The AppState project is included under the Chapter 33 subdirectory.

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES1258

8849CH33.qxd 10/17/07 5:53 PM Page 1258

Working with the Application Cache
ASP.NET provides a second and more flexible manner to handle application-wide data. As you
recall, the values within the HttpApplicationState object remain in memory as long as your web
application is alive and kicking. Sometimes, however, you may wish to maintain a piece of applica-
tion data only for a specific period of time. For example, you may wish to obtain an ADO.NET
DataSet that is valid for only five minutes. After that time, you may want to obtain a fresh DataSet to
account for possible database updates. While it is technically possible to build this infrastructure
using HttpApplicationState and some sort of handcrafted monitor, your task is greatly simplified
using the ASP.NET application cache.

As suggested by its name, the ASP.NET System.Web.Caching.Cache object (which is accessible
via the Context.Cache property) allows you to define an object that is accessible by all users (from all
pages) for a fixed amount of time. In its simplest form, interacting with the cache looks identical to
interacting with the HttpApplicationState type:

// Add an item to the cache.
// This item will *not* expire.
Context.Cache["SomeStringItem"] = "This is the string item";

// Get item from the cache.
string s = (string)Context.Cache["SomeStringItem"]

■Note If you wish to access the Cache from within Global.asax, you are required to use the Context property.
However, if you are within the scope of a System.Web.UI.Page-derived type, you can make use of the Cache
object directly.

Now, understand that if you have no interest in automatically updating (or removing) an appli-
cation-level data point (as seen here), the Cache object is of little benefit, as you can directly use the
HttpApplicationState type. However, when you do wish to have a data point destroyed after a fixed
point of time—and optionally be informed when this occurs—the Cache type is extremely helpful.

The System.Web.Caching.Cache class defines only a small number of members beyond the
type’s indexer. For example, the Add() method can be used to insert a new item into the cache that is
not currently defined (if the specified item is already present, Add() effectively does nothing). The
Insert() method will also place a member into the cache. If, however, the item is currently defined,
Insert() will replace the current item with the new type. Given that this is most often the behavior
you will desire, I’ll focus on the Insert() method exclusively.

Fun with Data Caching
Let’s see an example. To begin, create a new ASP.NET web application named CacheState and insert
a Global.asax file. Like an application-level variable maintained by the HttpApplicationState type,
the Cache may hold any System.Object-derived type and is often populated within the
Application_Start() event handler. For this example, the goal is to automatically update the con-
tents of a DataSet every 15 seconds. The DataSet in question will contain the current set of records
from the Inventory table of the AutoLot database created during our discussion of ADO.NET.

Given these design notes, set a reference to AutoLotDAL.dll (see Chapter 22) and update your
Global class type like so (code analysis to follow):

<%@ Application Language="C#" %>
<%@ Import Namespace = "AutoLotConnectedLayer" %>
<%@ Import Namespace = "System.Data" %>

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES 1259

8849CH33.qxd 10/17/07 5:53 PM Page 1259

<script runat="server">
// Define a static-level Cache member variable.
static Cache theCache;

void Application_Start(Object sender, EventArgs e)
{
// First assign the static 'theCache' variable.
theCache = Context.Cache;

// When the application starts up,
// read the current records in the
// Inventory table of the AutoLot DB.
InventoryDAL dal = new InventoryDAL();
dal.OpenConnection(@"Data Source=(local)\SQLEXPRESS;" +
"Initial Catalog=AutoLot;Integrated Security=True");

DataTable theCars = dal.GetAllInventory();
dal.CloseConnection();

// Now store DataTable in the cache.
theCache.Insert("AppDataTable",
theCars, null,
DateTime.Now.AddSeconds(15),
Cache.NoSlidingExpiration,
CacheItemPriority.Default,
new CacheItemRemovedCallback(UpdateCarInventory));

}

// The target for the CacheItemRemovedCallback delegate.
static void UpdateCarInventory(string key, object item,
CacheItemRemovedReason reason)

{
InventoryDAL dal = new InventoryDAL();
dal.OpenConnection(@"Data Source=(local)\SQLEXPRESS;" +
"Initial Catalog=AutoLot;Integrated Security=True");

DataTable theCars = dal.GetAllInventory();
dal.CloseConnection();

// Now store in the cache.
theCache.Insert("AppDataTable",
theCars, null,
DateTime.Now.AddSeconds(15),
Cache.NoSlidingExpiration,
CacheItemPriority.Default,
new CacheItemRemovedCallback(UpdateCarInventory));

}
...
</script>

First, notice that the Global type has defined a static Cache member variable. The reason is that
you have defined two shared members that need to access the Cache object. Recall that static mem-
bers do not have access to inherited members, therefore you can’t use the Context property!

Inside the Application_Start() event handler, you fill a DataTable and place the object within
the application cache. As you would guess, the Context.Cache.Insert() method has been over-
loaded a number of times. Here, you supply a value for each possible parameter. Consider the
following commented call to Add():

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES1260

8849CH33.qxd 10/17/07 5:53 PM Page 1260

theCache.Add("AppDataTable", // Name used to identify item in the cache.
theCars, // Object to put in the cache.
null, // Any dependencies for this object?
DateTime.Now.AddSeconds(15), // How long item will be in cache.
Cache.NoSlidingExpiration, // Fixed or sliding time?
CacheItemPriority.Default, // Priority level of cache item.
// Delegate for CacheItemRemove event.
new CacheItemRemovedCallback(UpdateCarInventory));

The first two parameters simply make up the name/value pair of the item. The third parameter
allows you to define a CacheDependency type (which is null in this case, as you do not have any other
entities in the cache that are dependent on the DataTable).

■Note The ability to define a CacheDependency type is quite interesting. For example, you could establish a
dependency between a member and an external file. If the contents of the file were to change, the type can be
automatically updated. Check out the .NET Framework 3.5 SDK documentation for further details.

The next three parameters are used to define the amount of time the item will be allowed to
remain in the application cache and its level of priority. Here, you specify the read-only Cache.
NoSlidingExpiration field, which informs the cache that the specified time limit (15 seconds) is
absolute. Finally, and most important for this example, you create a new CacheItemRemovedCallback
delegate type, and pass in the name of the method to call when the DataSet is purged. As you can
see from the signature of the UpdateCarInventory() method, the CacheItemRemovedCallback dele-
gate can only call methods that match the following signature:

static void UpdateCarInventory(string key, object item,
CacheItemRemovedReason reason)

{
}

So, at this point, when the application starts up, the DataTable is populated and cached. Every
15 seconds, the DataTable is purged, updated, and reinserted into the cache. To see the effects of
doing this, you need to create a Page that allows for some degree of user interaction.

Modifying the *.aspx File
Update the UI of your initial *.aspx file as shown in Figure 33-6.

In the page’s Load event handler, configure your GridView to display the current contents
of the cached DataTable the first time the user posts to the page (be sure to import the
AutoLotConnectedLayer namespace within your code file):

protected void Page_Load(object sender, EventArgs e)
{
if (!IsPostBack)
{
carsGridView.DataSource = (DataTable)Cache["AppDataTable"];
carsGridView.DataBind();

}
}

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES 1261

8849CH33.qxd 10/17/07 5:53 PM Page 1261

Figure 33-6. The cache application GUI

In the Click event handler of the Add This Car button, insert the new record into the AutoLot
database using the InventoryDAL type. Once the record has been inserted, call a helper function
named RefreshGrid(), which will update the UI:

protected void btnAddCar_Click(object sender, EventArgs e)
{
// Update the Inventory table
// and call RefreshGrid().
InventoryDAL dal = new InventoryDAL();
dal.OpenConnection(@"Data Source=(local)\SQLEXPRESS;" +
"Initial Catalog=AutoLot;Integrated Security=True");

dal.InsertAuto(int.Parse(txtCarID.Text), txtCarColor.Text,
txtCarMake.Text, txtCarPetName.Text);

dal.CloseConnection();
RefreshGrid();

}

private void RefreshGrid()
{
InventoryDAL dal = new InventoryDAL();
dal.OpenConnection(@"Data Source=(local)\SQLEXPRESS;" +
"Initial Catalog=AutoLot;Integrated Security=True");

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES1262

8849CH33.qxd 10/17/07 5:53 PM Page 1262

DataTable theCars = dal.GetAllInventory();
dal.CloseConnection();

carsGridView.DataSource = theCars;
carsGridView.DataBind();

}

Now, to test the use of the cache, begin by running the current program (Ctrl+F5) and copy
the URL appearing in the browser to your clipboard. Next, launch a second instance of Internet
Explorer (using the Start button) and paste the URL into this instance. At this point you should have
two instances of your web browser, both viewing Default.aspx and showing identical data.

In one instance of the browser, add a new automobile entry. Obviously, this results in an
updated GridView viewable from the browser that initiated the postback.

In the second browser instance, click the Refresh button (F5). You should not see the new item,
given that the Page_Load event handler is reading directly from the cache. (If you did see the value,
the 15 seconds had already expired. Either type faster or increase the amount of time the DataTable
will remain in the cache.) Wait a few seconds and click the Refresh button from the second browser
instance one more time. Now you should see the new item, given that the DataTable in the cache
has expired and the CacheItemRemovedCallback delegate target method has automatically updated
the cached DataTable.

As you can see, the major benefit of the Cache type is that you can ensure that when a member
is removed, you have a chance to respond. In this example, you certainly could avoid using the
Cache and simply have the Page_Load() event handler always read directly from the AutoLot data-
base. Nevertheless, the point should be clear: the cache allows you to automatically refresh data
using the cache mechanism.

■Source Code The CacheState project is included under the Chapter 33 subdirectory.

Maintaining Session Data
So much for our examination of application-level and cached data. Next, let’s check out the role of
per-user data. As mentioned earlier, a session is little more than a given user’s interaction with a web
application, which is represented via a unique HttpSessionState object. To maintain stateful infor-
mation for a particular user, the HttpApplication-derived type and any System.Web.UI.Page-derived
types may access the Session property. The classic example of the need to maintain per-user data
would be an online shopping cart. Again, if 10 people all log on to an online store, each individual
will maintain a unique set of items that she (may) intend to purchase.

When a new user logs on to your web application, the .NET runtime will automatically assign
the user a unique session ID, which is used to identify the user in question. Each session ID is
assigned a custom instance of the HttpSessionState type to hold on to user-specific data. Inserting
or retrieving session data is syntactically identical to manipulating application data, for example:

// Add/retrieve a session variable for current user.
Session["DesiredCarColor"] = "Green";
string color = (string) Session["DesiredCarColor"];

The HttpApplication-derived type allows you to intercept the beginning and end of a session
via the Session_Start() and Session_End() event handlers. Within Session_Start(), you can freely
create any per-user data items, while Session_End() allows you to perform any work you may need
to do when the user’s session has terminated:

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES 1263

8849CH33.qxd 10/17/07 5:53 PM Page 1263

<%@ Application Language="C#" %>
...
void Session_Start(Object sender, EventArgs e)
{
// New session! Prep if required.

}

void Session_End(Object sender, EventArgs e)
{
// User logged off/timed out. Tear down if needed.

}

Like the HttpApplicationState type, HttpSessionState may hold any System.Object-derived
type, including your custom classes. For example, assume you have a new web application
(SessionState) that defines a class named UserShoppingCart:

public class UserShoppingCart
{
public string desiredCar;
public string desiredCarColor;
public float downPayment;
public bool isLeasing;
public DateTime dateOfPickUp;

public override string ToString()
{
return string.Format
("Car: {0}
Color: {1}
$ Down: {2}
Lease: {3}
Pick-up Date: {4}",
desiredCar, desiredCarColor, downPayment, isLeasing,
dateOfPickUp.ToShortDateString());

}
}

Within the Session_Start() event handler, you can now assign each user a new instance of the
UserShoppingCart class:

void Session_Start(Object sender, EventArgs e)
{
Session["UserShoppingCartInfo"]
= new UserShoppingCart();

}

As the user traverses your web pages, you are able to pluck out the UserShoppingCart instance
and fill the fields with user-specific data. For example, assume you have a simple *.aspx page that
defines a set of input widgets that correspond to each field of the UserShoppingCart type and a
Button used to set the values and two Labels that will be used to display the user’s session ID and
session information (see Figure 33-7).

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES1264

8849CH33.qxd 10/17/07 5:53 PM Page 1264

Figure 33-7. The session application GUI

The server-side Click event handler for the Button type is straightforward (scrape out values
from TextBoxes and display the shopping cart data on a Label type):

protected void btnSubmit_Click(object sender, EventArgs e)
{
// Set current user prefs.
UserShoppingCart cart =
(UserShoppingCart)Session["UserShoppingCartInfo"];

cart.dateOfPickUp = myCalendar.SelectedDate;
cart.desiredCar = txtCarMake.Text;
cart.desiredCarColor = txtCarColor.Text;
cart.downPayment = float.Parse(txtDownPayment.Text);
cart.isLeasing = chkIsLeasing.Checked;
lblUserInfo.Text = cart.ToString();
Session["UserShoppingCartInfo"] = cart;

}

Within Session_End(), you may wish to persist the fields of the UserShoppingCart to a database
or whatnot (however, as you will see at the conclusion of this chapter, the ASP.NET Profile API will
do so automatically). As well, you may wish to implement Session_Error() to trap any faulty input
(or perhaps make use of various validation controls on the Default.aspx page to account for such
user errors).

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES 1265

8849CH33.qxd 10/17/07 5:53 PM Page 1265

In any case, if you were to launch two or three instances of your browser of choice all posting to
the same URL (via a copy/paste operation as you did for the data cache example), you would find
that each user is able to build a custom shopping cart that maps to his unique instance of
HttpSessionState.

Additional Members of HttpSessionState
The HttpSessionState class defines a number of other members of interest beyond the type indexer.
First, the SessionID property will return the current user’s unique ID. If you wish to view the auto-
matically assigned session ID for this example, handle the Load event of your page as follows:

protected void Page_Load(object sender, EventArgs e)
{
lblUserID.Text = string.Format("Here is your ID: {0}",
Session.SessionID);

}

The Remove() and RemoveAll() methods may be used to clear items out of the user’s instance of
HttpSessionState:

Session.Remove["SomeItemWeDontNeedAnymore"];

The HttpSessionState type also defines a set of members that control the expiration policy
of the current session. Again, by default each user has 20 minutes of inactivity before the
HttpSessionState object is destroyed. Thus, if a user enters your web application (and therefore
obtains a unique session ID), but does not return to the site within 20 minutes, the runtime
assumes the user is no longer interested and destroys all session data for that user. You are free to
change this default 20-minute expiration value on a user-by-user basis using the Timeout property.
The most common place to do so is within the scope of your Session_Start() method:

void Session_Start(Object sender, EventArgs e)
{
// Each user has 5 minutes of inactivity.
Session.Timeout = 5;
Session["UserShoppingCartInfo"]
= new UserShoppingCart();

}

■Note If you do not need to tweak each user’s Timeout value, you are able to alter the 20-minute default for all
users via the Timeout attribute of the <sessionState> element within the Web.config file (examined at the end
of this chapter).

The benefit of the Timeout property is that you have the ability to assign specific timeout values
discretely for each user. For example, imagine you have created a web application that allows users
to pay cash for a given membership level. You may say that Gold members should time out within
one hour, while Wood members should get only 30 seconds. This possibility begs the question, how
can you remember user-specific information (such as the current membership level) across web
visits? One possible answer is through the user of the HttpCookie type. (And speaking of cookies . . .)

■Source Code The SessionState project is included under the Chapter 33 subdirectory.

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES1266

8849CH33.qxd 10/17/07 5:53 PM Page 1266

Understanding Cookies
The next state management technique examined here is the act of persisting data within a cookie,
which is often realized as a text file (or set of files) on the user’s machine. When a user logs on to a
given site, the browser checks to see whether the user’s machine has a cookie file for the URL in
question and, if so, appends this data to the HTTP request.

The receiving server-side web page could then read the cookie data to create a GUI that may
be based on the current user preferences. I’m sure you’ve noticed that when you visit one of your
favorite websites, it somehow “just knows” the sort of content you wish to see. The reason (in part)
may have to do with a cookie stored on your computer that contains information relevant to a given
website.

■Note The exact location of your cookie files will depend on which browser and operating system you happen to
be using.

The contents of a given cookie file will obviously vary among URLs, but keep in mind that they
are ultimately text files. Thus, cookies are a horrible choice when you wish to maintain sensitive
information about the current user (such as a credit card number, password, or whatnot). Even if
you take the time to encrypt the data, a crafty hacker could decrypt the value and use it for purely
evil pursuits. In any case, cookies do play a role in the development of web applications, so let’s
check out how ASP.NET handles this particular state management technique.

Creating Cookies
First of all, understand that ASP.NET cookies can be configured to be either persistent or temporary.
A persistent cookie is typically regarded as the classic definition of cookie data, in that the set of
name/value pairs is physically saved to the user’s hard drive. A temporary cookie (also termed a
session cookie) contains the same data as a persistent cookie, but the name/value pairs are never
saved to the user’s hard drive; rather, they exist only within the HTTP header. Once the user shuts
down the browser, all data contained within the session cookie is destroyed.

■Note Most browsers support cookies of up to 4,096 bytes. Because of this size limit, cookies are best used
to store small amounts of data, such as a user ID that can be used to identify the user and pull details from a
database.

The System.Web.HttpCookie type is the class that represents the server side of the cookie data
(persistent or temporary). When you wish to create a new cookie, you access the Response.Cookies
property. Once the new HttpCookie is inserted into the internal collection, the name/value pairs
flow back to the browser within the HTTP header.

To check out cookie behavior firsthand, create a new ASP.NET web application
(CookieStateApp) and create the UI displayed in Figure 33-8.

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES 1267

8849CH33.qxd 10/17/07 5:53 PM Page 1267

Figure 33-8. The UI of CookieStateApp

Within the first button’s Click event handler, build a new HttpCookie and insert it into the
Cookie collection exposed from the HttpRequest.Cookies property. Be very aware that the data will
not persist itself to the user’s hard drive unless you explicitly set an expiration date using the
HttpCookie.Expires property. Thus, the following implementation will create a temporary cookie
that is destroyed when the user shuts down the browser:

protected void btnCookie_Click(object sender, EventArgs e)
{
// Make a temp cookie.
HttpCookie theCookie =
new HttpCookie(txtCookieName.Text,
txtCookieValue.Text);

Response.Cookies.Add(theCookie);
}

However, the following generates a persistent cookie that will expire on March 24, 2009:

protected void btnCookie_Click(object sender, EventArgs e)
{
HttpCookie theCookie =
new HttpCookie(txtCookieName.Text,
txtCookieValue.Text);

theCookie.Expires = DateTime.Parse("03/24/2009");
Response.Cookies.Add(theCookie);

}

Reading Incoming Cookie Data
Recall that the browser is the entity in charge of accessing persisted cookies when navigating to a
previously visited page. To interact with the incoming cookie data under ASP.NET, access the
HttpRequest.Cookies property. To illustrate, implement the Click event handler for the second
button as so:

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES1268

8849CH33.qxd 10/17/07 5:53 PM Page 1268

protected void btnShowCookie_Click(object sender, EventArgs e)
{
string cookieData = "";
foreach (string s in Request.Cookies)
{
cookieData +=
string.Format("Name: {0}, Value: {1}",
s, Request.Cookies[s].Value);

}
lblCookieData.Text = cookieData;

}

If you now run the application and click your new button, you will find that the cookie data has
indeed been sent by your browser (see Figure 33-9).

Figure 33-9. Viewing cookie data

■Source Code The CookieStateApp project is included under the Chapter 33 subdirectory.

The Role of the <sessionState> Element
At this point in the chapter, you have examined numerous ways to remember information about
your users. As you have seen, view state and application, cache, session, and cookie data are manip-
ulated in more or less the same way (via a class indexer). As you have also seen, the HttpApplication
type is often used to intercept and respond to events that occur during your web application’s
lifetime.

By default, ASP.NET will store session state using an in-process *.dll hosted by the ASP.NET
worker process (aspnet_wp.exe). Like any *.dll, the plus side is that access to the information is as

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES 1269

8849CH33.qxd 10/17/07 5:53 PM Page 1269

fast as possible. However, the downside is that if this AppDomain crashes (for whatever reason), all
of the user’s state data is destroyed. Furthermore, when you store state data as an in-process *.dll,
you cannot interact with a networked web farm. This default behavior is recorded in the
<sessionState> element of your machine.config file like so:

<sessionState
mode="InProc"
stateConnectionString="tcpip=127.0.0.1:42626"
sqlConnectionString="data source=127.0.0.1;Trusted_Connection=yes"
cookieless="false"
timeout="20"

/>

This default mode of storage works just fine if your web application is hosted by a single web
server. As you might guess, however, this model is not ideal for a farm of web servers, given that
session state is “trapped” within a given AppDomain.

Storing Session Data in the ASP.NET Session State Server
Under ASP.NET, you can instruct the runtime to host the session state *.dll in a surrogate process
named the ASP.NET session state server (aspnet_state.exe). When you do so, you are able to offload
the *.dll from aspnet_wp.exe into a unique *.exe, which can be located on any machine within the
web farm. Even if you intend to run the aspnet_state.exe process on the same machine as the web
server, you do gain the benefit of partitioning the state data in a unique process (as it is more
durable).

To make use of the session state server, the first step is to start the aspnet_state.exeWindows
service on the target machine. At the command line, simply type

net start aspnet_state

Alternatively, you can start aspnet_state.exe using the Services applet accessed from the
Administrative Tools folder of the Control Panel, as shown in Figure 33-10.

The key benefit of this approach is that you can configure aspnet_state.exe to start automati-
cally when the machine boots up using the Properties window. In any case, once the session state
server is running, add the following <sessionState> element of your Web.config file as follows:

<sessionState
mode="StateServer"
stateConnectionString="tcpip=127.0.0.1:42626"
sqlConnectionString="data source=127.0.0.1;Trusted_Connection=yes"
cookieless="false"
timeout="20"

/>

Here, the mode attribute has been set to StateServer. That’s it! At this point, the CLR will host
session-centric data within aspnet_state.exe. In this way, if the AppDomain hosting the web appli-
cation crashes, the session data is preserved. Notice as well that the <sessionState> element can
also support a stateConnectionString attribute. The default TCP/IP address value (127.0.0.1) points
to the local machine. If you would rather have the .NET runtime use the aspnet_state.exe service
located on another networked machine (again, think web farms), you are free to update this value.

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES1270

8849CH33.qxd 10/17/07 5:53 PM Page 1270

Figure 33-10. Starting aspnet_state.exe using the Services applet

Storing Session Data in a Dedicated Database
Finally, if you require the highest degree of isolation and durability for your web application, you
may choose to have the runtime store all your session state data within Microsoft SQL Server. The
appropriate update to the Web.config file is simple:

<sessionState
mode="SQLServer"
stateConnectionString="tcpip=127.0.0.1:42626"
sqlConnectionString="data source=127.0.0.1;Trusted_Connection=yes"
cookieless="false"
timeout="20"

/>

However, before you attempt to run the associated web application, you need to ensure that
the target machine (specified by the sqlConnectionString attribute) has been properly configured.
When you install the .NET Framework 3.5 SDK (or Visual Studio 2008), you will be provided with
two files named InstallSqlState.sql and UninstallSqlState.sql, located by default under
C:\Windows\Microsoft.NET\Framework\<version>. On the target machine, you must run the
InstallSqlState.sql file using a tool such as the Microsoft SQL Server Management Studio (which
ships with Microsoft SQL Server 2005).

Once this SQL script has executed, you will find a new SQL Server database has been created
(ASPState) that contains a number of stored procedures called by the ASP.NET runtime and a set of
tables used to store the session data itself (also, the tempdb database has been updated with a set of
tables for swapping purposes). As you would guess, configuring your web application to store ses-
sion data within SQL Server is the slowest of all possible options. The benefit is that user data is as
durable as possible (even if the web server is rebooted).

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES 1271

8849CH33.qxd 10/17/07 5:53 PM Page 1271

■Note If you make use of the ASP.NET session state server or SQL Server to store your session data, you
must make sure that any custom types placed in the HttpSessionState object have been marked with the
[Serializable] attribute.

Understanding the ASP.NET Profile API
At this point in the chapter, you have examined numerous techniques that allow you to remember
user-level and application-level bits of data. However, these techniques suffer from one major limi-
tation: they exist only as long as the user is in session and the web application is running! However,
many websites require the ability to persist user information across sessions. For example, perhaps
you need to provide the ability for users to build an account on your site. Maybe you need to persist
instances of a ShoppingCart class across sessions (for an online shopping site). Or perhaps you wish
to persist basic user preferences (themes, etc.).

While you most certainly could build a custom database (with several stored procedures) to
hold such information, you would then need to build a custom code library to interact with these
database objects. This is not necessarily a complex task, but the bottom line is that you are the indi-
vidual in charge of building this sort of infrastructure.

To help simplify matters, ASP.NET ships with an out-of-the-box user profile management API
and database system for this very purpose. In addition to providing the necessary infrastructure, the
Profile API also allows you to define the data to be persisted directly within your Web.config file (for
purposes of simplification); however, you are also able to persist any [Serializable] type. Before
we get too far ahead of ourselves, let’s check out where the Profile API will be storing the specified
data.

The ASPNETDB.mdf Database
Every ASP.NET website built with Visual Studio 2008 automatically provides an App_Data subdirec-
tory. By default, the Profile API (as well as other services, such as the ASP.NET role membership API;
not examined in this text) is configured to make use of a local SQL Server 2008 database named
ASPNETDB.mdf, located within the App_Data folder. This default behavior is due to settings within the
machine.config file for the current .NET installation on your machine. In fact, when your code base
makes use of any ASP.NET service requiring the App_Data folder, the ASPNETDB.mdf data file will be
automatically created on the fly if a copy does not currently exist.

If you would rather have the ASP.NET runtime communicate with an ASPNETDB.mdf file located
on another networked machine, or you would rather install this database on an instance of SQL
Server 7.0 (or higher), you will need to manually build ASPNETDB.mdf using the aspnet_regsql.exe
command-line utility. Like any good command-line tool, aspnet_regsql.exe provides numerous
options; however, if you run the tool with no arguments, as so:

aspnet_regsql

you will launch a GUI-based wizard to help walk you through the process of creating and installing
ASPNETDB.mdf on your machine (and version of SQL Server) of choice.

Now, assuming your site is not making use of a local copy of the database under the App_Data
folder, the final step is to update your Web.config file to point to the unique location of your
ASPNETDB.mdf. Assume you have installed ASPNETDB.mdf on a machine named ProductionServer. The
following (partial) Web.config file (for a website named ShoppingCart) could be used to instruct the
Profile API where to find the necessary database items:

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES1272

8849CH33.qxd 10/17/07 5:53 PM Page 1272

<configuration>
<connectionStrings>
<add name="SqlServices"

connectionString ="Data Source=ProductionServer;Integrated
Security=SSPI;Initial Catalog=aspnetdb;"
providerName="System.Data.SqlClient"/>

</connectionStrings>
<system.web>
<profile defaultProvider ="SqlProvider">
<providers>
<clear/>
<add name="AspNetSqlProfileProvider"

connectionStringName="LocalSqlServer"
applicationName="ShoppingCart"
type="System.Web.Profile.SqlProfileProvider, System.Web,
Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />

</providers>
</profile>

</system.web>
</configuration>

Like most *.config files, this looks much worse than it is. Basically we are defining a
<connectionString> element with the necessary data, followed by a named instance of the
SqlProfileProvider (this is the default provider used regardless of physical location of the
ASPNETDB.mdf). If you require further information regarding this configuration syntax, be sure
to check out the .NET Framework 3.5 SDK documentation.

■Note For simplicity, I will assume that you will simply make use of the autogenerated ASPNETDB.mdf database
located under your web application’s App_Data subdirectory.

Defining a User Profile Within Web.config
As mentioned, a user profile is defined within a Web.config file. The really nifty aspect of this
approach is that you can interact with this profile in a strongly typed manner using the inherited
Profile property. To illustrate this, create a new website named FunWithProfiles and open your
Web.config file for editing.

Our goal is to make a profile that models the home address of the users who are in session as
well as the total number of times they have posted to this site. Not surprisingly, profile data is
defined within a <profile> element using a set of name/data type pairs. Consider the following
profile, which is created within the scope of the <system.web> element:

<profile>
<properties>
<add name="StreetAddress" type="System.String" />
<add name="City" type="System.String" />
<add name="State" type="System.String" />
<add name="TotalPost" type="System.Int32" />
</properties>

</profile>

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES 1273

8849CH33.qxd 10/17/07 5:53 PM Page 1273

Here, we have specified a name and CLR data type for each item in the profile (of course, we
could add additional items for zip code, name, and so forth, but I am sure you get the idea). Strictly
speaking, the type attribute is optional; however, the default is a System.String. As you would
guess, there are many other attributes that can be specified in a profile entry to further qualify how
this information should be persisted in ASPNETDB.mdf. Table 33-4 illustrates some of the core
attributes.

Table 33-4. Select Attributes of Profile Data

Attribute Example Values Meaning in Life

allowAnonymous True | False Restricts or allows anonymous access to this
value. If it is set to false, anonymous users
won’t have access to this profile value.

defaultValue String The value to return if the property has not
been explicitly set.

name String A unique identifier for this property.

provider String The provider used to manage this value. It
overrides the defaultProvider setting in
Web.config or machine.config.

readOnly True | False Restricts or allows write access.

serializeAs String | XML | Binary The format of a value when persisting in the
data store.

type Primitive | User-defined type A .NET primitive type or class. Class names
must be fully qualified (e.g., MyApp.UserData.
ColorPrefs).

We will see some of these attributes in action as we modify the current profile. For now, let’s see
how to access this data programmatically from within our pages.

Accessing Profile Data Programmatically
Recall that the whole purpose of the ASP.NET Profile API is to automate the process of writing data
to (and reading data from) a dedicated database. To test this out for yourself, update the UI of your
Default.aspx file with a set of TextBoxes (and descriptive Labels) to gather the street address, city,
and state of the user. As well, add a Button type (named btnSubmit) and a final Label (named
lblUserData) that will be used to display the persisted data, as shown in Figure 33-11.

Now, within the Click event handler of the button, make use of the inherited Profile property
to persist each point of profile data based on what the user has entered in the related TextBox. As
you can see from Figure 33-12, Visual Studio 2008 will expose each bit of profile data as a strongly
typed property. In effect, the Web.config file has been used to define a custom structure!

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES1274

8849CH33.qxd 10/17/07 5:53 PM Page 1274

Figure 33-11. The UI of the FunWithProfiles Default.aspx page

Figure 33-12. Profile data is strongly typed

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES 1275

8849CH33.qxd 10/17/07 5:53 PM Page 1275

Once you have persisted each piece of data within ASPNETDB.mdf, read each piece of data out of
the database and format it into a String that is displayed on the lblUserData Label type. Finally,
handle the page’s Load event, and display the same information on the Label type. In this way, when
users come to the page, they can see their current settings. Here is the complete code file:

public partial class _Default : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{
GetUserAddress();

}
protected void btnSubmit_Click(object sender, EventArgs e)
{
// Database writes happening here!
Profile.City = txtCity.Text;
Profile.StreetAddress = txtStreetAddress.Text;
Profile.State = txtState.Text;

// Get settings from database.
GetUserAddress();

}

private void GetUserAddress()
{
// Database reads happening here!
lblUserData.Text = String.Format("You live here: {0}, {1}, {2}",

Profile.StreetAddress, Profile.City, Profile.State);
}

}

Now if you run this page, you will notice a lengthy delay the first time Default.aspx is
requested. The reason is that the ASPNETDB.mdf file is being created on the fly and placed within your
App_Data file. You can verify this for yourself by refreshing Solution Explorer (see Figure 33-13).

Figure 33-13. Behold ASPNETDB.mdf!

You will also find that the first time you come to this page, the lblUserData Label does not dis-
play any profile data, as you have not yet entered your data into the correct table of ASPNETDB.mdf.
Once you enter values in the TextBox controls and post back to the server, you will find this Label is
formatted with the persisted data, as shown in Figure 33-14.

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES1276

8849CH33.qxd 10/17/07 5:53 PM Page 1276

Figure 33-14. Our persisted user data

Now, for the really interesting aspect of this technology. If you shut down your browser and
rerun your website, you will find that your previously entered profile data has indeed been per-
sisted, as the Label displays the correct information. This begs the obvious question, how were you
remembered?

For this example, the Profile API made use of your Windows network identity, which was
obtained by your current login credentials. However, when you are building public websites (where
the users are not part of a given domain), rest assured that the Profile API integrates with the Forms-
based authentication model of ASP.NET and also supports the notion of “anonymous profiles,”
which allow you to persist profile data for users who do not currently have an active identity on
your site.

■Note This edition of the text does not address ASP.NET security topics (such as Forms-based authentication or
anonymous profiles). Consult the .NET Framework 3.5 SDK documentation for details.

Grouping Profile Data and Persisting Custom Objects
To wrap up this chapter, allow me to make a few additional comments on how profile data may be
defined within a Web.config file. The current profile simply defined four pieces of data that were
exposed directly from the profile type. When you build more complex profiles, it can be helpful to
group related pieces of data under a unique name. Consider the following update:

<profile>
<properties>
<group name ="Address">
<add name="StreetAddress" type="String" />
<add name="City" type="String" />
<add name="State" type="String" />

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES 1277

8849CH33.qxd 10/17/07 5:53 PM Page 1277

</group>
<add name="TotalPost" type="Integer" />

</properties>
</profile>

This time we have defined a custom group named Address to expose the street address, city,
and state of our user. To access this data in our pages would now require us to update our code
base by specifying Profile.Address to get each subitem. For example, here is the updated
GetUserAddress() method (the Click event handler for the Button type would need to be updated
in a similar manner):

private void GetUserAddress()
{
// Database reads happening here!
lblUserData.Text = String.Format("You live here: {0}, {1}, {2}",
Profile.Address.StreetAddress,
Profile.Address.City, Profile.Address.State);

}

■Note A profile can contain as many groups as you feel are necessary. Simply define multiple <group>
elements within your <properties> scope.

Finally, it is worth pointing out that a profile may also persist (and obtain) custom objects to
and from ASPNETDB.mdf. To illustrate, assume that you wanted to build a custom class (or structure)
that will represent the user’s address data. The only requirement expected by the Profile API is that
the type be marked with the [Serializable] attribute, for example:

[Serializable]
public class UserAddress
{
public string Street = string.Empty;
public string City = string.Empty;
public string State = string.Empty;

}

With this class in place, our profile definition can now be updated as follows (notice I removed
the custom group, although this is not mandatory):

<profile>
<properties>
<add name="AddressInfo" type="UserAddress" serializeAs ="Binary"/>
<add name="TotalPost" type="Integer" />

</properties>
</profile>

Notice that when you are adding [Serializable] types to a profile, the type attribute is the fully
qualified named of the type being persisted. Thus, if you were adding an ArrayList to a profile, type
would be set to System.Collections.ArrayList. As well, you can control how this state data should
be persisted into ASPNETDB.mdf using the serializeAs attribute. As you will see from the Visual
Studio 2008 IntelliSense, your core choices are binary, XML, or string data.

Now that we are capturing street address information as a custom class type, we (once again)
need to update our code base:

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES1278

8849CH33.qxd 10/17/07 5:53 PM Page 1278

private void GetUserAddress()
{
// Database reads happening here!
lblUserData.Text = String.Format("You live here: {0}, {1}, {2}",
Profile.AddressInfo.Street, Profile.AddressInfo.City,
Profile.AddressInfo.State);

}

To be sure, there is much more to the Profile API than I have had space to cover here. For exam-
ple, the Profile property actually encapsulates a type named ProfileCommon. Using this type, you
are able to programmatically obtain all information for a given user, delete (or add) profiles to
ASPNETDB.mdf, update aspects of a profile, and so forth.

As well, the Profile API has numerous points of extensibility that can allow you to optimize how
the profile manager accesses the tables of the ASPNETDB.mdf database. As you would expect, there
are numerous ways to decrease the number of “hits” this database takes. Interested readers are
encouraged to consult the .NET Framework 3.5 SDK documentation for further details.

■Source Code The FunWithProfiles project is included under the Chapter 33 subdirectory.

Summary
In this chapter, you rounded out your knowledge of ASP.NET by examining how to leverage the
HttpApplication type. As you have seen, this type provides a number of default event handlers that
allow you to intercept various application- and session-level events. The bulk of this chapter was
spent examining a number of state management techniques. Recall that view state is used to auto-
matically repopulate the values of HTML widgets between postbacks to a specific page. Next, you
checked out the distinction of application- and session-level data, cookie management, and the
ASP.NET application cache.

The remainder of this chapter exposed you to the ASP.NET Profile API. As you have seen, this
technology provides an out-of-the-box solution to the issue of persisting user data across sessions.
Using your website’s Web.config file, you are able to define any number of profile items (including
groups of items and [Serializable] types) that will automatically be persisted into ASPNETDB.mdf.

CHAPTER 33 ■ ASP.NET STATE MANAGEMENT TECHNIQUES 1279

8849CH33.qxd 10/17/07 5:53 PM Page 1279

8849CH33.qxd 10/17/07 5:53 PM Page 1280

Appendixes

P A R T 8

8849appA.qxd 10/19/07 9:31 AM Page 1281

8849appA.qxd 10/19/07 9:31 AM Page 1282

COM and .NET Interoperability

The goal of this book was to provide you with a solid foundation in the C# language and the core
services provided by the .NET platform. I suspect that when you contrast the object model provided
by .NET to that of Microsoft’s previous component architecture (COM), you’ll no doubt be con-
vinced that these are two entirely unique systems. Regardless of the fact that COM is now considered
to be a legacy framework, you may have existing COM-based systems that you would like to inte-
grate into your new .NET applications.

Thankfully, the .NET platform provides various types, tools, and namespaces that make the
process of COM and .NET interoperability quite straightforward. This appendix begins by examin-
ing the process of .NET to COM interoperability and the related Runtime Callable Wrapper (RCW).
The latter part of this appendix examines the opposite situation: a COM type communicating with
a .NET type using a COM Callable Wrapper (CCW).

■Note A full examination of the .NET interoperability layer would require a book unto itself. If you require more
details than presented in this appendix, check out my book COM and .NET Interoperability (Apress, 2002).

The Scope of .NET Interoperability
Recall that when you build assemblies using a .NET-aware compiler, you are creating managed code
that can be hosted by the common language runtime (CLR). Managed code offers a number of ben-
efits such as automatic memory management, a unified type system (the CTS), self-describing
assemblies, and so forth. As you have also seen, .NET assemblies have a particular internal compo-
sition. In addition to CIL instructions and type metadata, assemblies contain a manifest that fully
documents any required external assemblies as well as other file-related details (strong naming,
version number, etc.).

On the other side of the spectrum are legacy COM servers (which are, of course, unmanaged
code). These binaries bear no relationship to .NET assemblies beyond a shared file extension (*.dll
or *.exe). First of all, COM servers contain platform-specific machine code, not platform-agnostic
CIL instructions, and work with a unique set of data types (often termed oleautomation or variant-
compliant data types), none of which are directly understood by the CLR.

In addition to the necessary COM-centric infrastructure required by all COM binaries (such
as registry entries and support for core COM interfaces like IUnknown) is the fact that COM types
demand to be reference counted in order to correctly control the lifetime of a COM object. This is in
stark contrast, of course, to a .NET object, which is allocated on a managed heap and handled by
the CLR garbage collector.

Given that .NET types and COM types have so little in common, you may wonder how these
two architectures can make use of each others’ services. Unless you are lucky enough to work for a 1283

A P P E N D I X A

8849appA.qxd 10/19/07 9:31 AM Page 1283

company dedicated to “100% Pure .NET” development, you will most likely need to build .NET
solutions that use legacy COM types. As well, you may find that a legacy COM server might like to
communicate with the types contained within a shiny new .NET assembly.

The bottom line is that for some time to come, COM and .NET must learn how to get along.
This appendix examines the process of managed and unmanaged types living together in harmony
using the .NET interoperability layer. In general, the .NET Framework supports two core flavors of
interoperability:

• .NET applications using COM types

• COM applications using .NET types

As you’ll see throughout this appendix, the .NET Framework 3.5 SDK and Visual Studio 2008
supply a number of tools that help bridge the gap between these unique architectures. As well, the
.NET base class library defines a namespace (System.Runtime.InteropServices) dedicated solely to
the issue of interoperability. However, before diving in too far under the hood, let’s look at a very
simple example of a .NET class communicating with a COM server.

■Note The .NET platform also makes it very simple for a .NET assembly to call into the underlying API of the
operating system (as well as any C-based unmanaged *.dll) using a technology termed platform invocation
(or simply PInvoke). From a C# point of view, working with PInvoke involves at absolute minimum applying the
[DllImport] attribute to the external method to be executed. Although PInvoke is not examined in this appendix,
check out the [DllImport] attribute using the .NET Framework 3.5 SDK documentation for further details.

A Simple Example of .NET to COM Interop
To begin our exploration of interoperability services, let’s see just how simple things appear on the
surface. The goal of this section is to build a Visual Basic 6.0 ActiveX *.dll server, which is then con-
sumed by a C# application.

■Note There are many COM frameworks in existence beyond VB6 (such as the Active Template Library [ATL] and
the Microsoft Foundation Classes [MFC]). VB6 has been chosen to build the COM servers in this appendix, as it
provides the most user-friendly syntax to build COM applications. Feel free to make use of ATL/MFC if you so
choose.

Fire up VB6, and create a new ActiveX *.dll project named SimpleComServer, rename your ini-
tial class file to ComCalc.cls, and name the class itself ComCalc. As you may know, the name of your
project and the names assigned to the contained classes will be used to define the programmatic
identifier (ProgID) of the COM types (SimpleComServer.ComCalc, in this case). Finally, define the fol-
lowing methods within ComCalc.cls:

' The VB6 COM object
Option Explicit

Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer
Add = x + y

End Function

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY1284

8849appA.qxd 10/19/07 9:31 AM Page 1284

Public Function Subtract(ByVal x As Integer, ByVal y As Integer) As Integer
Subtract = x - y

End Function

At this point, compile your *.dll (via the File ➤ Make menu option) and, just to keep things
peaceful in the world of COM, establish binary compatibility (via the Component tab of the pro-
ject’s Property page) before you exit the VB6 IDE. This will ensure that if you recompile the appli-
cation, VB6 will preserve the assigned globally unique identifiers (GUIDs).

■Source Code The SimpleComServer project is located under the Appendix A subdirectory.

Building the C# Client
Now open up Visual Studio 2008 and create a new C# Console Application named CSharpComClient.
When you are building a .NET application that needs to communicate with a legacy COM applica-
tion, the first step is to reference the COM server within your project (much like you reference a
.NET assembly).

To do so, simply access the Project ➤ Add Reference menu selection and select the COM tab
from the Add Reference dialog box. The name of your COM server will be listed alphabetically, as
the VB6 compiler updated the system registry with the necessary listings when you compiled
your project. Go ahead and select the SimpleComServer.dll as shown in Figure A-1 and close the
dialog box.

Figure A-1. Referencing a COM server using Visual Studio 2008

Now, if you examine the References folder of the Solution Explorer, you see what looks to be a
new .NET assembly reference added to your project, as illustrated in Figure A-2. Formally speaking,
assemblies that are generated when referencing a COM server are termed interop assemblies. With-
out getting too far ahead of ourselves at this point, simply understand that interop assemblies
contain .NET descriptions of COM types.

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY 1285

8849appA.qxd 10/19/07 9:31 AM Page 1285

Figure A-2. The referenced interop assembly

Although we have not added any code to our initial C# class type, if you compile your applica-
tion and examine the project’s bin\Debug directory, you will find that a local copy of the generated
interop assembly has been placed in the application directory (see Figure A-3). Notice that Visual
Studio 2008 automatically prefixes Interop. to interop assemblies generated when using the Add
Reference dialog box—however, this is only a convention; the CLR does not demand that interop
assemblies follow this particular naming convention.

Figure A-3. The autogenerated interop assembly

To complete this initial example, update the Main() method of your initial class to invoke the
Add() method from a ComCalc object and display the result. For example:

using System;
using SimpleComServer;

namespace CSharpComClient
{
class Program
{
static void Main(string[] args)
{

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY1286

8849appA.qxd 10/19/07 9:31 AM Page 1286

Console.WriteLine("***** The .NET COM Client App *****");
ComCalc comObj = new ComCalc();
Console.WriteLine("COM server says 10 + 832 is {0}",
comObj.Add(10, 832));

Console.ReadLine();
}

}
}

As you can see from the previous code example, the namespace that contains the ComCalc COM
object is named identically to the original VB6 project (notice the using statement). The output shown
in Figure A-4 is as you would expect.

Figure A-4. Behold! .NET to COM interoperability

As you can see, consuming a COM type from a .NET application can be a very transparent
operation indeed. As you might imagine, however, a number of details are occurring behind the
scenes to make this communication possible, the gory details of which you will explore throughout
this appendix, beginning with taking a deeper look into the interop assembly itself.

Investigating a .NET Interop Assembly
As you have just seen, when you reference a COM server using the Visual Studio 2008 Add Reference
dialog box, the IDE responds by generating a brand-new .NET assembly taking an Interop. prefix
(such as Interop.SimpleComServer.dll). Just like an assembly that you would create yourself,
interop assemblies contain type metadata, an assembly manifest, and under some circumstances
may contain CIL code. As well, just like a “normal” assembly, interop assemblies can be deployed
privately (e.g., within the directory of the client assembly) or assigned a strong name to be deployed
to the GAC.

Interop assemblies are little more than containers to hold .NET metadata descriptions of the
original COM types. In many cases, interop assemblies do not contain CIL instructions to imple-
ment their methods, as the real work is taking place in the COM server itself. The only time an
interop assembly contains executable CIL instructions is if the COM server contains COM objects
that have the ability to fire events to the client. In this case, the CIL code within the interop assem-
bly is used by the CLR to translate the event-handling logic from COM connection points into .NET
delegates.

At first glance, it may seem that interop assemblies are not entirely useful, given that they do
not contain any implementation logic. However, the metadata descriptions within an interop
assembly are extremely important, as it will be consumed by the CLR at runtime to build a runtime
proxy (termed the Runtime Callable Wrapper, or simply RCW) that forms a bridge between the .NET
application and the COM object it is communicating with.

You’ll examine the details of the RCW in the next several sections; however, for the time being,
open up the Interop.SimpleComServer.dll assembly using ildasm.exe, as you see in Figure A-5.

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY 1287

8849appA.qxd 10/19/07 9:31 AM Page 1287

Figure A-5. The guts of the Interop.SimpleComServer.dll interop assembly

As you can see, although the original VB6 project only defined a single COM class (ComCalc), the
interop assembly contains three types. This can also be verified using the VS 2008 Object Browser
(see Figure A-6).

Figure A-6. Hmm, how does a single COM type yield three .NET types?

Simply put, each COM class is represented by three distinct .NET types. First, you have a .NET
type that is identically named to the original COM type (ComCalc, in this case). Next, you have a sec-
ond .NET type that takes a Class suffix (ComCalcClass). These types are very helpful when you have
a COM type that implements several custom interfaces, in that the Class-suffixed types expose all
members from each interface supported by the COM type. Thus, from a .NET programmer’s point
of view, there is no need to manually obtain a reference to a specific COM interface before invoking
its functionality. Although ComCalc did not implement multiple custom interfaces, we are able to
invoke the Add() and Subtract() methods from a ComCalcClass object (rather than a ComCalc object)
as follows:

static void Main(string[] args)
{
Console.WriteLine("***** The .NET COM Client App *****");

// Now using the Class-suffixed type.
ComCalcClass comObj = new ComCalcClass();
Console.WriteLine("COM server says 10 + 832 is {0}",
comObj.Add(10, 832));

Console.ReadLine();
}

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY1288

8849appA.qxd 10/19/07 9:31 AM Page 1288

Finally, interop assemblies define .NET equivalents of any original COM interfaces defined
within the COM server. In this case, we find a .NET interface named _ComCalc. Unless you are well
versed in the mechanics of VB6 COM, this is certain to appear strange, given that we never directly
created an interface in our SimpleComServer project (let alone the oddly named _ComCalc inter-
face). The role of these underscore-prefixed interfaces will become clear as you move throughout
this appendix; for now, simply know that if you really wanted to, you could make use of interface-
based programming techniques to invoke Add() or Subtract():

static void Main(string[] args)
{
Console.WriteLine("***** The .NET COM Client App *****");

// Now manually obtain the hidden interface.
ComCalc itfComInterface = null;
ComCalcClass comObj = new ComCalcClass();
itfComInterface = (_ComCalc)comObj;

Console.WriteLine("COM server says 10 + 832 is {0}",
itfComInterface.Add(10, 832));

Console.ReadLine();
}

Now, do understand that invoking a method using the Class-suffixed or underscore-prefixed
interface is seldom necessary. However, as you build more complex .NET applications that need to
work with COM types in more sophisticated manners, having knowledge of these types is critical.

■Source Code The CSharpComClient project is located under the Appendix A subdirectory.

Understanding the Runtime Callable Wrapper
As mentioned, at runtime the CLR will make use of the metadata contained within a .NET interop
assembly to build a proxy type that will manage the process of .NET to COM communication. The
proxy to which I am referring is the Runtime Callable Wrapper, which is little more than a bridge to
the real COM class (officially termed a coclass). Every coclass accessed by a .NET client requires a
corresponding RCW. Thus, if you have a single .NET application that uses three COM coclasses, you
end up with three distinct RCWs that map .NET calls into COM requests. Figure A-7 illustrates the
big picture.

■Note There is always a single RCW per COM object, regardless of how many interfaces the .NET client has
obtained from the COM type (you’ll examine a multi-interfaced VB6 COM object a bit later in this appendix). Using
this technique, the RCW can maintain the correct COM identity (and reference count) of the COM object.

Again, the good news is that the RCW is created automatically when required by the CLR. The
other bit of good news is that legacy COM servers do not require any modifications to be consumed
by a .NET-aware language. The intervening RCW takes care of the internal work. To see how this is
achieved, let’s formalize some core responsibilities of the RCW.

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY 1289

8849appA.qxd 10/19/07 9:31 AM Page 1289

Figure A-7. RCWs sit between the .NET caller and the COM object.

The RCW: Exposing COM Types As .NET Types
The RCW is in charge of transforming COM data types into .NET equivalents (and vice versa). As a
simple example, assume you have a VB6 COM subroutine defined as follows:

' VB6 COM method definition.
Public Sub DisplayThisString(ByVal s as String)

The interop assembly defines the method parameter as a .NET System.String:

' C# mapping of COM method.
public void DisplayThisString(string s)

When this method is invoked by the .NET code base, the RCW automatically takes the incom-
ing System.String and transforms it into a VB6 String data type (which, as you may know, is in fact
a COM BSTR). As you would guess, all COM data types have a corresponding .NET equivalent. To
help you gain your bearings, Table A-1 documents the mapping taking place between COM IDL
(interface definition language) data types, the related .NET System data types, and the correspon-
ding C# keyword (if applicable).

Table A-1. Mapping Intrinsic COM Types to .NET Types

COM IDL Data Type System Types C# Keyword

wchar_t, short System.Int16 short

long, int System.Int32 int

Hyper System.Int64 long

unsigned char, byte System.Byte byte

single System.Single -

double System.Double double

VARIANT_BOOL System.Boolean bool

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY1290

8849appA.qxd 10/19/07 9:31 AM Page 1290

COM IDL Data Type System Types C# Keyword

BSTR System.String string

VARIANT System.Object object

DECIMAL System.Decimal -

DATE System.DateTime -

GUID System.Guid -

CURRENCY System.Decimal -

IUnknown System.Object object

IDispatch System.Object object

The RCW: Managing a Coclass’s Reference Count
Another important duty of the RCW is to manage the reference count of the COM object. As you
may know from your experience with COM, the COM reference-counting scheme is a joint venture
between coclass and client and revolves around the proper use of AddRef() and Release() calls.
COM objects self-destruct when they detect that they have no outstanding references.

However, .NET types do not use the COM reference-counting scheme, and therefore a .NET
client should not be forced to call Release() on the COM types it uses. To keep each participant
happy, the RCW caches all interface references internally and triggers the final release when the
type is no longer used by the .NET client. The bottom line is that similar to VB6, .NET clients never
explicitly call AddRef(), Release(), or QueryInterface().

■Note If you wish to directly interact with a COM object’s reference count from a .NET application, the System.
Runtime.InteropServices namespace provides a type named Marshal. This class defines a number of static
methods, many of which can be used to manually interact with a COM object’s lifetime. Although you will typically
not need to make use of Marshal in most of your applications, consult the .NET Framework 3.5 SDK documenta-
tion for further details.

The RCW: Hiding Low-Level COM Interfaces
The final core service provided by the RCW is to consume a number of low-level COM interfaces.
Because the RCW tries to do everything it can to fool the .NET client into thinking it is directly com-
municating with a native .NET type, the RCW must hide various low-level COM interfaces from
view.

For example, when you build a COM class that supports IConnectionPointContainer (and
maintains a subobject or two supporting IConnectionPoint), the coclass in question is able to fire
events back to the COM client. VB6 hides this entire process from view using the Event and
RaiseEvent keywords. In the same vein, the RCW also hides such COM “goo” from the .NET client.
Table A-2 outlines the role of these hidden COM interfaces consumed by the RCW.

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY 1291

8849appA.qxd 10/19/07 9:31 AM Page 1291

Table A-2. Hidden COM Interfaces

Hidden COM Interface Meaning in Life

IConnectionPointContainer Enable a coclass to send events back to an interested client.
IConnectionPoint VB6 automatically provides a default implementation of each of

these interfaces.

IDispatch Facilitate “late binding” to a coclass. Again, when you are
IProvideClassInfo building VB6 COM types, these interfaces are automatically

supported by a given COM type.

IErrorInfo These interfaces enable COM clients and COM objects to send
ISupportErrorInfo and respond to COM errors.
ICreateErrorInfo

IUnknown The granddaddy of COM. Manages the reference count of the
COM object and allows clients to obtain interfaces from the
coclass.

The Role of COM IDL
At this point, you hopefully have a solid understanding of the role of the interop assembly and
the RCW. Before you go much further into the COM to .NET conversion process, it is necessary to
review some of the finer details of COM IDL. Understand, of course, that this appendix is not
intended to function as a complete COM IDL tutorial; however, to better understand the interop
layer, you only need to be aware of a few IDL constructs.

All .NET assemblies contain metadata. Formally speaking, metadata is used to describe each
and every aspect of a .NET assembly, including the internal types (their members, base class, and so
on), assembly version, and optional assembly-level information (strong name, culture, and so on).

In many ways, .NET metadata is the big brother of an earlier metadata format used to describe
classic COM servers. Classic ActiveX COM servers (*.dlls or *.exes) document their internal types
using a type library, which may be realized as a stand-alone *.tlb file or bundled into the COM
server as an internal resource (which is the default behavior of VB6). COM type libraries are typi-
cally created using a metadata language called the Interface Definition Language and a special
compiler named midl.exe (the Microsoft IDL compiler).

VB6 does a fantastic job of hiding type libraries and IDL from view. In fact, many skilled VB
COM programmers can live a happy and productive life ignoring the syntax of IDL altogether.
Nevertheless, whenever you compile ActiveX project workspace types, VB automatically generates
and embeds the type library within the physical *.dll or *.exe COM server. Furthermore, VB6
ensures that the type library is automatically registered under a very particular part of the system
registry: HKEY_CLASSES_ROOT\TypeLib (see Figure A-8).

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY1292

8849appA.qxd 10/19/07 9:31 AM Page 1292

Figure A-8. HKCR\TypeLib lists all registered type libraries on a given machine.

Type libraries are referenced all the time by numerous IDEs. For example, whenever you access
the Project ➤ References menu selection of VB6, the IDE consults HKCR\TypeLib to determine each
and every registered type library, as shown in Figure A-9.

Figure A-9. Referencing COM type information from VB6

Likewise, when you open the VB6 Object Browser, the VB6 IDE reads the type information and
displays the contents of the COM server using a friendly GUI, as shown in Figure A-10.

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY 1293

8849appA.qxd 10/19/07 9:31 AM Page 1293

Figure A-10. Viewing type libraries using the VB6 Object Browser

Observing the Generated IDL for Your VB COM Server
Although the VB6 Object Browser displays all COM types contained within a type library, the OLE
View utility (oleview.exe) allows you to view the underlying IDL syntax used to build the correspon-
ding type library. If you have installed Visual Basic 6.0, you can open OLE View via Start ➤ All
Programs ➤ Microsoft Visual Studio 6.0 ➤ Microsoft Visual Studio 6.0 Tools and locate the Simple-
ComServer server under the Type Libraries node of the tree view control, as shown in Figure A-11.

Figure A-11. Hunting down SimpleComServer using the OLE/COM object viewer

If you were to double-click the type library icon, you would open a new window that shows you
all of the IDL tokens that constitute the type library generated by the VB6 compiler. Here is the rele-
vant—and slightly reformatted—IDL (your [uuid] values will differ):

[uuid(8AED93CB-7832-4699-A2FC-CAE08693E720), version(1.0)]
library SimpleComServer
{
importlib("stdole2.tlb");
interface _ComCalc;

[odl, uuid(5844CD28-2075-4E77-B619-9B65AA0761A3), version(1.0),
hidden, dual, nonextensible, oleautomation]
interface _ComCalc : IDispatch {
[id(0x60030000)]

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY1294

8849appA.qxd 10/19/07 9:31 AM Page 1294

HRESULT Add([in] short x, [in] short y, [out, retval] short*);
[id(0x60030001)]
HRESULT Subtract([in] short x, [in] short y, [out, retval] short*);
};

[uuid(012B1485-6834-47FF-8E53-3090FE85050C), version(1.0)]
coclass ComCalc {

[default] interface _ComCalc;
};

};

IDL Attributes
To begin parsing out this IDL, notice that IDL syntax contains blocks of code placed in square
brackets ([...]). Within these brackets is a comma-delimited set of IDL keywords, which are used
to disambiguate the “very next thing” (the item to the right of the block or the item directly below
the block). These blocks are IDL attributes that serve the same purpose as .NET attributes (i.e., they
describe something). One key IDL attribute is [uuid], which is used to assign the GUID of a given
COM type. As you may already know, just about everything in COM is assigned a GUID (interfaces,
COM classes, type libraries, and so on), which is used to uniquely identify a given item.

The IDL Library Statement
Starting at the top, you have the COM library statement, which is marked using the IDL library key-
word. Contained within the library statement are each and every interface and COM class, and any
enumeration and user-defined type. In the case of SimpleComServer, the type library lists exactly
one COM class, ComCalc, which is marked using the coclass (i.e., COM class) keyword.

The Role of the [default] Interface
According to the laws of COM, the only possible way in which a COM client can communicate with
a COM class is to use an interface reference (not an object reference). If you have created C++-based
COM clients, you are well aware of the process of querying for a given interface, releasing the inter-
face when it is no longer used, and so forth. However, when you make use of VB6 to build COM
clients, you receive a default interface on the COM class automatically.

When you build VB6 COM servers, any public member on a *.cls file (such as your Add() func-
tion) is placed onto the “default interface” of the COM class. Now, if you examine the class definition
of ComCalc, you can see that the name of the default interface is _ComCalc:

[uuid(012B1485-6834-47FF-8E53-3090FE85050C), version(1.0)]
coclass ComCalc {
[default] interface _ComCalc;

};

In case you are wondering, the name of the default interface VB6 constructs in the background
is always _NameOfTheClass (the underscore is a naming convention used to specify a hidden inter-
face). Thus, if you have a class named Car, the default interface is _Car, a class named DataConnector
has a default interface named _DataConnector, and so forth.

Under VB6, the default interface is completely hidden from view. However, when you write the
following VB6 code:

' VB 6.0 COM client code.
Dim c As ComCalc
Set c = New ComCalc ' [default] _ComCalc interface returned automatically!

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY 1295

8849appA.qxd 10/19/07 9:31 AM Page 1295

the VB runtime automatically queries the object for the default interface (as specified by the type
library) and returns it to the client. Because VB always returns the default interface on a COM class,
you can pretend that you have a true object reference. However, this is only a bit of syntactic sugar
provided by VB6. In COM, there is no such thing as a direct object reference. You always have an
interface reference (even if it happens to be the default).

The Role of IDispatch
If you examine the IDL description of the default _ComCalc interface, you see that this interface
derives from a standard COM interface named IDispatch. While a full discussion concerning the
role of IDispatch is well outside of the scope of this appendix, simply understand that this is the
interface that makes it possible to interact with COM objects on the Web from within a classic
Active Server Page, as well as anywhere else where late binding is required.

IDL Parameter Attributes
The final bit of IDL that you need to be aware of is how VB6 parameters are expressed under the
hood. Under VB6 all parameters are passed by reference, unless the ByVal keyword is used explicitly,
which is represented using the IDL [in] attribute. Furthermore, a function’s return value is marked
using the [out, retval] attributes. Thus, the following VB6 function:

' VB6 function
Public Function Add(ByVal x as Integer, ByVal y as Integer) as Integer
Add = x + y

End Function

would be expressed in IDL like so:

HRESULT Add([in] short* x, [in] short* y, [out, retval] short*);

On the other hand, if you do not mark a parameter using the VB6 ByVal keyword, ByRef is
assumed:

' These parameters are passed ByRef under VB6!
Public Function Subtract(x As Integer, y As Integer) As Integer
Subtract = x - y

End Function

ByRef parameters are marked in IDL via the [in, out] attributes:

HRESULT Subtract([in, out] short x, [in, out] short y, [out, retval] short*);

Using a Type Library to Build an Interop Assembly
To be sure, the VB6 compiler generates many other IDL attributes under the hood, and you will see
additional bits and pieces where appropriate. However, at this point, I am sure you are wondering
exactly why I spent the last several pages describing COM IDL. The reason is simple: when you add
a reference to a COM server using Visual Studio 2008, the IDE reads the type library to build the
corresponding interop assembly. While VS 2008 does a very good job of generating an interop
assembly, the Add Reference dialog box follows a default set of rules regarding how the interop
assembly will be constructed and does not allow you to fine-tune this construction.

If you require a greater level of flexibility, you have the option of generating interop assemblies
at the command prompt, using a .NET tool named tlbimp.exe (the type library importer utility).
Among other things, tlbimp.exe allows you to control the name of the .NET namespace that will

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY1296

8849appA.qxd 10/19/07 9:31 AM Page 1296

contain the types and the name of the output file. Furthermore, if you wish to assign a strong name
to your interop assembly in order to deploy it to the GAC, tlbimp.exe provides the /keyfile flag to
specify the *.snk file (see Chapter 15 for details regarding strong names). To view all of your options,
simply type tlbimp at a Visual Studio 2008 command prompt and hit the Enter key, as shown in
Figure A-12.

Figure A-12. Options of tlbimp.exe

While this tool has numerous options, the following command could be used to generate a
strongly named interop assembly (assuming you have generated a *.snk file named myKeyPair.snk)
named CalcInteropAsm.dll:

tlbimp SimpleComServer.dll /keyfile:myKeyPair.snk /out:CalcInteropAsm.dll

Again, if you are happy with the interop assembly created by Visual Studio 2008, you are not
required to directly make use of tlbimp.exe.

Late Binding to the CoCalc Coclass
Once you have generated an interop assembly, your .NET applications are now able to make use of
their types using early binding or late binding techniques. Given that you have already seen how to
create a COM type using early binding at the opening of this appendix (via the C# new keyword), let’s
turn our attention to activating a COM object using late binding.

As you recall from Chapter 16, the System.Reflection namespace provides a way for you to
programmatically inspect the types contained in a given assembly at runtime. In COM, the same
sort of functionality is supported through the use of a set of standard interfaces (e.g., ITypeLib,
ITypeInfo, and so on). When a client binds to a member at runtime (rather than at compile time),
the client is said to exercise “late” binding.

By and large, you should always prefer the early binding technique using the C# new keyword.
There are times, however, when you must use late binding to a coclass. For example, some legacy
COM servers may have been constructed in such a way that they provide no type information
whatsoever. If this is the case, it should be clear that you cannot run the tlbimp.exe utility in the
first place. For these rare occurrences, you can access classic COM types using .NET reflection
services.

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY 1297

8849appA.qxd 10/19/07 9:31 AM Page 1297

The process of late binding begins with a client obtaining the IDispatch interface from a given
coclass. This standard COM interface defines a total of four methods, only two of which you need to
concern yourself with at the moment. First, you have GetIDsOfNames(). This method allows a caller
to use late binding by obtaining the numerical value (called the dispatch ID, or DISPID) used to
identify the method it is attempting to invoke.

In COM IDL, a member’s DISPID is assigned using the [id] attribute. If you examine the IDL
code generated by VB6 (using the OLE View tool), you will see that the DISPID of the Add() method
has been assigned a DISPID such as the following:

[id(0x60030000)] HRESULT Add([in] short x, [in] short y, [out, retval] short*);

This is the value that GetIDsOfNames() returns to the late-bound client. Once the client obtains
this value, it makes a call to the next method of interest, Invoke(). This method of IDispatch takes a
number of arguments, one of which is the DISPID obtained using GetIDsOfNames(). In addition, the
Invoke() method takes an array of COM VARIANT types that represent the parameters passed to the
function. In the case of the Add() method, this array contains two shorts (of some value). The final
argument of Invoke() is another VARIANT that holds the return value of the method invocation
(again, a short).

Although a .NET client using late binding does not directly use the IDispatch interface, the
same general functionality comes through using the System.Reflection namespace. To illustrate,
the following is another C# client that uses late binding to trigger the Add() logic. Notice that this
application does not make reference to the assembly in any way and therefore does not require the
use of the tlbimp.exe utility.

// Be sure to use the System.Reflection namespace.
static void Main(string[] args)
{
Console.WriteLine("***** The Late Bound .NET Client *****");

// First get IDispatch reference from coclass.
Type calcObj =
Type.GetTypeFromProgID("SimpleCOMServer.ComCalc");

object calcDisp = Activator.CreateInstance(calcObj);

// Make the array of args.
object[] addArgs = { 100, 24 };

// Invoke the Add() method and obtain summation.
object sum = null;
sum = calcObj.InvokeMember("Add", BindingFlags.InvokeMethod,
null, calcDisp, addArgs);

// Display result.
Console.WriteLine("Late bound adding: 100 + 24 is: {0}", sum);
Console.ReadLine();

}

■Source Code The CSharpComLateBinding application is included under the Appendix A subdirectory.

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY1298

8849appA.qxd 10/19/07 9:31 AM Page 1298

Building a More Elaborate COM Server
So much for Math 101. It’s time to build a VB6 ActiveX server that makes use of more elaborate COM
programming techniques. Create a brand-new ActiveX *.dll workspace named Vb6ComCarServer.
Rename your initial class to CoCar, which is implemented like so:

Option Explicit

' A COM enum.
Enum CarType
Viper
Colt
BMW

End Enum

' A COM Event.
Public Event BlewUp()

' Member variables.
Private currSp As Integer
Private maxSp As Integer
Private Make As CarType

' Remember! All Public members
' are exposed by the default interface!
Public Property Get CurrentSpeed() As Integer
CurrentSpeed = currSp

End Property

Public Property Get CarMake() As CarType
CarMake = Make

End Property

Public Sub SpeedUp()
currSp = currSp + 10
If currSp >= maxSp Then
RaiseEvent BlewUp ' Fire event if you max out the engine.

End If
End Sub

Private Sub Class_Initialize()
MsgBox "Init COM car"

End Sub

Public Sub Create(ByVal max As Integer, _
ByVal cur As Integer, ByVal t As CarType)
maxSp = max
currSp = cur
Make = t

End Sub

As you can see, this is a simple COM class that mimics the functionality of the C# Car class used
throughout this text. The only point of interest is the Create() subroutine, which allows the caller to
pass in the state data representing the Car object.

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY 1299

8849appA.qxd 10/19/07 9:31 AM Page 1299

Supporting an Additional COM Interface
Now that you have fleshed out the details of building a COM class with a single (default) interface,
insert a new *.cls file that defines the following IDriverInfo interface:

Option Explicit

' Driver has a name
Public Property Let DriverName(ByVal s As String)
End Property
Public Property Get DriverName() As String
End Property

If you have created COM objects supporting multiple interfaces, you are aware that VB6
provides the Implements keyword. Once you specify the interfaces implemented by a given COM
class, you are able to make use of the VB6 code window to build the method stubs. Assume you
have added a private String variable (driverName) to the CoCar class type and implemented the
IDriverInfo interface as follows:

' Implemented interfaces
' [General][Declarations]
Implements IDriverInfo
...
' ***** IDriverInfo impl ***** '
Private Property Let IDriverInfo_DriverName(ByVal RHS As String)
driverName = RHS

End Property

Private Property Get IDriverInfo_DriverName() As String
IDriverInfo_driverName = driverName

End Property

To wrap up this interface implementation, set the Instancing property of IDriverInfo to
PublicNotCreatable (given that the outside world should not be able to allocate interface types).

Exposing an Inner Object
Under VB6 (as well as COM itself), we do not have the luxury of classical implementation inheritance.
Rather, we’re limited to the use of the containment/delegation model (the “has-a” relationship).
For testing purposes, add a final *.cls file to your current VB6 project named Engine, and set its
instancing property to PublicNotCreatable (as you want to prevent the user from directly creating
an Engine object).

The default public interface of Engine is short and sweet. Define a single function that returns
an array of strings to the outside world representing pet names for each cylinder of the engine
(okay, no right-minded person gives friendly names to his or her cylinders, but hey . . .):

Option Explicit

Public Function GetCylinders() As String()
Dim c(3) As String
c(0) = "Grimey"
c(1) = "Thumper"
c(2) = "Oily"
c(3) = "Crusher"
GetCylinders = c

End Function

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY1300

8849appA.qxd 10/19/07 9:31 AM Page 1300

Finally, add a method to the default interface of CoCar named GetEngine(), which returns an
instance of the contained Engine (I assume you will create a Private member variable named eng of
type Engine for this purpose):

' Return the Engine to the world.
Public Function GetEngine() As Engine
Set GetEngine = eng

End Function

At this point, you have an ActiveX server that contains a COM class supporting two interfaces.
As well, you are able to return an internal COM type using the [default] interface of the CoCar and
interact with some common programming constructs (enums and COM arrays). Go ahead and
compile your sever (setting binary compatibility, once finished), and then close down your current
VB6 workspace.

■Source Code The Vb6ComCarServer project is included under the Appendix A subdirectory.

Examining the Interop Assembly
Rather than making use of the tlbimp.exe utility to generate our interop assembly, simply create a
new console project (named CSharpCarClient) using Visual Studio 2008 and set a reference to the
Vb6ComCarServer.dll using the COM tab of the Add Reference dialog box. Now, examine the interop
assembly using the VS 2008 Object Browser utility, as shown in Figure A-13.

Figure A-13. The Interop.VbComCarServer.dll assembly

Once again we have a number of Class-suffixed and underscore-prefixed interface types,
as well as a number of new items we have not yet examined, whose names suggest they may be
used to handle COM to .NET event notifications (__CoCar_Event, __CoCar_SinkHelper, and
__CoCarBlewUpEventHandler in particular). Recall from earlier in this appendix, I mentioned that

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY 1301

8849appA.qxd 10/19/07 9:31 AM Page 1301

when a COM object exposes COM events, the interop assembly will contain additional CIL code
that is used by the CLR to map COM events to .NET events (you’ll see them in action in just a bit).

Building Our C# Client Application
Given that the CLR will automatically create the necessary RCW at runtime, our C# application can
program directly against the CoCar, CarType, Engine, and IDriveInfo types as if they were all imple-
mented using managed code. Here is the complete implementation, with analysis to follow:

// Be sure to import the Vb6ComCarServer namespace.
class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** CoCar Client App *****");

// Create the COM class using early binding.
CoCar myCar = new CoCar();

// Handle the BlewUp event.
myCar.BlewUp += new __CoCar_BlewUpEventHandler(myCar_BlewUp);

// Call the Create() method.
myCar.Create(50, 10, CarType.BMW);

// Set name of driver.
IDriverInfo itf = (IDriverInfo)myCar;
itf.DriverName = "Fred";
Console.WriteLine("Drive is named: {0}", itf.DriverName);

// Print type of car.
Console.WriteLine("Your car is a {0}.", myCar.CarMake);
Console.WriteLine();

// Get the Engine and print name of the cylinders.
Engine eng = myCar.GetEngine();
Console.WriteLine("Your Cylinders are named:");
string[] names = (string[])eng.GetCylinders();
foreach (string s in names)
{
Console.WriteLine(s);

}
Console.WriteLine();

// Speed up car to trigger event.
for (int i = 0; i < 5; i++)
{
myCar.SpeedUp();

}
}

// Handler for the BlewUp event.
static void myCar_BlewUp()
{
Console.WriteLine("Your car is toast!");

}
}

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY1302

8849appA.qxd 10/19/07 9:31 AM Page 1302

Notice that when we call GetCylinders(), we are casting the return value into an array of
strings. The reason is the fact that COM arrays are (most often) represented by the SAFEARRAY COM
type (which is always the case when building COM applications using VB6). The RCW will map
SAFEARRAY types into a System.Array object, rather than automatically mapping SAFEARRAYs into an
array represented with C# syntax. Thus, by casting the Array object into a string[], we can process
the array more naturally.

Interacting with the CoCar Type
Recall that when we created the VB6 CoCar, we defined and implemented a custom COM interface
named IDriverInfo, in addition to the automatically generated default interface (_CoCar) created by
the VB6 compiler. When our Main() method creates an instance of CoCar, we only have direct access
to the members of the _CoCar interface, which as you recall will be composed by each public mem-
ber of the COM class:

// Here, you are really working with the [default] interface.
myCar.Create(50, 10, CarType.BMW);

Given this fact, in order to invoke the DriverName property of the IDriverInfo interface, we
must explicitly cast the CoCar object to an IDriverInfo interface as follows:

// Set name of driver.
IDriverInfo itf = (IDriverInfo)myCar;
itf.DriverName = "Fred";
Console.WriteLine("Drive is named: {0}", itf.DriverName);

Recall, however, that when a type library is converted into an interop assembly, it will contain
Class-suffixed types that expose every member of every interface. Therefore, if you so choose, you
could simplify your programming if you create and make use of a CoCarClass object, rather than a
CoCar object. For example, consider the following subroutine, which makes use of members of the
default interface of CoCar as well as members of IDriverInfo:

static void UseCar()
{
// -Class suffix types expose all
// members from all interfaces.
CoCarClass c = new CoCarClass();

// This property is a member of IDriverInfo.
c.DriverName = "Mary";

// This method is a member of _CoCar.
c.SpeedUp();

}

If you are wondering exactly how this single type is exposing members of each implemented
interface, check out the list of implemented interfaces and the base class of CoCarClass using the
Visual Studio 2008 Object Browser (see Figure A-14).

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY 1303

8849appA.qxd 10/19/07 9:31 AM Page 1303

Figure A-14. The composition of CoCarClass

As you can see, this type implements the _CoCar and _IDriverInfo interfaces and exposes them
as “normal” public members.

Intercepting COM Events
In Chapter 11, you learned about the .NET event model. Recall that this architecture is based on
delegating the flow of logic from one part of the application to another. The entity in charge of for-
warding a request is a type deriving from System.MulticastDelegate, which we create indirectly in
C# using the delegate keyword.

When the tlbimp.exe utility encounters event definitions in the COM server’s type library, it
responds by creating a number of managed types that wrap the low-level COM connection point
architecture. Using these types, you can pretend to add a member to a System.MulticastDelegate’s
internal list of methods. Under the hood, of course, the proxy is mapping the incoming COM event
to their managed equivalents. Table A-3 briefly describes these types.

Table A-3. COM Event Helper Types

Generated Type (Based on the
_CarEvents [source] Interface) Meaning in Life

__CoCar_Event This is a managed interface that defines the add and remove
members used to add (or remove) a method to (or from) the
System.MulticastDelegate’s linked list.

__CoCar_BlewUpEventHandler This is the managed delegate (which derives from
System.MulticastDelegate).

__CoCar_SinkHelper This generated class implements the outbound interface in a
.NET-aware sink object.

As you would hope, you are able to handle the incoming COM events in the same way you
handle events based on the .NET delegation architecture:

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** CoCar Client App *****");
CoCar myCar = new CoCar();

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY1304

8849appA.qxd 10/19/07 9:31 AM Page 1304

// Handle the BlewUp event.
myCar.BlewUp += new __CoCar_BlewUpEventHandler(myCar_BlewUp);
...

}

// Handler for the BlewUp event.
static void myCar_BlewUp()
{
Console.WriteLine("Your car is toast!");

}
}

It is also worth pointing out if your C# code base is able to make use of all of the event-centric
notations (anonymous methods, method group conversion, lambda expressions, etc.) when inter-
cepting events from COM objects.

■Source Code The CSharpCarClient project is included under the Appendix A subdirectory.

That wraps up our investigation of how a .NET application can communicate with a legacy
COM application. Now be aware that the techniques you have just learned would work for any COM
server at all. This is important to remember, given that many COM servers might never be rewritten
as native .NET applications. For example, the object model of Microsoft Outlook is currently exposed
as a COM library. Thus, if you needed to build a .NET program that interacted with this product, the
interoperability layer is (currently) mandatory.

Understanding COM to .NET Interoperability
The next topic of this appendix is to examine the process of a COM application communicating
with a .NET type. This “direction” of interop allows legacy COM code bases (such as an existing VB6
project) to make use of functionality contained within newer .NET assemblies. As you might imag-
ine, this situation is less likely to occur than .NET to COM interop; however, it is still worth exploring.

For a COM application to make use of a .NET type, we somehow need to fool the COM
program into believing that the managed .NET type is in fact unmanaged. In essence, you need to
allow the COM application to interact with the .NET type using the functionality required by the
COM architecture. For example, the COM type should be able to obtain new interfaces through
QueryInterface() calls, simulate unmanaged memory management using AddRef() and Release(),
make use of the COM connection point protocol, and so on.

Beyond fooling the COM client, COM to .NET interoperability also involves fooling the COM
runtime. A COM server is activated using the COM runtime rather than the CLR. For this to happen,
the COM runtime must look up numerous bits of information in the system registry (ProgIDs,
CLSIDs, IIDs, and so forth). The problem, of course, is that .NET assemblies are not registered in
the registry in the first place!

Given these points, to make your .NET assemblies available to COM clients, you must take the
following steps:

1. Register your .NET assembly in the system registry to allow the COM runtime to locate it.

2. Generate a COM type library (*.tlb) file (based on the .NET metadata) to allow the COM
client to interact with the public types.

3. Deploy the assembly in the same directory as the COM client or (more typically) install it
into the GAC.

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY 1305

8849appA.qxd 10/19/07 9:31 AM Page 1305

As you will see, these steps can be performed using Visual Studio 2008 or at the command line
using various tools that ship with the .NET Framework 3.5 SDK.

The Attributes of System.Runtime.InteropServices
In addition to performing these steps, you will typically also need to decorate your C# types with
various .NET attributes, all of which are defined in the System.Runtime.InteropServices name-
space. These attributes ultimately control how the COM type library is created and therefore control
how the COM application is able to interact with your managed types. Table A-4 documents some
(but not all) of the attributes you can use to control the generated COM type library.

Table A-4. Select Attributes of System.Runtime.InteropServices

.NET Interop Attribute Meaning in Life

[ClassInterface] Used to create a default COM interface for a .NET class type.

[ComClass] This attribute is similar to [ClassInterface], except it also provides the
ability to establish the GUIDs used for the class ID (CLSID) and interface
IDs of the COM types within the type library.

[DispId] Used to hard-code the DISPID values assigned to a member for purposes
of late binding.

[Guid] Used to hard-code a GUID value in the COM type library.

[In] Exposes a member parameter as an input parameter in COM IDL.

[InterfaceType] Used to control how a .NET interface should be exposed to COM
(IDispatch-only, dual, or IUnknown-only).

[Out] Exposes a member parameter as an output parameter in COM IDL.

Now do be aware that for simple COM to .NET interop scenarios, you are not required to adorn
your .NET code with dozens of attributes in order to control how the underlying COM type library is
defined. However, when you need to be very specific regarding how your .NET types will be exposed
to COM, the more you understand COM IDL attributes the better, given that the attributes defined
in System.Runtime.InteropServices are little more than managed definitions of these IDL keywords.

The Role of the CCW
Before we walk through the steps of exposing a .NET type to COM, let’s take a look at exactly how
COM programs interact with .NET types using a COM Callable Wrapper, or CCW. As you have seen,
when a .NET program communicates with a COM type, the CLR creates a Runtime Callable Wrap-
per. In a similar vein, when a COM client accesses a .NET type, the CLR makes use of an intervening
proxy termed the COM Callable Wrapper to negotiate the COM to .NET conversion (see Figure A-15).

Like any COM object, the CCW is a reference-counted entity. This should make sense, given
that the COM client is assuming that the CCW is a real COM type and thus must abide by the rules
of AddRef() and Release(). When the COM client has issued the final release, the CCW releases its
reference to the real .NET type, at which point it is ready to be garbage collected.

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY1306

8849appA.qxd 10/19/07 9:31 AM Page 1306

Figure A-15. COM types talk to .NET types using a CCW.

The CCW implements a number of COM interfaces automatically to further the illusion that
the proxy represents a genuine coclass. In addition to the set of custom interfaces defined by the
.NET type (including an entity termed the class interface that you examine in just a moment), the
CCW provides support for the standard COM behaviors described in Table A-5.

Table A-5. The CCW Supports Many Core COM Interfaces

CCW-Implemented Interface Meaning in Life

IConnectionPoint If the .NET type supports any events, they are represented as COM
IConnectionPointContainer connection points.

IEnumVariant If the .NET type supports the IEnumerable interface, it appears to
the COM client as a standard COM enumerator.

IErrorInfo These interfaces allow coclasses to send COM error objects.
ISupportErrorInfo

ITypeInfo These interfaces allow the COM client to pretend to manipulate an
IProvideClassInfo assembly’s COM type information. In reality, the COM client is

interacting with .NET metadata.

IUnknown These core COM interfaces provide support for early and late
IDispatch binding to the .NET type.
IDispatchEx

The Role of the .NET Class Interface
In classic COM, the only way a COM client can communicate with a COM object is to use an inter-
face reference. In contrast, .NET types do not need to support any interfaces whatsoever, which is
clearly a problem for a COM caller. Given that classic COM clients cannot work with object refer-
ences, another responsibility of the CCW is to expose a class interface to represent each member
defined by the type’s public sector. As you can see, the CCW is taking the same approach as Visual
Basic 6.0!

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY 1307

8849appA.qxd 10/19/07 9:31 AM Page 1307

Defining a Class Interface
To define a class interface for your .NET types, you will need to apply the [ClassInterface] attrib-
ute on each public class you wish to expose to COM. Again, doing so will ensure that each public
member of the class is exposed to a default autogenerated interface that follows the same exact
naming convention as VB6 (_NameOfTheClass). Technically speaking, applying this attribute is
optional; however, you will almost always wish to do so. If you do not, the only way the COM caller
can communicate with the type is using late binding (which is far less type safe and typically results
in slower performance).

The [ClassInterface] attribute supports a named property (ClassInterfaceType) that controls
exactly how this default interface should appear in the COM type library. Table A-6 defines the pos-
sible settings.

Table A-6. Values of the ClassInterfaceType Enumeration

ClassInterfaceType Member Name Meaning in Life

AutoDispatch Indicates the autogenerated default interface will only
support late binding, and is equivalent to not applying the
[ClassInterface] attribute at all.

AutoDual Indicates that the autogenerated default interface is a “dual
interface” and can therefore be interacted with using early
binding or late binding. This would be the same behavior
taken by VB6 when it defines a default COM interface.

None Indicates that no interface will be generated for the class.
This can be helpful when you have defined your own
strongly typed .NET interfaces that will be exposed to COM,
and do not wish to have the “freebie” interface.

In the next example, you specify ClassInterfaceType.AutoDual as the class interface designa-
tion. In this way, late-binding clients such as VBScript can access the Add() and Subtract() methods
using IDispatch, while early-bound clients (such as VB6 or C++) can use the class interface (named
_VbDotNetCalc).

Building Your .NET Types
To illustrate a COM type communicating with managed code, assume you have created a simple
C# Class Library project named ComCallableDotNetServer, which defines a class named
DotNetCalc. This class will define two simple methods named Add() and Subtract(). The imple-
mentation logic is trivial; however, notice the use of the [ClassInterface] attribute:

// We need this to obtain the necessary
// interop attributes.
using System.Runtime.InteropServices;

namespace ComCallableDotNetServer
{
[ClassInterface(ClassInterfaceType.AutoDual)]
public class DotNetCalc
{
public int Add(int x, int y)
{ return x + y; }

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY1308

8849appA.qxd 10/19/07 9:31 AM Page 1308

public int Subtract(int x, int y)
{ return x - y; }

}
}

As mentioned earlier in this appendix, in the world of COM, just about everything is identified
using a 128-bit number termed a GUID. These values are recorded into the system registry in order
to define an identity of the COM type. Here, we have not specifically defined GUID values for our
DotNetCalc class, and therefore the type library exporter tool (tlbexp.exe) will generate GUIDs on
the fly. The problem with this approach, of course, is that each time you generate the type library
(which we will do shortly), you receive unique GUID values, which can break existing COM clients.

To define specific GUID values, you may make use of the guidgen.exe utility, which is accessi-
ble from the Tools ➤ Create Guid menu item of Visual Studio 2008. Although this tool provides four
GUID formats, the [Guid] attribute demands the GUID value be defined using the Registry Format
option, as shown in Figure A-16.

Figure A-16. Obtaining a GUID value

Once you copy this value to your clipboard (via the Copy GUID button), you can then paste it
in as an argument to the [Guid] attribute. Be aware that you must remove the curly brackets from
the GUID value! This being said, here is our updated DotNetCalc class type (your GUID value will
differ):

[ClassInterface(ClassInterfaceType.AutoDual)]
[Guid("4137CFAB-530B-4667-ADF2-8E2CD63CB462")]
public class DotNetCalc
{
public int Add(int x, int y)
{ return x + y; }

public int Subtract(int x, int y)
{ return x - y; }

}

On a related note, click the Show All Files button on the Solution Explorer and open up the
AssemblyInfo.cs file located under the Properties icon. By default, all Visual Studio 2008 project
workspaces are provided with an assembly-level [Guid] attribute used to identify the GUID of the
type library generated based on the .NET server (if exposed to COM).

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY 1309

8849appA.qxd 10/19/07 9:31 AM Page 1309

// The following GUID is for the ID of the typelib if this project is exposed to COM
[Assembly: Guid("EB268C4F-EB36-464C-8A25-93212C00DC89")]

Defining a Strong Name
As a best practice, all .NET assemblies that are exposed to COM should be assigned a strong name
and installed into the global assembly cache (the GAC). Technically speaking, this is not required;
however, if you do not deploy the assembly to the GAC, you will need to copy this assembly into the
same folder as the COM application making use of it.

Given that Chapter 15 already walked you through the details of defining a strongly named
assembly, simply generate a new *.snk file for signing purposes using the Signing tab of the Proper-
ties editor. At this point, you can compile your assembly and install ComCallableDotNetServer.dll
into the GAC using gacutil.exe (again, see Chapter 15 for details).

gacutil -i ComCallableDotNetServer.dll

Generating the Type Library and Registering the
.NET Types
At this point, we are ready to generate the necessary COM type library and register our .NET assem-
bly into the system registry for use by COM. Do to so, you can take two possible approaches. Your
first approach is to use a command-line tool named regasm.exe, which ships with the .NET Frame-
work 3.5 SDK. This tool will add several listings to the system registry, and when you specify the /tlb
flag, it will also generate the required type library, as shown here:

regasm ComCallableDotNetServer.dll /tlb

■Note The .NET Framework 3.5 SDK also provides a tool named tlbexp.exe. Like regasm.exe, this tool will
generate type libraries from a .NET assembly; however, it does not add the necessary registry entries. Given this, it
is more common to simply use regasm.exe to perform each required step.

While regasm.exe provides the greatest level of flexibility regarding how the COM type library is
to be generated, Visual Studio 2008 provides a handy alternative. Using the Properties editor, simply
check the Register for COM interop option on the Compile tab, as shown in Figure A-17, and recom-
pile your assembly.

Once you have run regasm.exe or enabled the Register for COM Interop option, you will find
that your bin\Debug folder now contains a COM type library file (taking a *.tlb file extension).

■Source Code ComCallableDotNetServer application is included under the Appendix A subdirectory.

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY1310

8849appA.qxd 10/19/07 9:31 AM Page 1310

Figure A-17. Registering an assembly for COM interop using Visual Studio 2008

Examining the Exported Type Information
Now that you have generated the corresponding COM type library, you can view its contents using
the OLE View utility by loading the *.tlb file. If you load ComCallableDotNetServer.tlb (via the File
➤ View Type Library menu option), you will find the COM type descriptions for each of your .NET
class types. For example, the DotNetCalc class has been defined to support the default _DotNetClass
interface due to the [ClassInterface] attribute, as well as an interface named (surprise, surprise)
_Object. As you would guess, this is an unmanaged definition of the functionality defined by
System.Object:

[uuid(88737214-2E55-4D1B-A354-7A538BD9AB2D),
version(1.0), custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},
"ComCallableDotNetServer.DotNetCalc")]
coclass DotNetCalc {
[default] interface _DotNetCalc;
interface _Object;

};

As specified by the [ClassInterface] attribute, the default interface has been configured as a
dual interface, and can therefore be accessed using early or late binding:

[odl, uuid(AC807681-8C59-39A2-AD49-3072994C1EB1), hidden,
dual, nonextensible, oleautomation,
custom({0F21F359-AB84-41E8-9A78-36D110E6D2F9},
"ComCallableDotNetServer.DotNetCalc")]
interface _DotNetCalc : IDispatch {
[id(00000000), propget,
custom({54FC8F55-38DE-4703-9C4E-250351302B1C}, "1")]
HRESULT ToString([out, retval] BSTR* pRetVal);
[id(0x60020001)]
HRESULT Equals([in] VARIANT obj,

[out, retval] VARIANT_BOOL* pRetVal);
[id(0x60020002)]
HRESULT GetHashCode([out, retval] long* pRetVal);
[id(0x60020003)]
HRESULT GetType([out, retval] _Type** pRetVal);
[id(0x60020004)]
HRESULT Add([in] long x, [in] long y,

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY 1311

8849appA.qxd 10/19/07 9:31 AM Page 1311

[out, retval] long* pRetVal);
[id(0x60020005)]
HRESULT Subtract([in] long x, [in] long y,

[out, retval] long* pRetVal);
};

Notice that the _DotNetCalc interface not only describes the Add() and Subtract() methods,
but also exposes the members inherited by System.Object. As a rule, when you expose a .NET class
type to COM, all public methods defined up the chain of inheritance are also exposed through the
autogenerated class interface.

Building a Visual Basic 6.0 Test Client
Now that the .NET assembly has been properly configured to interact with the COM runtime, you
can build some COM clients. You can create a simple VB6 Standard *.exe project type (named
VB6DotNetClient) and set a reference to the new generated type library (see Figure A-18).

Figure A-18. Referencing your .NET server from VB6

As for the GUI front end, keep things really simple. A single Button object will be used to
manipulate the DotNetCalc .NET type. Here is the code (notice that you are also invoking
ToString(), defined by the _Object interface):

Private Sub btnUseDotNetObject_Click()
' Create the .NET object.
Dim c As New DotNetCalc
MsgBox c.Add(10, 10), , "Adding with .NET"

' Invoke some members of System.Object.
MsgBox c.ToString, , "ToString value"

End Sub

■Source Code The VB6DotNetClient application is included under the Appendix A subdirectory.

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY1312

8849appA.qxd 10/19/07 9:31 AM Page 1312

So, at this point you have seen the process of building .NET applications that talk to COM types
and COM applications that talk to .NET types. Again, while there are many additional topics regard-
ing the role of interop services, you should be in a solid position for further exploration.

Summary
.NET is a wonderful thing. Nevertheless, managed and unmanaged code must learn to work
together for some time to come. Given this fact, the .NET platform provides various techniques
that allow you to blend the best of both worlds.

A major section of this appendix focused on the details of .NET types using legacy COM com-
ponents. As you have seen, the process begins by generating an assembly proxy for your COM types.
The RCW forwards calls to the underlying COM binary and takes care of the details of mapping
COM types to their .NET equivalents.

The appendix concluded by examining how COM types can call on the services of newer .NET
types. As you have seen, this requires that the creatable types in the .NET assembly are registered
for use by COM, and that the .NET types are described via a COM type library.

APPENDIX A ■ COM AND .NET INTEROPERABIL ITY 1313

8849appA.qxd 10/19/07 9:31 AM Page 1313

8849appA.qxd 10/19/07 9:31 AM Page 1314

Platform-Independent .NET
Development with Mono

This appendix introduces you to the topic of cross-platform C# and .NET development using an
open source implementation of .NET named Mono (in case you are wondering about the name,
“Mono” is a Spanish word for monkey, as in “code monkey,” a term often used to describe individu-
als who author code for a living). In this appendix, you will come to understand the role of the
Common Language Infrastructure (CLI), the overall scope of Mono, and numerous Mono develop-
ment tools. Given your work over the course of this text, you will be in a perfect position to dig
further into Mono development as you see fit at the conclusion of this appendix.

■Note If you require a detailed treatment of cross-platform .NET development, I recommend picking up a copy of
Cross-Platform .NET Development: Using Mono, Portable .NET, and Microsoft .NET by Mark Easton and Jason King
(Apress, 2004).

The Platform-Independent Nature of .NET
Historically speaking, when programmers made use of a Microsoft development language or
programming framework (VB6, MFC, COM, ATL, etc.), they had to resign themselves to building
software that (by and large) only executed on the Windows family of operating systems. Many .NET
developers, accustomed to previous Microsoft development options, are quite surprised when they
learn that .NET is platform-independent. But it’s true. You can compile and execute .NET assemblies
on operating systems other than Microsoft Windows.

Using open source .NET implementations such as Mono, Mac OS X, Solaris, AIX, as well as
numerous flavors of Unix/Linux can be happy homes for your .NET binaries. Furthermore, Mono
provides an installation package for (surprise, surprise) Microsoft Windows. Thus, it is possible to
build and run .NET assemblies on the Windows operating system, without ever installing the
Microsoft .NET Framework 3.5 SDK or the Visual Studio 2008 IDE.

■Note Be aware, however, that if you are only interested in building .NET software for the Windows operating
system, the Microsoft .NET Framework 3.5 SDK and Visual Studio 2008 provide the best options for doing so.

Even after developers are made aware of .NET code’s cross-platform capabilities, they often
assume that the scope of platform-independent .NET development is limited to little more than

1315

A P P E N D I X B

8849appB.qxd 10/19/07 9:32 AM Page 1315

“Hello World” console applications. In reality, however, you can build production-ready assemblies
that make use of ADO.NET, Windows Forms (in addition to alternative GUI toolkits such as GTK#
and Cocoa#), ASP.NET, and XML web services using many of the core namespaces and language
features you have seen used throughout this text.

The way in which .NET’s cross-platform nature is achieved is different from the approach
taking by Sun Microsystems with the handling of the Java programming platform. Unlike Java,
Microsoft itself does not provide installers of .NET for Mac, Linux, etc. Rather, Microsoft has
released a set of formalized specifications that other entities can use as a road map for building
.NET distributions for their platform(s) of choice. Collectively, these specifications are termed
the CLI.

The Role of the CLI
As briefly mentioned in Chapter 1, when C# and the .NET platform were released to the world at
large, Microsoft Corporation submitted two formal specifications to ECMA (European Computer
Manufacturers Association). Once approved, these same specifications were submitted to the
International Organization for Standardization (ISO) and ratified shortly thereafter.

So, why on earth should you care? Again, these two specifications provide a road map for
other companies, developers, universities, and other such organizations to build their own custom
distributions of the C# programming language and the .NET platform. The two specifications in
question are

• ECMA-334, which defines the syntax and semantics of the C# programming language

• ECMA-335, which defines numerous details of the .NET platform, collectively termed the
Common Language Infrastructure

ECMA-334 tackles the lexical grammar of C# in an extremely rigorous and scientific manner
(as you might guess, this level of detail is quite important to those implementing their own C# com-
piler). However, ECMA-335 is the meatier of the two specifications, so much so that it has been
broken down into six partitions, as listed in Table B-1.

Table B-1. ECMA-335 Specification Partitions

ECMA-335 Partition Meaning in Life

Partition I: Architecture Describes the overall architecture of the CLI, including the rules of
the Common Type System, the Common Language Specification,
and the mechanics of the .NET runtime engine.

Partition II: Metadata Describes the details of the .NET metadata format.

Partition III: CIL Describes the syntax and semantics of the common intermediate
language (CIL) programming language.

Partition IV: Libraries Gives a high-level overview of the minimal and complete class
libraries that must be supported by a CLI-compatible .NET
distribution.

Partition V: Binary Formats Provides details of the portable debug interchange format
(CILDB). Portable CILDB files provide a standard way to
interchange debugging information between CLI producers
and consumers.

Partition VI: Annexes Represents a collection of “odds and ends” examining topics such
as class library design guidelines and the implementation details
of a CIL compiler.

APPENDIX B ■ PLATFORM-INDEPENDENT .NET DEVELOPMENT WITH MONO1316

8849appB.qxd 10/19/07 9:32 AM Page 1316

The point of this appendix is not to dive into the details of the ECMA-334 and ECMA-335 speci-
fications—nor are you required to know the ins-and-outs of these documents to understand how to
build platform-independent .NET assemblies. However, if you are interested, you can download
both of these specifications for free from the ECMA website (http://www.ecma-international.org/
publications/standards).

■Note Even if you have no interest in the cross-platform aspects of .NET, I would recommend reading the
ECMA-334 and ECMA-335 specifications, as they provide a number of insights regarding the C# language and
the .NET platform.

The Mainstream CLI Distributions
To date, there are two mainstream implementations of the CLI, beyond Microsoft’s CLR, Microsoft
Silverlight, and the Microsoft NET Compact Framework (see Table B-2).

Table B-2. Mainstream .NET CLI Distributions

CLI Distribution Supporting Website Meaning in Life

Mono http://www.mono-project.com Mono is an open source and commercially
supported distribution of .NET sponsored
by Novell Corporation.
Mono is targeted to run on many popular
flavors of Unix/Linux, Mac OS X, Solaris,
and Windows.

Portable .NET http://www.dotgnu.org Portable .NET is distributed under the GNU
General Public License.
As the name implies, Portable .NET intends
to function on as many operation systems
and architectures as possible, including
many esoteric platforms such as BeOS,
Microsoft Xbox, and Sony PlayStation (no,
I’m not kidding about those last two!).

Each of the CLI implementations shown in Table B-2 provide a fully function C# compiler,
numerous command-line development tools, a global assembly cache (GAC) implementation, sam-
ple code, useful documentation, and dozens of assemblies that constitute the base class libraries.

Beyond implementing the core libraries defined by Partition IV of ECMA-335, Mono and
Portable .NET provide Microsoft-compatible implementations of mscorlib.dll, System.Data.dll,
System.Web.dll, System.Drawing.dll, and System.Windows.Forms.dll (among many others).
Furthermore, the Mono and Portable .NET distribution also ship with a handful of assemblies
specifically targeted at Unix/Linux and Mac OS X operating systems. For example, Cocoa# is a
.NET wrapper around the Mac OX GUI toolkit, Cocoa. In this appendix, I will not dig into these OS-
specific binaries and instead stay focused on making use of the OS-agonistic programming stacks.

■Note Portable .NET will not be examined in this appendix. However, it is important to know that Mono is not the
only platform-independent distribution of the .NET platform available today. I would recommend you take some
time to play around with Portable .NET in addition to the Mono platform.

APPENDIX B ■ PLATFORM-INDEPENDENT .NET DEVELOPMENT WITH MONO 1317

8849appB.qxd 10/19/07 9:32 AM Page 1317

http://www.ecma-international.org/publications/standards
http://www.ecma-international.org/publications/standards
http://www.mono-project.com
http://www.dotgnu.org
http://www.ecma-international.org/publications/standards
http://www.ecma-international.org/publications/standards

The Scope of Mono
Given that Mono is an API built on existing ECMA specifications that originated from Microsoft
Corporation, you would be correct in assuming that Mono is playing a constant game of catch up as
newer versions of Microsoft’s .NET platform are released. At the time of this writing, Mono is com-
patible with C# 2.0/.NET 2.0. Therefore, you are able to build ASP.NET websites, Windows Forms
applications, database-centric applications using ADO.NET, and (of course) simple console
applications.

Currently, Mono is not completely compatible with C# 2008 or .NET 3.0/3.5. What that means is
your Mono applications are currently unable (again, at the time of this writing) to make use of the
following APIs:

• Windows Presentation Foundation (WPF)

• Windows Communication Foundation (WCF)

• Windows Workflow Foundation (WF)

• The LINQ APIs

• C# 2008–specific language features

Rest assured that the Novell-based Mono team is already working on incorporating these APIs
and C# 2008 programming features into the Mono project. In fact, many C# 2008 language features
are already part of the latest build of Mono (1.2.5), including implicit typing, object initialization
syntax, and anonymous types.

■Note The C# 2008 support is enabled by passing the -langversion:linq option to the Mono C# compiler.

In addition, the Olive project, which plans to bring WPF, WCF, and WF into the Mono platform,
is currently underway. LINQ support, you will be happy to know, is also moving along nicely.

■Note The Mono website maintains a page that describes the overall road map of Mono’s functionality and plans
for future releases (http://www.mono-project.com/plans).

The final point of interest regarding the Mono feature set is that much like Microsoft’s .NET
Framework 3.5 SDK, the Mono SDK supports a number of .NET programming languages. While this
appendix will stay focused on C#, Mono does provide support for a Visual Basic .NET–compatible
compiler, as well as support for many other .NET-aware programming languages.

Obtaining and Installing Mono
With this basic primer behind us, we can turn our attention to obtaining and installing Mono on
your operating system of choice. Navigate to the Mono website (http://www.mono-project.com) and
click the Download Now button to navigate to the downloads page. Here you are able to download a
variety of installers.

I am assuming that you are installing the Windows distribution of Mono (note that installing
Mono will not interfere whatsoever with any existing installation of Microsoft .NET or Visual Studio
IDEs). Begin by downloading the current stable Mono installation package for Microsoft Windows
and saving the setup program to your local hard drive.

APPENDIX B ■ PLATFORM-INDEPENDENT .NET DEVELOPMENT WITH MONO1318

8849appB.qxd 10/19/07 9:32 AM Page 1318

http://www.mono-project.com/plans
http://www.mono-project.com
http://www.mono-project.com/plans

■Note If you are installing Mono on a Linux-based OS, I’d suggest doing so using the Linux Installer for x86
package, which will allow you to install Mono using a friendly setup wizard (rather than forcing you to install Mono
from source; be sure to read the supplied installation notes on the Mono website). If you make use of the Mac OS X
Mono installer, the installation process will be identical to installing other Mac-based software.

When you run the setup program, you will be given a chance to install a variety of Mono devel-
opment tools beyond the expected base class libraries and the C# programming tools. Specifically,
the installer will ask you whether you wish to include GTK# (an open source .NET GUI API based
on the Linux-centric GTK toolkit) and XSP (a stand-alone web server, similar to Microsoft’s webdev.
webserver.exe). In this appendix, I will assume you have opted for a full installation, so be sure you
have checked each option in the setup script (see Figure B-1).

Figure B-1. Select all options for your Mono installation.

All of the remaining options of the Mono installer can be left using the suggested default values.

Examining Mono’s Directory Structure
By default, Mono installs under C:\Program Files\Mono-<version> (at the time of this writing, the
latest and greatest version of Mono is 1.2.5). Beneath that root you will find a number of subdirecto-
ries (see Figure B-2).

For this appendix, you need only concern yourself with the following subdirectories:

• bin: Contains a majority of the Mono development tools including the C# command-line
compilers

• lib\mono\gac: The location of Mono’s global assembly cache

APPENDIX B ■ PLATFORM-INDEPENDENT .NET DEVELOPMENT WITH MONO 1319

8849appB.qxd 10/19/07 9:32 AM Page 1319

Figure B-2. The Mono directory structure

Given that you run the vast majority of the Mono development tools from the command line,
you will want to make use of the Mono command prompt, which automatically recognizes each of
the command-line development tools. The command prompt (which is functionally equivalent to
the Visual Studio 2008 command prompt) can be activated by selecting Start ➤ All Programs ➤
Mono <version> For Windows menu option. To test your installation, enter the following command
and press the Enter key:

mono --version

If all is well, you should see various details regarding the Mono runtime environment (see
Figure B-3).

Figure B-3. The Mono runtime environment

APPENDIX B ■ PLATFORM-INDEPENDENT .NET DEVELOPMENT WITH MONO1320

8849appB.qxd 10/19/07 9:32 AM Page 1320

The Mono Development Tools
Similar to the Microsoft’s CLR distribution, Mono ships with a number of managed compilers:

• mcs/gmcs: The C# compilers

• vbnc: The Mono Visual Basic compiler

• booc: The Boo language compiler

• ilasm/ilasm2: The Mono CIL compilers

While this appendix focuses only on the C# compilers, again recall that the Mono project does
ship with a Visual Basic .NET compiler. While this tool is currently under development, the intended
goal is to bring the world of human-readable keywords (Inherits, MustOverride, Implements, etc.) to
the world of Unix/Linux and Mac OS X (see http://www.mono-project.com/Visual_Basic for more
detail).

Boo is an object-oriented statically typed programming language for the CLI that sports a
Python-based syntax. Check out http://boo.codehaus.org for more details on the Boo program-
ming language. Finally, as you might have guessed, ilasm/ilasm2 are the Mono CIL compilers (the
second of which supports .NET 2.0 programming constructs).

Working with the C# Compilers
The first C# compiler for the Mono project was mcs, and it’s fully compatible with C# 1.1 (in fact, mcs
is written in C#). Like the Microsoft C# command-line compiler (csc.exe), mcs supports response
files, a /target: flag (to define the assembly type), an /out: flag (to define the name of the compiled
assembly), and a /reference: flag (to update the manifest of the current assembly with external
dependencies). You can view all the options of mcs using the following command:

mcs -?

The “generic mono C# compiler,” or gmcs, as the name implies, is a version of mcs that has sup-
port for .NET 2.0–specific C# language features (generics, covariance/contravariance, nullable
types, partial types, anonymous methods, etc.) and references the .NET 2.0–based base class
libraries. The command-line options of gmcs are identical to mcs, which you can verify with the
following command:

gmcs -?

Given the presence of two C# compilers, you might naturally assume that only gmcs can be
used to build .NET applications that make use of the C# 2.0 language enhancements. In reality, mcs
was the first of the two compilers to support 2.0 features, which were perfected and ported to gmcs.
The code examples in this appendix can be compiled using either of the two C# compilers, so pick
your poison.

Microsoft-Compatible Mono Development Tools
In addition to various managed compilers, Mono ships with various development tools that are
functionally equivalent to tools found in the Microsoft .NET SDK (some of which are identically
named). Table B-3 enumerates the mappings between some of the commonly used
Mono/Microsoft .NET utilities.

APPENDIX B ■ PLATFORM-INDEPENDENT .NET DEVELOPMENT WITH MONO 1321

8849appB.qxd 10/19/07 9:32 AM Page 1321

http://www.mono-project.com/Visual_Basic
http://boo.codehaus.org

Table B-3. Mono Command-Line Tools and Their Microsoft .NET Counterparts

Mono Utility Microsoft .NET Utility Meaning in Life

al al.exe Manipulates assembly manifests and builds
multifile assemblies (among other things)

gacutil gacutil.exe Interacts with the GAC

mono when run with ngen.exe Performs a precompilation of an assembly’s
the -aot option CIL code

wsdl wsdl.exe Generates client-side proxy code for XML web
services

disco disco.exe Discovers the URLs of XML web services
located on a web server

xsd xsd.exe Generates type definitions from an XSD
schema file

sn sn.exe Generates key data for a strongly named
assembly

monodis ildasm.exe The CIL disassembler

ilasm ilasm.exe The CIL assembler

xsp2 webdev.webserver.exe A testing and development ASP.NET web
server

Mono-Specific Development Tools
In addition, there are Mono development tools for which no direct Microsoft .NET Framework 3.5
SDK equivalents exist, and these are listed in Table B-4.

Table B-4. Mono Tools That Have No Direct Microsoft .NET SDK Equivalent

Mono-Specific Development Tool Meaning in Life

monop/monop2 The monop (mono print) utility will display the definition of a
specified type in the syntax of C#.

SQL# The Mono Project ships with a graphical front end (SQL#) to
allow you to interact with relational databases using a variety
of ADO.NET data providers.

Glade 3 This tool is a visual development IDE for building GTK#
graphical applications.

■Note You can load SQL# and Glade by using Windows’s Start button and navigating to the Applications folder
within the Mono installation directory. Be sure to do so, as it will clearly illustrate how rich the Mono platform has
become.

Using monop(2)
The monop and monop2 utilities (both of which are shorthand for mono print) can be used to display
the C# definition of a given type within a specified assembly. The distinction between these two

APPENDIX B ■ PLATFORM-INDEPENDENT .NET DEVELOPMENT WITH MONO1322

8849appB.qxd 10/19/07 9:32 AM Page 1322

utilities is that monop is programmed to only display types compatible with Microsoft .NET 1.1,
whereas monop2 will also display types compatible with Microsoft .NET 2.0. As you might suspect,
these tools can be quite helpful when you wish to quickly view a method signature, rather than dig-
ging through the formal documentation. By way of a quick test, enter the following command
within a Mono command prompt:

monop2 System.Object

Figure B-4 shows the definition of our good friend System.Object.

Figure B-4. monop(2) displays C# code definitions for compiled types.

You’ll see the use of additional Mono tools over the course of this appendix; however, you may
wish to specify -? as an argument to a tool of interest to see the available command set.

Building .NET Applications with Mono
To illustrate Mono in action, you will begin by building a code library named CoreLibDumper.dll.
This assembly contains a single class type named CoreLibDumper that supports a static method
named DumpTypeToFile(). The method takes a string parameter that represents the fully qualified
name of any type within mscorlib.dll and obtains the related type information via the reflection
API (see Chapter 16), dumping the class member signatures to a local file on the hard drive.

Building a Mono Code Library
Create a new folder on your C drive named MonoCode. Within this new folder, create a subfolder
named CoreLibDumper that contains the following C# file (named CorLibDumper.cs):

// CoreLibDumper.cs
using System;
using System.Reflection;
using System.IO;

// Define assembly version.
[assembly:AssemblyVersion("1.0.0.0")]

APPENDIX B ■ PLATFORM-INDEPENDENT .NET DEVELOPMENT WITH MONO 1323

8849appB.qxd 10/19/07 9:32 AM Page 1323

namespace CoreLibDumper
{
public class TypeDumper
{
public static bool DumpTypeToFile(string typeToDisplay)
{
// Attempt to load type into memory.
Type theType = null;
try
{

// Throw exception if we can't find it.
theType = Type.GetType(typeToDisplay, true);

} catch { return false; }

// Create local *.txt file.
using(StreamWriter sw =

File.CreateText(string.Format("{0}.txt",
theType.FullName)))

{
// Now dump type to file.
sw.WriteLine("Type Name: {0}", theType.FullName);
sw.WriteLine("Members:");
foreach(MemberInfo mi in theType.GetMembers())
sw.WriteLine("\t-> {0}", mi.ToString());

}
return true;

}
}

}

Like the Microsoft C# compiler, the Mono C# compilers support the use of response files (see
Chapter 2). While you could compile this file by specifying each required argument manually at
the command line, instead create a new file named LibraryBuild.rsp (in the same location as
CoreLibDumper.cs) that contains the following command set:

/target:library
/out:CoreLibDumper.dll
CoreLibDumper.cs

You can now compile your library at the command line as follows:

gmcs @LibraryBuild.rsp

This approach is functionally equivalent to the following (more verbose) command set:

gmcs /target:library /out:CoreLibDumper.dll CoreLibDumper.cs

Assigning CoreLibDumper.dll a Strong Name
Mono supports the notion of deploying strongly named and shared assemblies (see Chapter 15) to
the Mono GAC. To generate the necessary public/private key data, Mono provides the sn command-
line utility, which functions more or less identically to Microsoft’s tool of the same name. For
example, the following command generates a new *.snk file (specify the -? option to view all
possible commands):

sn -k myTestKeyPair.snk

APPENDIX B ■ PLATFORM-INDEPENDENT .NET DEVELOPMENT WITH MONO1324

8849appB.qxd 10/19/07 9:32 AM Page 1324

mailto:@LibraryBuild.rsp

To inform the C# compiler to make use of this key data to assign a strong name to
CoreLibDumper.dll, simply update your LibraryBuild.rsp file with the following additional
command:

/target:library
/out:CoreLibDumper.dll
/keyfile:myTestKeyPair.snk
CoreLibDumper.cs

Now recompile your assembly:

gmcs @LibraryBuild.rsp

Viewing the Updated Manifest with monodis
Before deploying the assembly to the Mono GAC, allow me to introduce the monodis command-line
tool, which is the functional equivalent of Microsoft’s ildasm.exe (without the GUI front end). Using
monodis, you can view the CIL code, manifest, and type metadata for a specified assembly. In this
case, we’re interested in viewing the core details of our (now strongly named) assembly via the
--assembly flag. Figure B-5 shows the result of the following command set:

monodis --assembly CoreLibDumper.dll

Figure B-5. monodis allows you to view the CIL code, metadata, and manifest of an assembly.

As you can see, the assembly’s manifest now exposes the public key value defined within
myTestKeyPair.snk.

Installing Assemblies into the Mono GAC
Now that you have provided CoreLibDumper.dll with a strong name, you install it into the Mono
GAC using gacutil. Like Microsoft’s tool of the same name, Mono’s gacutil supports options to
install, uninstall, and list the current assemblies installed under C:\Program Files\Mono-<version>\
lib\mono\gac. The following command deploys CoreLibDumper.dll to the GAC and sets it up as a
shared assembly on the machine.

gacutil -i CoreLibDumper.dll

APPENDIX B ■ PLATFORM-INDEPENDENT .NET DEVELOPMENT WITH MONO 1325

8849appB.qxd 10/19/07 9:32 AM Page 1325

mailto:@LibraryBuild.rsp

■Note Be sure to use a Mono command prompt to install this binary to the Mono GAC! If you use the Microsoft
gacutil.exe program, you’ll install CoreLibDumper.dll into the Microsoft GAC!

After running the command, if you open the \gac directory, you should find a new folder
named CoreLibDumper (see Figure B-6), which defines a subdirectory that follows the same naming
conventions as Microsoft’s GAC (versionOfAssembly__publicKeyToken).

Figure B-6. Deploying our code library to the Mono GAC

■Note Supplying the -l option to gacutil will list out each assembly in the Mono GAC.

Building a Console Application in Mono
Your first Mono client will be a simple console-based application named ConsoleClientApp.exe.
Create a new file in your C:\MonoCode\CorLibDumper folder, ConsoleClientApp.cs, that contains
the following Program type:

// This client app makes use of the CoreLibDumper.dll
// to dump types to a file.
using System;
using CoreLibDumper;

namespace ConsoleClientApp
{
public class Program
{
public static void Main()
{
Console.WriteLine(

"***** The Type Dumper App *****\n");

APPENDIX B ■ PLATFORM-INDEPENDENT .NET DEVELOPMENT WITH MONO1326

8849appB.qxd 10/19/07 9:32 AM Page 1326

// Ask user for name of type.
string typeName = "";
Console.Write("Please enter type name: ");
typeName = Console.ReadLine();

// Now send it to the helper library.
if(TypeDumper.DumpTypeToFile(typeName))

Console.WriteLine("Data saved into {0}.txt",
typeName);

else
Console.WriteLine("Error! Can't find that type...");

}
}

}

Notice that the Main() method simply prompts the user for a fully qualified type name. The
TypeDumper.DumpTypeToFile() method uses the user-entered name to dump the type’s members
to a local file. Next, create a ClientBuild.rsp file for this client application that references
CoreLibDumper.dll:

/target:exe
/out:ConsoleClientApp.exe
/reference:CoreLibDumper.dll
ConsoleClientApp.cs

Now, using a Mono command prompt, change to the folder containing your client files and
compile the executable using gmcs as shown here:

gmcs @ClientBuild.rsp

Loading Our Client Application in the Mono Runtime
At this point, you can load ConsoleClientApp.exe into the Mono runtime engine by specifying the
name of the executable (with the *.exe file extension) as an argument to mono:

mono ConsoleClientApp.exe

As a test, enter System.Threading.Thread at the prompt, and press the Enter key. You will now
find a new file named System.Threading.Thread.txt containing the type’s metadata definition (see
Figure B-7).

Before moving on to a Windows Forms–based client, try the following experiment. Using the
Windows Explorer, rename the CoreLibDumper.dll assembly from the folder containing the client
application to DontUseCoreLibDumper.dll. You should be able to still successfully run the client
application, as the only reason we needed access to this assembly when building the client was to
update the client manifest. At runtime, the Mono runtime will load the version of
CoreLibDumper.dll you deployed to the Mono GAC.

However, if you open Windows Explorer and attempt to run your client application by double-
clicking ConsoleClientApp.exe, you might be surprised to find a FileNotFoundException is thrown.
At first glance, you might assume this is due to the fact that you renamed CoreLibDumper.dll from
the location of the client application. However, the true reason is because you just loaded
ConsoleClientApp.exe into the Microsoft CLR!

To run an application under Mono, you must pass it into the Mono runtime via mono. If you do
not, you will be loading your assembly into the Microsoft CLR, which assumes all shared assemblies
are installed into the Microsoft GAC located in the <%windir%>\Assembly directory.

APPENDIX B ■ PLATFORM-INDEPENDENT .NET DEVELOPMENT WITH MONO 1327

8849appB.qxd 10/19/07 9:32 AM Page 1327

mailto:@ClientBuild.rsp

Figure B-7. Result of running our client application

Building a Windows Forms Client Program
Before continuing, be sure to rename DontUseCoreLibDumper.dll back to CoreLibDumper.dll. Next,
create a new C# file named WinFormsClientApp.cs saved in the same location as your current proj-
ect files. This file defines two types, both of which make use of a few C# 2.0 language features,
including static classes and anonymous methods:

using System;
using System.Windows.Forms;
using CoreLibDumper;
using System.Drawing;

namespace WinFormsClientApp
{
// Application object.
public static class Program
{
public static void Main()
{
Application.Run(new MainWindow());

}
}

// Our simple Window.
public class MainWindow : Form
{
private Button btnDumpToFile = new Button();
private TextBox txtTypeName = new TextBox();

APPENDIX B ■ PLATFORM-INDEPENDENT .NET DEVELOPMENT WITH MONO1328

8849appB.qxd 10/19/07 9:32 AM Page 1328

public MainWindow()
{
// Config the UI.
ConfigControls();

}

private void ConfigControls()
{
// Configure the Form.
Text = "My Mono Win Forms App!";
ClientSize = new System.Drawing.Size(366, 90);
StartPosition = FormStartPosition.CenterScreen;
AcceptButton = btnDumpToFile;

// Configure the Button.
btnDumpToFile.Text = "Dump";
btnDumpToFile.Location = new System.Drawing.Point(13, 40);

// Handle click event anonymously.
btnDumpToFile.Click += delegate
{
if(TypeDumper.DumpTypeToFile(txtTypeName.Text))
MessageBox.Show(string.Format(
"Data saved into {0}.txt",
txtTypeName.Text));

else
MessageBox.Show("Error! Can't find that type...");

};
Controls.Add(btnDumpToFile);

// Configure the TextBox.
txtTypeName.Location = new System.Drawing.Point(13, 13);
txtTypeName.Size = new System.Drawing.Size(341, 20);
Controls.Add(txtTypeName);

}
}

}

To compile this Windows Forms application using a response file, create a file named
WinFormsClientApp.rsp (the contents of which follow) and supply that as an argument to gmcs
as shown previously.

/target:winexe
/out:WinFormsClientApp.exe
/r:CoreLibDumper.dll
/r:System.Windows.Forms.dll
/r:System.Drawing.dll
WinFormsClientApp.cs

Finally, run your Windows Forms application via mono:

mono WinFormsClientApp.exe

Figure B-8 shows the output.

APPENDIX B ■ PLATFORM-INDEPENDENT .NET DEVELOPMENT WITH MONO 1329

8849appB.qxd 10/19/07 9:32 AM Page 1329

Figure B-8. A Windows Forms application build using Mono

Executing Our Windows Forms Application Under Linux
Up until now, this appendix has created a few assemblies that could have been compiled using the
Microsoft .NET Framework 3.5 SDK. However, the importance of Mono becomes quite clear when
you view Figure B-9, which shows the same exact Windows Forms application running under SuSe
Linux. Notice how our Windows Forms application has taken on the correct look and feel of my
current theme.

Figure B-9. Our Windows Forms application executing under SuSe Linux!

■Source Code The CorLibDumper project can be found under the Appendix B subdirectory.

So, you can compile and execute the same exact C# code shown during this appendix on Linux
(or any OS supported by Mono) using the same Mono development tools. In fact, you can deploy or
recompile any of the assemblies created in this text that do not use 3.0 or 3.5 programming con-
structs to a new Mono-aware OS and run them directly using the mono runtime utility. Because all
assemblies simply contain platform-agonistic CIL code, you are not required to recompile the
applications whatsoever.

■Note Do recall that Mono 1.2.5 does have limited support for C# 2008 language features, so some of the
examples from Chapter 13 should work as-is.

Suggestions for Further Study
If you followed along with the materials presented in this book, you already know a great deal about
Mono, given that it is an ECMA-compatible implementation of the CLI. If you are interested in
learning more about Mono particulars, the first place to begin is the official Mono website (http://
www.mono-project.com). Specifically, you should be sure to examine http://www.mono-project.com/
Use, as this page is an entry point to a number of important topics including database access using
ADO.NET, web development using ASP.NET, and so forth.

APPENDIX B ■ PLATFORM-INDEPENDENT .NET DEVELOPMENT WITH MONO1330

8849appB.qxd 10/19/07 9:32 AM Page 1330

http://www.mono-project.com
http://www.mono-project.com
http://www.mono-project.com
http://www.mono-project.com
http://www.mono-project.com

As well, I have authored some Mono-centric articles on the DevX website (http://www.devx.
com) that may be of interest to you:

• “Mono IDEs: Going Beyond the Command Line”: Examines numerous Mono-aware IDEs

• “Building Robust UIs in Mono with Gtk#”: Examines building desktop applications using the
GTK# toolkit as an alternative to Windows Forms

Last but not least, be aware of the Mono documentation website (http://www.go-mono.com/
docs). Here you will find documentation on the Mono base class libraries, development tools, and
other topics (see Figure B-10).

Figure B-10. The online Mono documentation

■Note Mono’s online documentation website is community supported; therefore, don’t be too surprised if you
find some incomplete documentation links! Given that Mono is an ECMA-compatible distribution of Microsoft .NET,
you may prefer to make use of the feature-rich MSDN online documentation when exploring Mono.

Summary
The point of this appendix was to provide an introduction to the cross-platform nature of the C#
programming language and the .NET platform using the Mono framework. As you have seen, Mono
ships with a number of command-line tools that allow you to build any variety of .NET assembly,
including strongly named assemblies deployed to the GAC, Windows Forms applications, and .NET
code libraries.

As explained, Mono is not fully compatible with the .NET 3.0 or .NET 3.5 programming APIs
(WPF, WCF, WF, or LINQ) or the C# 2008 language features (however, Mono 1.2.5 has some limited

APPENDIX B ■ PLATFORM-INDEPENDENT .NET DEVELOPMENT WITH MONO 1331

8849appB.qxd 10/19/07 9:32 AM Page 1331

http://www.devx.com
http://www.devx.com
http://www.go-mono.com/docs
http://www.go-mono.com/docs
http://www.go-mono.com/docs
http://www.go-mono.com/docs

C# 2008 language support). Efforts are underway (via the Olive project) to bring these aspects of the
Microsoft .NET platform to Mono. In any case, if you need to build .NET applications that can exe-
cute under a variety of operating systems, the Mono project is a wonderful choice to do so.

APPENDIX B ■ PLATFORM-INDEPENDENT .NET DEVELOPMENT WITH MONO1332

8849appB.qxd 10/19/07 9:32 AM Page 1332

Special Characters
<%@ XXX %> markers, 1183
<%@Master%> directive, 1217
<%@Page%> directive attribute, ASP.NET, 1184
<%= .%> notation, 1176
<%Import%> directive, ASP.NET, 1184–1185
& operator, pointer types, 407
&& operator, 103
\" character, 89
\\ character, 89
\' character, 89
? argument, 1323
? operator, 107
?? operator, 107
|| operator, 103
+ operator, 392
!= operator, 102
< operator, 102
<= operator, 102
== operator, 102
> operator, 102
>= operator, 102
* operator, pointer types, 407

Numbers
3D rendered animation, 1000
100% code approach, 918

A
\a character, 89
Abort() method, Thread type, 595
abstract classes, 203–204, 208, 270
abstract members, 162, 204, 269, 272
abstract methods, 204–208
AccelerationRatio property, 1138
AcceptButton property, 971, 981
AcceptChanges() method, 785
AcceptReturn property, 1081
access modifiers, 163–164
accessor method, 164
action attribute, 1169, 1174, 1195
Action property, 887
Activate() method, 972
Activated event, 972
Active Template Library (ATL), description, 5
ActiveX *.dll project, 1284
<Ad> element, 1221
Add() method, 95, 109, 113, 432, 864, 1077, 1259,

1286, 1288, 1298
Add Reference dialog box, 489, 492, 715, 1301

Add Service Reference option, 872, 897, 908
Add Web Reference button, 908
AddAfterThis()/AddBeforeThis() method, 864
AddCacheDependency() method, 1199
AddFirst() method, 864
adding and removing controls, ASP.NET, 1212
AddNewCarDialog property, 1114
AddParams object, 615
AddRef() method, 1291, 1305–1306
address attribute, 891
address element, 889
AddServiceEndpoint() method, 892, 905
ADO.NET

additional namespaces, 736
vs. ADO classic, 731
application configuration files, 742–743
asynchronous data access, 775, 777
Command object, 759–760
connected layer, 755–756
connected vs. disconnected layer, 733
connection objects, 756–758
ConnectionStringBuilder object, 758–759
connectionStrings element, application

configuration, 754–755
data provider definition, 733
data providers overview, 733, 735
DbDataReader object, 760–761
definition, 731
deleting records, 765
example, data provider factory, 751, 753–754
example database, 744
Firebird Interbase data provider, 736
IBM DB2 Universal Database data providers,

736
IDbCommand interface, 738–739
IDbConnection interface, 737
IDbDataAdapter, IDataAdapter interface, 739
IDbDataParameter, IDataParameter interface,

739
IDbDataReader, IDataReader interface, 740
IDbTransaction interface, 738
inserting records, 764
Microsoft data providers, 735
modifying tables, Command object, 763, 771
multiple result sets, DbDataReader object, 762
MySQL data providers, 736
overview, 731
parameterized command objects, 766–767
PostgreSQL providers, 736
provider factory model, 749–751

Index

1333

8849INDEX.qxd 10/18/07 5:51 PM Page 1333

specifying DbParameter parameters, 767–768
stored procedures using DbCommand, 768
System.Data, 737
third-party data providers, 736
updating records, 765
using interfaces, 741–742

AdRotator control, 1218, 1221
AdRotator example, ASP.NET, 1221–1222
AdRotator widget, 1221
AdvertisementFile property, 1221
aggregation, 196
agnostic manner, 870
al utility, 1322
alert() method, 1173
AllKeys member, HttpApplicationState type, 1255
allocating objects with New keyword, 143–144
allowAnonymous attribute, Profile Data, 1274
AllowDBNull property, 787
Alt property, 977
Angle property, 1136, 1144
AngleX property, 1136
AngleY property, 1136
AnimatedButtonWithDiscreteKeyFrames.xaml file,

1143
AnimationInXaml.xaml file, 1142
AnimationUsingKeyFrames suffix, 1142
Annexes, 1316
anonymous methods, 370–371
anonymous profiles, 1277
anonymous types, 441, 443–444
App_Browsers, ASP.NET 2.0 subdirectories, 1190
App_Browsers subfolder, ASP.NET 2.0, 1190
App_Code subfolder, ASP.NET 2.0, 1190–1191
App_Data subfolder, ASP.NET 2.0, 1190
App_GlobalResources subfolder, ASP.NET 2.0, 1190
App_LocalResources subfolder, ASP.NET 2.0, 1190
App_Themes subfolder, ASP.NET 2.0, 1190
App_WebReferences subfolder, ASP.NET 2.0, 1190
App.config file, 822, 834, 854, 877, 897, 901, 1189
AppDomains

advantages, 571–572
creation example code, 574
loading example code, 575
manipulation example code, 573–574
overview, 561
relationship to processes, 571–572
unloading example code, 576–577

AppendText() method, FileInfo class, System.IO,
669, 672

AppExit() method, 1012
application cache, 1245, 1259
Application class, 1006
application configuration files, ADO.NET, 742–743
application development

cordbg.exe debugger, 35
csc.exe compiler, 35–37
installing .NET 3.5 Framework SDK, 35
notepad.exe development editor, 35

overview, 35
SharpDevelop, 35
TextPad development editor, 42
using Notepad, 46–47
using SharpDevelop, 48–50
Visual C# 2005 Express, 35

Application directory, 689
application domain, garbage collection, 256
application level state data, ASP.NET, 1255
application object, 69–70
Application property, 1195, 1253, 1256
application root categories, 249–250
application shutdown, ASP.NET, 1258
Application type, 965

application data and processing command-line
arguments, 1015–1016

Windows collection, 1016
Application_End() event handler, 1252
Application_End() method, HttpApplication-

derived type, 1258
Application_Error() event handler, 1253
Application_Start() event handler, 1252, 1256,

1259
ApplicationCommands object, 1100
ApplicationCommands.Help option, 1101
Application.Current property, 1014
Application.Current.Shutdown() method, 1095
<ApplicationDefinition> element, 1024
Application-derived class, 1013
Application.Exit() method, 960, 979, 991
Application.LoadComponent() method,

1026–1027
ApplicationPath member, HttpRequest Type, 1196
Application.Run() method, 957, 965, 972
applications vs. sessions, ASP.NET, 1254
appSetting element, Web.config, ASP.NET, 1204
<appSettings> element, 1204, 1206
AppStartUp() method, 1012
array manipulation, multidimensional arrays, 119
Array object, 471
Array type, 460, 471
ArrayList class, 305
ArrayList System.Collections class type, 312–313
ArrayOfObjects() method, 116
arrays, using interface types in, 281
as keyword, 211, 277
ascending operator, 463, 469
AsEnumerable() method, 840–841
AskForBonus() method, 122
*.asmx file, 908
<asp:> tag, 1181
</asp> tag, 1186
<asp:content> scope, 1222–1223
</asp:ContentPlaceHolder> tag, 1217
<asp:ContentPlaceHolder> tag, 1217, 1222
ASP.NET

<%@Page%> directive, 1184
<%Import%> directive, 1184–1185

■INDEX1334

8849INDEX.qxd 10/18/07 5:51 PM Page 1334

adding and removing controls, 1212
AdRotator example, 1221–1222
AutoEventWireUp attribute, 1201–1202
AutoPostBack property, 1208–1209
browser statistics in HTTP Request processing,

1196
categories of web controls, 1215
classic ASP, 1175, 1177
client-side scripting, 1172–1174
code-behind, description, 1179
code-behind page model, 1186–1188
compilation cycle, 1192–1193
data-centric single-file test page

adding data access logic, 1182–1183
designing the UI, 1181–1182
manually referencing AutoLotDAL.dll, 1180
overview, 1180
role of ASP.NET directives, 1183–1185

debugging and tracing, 1188
default.aspx content page example, 1222–1224
detailed content page example, 1228–1230
Document Object Model (DOM), 1172–1173
Emitting HTML, 1199
enumerating controls with Panel control, 1210
Error event, 1202
feature-rich website example

defining default.aspx content page,
1222–1224

designing inventory content page, 1224–1228
detailed content page, 1228–1230
overview, 1215
working with master pages, 1216–1222

form control declarations, 1185
GET and POST, 1174–1175
HTML document structure, 1168
HTML form development, 1169
HTML overview, 1167
HTML web controls, 1214
HTTP overview, 1163–1164
HTTP Request members, 1196
HTTP Request processing, 1195–1198
HTTP Response members, 1198
HTTP Response processing, 1198–1200
IIS virtual directories, 1165
incoming form data, 1197–1198
inheritance chain, page type, 1194
in-place editing example, 1227–1228
Internet Information Server (IIS), description,

1164
inventory content page example, 1224–1228
IsPostBack property in HTTP Request

processing, 1198
life cycle of a web page, 1200–1203
major categories of web controls, 1213
master pages example, 1216–1222
.NET 3.5 web enhancements, 1178
overview, 1163
page type inheritance chain, 1194

positioning controls using HTML tables, 1243
redirecting users, 1200
referencing assemblies, 1190–1191
referencing AutoLotDAL.dll assembly, 1187
request/response cycle, HTTP, 1163
round-trips (postbacks), 1172
script block, 1185
server-side event handling, 1208
simple web controls, 1213
simple website example, 1222
single file code model, 1179
sorting and paging example, 1227
stateless, description, 1164
submitting form data, 1174–1175
System.Web.UI.Control, 1209–1210, 1212
System.Web.UI.Page, 1194
System.Web.UI.WebControls namespace,

1207–1209
System.Web.UI.WebControls.WebControl, 1213
themes

* .skin files, 1238–1239
applying at page level, 1240
applying sitewide, 1239–1240
assigning programmatically, 1241–1242
overview, 1237
SkinID Property, 1240

updating code file, 1188
user interface in HTML, 1170–1171
using web controls, 1207–1209
validating form data, 1174
validation controls, 1231–1235
web application, description, 1164
web development server, 1166–1167
web page code model, 1179, 1181
web server, description, 1164
WebControl base class properties, 1213
website directory structure, 1190
Windows XP Home Edition, 1166–1167

ASP.NET 2.0
namespaces, 1179
subdirectories, 1190–1191

ASP.NET profile API
accessing profile data programmatically, 1274,

1276–1277
ASPNETDB database, 1272–1273
defining user profile within web.config,

1273–1274
grouping profile data and persisting custom

objects, 1277–1279
overview, 1272

ASP.NET website administration utility, 1205–1206
aspnet_regsql.exe command-line utility, 1272
aspnet_state.exe process, 1270
aspnet_wp.exe process, 1270
<asp:TextBox> tag, 1207
*.aspx file, 1179, 1183, 1194, 1207, 1245, 1248, 1250
aspx suffix, 1192

■INDEX 1335

Find
itfasterathttp://superindex.apress.com

/

8849INDEX.qxd 10/18/07 5:51 PM Page 1335

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

assemblies
Add Reference dialog box, 489, 492
app.config file, 502
binary code reuse, 475, 481
CIL code, 484, 491
client application example, 492
CLR file header, 483–484
code base config file element, 519–520
code library, 481
compared with legacy executables, 480
consuming shared assemblies, 510–511
cross-language inheritance, 495
definition, 480
dependentAssembly config file element,

514–515
download cache, 485
dynamic redirection to a specific version,

514–515
embedded resources, 484
example of version updating, 512–515
explicit load request, 499–500
global assembly cache (GAC), 28, 482
ildasm exploration of manifest, 490
implicit load request, 499–500
internal format, 482
language integration, 494–495, 498
manifest, 12, 481, 484
metadata description, 12
module-level manifest, 497
modules, 12, 484
multifile, 484–485, 496–498
.NET Framework Configuration utility, 502–504,

515
netmodule file extension, 485, 496–497
overview, 11, 475
private, 499–500
probing process, 499–500
publisher policy assemblies, 518–519
referencing external, 28
satellite assemblies, 484
self-describing, 481
shared assemblies, 504, 511

configuration, 512
and the GAC, 509

single-file, 12, 484, 486, 488–489
strong name code example, 507
strong names, 481, 490, 505–508
type metadata, 481, 484, 491
updating applications using shared assemblies,

512
version number, 481
Visual Studio 2008 configuration, 502
Win32 file header, 482
Windows Presentation Foundation (WPF)

Application class, 1006
overview, 1005
Window class, 1006–1010

<assemblies> element, 1191

Assembly class, System.Reflection, 528, 536–539
assembly directive, common intermediate

language (CIL), 630
AssemblyBuilder, System.Reflection.Emit

namespace, 649
AssemblyCompanyAttribute attribute, 550
AssemblyCopyrightAttribute attribute, 550
AssemblyCultureAttribute attribute, 550
AssemblyDescriptionAttribute attribute, 550
AssemblyInfo.cs file, 549, 1309
AssemblyKeyFileAttribute attribute, 550
AssemblyLoad event, System.AppDomain, 573
Assembly.Load() method, 1191
Assembly.LoadFrom() method, 537, 687, 690
AssemblyName class, System.Reflection

namespace, 528
assembly/namespace/type distinction, 23–24
AssemblyOperatingSystemAttribute attribute, 550
AssemblyProcessorAttribute attribute, 550
AssemblyProductAttribute attribute, 550
AssemblyRef, 526
AssemblyResolve event, System.AppDomain, 573
AssemblyTrademarkAttribute attribute, 550
AssemblyVersionAttribute attribute, 550
[Association] attribute, 851
AsyncCallback delegate, 909
AsyncCallback delegate, multithreaded

applications, 591–592
asynchronous data access, ADO.NET, 775, 777
asynchronous delegate call, 342–344
asynchronous I/O, 685–686
asynchronous multithreading using delegates,

342–344
AsyncPattern property, 887
AsyncResult class, multithreaded applications, 592
attribute-based programming

assembly, module level attributes, 549
AttributeUsage attribute, 548–549
C# attribute notation, 546
CLSCompliant attribute, 543
COM vs. .NET attributes, 542
constructor parameters, 545
custom attributes, 546
description, 542
DllImport attribute, 543
early binding, 550–551
example of custom attributes, 547–548
extensibility, 553–558
late binding, 551–553
multiple attributes, 544–545
NonSerialized attribute, 543
Obsolete attribute, 543, 545–546
overview, 523
restricting attributes, 548–549
Serializable attribute, 543
serializing example, 544
summary of attribute key points, 546
Visual Basic snap-in example, 555

■INDEX1336

8849INDEX.qxd 10/18/07 5:51 PM Page 1336

WebMethod attribute, 543
Windows forms example, 556–557

attributes, assembly, module level, 550
Attributes property, FileSystemInfo class, 663
AttributeUsage attribute, 548–549
authentication element, Web.config, 1204
authorization element, Web.config, 1204
Authorization property, 892
AutoDispatch value, ClassInterfaceType

enumeration, 1308
AutoDual value, ClassInterfaceType enumeration,

1308
AutoEventWireUp attribute, ASP.NET, 1201–1202
autogenerated, 1025
AutoIncrement property, 787–788
AutoIncrementSeed property, 787–788
AutoIncrementStep property, 787–788
AutoLotConnectedLayer namespace, 780
AutoLotDAL namespace, 834
AutoLotDAL.AutoLotDataSetTableAdapters

namespace, 834
AutoLotDAL.dll assembly, 809, 811, 813, 834, 840,

911, 1180
AutoLotDAL.dll library, 783, 844, 1187
AutoLotDatabase class, 846, 852
AutoLotDatabase namespace, 849
AutoLotDataSet type, 832
autoLotDB.cs file, 849
autoLotDS object, 816
AutoLotService type, 912
Automatic property, 907
AutoPostBack property, ASP.NET web controls,

1208–1209
AutoResetEvent type, 931
AutoReverse property, 1138, 1140

B
BackColor property, WebControl base class, 1213
Background property, 1108, 1148, 1154
BackgroundWorker component, 612, 614–615
*.baml files, 1026
base class, 186, 192–194, 1193
base class/derived class casting rules

as keyword, 211
is keyword, 211–212
overview, 210–211

base keyword, 192, 1254
BaseAddresses property, 892
baseAddresses scope, 891
<baseAddresses> region, 891
BaseDirectory() method, System.AppDomain, 572
BasedOn property, 1150
BasePriority, ProcessThread type, 568
BaseStream property, 682
basicHttpBinding bindings, 899
BasicHttpBinding class, 882, 900
BasicHttpBinding option, 882
<basicHttpBinding> subelement, 900

BasicSelections() method, 466
*.bat file, 72
Beep() property, 76
BeginAnimation() method, 1139, 1141
BeginCatchBlock() method,

System.Reflection.Emit.ILGenerator, 650
BeginClose() method, 892
BeginEdit() method, 805
Begin/End asynchronous invocation pattern, 909
BeginExceptionBlock() method,

System.Reflection.Emit.ILGenerator, 650
BeginFinallyBlock() method,

System.Reflection.Emit.ILGenerator, 650
BeginInvoke(), multithreaded applications,

587–588, 591–593
BeginLabel() method,

System.Reflection.Emit.ILGenerator, 650
BeginLocal() method,

System.Reflection.Emit.ILGenerator, 650
BeginOpen() method, 892
BeginScope() method,

System.Reflection.Emit.ILGenerator, 650
<BeginStoryboard> element, 1141
BeginTime property, 1138
BeginTransaction() method, DbConnection,

ADO.NET, 757
<behavior> element, 893, 895
behaviorConfiguration attribute, 894
Bin folder, 1190–1191
Binary Application Markup Language (BAML),

1026–1028
binary code reuse, 475
binary formats, 1316
binary opcodes, 619–620
binary operators, overloading, 389–391
binary resources, 1145
BinaryFormatter

deserialization, 719
serialization, 717

BinaryFormatter type, 714, 797
BinaryReader class, 682
BinaryWriter class, 682
binding, 880, 889, 1103, 1111
<bindings> element, 893, 900
BindingSource component, 824
Bitmap type, 986
BitmapImage object, 1129
black box programming, 165
blue screen of death, 1001
<body> section, 1168, 1170
booc compilers, 1321
bool data type, 80
bool keyword, 82
Boolean member variable, 1026
Border control, 1056
BorderColor property, WebControl base class, 1213
BorderStyle property, WebControl base class, 1213
BorderWidth property, WebControl base class,

1213

■INDEX 1337

Find
itfasterathttp://superindex.apress.com

/

8849INDEX.qxd 10/18/07 5:51 PM Page 1337

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

Bottom property, 1086
Bounds property,

System.Windows.Media.Geometry base
class, 1131

boxing and unboxing
CIL code, 318–319
generics issues, 316, 318–319
InvalidCastException, 319
.NET 1.1 solution, 319, 321–322
.NET 2.0 solution, 323

bread crumbs, 1221
break keyword, 101
Browser Applications (XBAPs), XAML, 1004
Browser member, HttpRequest Type, 1196
Browser property, 1196
browser statistics in HTTP Request processing,

ASP.NET, 1196
browser-based presentation layers, 1163
Brush property, 1132
Brush type, 989, 1036
Brushes utility class, 989
btnClickMe type, 1148
btnClickMeToo type, 1148
btnExitApp_Clicked() method, 1025
btnGetColor Button object, 1079
btnGetColor_Click() method, 1079
btnGetGameSystem property, 1078
btnShowAppVariables Button type, 1256
bubbling event, 1065
BufferedGraphics type, 987
BufferedStream type, input/output, System.IO, 661
BufferHeight property, 76
BufferWidth property, 76
bugs, description, 219
BuildCar.aspx content page, 1228
BuildMenuSystem() helper function, 960
BuildTableRelationship() method, 817
built-in style engine, 1002
business process, 917, 925
Button Click event handler, 1083
Button control, 1056, 1058, 1065
Button object, 1312
Button property, 975–976
Button type, 612, 707, 817, 950, 1022, 1078, 1081,

1108, 1138, 1142, 1148, 1150, 1154,
1156–1157, 1182–1183, 1188, 1234, 1240,
1248, 1258, 1274

Button widget, 1210
<Button> element, 1082
ButtonBase class, 1069
ButtonBase-derived type, 1071
<Button.RenderTransform> scope, 1144
by operator, 463
By property, 1138
ByRef keyword, 111
ByRef parameters, 1296
byte data type, 80
ByVal keyword, 111, 1296

C
C language deficiencies, 4
C# programming tools, 1319
C++ language deficiencies, 4
<c> code comment, XML Elements, 177
cache mechanism, 1263
Cache member variable, 1260
Cache object, 1259
Cache property, HttpResponse Type, 1198
Cache property, Page Type, 1195
CacheDependency type, 1261
CacheItemRemovedCallback delegate target

method, 1263
CacheItemRemovedCallback delegate type, 1261
Cache.NoSlidingExpiration field, 1261
CacheState web application, 1259
CalcInteropAsm.dll interop assembly, 1297
Calculate Permissions button, 708
CalculateAverage() method, 111
callback interfaces

event interface, 305, 307–308
overview, 341
sink object, 305, 307–308
two-way conversation, 304

CallbackContract property, 887
CanBeNull property, 848
CancelButton property, 971, 981
CancelEdit() method, 805
CancelEventArgs property, 974
CancelEventHandler delegate, 973
CanExecute event, 1101
CanHelpExecute() method, 1102
Canvas control, 1056
Canvas panel control, 1084
Canvas type, 1092
<Canvas> tag, 1085
Canvas.Bottom property, 1086
Canvas.Left property, 1086
Canvas.Left value, 1086
Canvas.Right property, 1086
Canvas.Top property, 1086
Canvas.Top value, 1086
Caption property, 787–788
CaretIndex property, 1082
carIDColumn DataColumn object, 793
carIDColumn object, 789
carInventoryGridView object, 808
CarLibrary.dll assembly, 691
Cars example database, ADO.NET, 744
carsDataSet.xml file, 796
carsInventoryDS DataSet object, 793
CarsXmlDoc resource, 1114
CaseSensitive member, 793
CaseSensitive property, 785
casting operations

explicit cast, 209
implicit cast, 210

casting operator (), 96

■INDEX1338

8849INDEX.qxd 10/18/07 5:51 PM Page 1338

catch keyword, 98
CenterToScreen() method, 972
ChangeDatabase() method, DbConnection,

ADO.NET, 757
Channels property, 897
char keyword, 85
char type, 83
CheckBox control, 1056, 1102
CheckBox type, 1070
Checked events, 1070
/checked flag, 99
checked keyword, 97, 100
checked scope, 100
CheckPassword() method, 1083
child class, 186
ChildRelations member, 793
Circle type, 204–205
Class attribute, MainWindow, 1022
class constructors, 173

default constructor revisited, 146–147
defining custom constructors, 145–146
overview, 144
role of default constructor, 144–145

Class Designer toolbox, 190
Class Details window, 190
class diagram file, 182
Class Diagram icon, 189
class diagrams, revising, 189–190
class directive, common intermediate language

(CIL), 631–632
class hierarchy, 286
class ID (CLSID), 1306
class interface, 1307
Class keyword, 141
class library definition, 481
Class Library project, 430
class name prefix, 173
Class suffix, 1288
class types, 17, 141, 432
Class1.cs file, 885
classes, differences from objects and references,

245
classic ASP and ASP.NET, 1175, 1177
classical inheritance, 160, 186
[ClassInterface] attribute, 1306, 1308, 1311
ClassInterfaceType.AutoDual class interface, 1308
Class-suffixed types, 1288
Clear() member, HttpApplicationState type, 1255
Clear() method, 76, 119, 785, 958, 987, 1199
Click event, 707, 817, 950, 960, 967, 970, 1014, 1060,

1064, 1071, 1078, 1094, 1114, 1157, 1173,
1182, 1207, 1234

Click event bubbles, 1065
Click event handler, 802–803, 818, 981, 985, 1067,

1081, 1139–1140, 1182, 1197, 1199, 1212,
1246, 1256, 1262, 1265, 1268, 1274

ClickMode property, 1069
ClickMode.Hover value, 1069

ClickOnce deployment, 707–708
Clicks property, 975
client subelement, 894
<client> element, 897
ClientBuild.rsp file, 1327
client-side proxy/*.config file, 894
client-side scripting, 1172–1174, 1185
ClientTarget property, Page Type, 1195
Clone() method, 271, 786
cloneable objects (ICloneable), 295, 297–299
CloneMe() method, 271
Close() method, 160, 676, 678, 682, 891, 972
Closed event, 972
CloseMainWindow() method,

System.Diagnostics.Process, 565
CloseTimeout property, 892
*.cls file, 1295, 1300
CLSCompliant attribute, 543
CoCar class, 1299
_CoCar interface, 1303
__CoCar_BlewUpEventHandler type, 1304
__CoCar_Event type, 1304
__CoCar_SinkHelper type, 1304
CoCarClass object, 1303
code access security

observing in action, 696–697
role of code groups, 692–695
role of evidence, 689–692
role of permission sets, 695

Code Access Security (CAS), 687–689
Code activity, 927–928
code groups, role of in code access security,

692–693, 695
code libraries, 481, 1191
<Code> element, 1022–1023
CodeActivity, WF, 921
<codeBase> element, 687
code-behind model, 1029–1030, 1177, 1179,

1186–1188
CodeFile attribute, 1187
CodePage attribute, <%@Page%> directive, 1184
<codeSubDirectories> element, 1191
collection initialization, 439, 441
collections

ICollection interface, 310
IDictionary interface, 311
IDictionaryEnumerator interface, 311
IList interface, 311
overview, 269

CollectionsUtil member,
System.Collections.Specialized
Namespace, 316

ColorAnimation type, 1137
ColorConverter type, 1107
coltsOnlyView type, 806
[Column] attribute, 847
ColumnAttribute property, 848
ColumnAttribute type, 845

■INDEX 1339

Find
itfasterathttp://superindex.apress.com

/

8849INDEX.qxd 10/18/07 5:51 PM Page 1339

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

<ColumnDefinition> element, 1090
ColumnMapping property, 787
ColumnName property, 787
COM Callable Wrapper (CCW), 1283, 1306
COM IDL (interface definition language) data

types, 1290
COM Interop option, 1310
COM library statement, 1295
Combine() method,

System.MulticastDelegate/System
Delegate, 345

ComboBox control, 1056
ComboBox type, 1078
<ComboBoxItem> element, 1076
ComCalc COM object, 1287, 1295
_ComCalc interface, 1296
ComCalc object, 1286
ComCalcClass object, 1288
ComCalc.cls class file, 1284
ComCallableDotNetServer.tlb, 1311
[ComClass] attribute, 1306
comContracts subelement, 894
Command object, ADO.NET, 733, 759–760
command prompt, Visual Studio 2003, 36
Command property, 1069
CommandBinding object, 1101
command-line arguments, processing, 1015–1016
CommandParameter property, 1069
CommandTarget property, 1069
CommandTimeout, DbCommand, ADO.NET, 760
Common dialog boxes, 956
Common Intermediate Language (CIL), 92, 94,

1316
advantages of learning, 617–618
assembly directive, 630
attributes, 619
benefits, 15
binary opcodes, 619–620
C# vs. VB.NET, 13–14
class directive, 631–632
code explained, 623–624
code labels, 624–625
compiler flags, 626
compiling code, 626–627
compiling to specific platforms, 15
complete example program, 643, 645–647
current object parameter, 642
defining the current assembly, 630
directives, 618
enums, 633
externally referenced assemblies, 629
field directive, 636
generics in, 633–634
ilasm.exe compiler, 617
interfaces, 632
iteration, 642
just-in-time (JIT) compiler, 15
locals directive, 640

mapping C# types to CIL types, 635
mapping parameters to variables, 641
maxstack directive, 640
method parameters, 638
methods, 637
mnemonics, 619–620
modifying code, 621, 623–626
module directive, 630
mresources directive, 630
namespace directive, 630
new keyword, 247
opcodes, 619, 638
overview, 13, 617
peverify.exe tool, 629
as programming language, 617
properties, 637
pushing and popping from the stack, 620–621
round-trip engineering, 621, 623–626
saving CIL code using ildasm.exe, 621, 623–624
stack-based programming, 620–621
structures, 632–633
subsystem directive, 630
token set of, 618
type constructors, 636–637
using SharpDevelop, 627
variables, local, 640
virtual execution stack, 620

Common Language Infrastructure (CLI),
1315–1316

Common Language Runtime (CLR), 22, 1283
Common Language Specification (CLS)

compliance verification, 21–22
overview, 20
Rule 1, 21–22

Common Type System (CTS), 870, 1177
adornments, 19
class types, 17
delegate types, 19
enumeration types, 18–19
interface types, 18
intrinsic types, 19
overview, 17
structure types, 18
type members, 19

commonBehaviors subelement, 894
companyLogo Image control, 1145
Compare() method, 87
CompareExchange() method, 607
CompareValidator control, ASP.NET, 1231, 1233
compilation cycle, ASP.NET 2.0

multifile pages, 1193
overview, ASP.NET 2.0, 1192
single-file pages, 1192

<compilation> element, 1189
compile time, 174
<Compile> elements, 1029
compiler error, 81
compiler-generated anonymous method, 452

■INDEX1340

8849INDEX.qxd 10/18/07 5:51 PM Page 1340

CompilerOptions attribute, <%@Page%> directive,
1184

Complain() method, 154
Component Object Model (COM), 5
component tray, 824
ComponentsCommands object, 1100
ComSvcConfig.exe command-line tool, 883
ComUsableDotNetServer.dll, 1310
concurrency, multithreaded applications, 584,

602–607
Condition property, Properties window, 928
conditional code compilation, 435
ConditionalEventArgs type, 928
ConditionedActivityGroupActivity, WF, 921
*.config file, 687, 698, 825, 870, 872, 879, 894, 900
/config: option, 896
<configuration> element, 1191
ConfigurationManager type, 825
ConfigurationName property, 887
ConfigureAdapter() method, 811–812
Connect() method, IComponentConnector

interface, 1026
connected layer, ADO.NET, 755–756
Connection, DbCommand, ADO.NET, 760
connection objects, ADO.NET, 756–758
ConnectionString property, 825, 1225
<connectionString> element, 1273
ConnectionStringBuilder object, ADO.NET,

758–759
<connectionStrings> element, 754–755, 822, 825,

1204
ConnectionTimeout() method, DbConnection,

ADO.NET, 757
Console Application, 415
Console class, 70
Console type, 76
console user interface (CUI), 76
ConsoleClientApp.exe, 1326
ConsoleClientApp.exe assembly, 1327
Console.ReadLine() method, 70
Console.WriteLine() method, 77, 151, 928
Const keyword, 173
constant data, 173–174
Constraints member, 793
constructor chaining, 149
constructor logic, 152
ConstructorBuilder, System.Reflection.Emit

namespace, 649
constructors, 93, 141, 144
ContainerControl class, 971
containment/delegation, 185, 196

nested type definitions, 197–199
overview, 196–197

Contains() method, 87
Content member, 1061
Content property, 1007, 1022, 1058, 1070, 1084,

1103, 1105, 1132
Content value, 1080

ContentControl base class, Window type, 1007
ContentEncoding property, HttpResponse Type,

1198
ContentPlaceHolderID value, 1223
<ContentPresenter> element, 1156
ContentType property, HttpResponse Type, 1198
context-agile, 578–579
context-bound, 578–579
Context.Cache.Insert() method, 1260
ContextMenu control, 1056
continue keyword, 101
contract element, 889
contravariance, delegates, 359
Control class, 270, 971
control commands, 1099
Control parent class, 975, 1194
Control property, 977
control state, 1251
control templates, 1156
Control type, 1213
ControlBox property, 971
ControlContent member, 1061
controls, ASP.NET, 1243
Controls member, System.Web.UI.Control, 1209
Controls property, 958, 970, 1209–1210
ControlsCollection class, 958–959
ControlState property, 1251
ControlTemplate base class, 1156
<ControlTemplate> element, 1156, 1159
ControlToValidate member, ASP.NET validator,

1231
ControlToValidate property, 1232
Convert class, 100
Convert() method, 1106
ConvertBack() method, 1106
Converter property, 1107
cookies creation, ASP.NET, 1267
Cookies member, HttpRequest Type, 1196
cookies overview, ASP.NET, 1267
Cookies property, HttpResponse Type, 1198
Copy() method, 786, 793
CopyTo() method, 119, 669
CopyToDataTable<T>() extension method, 842
Core infrastructure, 956
CoreLibDumper class type, 1323
CoreLibDumper.dll assembly, 1323, 1325, 1327
Count member, HttpApplicationState type, 1255
Count method, 958
covariance, 358–359, 362
Create() method, FileInfo class, System.IO, 669
Create() subroutine, 1299
CreateDataReader() method, 795, 838
CreateDataTable() method, 800
CreateDataView() method, 806
CreateDirectory() method, 703, 706
CreateFunctionalXmlDoc() method, 860
CreateFunctionalXmlElement() method, 859
CreateRectVisual() helper method, 1122

■INDEX 1341

Find
itfasterathttp://superindex.apress.com

/

8849INDEX.qxd 10/18/07 5:51 PM Page 1341

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

CreateText() method, FileInfo class, System.IO,
669, 672

CreateWorkflow() method, 931
CreationTime property, FileSystemInfo class, 663
Credentials property, 892
*.cs file, 896, 927
csc.exe compiler, 35

@ symbol (response files), 41
command-line flags, 37–38
compile parameters, 37–38
default response file (csc.rsp), 41–42
first C# application, 37
mscorlib.dll, 38
multiple external assemblies, 39
multiple source files, 39–40
/noconfig command-line flag, 41–42
/nostdlib command-line flag, 38
/out command-line flag, 37
reasons for using, 36–37
/reference command-line flag, 39
referencing external assemblies, using

keyword, 38
response files, 40–41
/target command-line flag, 37
wildcard character, 40

CSharpComClient, 1285
*.csproj file, 1023, 1030, 1190
CssClass property, WebControl base class, 1213
CssStyle property, 1237
CType() function, 211
curly brackets, 115
currBalance field, 154
Current property, Application type, 1006
currentColor member variable, 994
CurrentContext property, Thread type, 594
currentShape variable, 993–994
CurrentSize member, 703
CurrentThread property, Thread type, 594–596
currentVideoGames local variable, 454
currInterestRate class, 154
currInterestRate variable, 157
currValue type, 1072
Cursor property, 1096
custom constructor, 128
custom exceptions, structured exception handling,

231, 233–234
custom interfaces, defining, 272
custom namespaces, 475–476
custom parameters, 931
custom type conversion

CIL special names, 403–404
conversions among related class types, 397–398
explicit keyword, 398–399, 401
implicit conversions, 397
implicit keyword, 398–399, 401–403
numerical conversions, 397

custom view states, state management in ASP.NET,
1250

custom web controls, 1216
CustomAttributeBuilder, System.Reflection.Emit

namespace, 649
CustomBinding type, 881
<customErrors> element, web.config File, 1204
CustomValidator control, ASP.NET, 1231

D
D string, 78
dash style, 1130
DashStyle object, 1130
data adapter, 783
data binding model, 1055
data caching, ASP.NET, 1259, 1261, 1263
data contracts, 875, 910
Data property, System.Exception, 222, 229–230
data providers, ADO.NET, 733–734
data templates, 1080, 1111
data type conversions, 95, 100
DataAdapter object, ADO.NET data providers, 734
/database option, 848
Database property, DbConnection, ADO.NET, 757
DatabaseReader class, 138, 160
DataBind() method, System.Web.UI.Control in

ASP.NET, 1209
data-binding engine, 1002
data-centric controls, 1213
data-centric single-file test page

adding data access logic, 1182–1183
designing the UI, 1181–1182
manually referencing AutoLotDAL.dll, 1180
overview, 1180
role of ASP.NET directives, 1183–1185

DataColumn object, 784, 788
DataColumn type, 787
_DataConnector interface, 1295
DataContext property, 1104, 1111
DataContext type, 844–846
DataContext-derived type, 846, 852–853
[DataContract] attribute, 910
dataGridColtsView object, 808
dataGridColtsView type, 806
DataGridView control, 798
DataGridView object, 814
DataGridView type, 806
DataGridView widgets, 815
DataGridViewRowPostPaintEventArgs parameter,

808
[DataMember] attribute, 910
DataReader object, ADO.NET data providers, 733
DataRelation object, 814, 816
DataRelation, System.Data, ADO.NET, 737
DataRelation type, 784
DataRelationCollection collection, 784
DataRow class, 784, 805
DataRow.AcceptChanges() method, 792
DataRow.BeginEdit() method, 792
DataRow.CancelEdit() method, 792

■INDEX1342

8849INDEX.qxd 10/18/07 5:51 PM Page 1342

DataRow.EndEdit() method, 792
DataRowExtensions member, 840
DataRow.GetChildRows() method, 819
DataRow.RejectChanges() method, 792
DataRows type, 837
DataRowState property, 792
DataRowVersion property, 793
DataSet member, 793
DataSet objects, 783
DataSetName property, 785
DataSets type, 837
DataSource property, 757, 801, 807
DataSourceID property, 1221, 1224–1225
DataTable class, 828
DataTable object, 912
DataTable.AcceptChanges() method, 802
DataTableCollection collection, 784
DataTableExtensions type, 840
DataTable.NewRow() method, 790
DataTableReader property, 795
DataTableReader, System.Data, ADO.NET, 737
DataTables type, 837
<DataTemplate> element, 1112
<DataTrigger> element, 1142
DataType property, 787
DataTypeFunctionality() method, 86
DateTime structure, 94
DateTime type, 83
DbCommand, ADO.NET, 760
DbConnection, ADO.NET, 757
DbDataAdapter base class, 808
DbDataReader object, ADO.NET, 760–761
DbParameter, ADO.NET, 767
DbType property, 767, 848
Deactivate event, 972
debugging, 215, 626, 1188
DecelerationRatio property, 1138
DeclareImplicitVars() method, 416
Decrement() method, 607
deep copy, cloneable objects (ICloneable), 299
default constructor, 128, 144
default interface, 1295
default keyword, generics, 331
Default value, 792
Default Web Site node, 1165
[default] interface, 1301
default.aspx content page example, ASP.NET,

1222–1224
Default.aspx file, 1182, 1193, 1241, 1274
default.htm file, 1173–1174
defaultValue attribute, Profile Data, 1274
DefaultValue property, 787
DefaultView member, 793
#define, preprocessor directive, 411, 413–414
DefineEnum() method, ModuleBuilder type, 653
DefineResource() method, ModuleBuilder type,

653
DefineType() method, ModuleBuilder type, 653

Delay property, 1071
DelayActivity, WF, 921
delegates

asynchronous call, 342–344
CIL code for simple example, 346
compared with C-style callbacks, 341
complex example, 353–354
contravariance, 359
covariance, 358–359, 362
delegate keyword, 342, 345, 1304
description, 341–342
example, 348–351
information in, 341–342
multicasting, 344–345, 351–353
and multithreaded applications, 585, 587
NullReferenceException, 350–351
overview, 341
as parameters, 354–357
simple example, 345–346
synchronous call, 342
type safe, 347–348

delegation. See containment/delegation
Delete() method, 663, 669, 790, 801
DeleteCommand property, 812
Deleted value, 791
DeleteDirectory() method, 703
DeleteFile() method, 703
deleting records, ADO.NET, 765
Delta property, 975
dependency property, 1060, 1137
DependencyObject type, 1139
DependencyProperty object, 1062
DependencyProperty.Register() method, 1062
deployment, .NET runtime, 31–32
derived class, 186
derived types, 270
descending operator, 463, 468
Description property, 907
*.Designer.cs file, 926, 964, 983
desktop markup, 1000
Detached value, 791
developing software

as a C++/MFC programmer, 4
as a COM Programmer, 5
as a C/Win32 programmer, 3
as a Java/J2EE Programmer, 4
as a Visual Basic 6.0 programmer, 4
as a Windows DNA Programmer, 5–6

DevX website, 1331
diagnostics subelement, 894
DialogResult property, 1114
DialogResult type, 974
DialogResult value, 982
Dictionary object, 932
Dictionary<string, object> type, 932
differences, classes, objects, references, 245
digital signatures and strong names, 505–506
direct event, 1065

■INDEX 1343

Find
itfasterathttp://superindex.apress.com

/

8849INDEX.qxd 10/18/07 5:51 PM Page 1343

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

Direction property, ADO.NET DbParameter, 767
Directory type, System.IO, 667
DirectoryInfo class

Create(), CreateSubdirectory() methods, 663,
666

Delete() method, 663
GetDirectories() method, 663
GetFiles() method, 663, 665
MoveTo() method, 664
Parent property, 664
Root property, 664

DirectX, 1000
DirectX API, 1000
DirectX engine, 1001
disco utility, 1322
DiscreteDoubleKeyFrame type, 1144
DiscreteStringKeyFrame type, 1143
DiscreteXXXKeyFrame type, 1142
[DispId] attribute,

System.Runtime.InteropServices, 1306
Display member, ASP.NET validator, 1231
Display property, 1235
DisplayAsmEvidence() method, 690
DisplayDefiningAssembly() method, 425
DisplayMemberBinding data binding value, 1114
disposable objects, 259–262
Dispose() method, 259, 964, 989
Distributed Component Object Model (DCOM),

868
*.dll assemblies, 946
DLL hell, 5
*.dll server, 1284
DllImport attribute, 543, 1284
/doc compiler flag, 179
DockPanel control, 1056, 1084
<DockPanel> element, 1094, 1096, 1109
DockPanel.Dock value, 1092
DOCTYPE processing instruction, 1168
Document Object Model (DOM), ASP.NET,

1172–1173
documenting VB 2005 source code via XML,

176–180
Domain Name Service (DNS), 1163
DomainUnload event, System.AppDomain, 573,

576–577
DontUseCoreLibDumper.dll assembly, 1327
dot operator and references, 246
DotNetCalc class, 1308–1309, 1311
_DotNetClass interface, 1311
dotnetfx.exe, .NET runtime deployment, 31–32
double data type, 81
double type, 111
double value, 1130
DoubleAnimation object, 1137
DoubleAnimation type, 1138–1139
<DoubleAnimation> element, 1142
DoubleAnimationUsingKeyFrames type, 1144
DoubleClick event, 970

DoubleConverter type, 1107
do/while statement, 102
download cache, 485
Download Now button, 1318
DoWork event, 614
DragDrop event, 970
DragEnter event, 970
DragLeave event, 970
DragOver event, 970
Draw() method, 205, 283, 286
DrawArc() method, 987
DrawBeziers() method, 987
DrawCurve() method, 988
DrawEllipse() method, 988
DrawIcon() method, 988
DrawIn3D() method, 279
DrawingBrush type, 1127
DrawingContext object, 1122
Drawing-derived types, 1120, 1130
DrawingGroup type, 1130, 1133
DrawingImage object, 1133
DrawingVisual type, 1122
DrawLine() method, 988–989
DrawLines() method, 988
DrawPath() method, 988
DrawPie() method, 988
DrawRectangle() method, 988
DrawRectangles() method, 988
DrawString() method, 988–989
DriveInfo class, System.IO, 668–669
DriveInfo type, input/output, System.IO, 662
DriveInfoApp.exe application, 697
driverInfo property, 1303
DropDownItems property, 960
DumpTypeToFile() method, 1323
duplex messaging, 882
Duration property, 1138–1139, 1144
dynamic assemblies

ConstructionBuilder example, 654–655
definition, 648
emitting a method, 655–656
emitting type and member variables examples,

654
overview, 617
vs. static assemblies, 648
using a dynamically generated assembly,

656–657
dynamic loading, 536–537

E
e string, 78
ECMA standardization, .NET Framework, 32
ECMA-334, 1316
ECMA-335, 1316
ECMA-compatible implementation, 1330
EditingCommands object, 1100
ElementName value, 1103
#elif, preprocessor directive, 411–413

■INDEX1344

8849INDEX.qxd 10/18/07 5:51 PM Page 1344

Ellipse object, 1111
Ellipse types, 1066, 1136, 1156
EllipseGeometry type, 1131
#else, preprocessor directive, 411–413
else statement, 103
Emit() method,

System.Reflection.Emit.ILGenerator, 650
EmitCall() method,

System.Reflection.Emit.ILGenerator, 650
emitting a dynamic assembly example, 650–652
Emitting HTML, ASP.NET, 1199
EmitWriteLine() method,

System.Reflection.Emit.ILGenerator, 650
empAge using property syntax, 168
Employee class, 165
EmpType enumeration, 121
Enable Click Once Security Settings check box, 708
EnableClientScript member, ASP.NET validator,

1231
Enabled property, WebControl base class, 1213
EnableTheming attribute, <%@Page%> directive,

1184
EnableTheming member, System.Web.UI.Control,

1209
EnableTheming property, System.Web.UI.Control

in ASP.NET, 1209
EnableViewState attribute, <%@Page%> directive,

1184, 1249
EnableViewState property, 1250
encapsulation, 141, 160

class properties, 168–170
controlling visibility levels of property get/set

statements, 170–171
get, set properties vs. accessor and mutator

methods, 168–170
internal representation of properties, 169–170
overview, 164–165
read-only and write-only properties, 171
read-only class properties, 171
Shared properties, 171–172
static class properties, 171
using traditional accessors and mutators,

165–166
using type properties, 167–168
visibility of get/set statements, 170
write-only class properties, 171

End construct, 206
End keyword, 141
End() method, 1199
EndClose() method, 892
EndEdit() method, 805
EndExceptionBlock() method,

System.Reflection.Emit.ILGenerator, 650
#endif, preprocessor directive, 411–413
EndInvoke(), multithreaded applications, 587–588
EndOpen() method, 892
<endpoint> element, 884, 889, 894, 897
#endregion, preprocessor directive, 411

EndScope() method,
System.Reflection.Emit.ILGenerator, 650

EnforceConstraints property, 785
Enter key, 202
entity classes, 837
EntitySet<T> type, 851
EnumBuilder, System.Reflection.Emit namespace,

649
enumData object, 841
Enumerable extension methods, 460, 464
enumerable types, 289, 291, 456, 459–461, 471
Enumerable.Distinct<T>() method, 465
Enumerable.Except() method, 469
Enumerable.OfType<T>() method, 458
EnumerableRowCollection object, 840
Enumerable.Where<T>() method, 460
Enumerable.Where<T> variable, 452
enumerating controls with Panel control, ASP.NET,

1210
enumeration, 18–19, 121
Enum.Format() method, 124
Enum.GetUnderlyingType() method, 123
enums, common intermediate language (CIL), 633
Environment type, 75
Environment.GetCommandLineArgs() method,

1015
Equals() method, 87, 91, 213, 215, 441–443, 467
equals operator, 466
Error event, ASP.NET, 1202
%ERRORLEVEL% environment variable, 71
ErrorMessage dictionary, 932
ErrorMessage member, ASP.NET validator, 1231
ErrorMessage property, 933, 1232
escape characters, 89
event interface, 305, 307–308
event keyword, 363
event trigger, 1141–1142
EventArgs type, 961
EventBuilder, System.Reflection.Emit namespace,

649
event-driven entity, 1208
EventDrivenActivity, WF, 921
EventHandler<T> delegate, 369
EventHandlingScopeActivity, WF, 921
EventInfo class, System.Reflection namespace, 528
events

compared with delegates, 362
event keyword, 362
example, 363–364
explanation, 364–365
listening to incoming events, 365–366
Microsoft recommended pattern, 367–368
overview, 341
registration, 365–367

<EventTrigger> element, 1142
evidence, role of in code access security, 689–692
<example> code comment, XML Elements, 177
Exception class, 222, 230

■INDEX 1345

Find
itfasterathttp://superindex.apress.com

/

8849INDEX.qxd 10/18/07 5:51 PM Page 1345

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

_Exception interface, 222
<exception> code comment, XML Elements, 177
exceptions, 219, 240
Exchange() method, 607
ExecuteAssembly(), System.AppDomain, 572
ExecuteCode property, 927, 929, 936
Executed event, 1101
ExecuteMethodCall() method, 852
ExecuteNonQuery() method, 760, 853
ExecuteReader(), DbCommand, ADO.NET, 760
ExecuteScalar(), DbCommand, ADO.NET, 760
ExecuteXmlReader(), DbCommand, ADO.NET, 760
existing class definitions, 160
Exit event handler, 1023
ExitCode property, 76
ExitCode, System.Diagnostics.Process, 564
ExitEventArgs type, 1012
ExitEventHandler delegate, 1012
ExitTime, System.Diagnostics.Process, 564
ExpandDirection property, 1074
Expander control, 1056
Expander type, 1058, 1074, 1097
Expander widget, 1094
explicit casting, 96, 209, 276–277
explicit keyword, custom type conversion,

398–399, 401
Expression Blend, 1052–1053
Expression property, 787
ExtendedProperties property, 785
Extensible Application Markup Language (XAML),

999
attached properties, 1038–1039
Browser Applications (XBAPs), 1004
building XAML-free WPF applications

creating simple user interface, 1013–1015,
1021

extending Window class type, 1013
overview, 1011–1013

defining application object in, 1023, 1033
defining MainWindow in, 1022–1023
elements and attributes, 1035
experimenting with using XamlPad, 1032
mapping to C# code, 1025–1026
markup extensions, 1039–1041
overview, 1021–1022
processing at runtime, 1048–1052
processing XAML files via msbuild.exe,

1023–1024
property-element syntax, 1036–1037
type converters, 1039

extension methods, 453
Extension property, FileSystemInfo class, 663
Extensions class, 432

F
F or f string format, .NET, 78
FaultHandlerActivity, WF, 921
field directive, common intermediate language

(CIL), 636

FieldBuilder, System.Reflection.Emit namespace,
649

FieldInfo class, System.Reflection namespace, 528
Field<T>() extension method, 841
File class, System.IO, 673, 675
File System option, 1188
File Transfer Protocol (FTP), 1164
FileExit_Click() method, 1095
FileInfo class, System.IO, 669–672
FileName property, 997
FilePath member, HttpRequest Type, 1196
FileStream class, System.IO, 676–677
FileStream type, input/output, System.IO, 662
FileSystemInfo class, 663
FileSystemWatcher class, System.IO, 683, 685
FileSystemWatcher type, input/output, System.IO,

662
Fill() method, 808, 810, 813
Fill property, 1125
FillBehavior property, 1138
FillContains() property, 1131
Filter property, 997
finalizable objects, 256
finalization details, 258
Finalize() method, 213, 256–258
finally block, structured exception handling,

239–240
finalPoint variable, 437
FindMembers() method, System.Type class, 529
FindResource() method, 1155
FinishButtonClick event, 1229
firstPoint variable, 437
fixed keyword, 409–410
float data type, 81
float variable, 81
flow documents, 1083
Flush() method

ASP.NET HTTP Response, 1199
BinaryWriter class, 682
HttpResponse Type, 1199
Stream class, System.IO, 676
TextWriter, System.IO, 678

Font property, WebControl base class, 1213
FontSize property, 1148, 1154
Foo() method, 426
for loop, 73
for statement, 100
forcing, 253–254
forcing garbage collection, 255
foreach keyword, 73, 101
foreach looping construct, 417
ForeColor member, ASP.NET validator, 1231
ForeColor property, WebControl base class, 1213
Foreground property, 1154
ForegroundColor property, 76
Form class, 957, 978
form control declarations, ASP.NET, 1185
form data, access in ASP.NET, 1197–1198
Form event, 707

■INDEX1346

8849INDEX.qxd 10/18/07 5:51 PM Page 1346

Form member, HttpRequest Type, 1196
Form property, 1197
form statement, 1195
Form type, 968
<form> element, 1169, 1174, 1181, 1185, 1210,

1222–1223, 1249
Form1.cs file, 798, 979, 991
Form1.cs icon, 963
Format() method, 87
FormatException exception, 78
FormatNumericalData() method, 78
FormBorderStyle property, 971, 979
FormBorderStyle.FixedDialog dialog box, 979
Form-derived class, 1245
Form-derived type, 815, 958, 963
FrameworkElement base class, 1080, 1123, 1134
FrameworkElement class type, 1062
FrameworkElement element, 1119
FrameworkElement member, 1061
FrameworkPropertyMetadata object, 1063
Friend access modifier, 163
from operator, 463, 465
From property, 1138–1139
FullName property, FileSystemInfo class, 663
fully qualified names, 213, 476–478
Func<> delegate, 459
Func<> type, 464
Func<T, K> type, 461
[Function] attribute, 852
/functions option, 848
FunWithBrushes.xaml file, 1129
FunWithDrawingGeometries.xaml file, 1134
FxCop development tool, 65

G
gacutil utility, 1322, 1325
garbage collection

AddMemoryPressure() method, 252
AddRef() not required, 247
application domain, 256
application roots, 249
code example, 252–255
Collect() method, 252–255
CollectionCount() method, 252
compared with C++, 247
finalizable objects, 256
finalization details, 258
forcing, 253–255
GetGeneration() method, 252
GetTotalMemory() method, 252
MaxGeneration property, 252
object generations, 251–252
object graph use, 249–250
overriding finalize(), 256–258
overview, 245
PInvoke, 256
reachable objects, 246
Release() not required, 247

SuppressFinalize() method, 252
System.GC, 252
threads suspended, 248
timing of, 247
unmanaged resources, 252, 256–258, 262
WaitForPendingFinalizers() method, 252–253
when heap objects are removed, 246, 248

*.g.cs file, 1029, 1059
GDI+, System.Drawing.Graphics class, 987
generic method

custom, creating, 327
example code, 328–329
type parameter omission, 328–329

generic mono C# compiler (gmcs), 1321
generics

base classes, 337
boxing and unboxing issues, 316, 318–319,

321–323
constraining type parameters using where,

334–336
constraints for generic type parameters,

334–336
custom generic collections, 332–334
default keyword, 331
delegates, 360–361
generic methods, 327–329
interfaces, 338
lack of operator constraints, 336–337
overview, 309
System.Collections.Generic.List<>, 322–324
uses of, 316, 318–319, 321–322

Geometry property, 1132
<GeometryDrawing> type, 1131
<GeometryGroup> type, 1133
GET and POST, ASP.NET, 1174–1175
Get button, 1246
Get scope, 167
get_SocialSecurityNumber() method, 170
get_XXX()/set_XXX() method, 169
GetAllFords() method, 863
GetAllInventory() method, 814
GetAndValidateUserName() method, 929, 933
GetAssemblies(), System.AppDomain, 572
GetBoolFromDatabase() method, 138
GetChanges() method, 786
GetChildRelations() method, 786
GetColumnsInError() method, 789
GetCommandLineArgs() method, 74–75
GetConstructors() method, System.Type class, 529
GetCurrentProcess(), System.Diagnostics.Process,

565
GetCurrentThreadId(), System.AppDomain, 572
GetCylinders() method, 1303
GetDirectories() method, DirectoryInfo class, 663
GetDirectoryNames() method, 703
GetDomain(), GetDomainD() methods, Thread

type, 594
GetEnumerator() method, 119, 289, 703, 958

■INDEX 1347

Find
itfasterathttp://superindex.apress.com

/

8849INDEX.qxd 10/18/07 5:51 PM Page 1347

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

GetEvents() method, System.Type class, 529
GetFactory() method, ADO.NET, 750
GetFields() method, System.Type class, 529
GetFiles() method, 663, 665, 703
GetHashCode() method, 213, 216, 441–443, 445,

467
GetIDsOfNames() method, 1298
GetInterfaces() method, System.Type class, 529
GetIntFromDatabase() method, 137
GetInventory() method, 912, 914
GetInvocationList() method,

System.MulticastDelegate/System
Delegate, 345

GetMembers() method, System.Type class, 529
GetMethods() method, System.Type class, 529
GetNestedTypes() method, System.Type class, 529
GetNumberOfPoints() method, 272
GetObjectData() method, 726–727
GetParentRelations() method, 786
GetPetName stored procedure, 849
GetProcesses(), System.Diagnostics.Process, 565
GetProperties() method, System.Type class, 529
GetRandomNumber() function, 153
GetRenderBounds() property, 1131
GetSchema() method, DbConnection, ADO.NET,

757
GetStore() method, 703
GetStringArray() method, 118
GetStringSubset() method, 470
GetSubsets() method, 466
GetTable() method, 846
GetTable<T>() method, 846
GetType() method, 117, 123, 213, 272, 441,

529–530
GetUserAddress() method, 1278
GetUserData() method, 77
GetUserStoreForAssembly() method, 703–704
GetUserStoreForDomain() method, 703–704
GetValue() method, 1063
GetValues() method, 126
GetVisualChild() method, 1122
GiveBonus() method, 199
global assembly cache (GAC), 28, 482, 516, 518,

1310, 1317
Global class, 1259
Global.asax event handlers in ASP.NET, 1252–1253
Global.asax file, 1245, 1250–1251, 1253, 1259
<globalization> element, web.config File, 1204
globally unique identifiers (GUIDs), 297–299, 1285
Global.Session_Start() method, 1266
GlyphRunDrawing type, 1130
godmode option, 74
goto keyword, 101
<GradientStop> type, 1129
graphical user interface (GUI), 76, 955
Graphics object, 808, 1118
Graphics type, 987
GreenStyle property, 1154

Grid control, 1056, 1084
Grid type, 1097
<Grid> element, 1058, 1071, 1114
Grid.Column property, 1090
<Grid.ColumnDefinitions> element, 1090
Grid.ColumnSpan property, 1109
Grid.Row property, 1090
<Grid.RowDefinitions> element, 1090
<GridSplitter> type, 1091
GridView control, 1056, 1224–1225, 1227
<GridViewColumns> element, 1114
group operator, 463
<group> element, 1278
GroupBox control, 1056
GroupBox type, 817
GroupName property, 1073
GUID compared with strong names, 505–506
[Guid] attribute, 1306, 1309
guidgen.exe utility, 1309–1310

H
Handle, System.Diagnostics.Process, 564
HandleCount, System.Diagnostics.Process, 564
Handled property, 977, 1066
has-a relationship code example, 196
HasChanges() method, 786
HasContent property, 1008
HasControls() method, System.Web.UI.Control in

ASP.NET, 1209
HasErrors property, 785, 789
hash code, 216
Hashtable System.Collections class type, 312
Hashtable type, 216
HasValue property, 137
Header property, 1073
Headers member, HttpRequest Type, 1196
HeaderText property, 1235
Height member, 1061
Height property, 1062, 1085, 1137, 1213
Height value, 1087
HelloWebService.asmx file, 871
HelloWorld() method, 871
HelloWorld.asmx file, 872
HelpExecute() method, 1102
HelpLink property, System.Exception, 222, 228–229
Hexagon class, 160
Hexagon type, 204–205, 272
Hide() method, 971
historical overview of programming

C++/MFC, 4
Component Object Model (COM), 5
C/Win32, 3
Java/J2EE, 4
Visual Basic 6.0, 4
Windows DNA, 5–6

Horizontal property, 1089
HorizontalAlignment property, 1156
<host> element, 894

■INDEX1348

8849INDEX.qxd 10/18/07 5:51 PM Page 1348

*.htm file, 1168, 1170
HTML and ASP.NET, overview, 1167
HTML document structure, 1168
HTML form development, 1169
HTML tables, positioning ASP.NET controls using,

1243
<html> tag, 1168
HTTP Request processing, ASP.NET, 1195–1198
HTTP Response, ASP.NET, 1198–1200
http:// scheme, 889
HttpApplication members, ASP.NET, 1253
HttpApplication type, 1207, 1245, 1252, 1254, 1269
HttpApplication-derived type, 1256, 1263
HttpApplicationState members, ASP.NET, 1255
HttpApplicationState type, 1254–1256, 1258
HttpBrowserCapabilities object, 1196
HttpCookie type, 1266
HttpCookie.Expires property, 1268
HttpMethod member, HttpRequest Type, 1196
HttpRequest class type, 1196
HttpRequest.Cookies property, 1268
HttpRequest.Form property, 1197
HttpRequest.NameValueCollection type, 1212
HttpRequest.QueryString property, 1197
HttpResponse type, 1198
HttpResponse.Write() method, 1199
HttpResponse.WriteFile() method, 1199
HttpServerUtility.ClearError() method, 1203
HttpServerUtility.GetLastError() method, 1203
HttpSessionState class type, 1254
HttpSessionState object, 1247, 1263, 1266, 1272
HybridDictionary member,

System.Collections.Specialized
Namespace, 316

HyperLink widget, 1210
Hypertext Markup Language. See HTML
Hypertext Transfer Protocol. See HTTP

I
IasyncResult interface, 342–344
IAutoLotService.cs file, 911
IBasicMath.cs file, 901
ICloneable interface, 134, 213, 271, 296, 310
ICollection System.Collections interface, 310
ICollection System.IDictionaryinterface, 311
ICollection System.IDictionaryEnumerator

interface, 311
ICollection System.IList interface, 311
ICommand interface, 1099
IComparer interface, System.Collections, 310
IComponentConnector interface, 1026
IConnectionPointContainer class, 1291
IConnectionPoint, IConnectionPointContainer

class interface, 1307
IContainer member variable, 964
ICustomFormatter interface, 79
ID attribute, 1114

ID member, System.Web.UI.Control, 1209
Id, ProcessThread type, 568
ID property, System.Web.UI.Control in ASP.NET,

1209
Id, System.Diagnostics.Process, 564
IDataAdapter, System.Data, ADO.NET, 737
IDataParameter, System.Data, ADO.NET, 737
IDataReader, System.Data, ADO.NET, 737
IDbCommand interface, ADO.NET, 738–739
IDbConnection interface, 269–270, 737
IDbConnection object, 852
IDbConnection-comparable object, 843
IDbDataAdapter, IDataAdapter interface,

ADO.NET, 739
IDbDataParameter, IDataParameter interface,

ADO.NET, 739
IDbDataReader, IDataReader interface, ADO.NET,

740
IDbTransaction interface, ADO.NET, 738
IdealProcessor, ProcessThread type, 568
identity, private assemblies, 499
IDictionary interface, System.Collections, 310
IDictionaryEnumerator interface,

System.Collections, 310
IDispatch interface, 1298
IDisposable interface, unmanaged resources,

259–261
IDL attributes, 1295
IDL library keyword, 1295
IDL tokens, 1294
IDriverInfo interface, 1300, 1303
IDropTarget interface, 270
IEightBall interface, 885, 897
IEnumerable interface, 101, 310, 321, 453, 458
IEnumerable type, 470
IEnumerable<T> element, 839
IEnumerable<T> interface, 448
IEnumerable<T> object, 458
IEnumerable<T> variable, 453, 457
IEnumerable<T>-compatible object, 464
IEnumerator interface, 101, 310, 384
IEnumVariant class interface, 1307
IErrorInfo, ICreateErrorInfo interface, 1292
IErrorInfo, ISupportErrorInfo class interface, 1307
#if, preprocessor directive, 411–413
if statement, 103
IfElse activity, 921, 945
IHashCodeProvider interface, System.Collections,

310
ilasm utility, 1322
ilasm.exe compiler, common intermediate

language (CIL), 617
ilasm/ilasm2 compilers, 1321
ILGenerator, System.Reflection.Emit namespace,

649
IList interface, System.Collections, 310
IList System.Collections interface, 310
Image control, 1056, 1132

■INDEX 1349

Find
itfasterathttp://superindex.apress.com

/

8849INDEX.qxd 10/18/07 5:51 PM Page 1349

http://scheme
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

Image property, 985
Image type, 987
Image widget, 1145
ImageAnimator type, 987
ImageBrush type, 1127
ImageDrawing type, 1130
ImageOrderAutoDialog.cs file, 983
immediate mode graphics systems, 1117
Implements keyword, 1300
implicit cast, 210
implicit keyword, custom type conversion,

398–399, 401–403
implicit typing, 415
implicitly typed local arrays, 419
<Import> subelements, *.xaml files, 1024
in operator, 463, 465
[in] attribute, 1296, 1306
Include attribute, <ApplicationDefinition>

element, 1024
Increment() method, 607
indexer methods

example, 384
IEnumerator, IEnumerable interfaces, 384
indexer definitions on interface types, 388
indexers with multiple dimensions, 387
indexing objects using string values, 385–386
internal representation of, 387
overloaded, 386
overview, 383
System.Collection.ArrayList, 384
System.Collections.Specialized.ListDictionary,

386
this[] syntax, 384

inheritance, 160–161, 185
adding sealed class, 195–196
base keyword in class creation, 192
colon operator, 192
containment/delegation inheritance model,

196
controlling base class creation with MyBase,

192–194
has-a relationship code example, 196
is-a relationship code example, 190, 192
multiple base classes not allowed, 187
NotInheritable keyword, 188
overview, 185–186, 190–192
protected keyword, 194–195
regarding multiple base classes, 187–188
sealed classes, 195–196, 202
specifying parent class, 186–187

inheritance chain, page type in ASP.NET, 1194
Inherits attribute, <%@Page%> directive, 1184
Init event handler, System.Web.UI.Page base class,

1248
Init event, Page type, 1201
InitializeComponent() method, 926, 963,

1026–1027, 1029, 1101, 1193
InitialValue property, 1232

innerEllipse object, 1066
InnerException property, System.Exception, 222
InnerText property, 1115
in-place editing example, ASP.NET, 1227–1228
input/output, System.IO

asynchronous I/O, 685–686
BinaryReader, BinaryWriter, 682
BinaryReader, BinaryWriter types, 661
BufferedStream type, 661
Directory, DirectoryInfo types, 661–663
Directory type, 667
DriveInfo class, 668–669
DriveInfo type, 662
File class, 673, 675
File, FileInfo types, 662–663
FileInfo class, 669
FileStream class, 676–677
FileStream type, 662
FileSystemWatcher class, 683, 685
FileSystemWatcher type, 662
MemoryStream type, 662
namespace description, 661
overview, 661
Path type, 662
reading from a text file, 679
Stream class, 675
StreamReader, StreamWriter, 677
StreamWriter, StreamReader types, 662
StringReader, StringWriter, 680
StringWriter, StringReader types, 662
writing to a text file, 679

Insert() method, 87, 1259
InsertAuto() method, 913
InsertCar() method, 912
InsertCommand property, 812
inserting records, ADO.NET, 764
InsertNewCars() method, 856
installing .NET 3.5 Framework SDK, 35
InstallSqlState.sql file, 1271
installutil.exe command-line tool, 907
Instancing property, 1300
int data type, 80
int parameter, 95
intArray declaration, 116
Integer data type, 141
Integer parameter, 95
IntelliSense, 201
interface

in arrays, 281
cloneable objects (ICloneable), 295, 297–299
colon operator, 274
comparable objects (IComparable), 299–300
custom, 272–273
custom properties and sort types, 304
deep copy, 299
definition, 269
designing hierarchies, 286–287, 289
determining using as keyword, 277

■INDEX1350

8849INDEX.qxd 10/18/07 5:51 PM Page 1350

determining using explicit cast, 276–277
determining using is keyword, 277–278
enumerable types (IEnumerable and

IEnumerator), 289, 291
hierarchies, 286
implementing, 275
invoking objects based on, 276
multiple sort orders (IComparer), 302–303
overview, 269
shallow copy, 295, 297–298
struct, derive from System.ValueType, 274–275
System.Collections interfaces, 309
System.Object base class, 274
types, 432

contrasting to abstract base classes, 270
multiple inheritance with, 287–289
overview, 18

using as a parameter, 278–280
using as a return value, 280–281
Visual Studio 2008, 282

interface keyword, 269
InterfaceNameClash, 283
interfaces and data providers, ADO.NET, 741–742
interfaces, common intermediate language (CIL),

632
[InterfaceType] attribute,

System.Runtime.InteropServices, 1306
Interlocked type, 594, 607
intermediate language (IL), 11
Intermediate Language Disassembler utility

(ildasm.exe), 90, 490
CIL code display, 29
icons, 29
manifest display, 30
overview, 28
type metadata display, 30

International Organization for Standardization
(ISO), 1316

Internet Information Services (IIS)
default web site, 1165
description, 1164
virtual directories, 878, 1165

Internet Information Services applet, 1165
Internet zone, 692, 1004
interop assemblies, 1285
Interop. prefix, 1287
Interop.SimpleComServer.dll assembly, 1287
Interrupt() method, Thread type, 595
Interval property, 1071
into operator, 466
intrinsic types in CTS, VB.NET, C#, C++, 19
Invalidate() method, 971, 990, 995
InvalidCastException, boxing and unboxing, 319
Inventory class, 845
inventory content page example, ASP.NET,

1224–1228
Inventory entity class, 846, 856
Inventory type, 844, 850

<Inventory> element, 862, 1114
Inventory.aspx page, 1224–1225, 1227
Inventory.cs file, 844
InventoryDAL class type, 913
InventoryDAL type, 811
InventoryDALDisLayer class, 811–812, 814
InventoryDataSet class, 826
InventoryDataSet type, 832
InventoryDataSet.Designer.cs file, 828
InventoryDataSet.xsd file, 827
InventoryDataTable class, 828
InventoryRecord type, 912–913
inventoryTable object, 791
inventoryTable variable, 800
InventoryTableAdapter type, 830
Inventory.xml file, 862, 1112, 1114–1115
Invoke() method, 1298
InvokeMember() method, System.Type class, 529
InvokeWebServiceActivity, WF, 921
invTable object, 846
IP address, 1163
IPointy interface, 275
IPointy-compatible objects, 281
IRenderToMemory interface, 286
is keyword, 211–212, 231, 277–278
is-a relationship code example, 190, 192
IsAbstract, System.Type class, 528
IsAlive method, Thread type, 595
IsArray, System.Type class, 528
IsBackground method, Thread type, 595
IsCancel property, 1069, 1114
IsChecked property, 1070
IsClass, System.Type class, 528
IsClientConnected property, HttpResponse Type,

1198
IsCOMObject, System.Type class, 528
IsDbGenerated property, 848
IsDefault property, 1069, 1114
IsEnum, System.Type class, 528
ISerializable interface, 222
IService1.cs file, 901
IService.cs file, 911
IsGenericParameter, System.Type class, 528
IsGenericTypeDefinition, System.Type class, 528
IsHighlighted property, 1076
IsInitiating property, 887
IsInterface, System.Type class, 528
IsMouseOver trigger, 1158
IsNestedPrivate, System.Type class, 528
IsNestedPublic, System.Type class, 528
IsNull() method, 791
IsNullable property, ADO.NET DbParameter, 767
isolated storage

ClickOnce deployment, 707–708
interacting with using storeadm.exe, 701
issue of trust, 687
locating, 700
opening a store using IsolatedStorageFile

■INDEX 1351

Find
itfasterathttp://superindex.apress.com

/

8849INDEX.qxd 10/18/07 5:51 PM Page 1351

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

creating custom directory structure, 706
deleting user data from storage, 705–706
overview, 702–704
reading data from storage, 705
writing data to storage, 704

overview, 687, 698–699
scope of, 699
System.IO.IsolatedStorage type, 702
uses, 688

IsolatedStorage type, 702
IsolatedStorageFile type, 702
IsolatedStorageFile.GetStore() method, 703
IsolatedStorageFile.GetUserStoreForAssembly()

method, 704
IsolatedStorageFilePermission attribute, 708
IsolatedStorageFile.Remove() method, 705
IsolatedStorageFileStream object, 704
IsolatedStorageFileStream type, 704
IsolatedStorageScope type, 702
IsolatedStorageScope.User value, 705
IsOneWay property, 887
IsPostBack property in HTTP Request processing,

ASP.NET, 1198
IsPostBack property, Page Type, 1195
IsPressed property, 1069
IsPressed trigger, 1158
IsPrimaryKey property, 845, 848
IsPrimitive, System.Type class, 528
IsSealed, System.Type class, 528
IsSecureConnection member, HttpRequest Type,

1196
IsTerminating property, 887
IsValueType, System.Type class, 528
IsVersion property, 848
ItemArray property, 789
ItemCollection object, 1075
<ItemGroup> element, 1024
ItemHeight value, 1088
Items property, 1229, 1248
ItemsControl abstract base class, 1075
ItemsSource attribute, 1114
ItemsSource property, 1109
ItemWidth value, 1088
iteration, CIL, 642
iterator methods

building with yield keyword, 292–293
internal representation of, 294–295

ITypeInfo, IProvideClassInfo class interface, 1307
IUnknown interface, 1292
IUnknown, IDispatchEx class interface, 1307
IValueConverter interface, 1106–1107

J
jagged array, 117
javadoc utility, 176
Java/J2EE language deficiencies, 4
Jitter, just-in-time (JIT) compiler, 15
Join() method, Thread type, 595

join operator, 466
*.jpg file, 1129

K
key frames, 1142
Key property, 1149–1150, 1152
keyboard events, window-level, 1020–1021
KeyCode property, 978
KeyDown event, 977
KeyEventArgs parameter, 977
KeyEventHandler delegate, 977
/keyfile flag, 1297
KeyUp event, 977
Kill() method, System.Diagnostics.Process, 565

L
Label control, 1056
Label object, 1140
Label type, 817, 1102, 1137–1138, 1183
Label widgets, 1058, 1065, 1200, 1210, 1212, 1246
lambda expressions, 341, 374–381
lambda operator (=>), 9
language attribute, 1184
language fundamentals

boxing and unboxing, 316
custom namespaces, 475–476
fully qualified type names, 476–478
namespaces, default Visual Studio 2008, 480
nested namespaces, 479–480
static classes, 158
static constructors, 157
static data, 154–155
static keyword, 152, 154–155, 157–158
static methods, 153
using aliases, 478–479

Language Integrated Query (LINQ), 433, 447
langversion:linq option, 1318
LastAccessTime property, FileSystemInfo class, 663
LastChildFill attribute, 1092
LastWriteTime property, FileSystemInfo class, 663
late binding

description, 539
invoking methods with no parameters, 540–541
invoking methods with parameters, 541–542
overview, 523
System.Activator class, 540

layout managers, 1002
LayoutMDI() method, 972
LayoutTransform property, 1135
lblOrder, Label type, 1229
lblTextBoxText, Label widget, 1212
lblTransparency button, 1139
lblUserData Label type, 1276
ldnull opcode, 249
ldstr opcode, 92, CIL
legacy types, 316
Length, FileInfo class, System.IO, 669
Length() method, Stream class, System.IO, 676

■INDEX1352

8849INDEX.qxd 10/18/07 5:51 PM Page 1352

Length property, 73, 119
libmonogac subdirectory, 1319
libraries, 1316
LibraryBuild.rsp file, 1324
life cycle of a web page, ASP.NET, 1200–1203
lightweight events, 435
LinearGradientBrush object, 1128
LinearGradientBrush type, 1037, 1127, 1148
LinearXXXKeyFrame type, 1142
LineGeometry type, 1131
LineJoin property, 1130
LinqOverDataTable() method, 839
/list option, 701
<list> code comment, XML Elements, 177
ListBox control, 1055, 1209, 1229, 1248
ListBox type, 1078
<ListBoxItem> type, 1075, 1077
<ListBox.ItemTemplate> element, 1112
ListDictionary member,

System.Collections.Specialized
Namespace, 316

ListMethods() method, 535
List<T> array, 913
List<T> member variable, 799, 995, 997
List<T> type, 447, 456
ListView object, 1112
<ListView.View> element, 1114
Load event, 972, 1198, 1201, 1276
Load event handler, 830, 1249, 1261
Load() method, 572, 575, 861
LoadAsm() method, 690
Loaded event, 1108, 1111
LocalBuilder, System.Reflection.Emit namespace,

649
LocalIntranet_Zone, 692
LocalNullableVariables() method, 137
locals directive, common intermediate language

(CIL), 640
LocalVarDeclarations() method, 82
Location property, 976
location transparency, 868
lock token and multithreaded applications,

604–607
Lock(), Unlock() methods, ASP.NET

HttpApplicationState members, 1255
locking memory (unsafe), 409–410
logical grouping, 1169
logical resources, 1145
long data type, 80
lstColors ListBox object, 1079
lstVideoGameConsole type, 1076
lstVideoGameConsoles object, 1078
Lutz Roeder’s Reflector for .NET development

tool, 65

M
Mac OS X Mono installer, 1319
machine.config file, 522, 1184, 1272

MachineName property, 76
MachineName, System.Diagnostics.Process, 564
MagicEightBallServiceClient.exe file, 896, 900
MagicEightBallService.cs file, 885
MagicEightBallServiceHost.exe file, 899, 902
MagicEightBallServiceLib namespace, 888
MagicEightBallServiceLib.dll assembly, 888, 899
/main option, 70
MainForm type, 815
MainForm.cs file, 798
MainMenuStrip property, 960
MainModule, System.Diagnostics.Process, 564
maintaining session data, ASP.NET, 1263–1266
MainWindow class, 959, 1014, 1108, 1111
MainWindow, defining in XAML, 1022–1023
MainWindow property, Application type, 1006
MainWindow type, 958, 961, 976, 982, 992
MainWindow_Paint() method, 988
MainWindow.cs file, 963, 973, 979, 991
MainWindow.Designer.cs file, 963
MainWindow.g.cs file, 1024
MainWindowHandle, System.Diagnostics.Process,

564
MainWindowTitle, System.Diagnostics.Process,

564
MainWindow.xaml.cs file, 1029
managed code, 8–9, 1283
managed heap, 246–252
manifest, assemblies, 481
MapPath() method, 1196
mapping C# types to CIL types, 635
mapping parameters to variables, CIL, 641
Margin control, 1094
Margin value, 1114
MarkedAsDeletable() method, 802
master constructor, 150
*.master file, 1216, 1218, 1222
master pages, 1178, 1216–1222
MasterPageFile attribute, 1184, 1223
MasterPageFile property, Page Type, 1195
MasterPage.master file, 1217
MathOperation property, 937
MathService.cs file, 901
MathServiceLibrary namespace, 901
MathServiceLibrary.dll assembly, 904
MathWinService.cs file, 904
MatrixTransform type, 1135
MaximizeBox property, 979
MaximumSize member, 703
maxstack directive, CIL, 640
MaxValue property, 84
mcs/gmcs compilers, 1321
MDIChildActive event, 972
Me keyword

chaining constructor calls using, 149–151
observing constructor flow, 151–152, 175
overview, 147–149

MediaCommands object, 1100

■INDEX 1353

Find
itfasterathttp://superindex.apress.com

/

8849INDEX.qxd 10/18/07 5:51 PM Page 1353

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

MediaElement control, 1056
member shadowing, 208–210
member variables, 141
MemberInfo class, System.Reflection namespace,

528
MemberwiseClone() method, Object Class, 213
memory allocation (unsafe), 409–410
memory management

in CIL, 247–248
Finalize() vs. IDisposable interface, 262–263
first rule, 246
fourth rule, 260
resource wrapper code example, 262–263
second rule, 248
third rule, 256

MemoryStream type, input/output, System.IO, 662
Menu (or TreeView) widget, 1219
Menu control, 1056, 1218, 1220
Menu property, 971
Menu type, 1220
<Menu> definition, 1096
MenuEventArgs parameter, 1221
MenuItem object, 1094
MenuItemClick event, 1221
MenuStrip control, 965
MenuStrip object, 960
MenuStrip type, 959
Merge() method, 786
Message property, 98, 222, 234
Message Transmission Optimization Mechanism

(MTOM), 882
MessageBox type, 1012, 1067
MessageBox.Show() method, 974, 1082
metadata, 524, 530–535, 891, 894, 1292, 1316
method attribute, 1195
method group conversions, C# 2.0, 372–373
method parameters, CIL, 638
Method property,

System.MulticastDelegate/System
Delegate, 345

method scope, 148
MethodBuilder, System.Reflection.Emit

namespace, 649
MethodInfo class, System.Reflection namespace,

528
methods

CIL, 637
hidings, 208
overloading, 107
overriding, 199

Microsoft C# command-line compiler, 1321
Microsoft Express IDEs, overview, 50
Microsoft Foundation Classes (MFC), 1284
Microsoft Message Queuing (MSMQ), 869
Microsoft recommended event pattern, 367–368
Microsoft Transaction Server (MTS), 869
Microsoft.CSharp.Targets file, 1024
Microsoft.WinFX.targets file, 1024

midl.exe compiler, 1292
MIInterfaceHierarchy project, 289
milcore.dll binary, 1010
MinimizeBox property, 979
MinimumCapacity member, 793
MinValue property, 84
mnemonics, 619–620, CIL
mnuFileExit type, 960
mnuFileExit_Click() method, 960
mode attribute, 1270
Modified value, 791
ModifierKeys property, 969
Modifiers property, 978
Module class, System.Reflection namespace, 528
module directive, common intermediate language

(CIL), 630
module set for a process example code, 569
ModuleBuilder type, 653–654
Monitor type, System.Threading Namespace, 594
mono print, 1322
mono runtime utility, 1330
monodis utility, 1322, 1325
monop/monop2 tool, 1322
mouse events, window-level, 1020
MouseButtons enumeration, 976
MouseButtons property, 969
MouseDown event, 970, 993
MouseDown event handler, 995, 1066
MouseEnter event, 970, 1094, 1126
MouseEventArgs class, 976
MouseEventArgs type, 961
MouseExit event, 1094
MouseHover event, 970
MouseLeave event, 970
MouseMove event, 970, 975, 1208
MouseOverStyle property, 1154
MouseUp event, 970, 976
MouseWheel event, 970
MoveTo() method

DirectoryInfo class, 664
FileInfo class, 669

mresources directive, CIL, 630
msbuild.exe utility, 1023–1024
mscoree.dll, 22
mscorlib.dl, 22, 1077, 1323
MSMQ-centric bindings, 884
MsmqIntegrationBinding binding, 883
multicast delegate call, 344–345
multicasting, delegates, 351–353
multidimensional arrays, 119
multifile assemblies, 12, 484–485, 496–498
multiple document interface (MDI) application,

968
multiple exceptions, 236–237
multiple inheritance, 187, 287–289
multiple result sets, DbDataReader object,

ADO.NET, 762
multiple sort orders (IComparer), 302–303

■INDEX1354

8849INDEX.qxd 10/18/07 5:51 PM Page 1354

multithreaded applications
AsyncCallback delegate, 591–592
asynchronous operations, 587–589
AsyncResult class, 592
atomic operations, 585
BeginInvoke(), 587–588, 591–593
CLR thread pool, 610, 612
concurrency, 584, 602–605
delegate review, 585, 587
EndInvoke(), 587–588
execution speed vs. responsiveness, 600
foreground vs. background threads, 601–602
lock keyword and synchronization, 604–607
Main() method, 592
overview, 583
secondary thread creation, 597–598
state data, 592–593
synchronization, 584–585, 587, 589–590, 608
System.Threading Namespace, 593
System.Threading.Interlocked type and

synchronization, 607–608
Thread class, 583
thread relationship to process, AppDomain, and

context, 583–585
thread-volatile operations, 584
Timer callbacks, 609–610

<MultiTrigger> element, 1153
MustInherit keyword, 203–204, 207
MustOverride, 204–208
mutator method, 164
Mutex type, System.Threading Namespace, 594
My_Computer code group, 696
My_Computer_Zone, 692, 698
MyApp.g.cs file, 1027, 1030
MyApp.xaml.cs file, 1030
MyBase, controlling base class creation with,

192–194
MyData.txt file, 704, 706
MyDoubleConverter type, 1107
MyExtensionMethods class, 430
MyExtensions class, 425, 430
MyExtensions.cs file, 430
MyExtensionsLibrary namespace, 431
MyExtensionsLibrary.dll file, 431
myInt type, 416
MyPaintProgram namespace, 992
MyPoint type, 130
MyPrivateQ private queue, 884
myProxy.cs file, 897
myShapes array, 208
myString type, 416
MyWPFApp class, 1012

N
\n character, 89
n string, 78
Name attribute, 1059, 1171, 1274
name clashes, 283–284

name field, 147
Name, FileInfo class, System.IO, 669
Name method, Thread type, 595–596
Name property, 663, 847, 926
named iterators, 293–294
NameLength dictionary, 932
NameNotValid method, 929
_NameOfTheClass interface, 1295
namespace directive, common intermediate

language (CIL), 630
namespace keyword, 475–476
/namespace option, 849
namespaces

default Visual Studio 2008, 480
examples in C#, VB.NET, C++, 24–25
fully qualified names, 27
overview, 23–24
primary .NET namespaces, 25
programmatic access, 26–28
role of Microsoft namespaces, 26

<namespaces> element, web.config File, 1204
NameValueCollection member,

System.Collections.Specialized
Namespace, 316

Nant development tool, 65
narrowing operation, 96
NarrowingAttempt() method, 97
NavigationCommands object, 1100
NDoc development tool, 65, 180
nested namespaces, 479–480
nested panels, 1108
nested types

and access modifiers, 164
definitions, 197–199

.NET attributes, 951

.NET Framework
base class libraries, 7
basic building blocks overview, 6
Common Language Infrastructure(CLI), 32–33
common language runtime (CLR) overview, 6
Common Language Specification (CLS)

overview, 6
Common Type System (CTS) overview, 6
core features, 6
ECMA standardization, 32
interoperability with COM, 6
Mono, 33
.NET-aware programming languages, 9–11
non-Windows platforms, 32–33
overview, 6
Portable .NET, 33
as radical change, 6
Virtual Execution System (VES), 32

.NET Framework Configuration utility, 502–504,
515

.NET System data type, 1290

.NET type metadata, 15–16
netmodule file extension, 485, 496–497

■INDEX 1355

Find
itfasterathttp://superindex.apress.com

/

8849INDEX.qxd 10/18/07 5:51 PM Page 1355

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

NetMsmqBinding binding, 883
NetNamedPipeBinding class, 883–884
NetPeerTcpBinding class, 883
netTcpBinding binding type, 899
NetTcpBinding class, 883, 900
<netTcpBinding> subelement, 900
new keyword, 82, 93, 128, 142

allocating objects with, 143–144
CIL implementation, 247
references, 246

New Project dialog box, Visual Studio 2008, 53
NewFunkyStyle style, 1150
NewLine property, 76
NewLine, TextWriter, System.IO, 678
newobj CIL instruction, 247
noautoinherit, 626, CIL compiler flags
nonabstract .NET types, 1021
None value, ClassInterfaceType enumeration, 1308
non-Shared data, 154
NoResize attribute, 1113
Notepad, building .NET applications using, 46–47
NotImplementedException objects, 435
NotInheritable keyword, 188, 195, 202
NotOverridable keyword, 202–203
null, setting object references to, 248–249
nullable data type, 136
Nullable<T> property, 137
NullReferenceException, delegates, 350–351
Nunit development tool, 65

O
Object class, 212
object contexts

boundaries, 577
context 0, 577
context-agile, 578–579
context-bound, 578–579
overview, 561
program example, 579–581

object data type, 81
object generations, 251–252
object graph

definition, 712
garbage collection, 249–250
reachable objects, 249–250
relationships, 713
simple example, 712

object initializer syntax, 436
_Object interface, 1311
object keyword, boxing, 316
object lifetime

object generations, 251–252
overview, 245
System.GC, 252
when heap objects are removed, 246–248

object reference type, 81
object resources, 1145
ObjectIDGenerator, serialization, 724

objects
differences from classes and references, 245
setting references to null, 248–249

ObservableCollection<T> type, 1110, 1115
Obsolete attribute, 543–544
ObtainAnswerToQuestion() method, 887, 902
OfType<T>() method, 458
OLE View utility, 1294
oleautomation data type, 1283
on operator, 466
On prefix, 435
onclick attribute, 1173, 1182, 1188
onclick event, 1173
OneWay value, 1105
OnPetNameChanged() method, 851
OnPetNameChanging() method, 851
OnRender() method, 1122
OnStart() method, 904
OnStop() method, 904
Opacity property, 970, 1128
opcodes, 619, 638–640
OpCodes, System.Reflection.Emit namespace, 649
OpenFileDialog type, 997
OpenRead() method, FileInfo class, System.IO,

669, 671
OpenText() method, FileInfo class, System.IO, 669,

672
OpenTimeout property, 892
OpenWrite() method, FileInfo class, System.IO,

669, 671–672
Operation property, 940
[OperationContract] attribute, 880, 885, 897, 912
operator constraints, lack of with generics,

336–337
operator overloading

binary operators, 389–391
C# to CIL special names index, 395
cautions, 396
CIL internal code, 394, 396
comparison operators, 394
description, 388
equality operators, 393
overview, 383
shorthand assignment operators, 392
unary operators, 392–393

Operator property, 1233
OrderAutoDialog class, 982, 985
OrderAutoDialog type, 984
OrderAutoDialog.cs file, 979
OrderAutoDialog.Designer.cs file, 983
OrderBy() method, 461
orderby operator, 463, 468
OrderBy<T, K>() method, 461
OrderedEnumerable type, 451, 461
Ordinal property, 787
Orientation property, 1088
Original value, 792
OtherKey named property, 851

■INDEX1356

8849INDEX.qxd 10/18/07 5:51 PM Page 1356

/out: flag, 896, 1321
out keyword, 107
out modifier, 109
out parameter, 108
[out, retval] attributes, 1296
[Out] attribute, System.Runtime.InteropServices,

1306
outer variables, 371–372
outerEllipse Ellipse type, 1067
outerEllipse object, 1066
output parameters, 109–110
Output property, HttpResponse Type, 1199
OutputStream property, HttpResponse Type, 1199
overloading

methods, 107, 146, 386
operators

binary operators, 389–391
C# to CIL special names index, 395
cautions, 396
CIL internal code, 394–396
comparison operators, 394
description, 388
equality operators, 393
overview, 383
shorthand assignment operators, 392
unary operators, 392–393

overridable and overrides keywords, 199–201
Overridable keyword, 199, 205
Overrides keyword, 199, 209
overriding, 201–202

P
Padding property, 1093
PadLeft() method, 87
PadRight() method, 87
Page events, ASP.NET, 1201
Page member, System.Web.UI.Control, 1210
Page object, 1246
Page parent class, 1194
Page property, System.Web.UI.Control in ASP.NET,

1210
Page type, 1163, 1198
Page_Load() event, 1210
Page_PreInit event, 1242
<Page> declaration, 1032
<pages> element, 1239
Paint event, 970, 993, 1118
PaintEventArgs type, 961, 988
PaintEventHandler delegate, 988
Panel control, 1056
Panel type, 1008, 1210
panels, nested, 1108
ParallelActivity, WF, 921
<param> elements, 177–178
parameter arrays, 111
Parameter object, ADO.NET data providers, 734
ParameterBuilder, System.Reflection.Emit

namespace, 649

ParameterInfo class, System.Reflection
namespace, 528

parameterized command objects, ADO.NET,
766–767

ParameterizedThreadStart delegate,
System.Threading Namespace, 594,
597–598, 600–601

ParameterName property, ADO.NET DbParameter,
767

Parameters, DbCommand, ADO.NET, 760
<paramref> code comment, XML Elements, 177
params keyword, 107, 111
params parameter, 108
parent class, specifying, 186–187
Parent member, System.Web.UI.Control, 1210
Parent property, DirectoryInfo class, 664
ParentRelations member, 793
Parse() method, 861
ParseFromStrings() method, 86
partial keyword, 8, 433, 435
Partial methods, 433
partial modifier, 434
partial types, 175–176
/password option, 848
Password property, 1082
PasswordBox type, 1081–1082
PasswordChar property, 1082
Path type, input/output, System.IO, 662
Path value, 1103
PathGeometry type, 1131
Peek() method, TextReader, System.IO, 679
PeekChar() method, BinaryReader class, 682
Pen type, 987, 989, 1130
Pens type, 987
permission set, 688
Permission Set tab, 694
permission sets, role of in code access security, 695
<permission> code comment, XML Elements, 177
persistence of cookies, ASP.NET, 1267
Persistence services, WF, 920
persistent cookie, 1267
Person class, 133
Person variable, 214
peverify.exe tool, 629
PictureBox control, 985
platform invocation, 1284
Platform Invocation Services (PInvoke), 6
platform-independent, 1315
Point definition, 129
Point structure, 126
Point type, 436, 438
Point variable, 127
pointer types and operators

& operator, 407
* operator, 407
> operator, 408–409
example, swap function, 407
field access, 408–409
table of operators, 404

■INDEX 1357

Find
itfasterathttp://superindex.apress.com

/

8849INDEX.qxd 10/18/07 5:51 PM Page 1357

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

PointRef type, 130
polymorphic interface, 162, 185, 204, 208, 271,

1194
polymorphic support

abstract classes and MustInherit keyword,
203–204

building polymorphic interface with
MustOverride, 204–208

member shadowing, 208–210
NotOverridable keyword, 202–203
overridable and overrides keywords, 199–201
overriding with Visual Studio 2005, 201–202
overview, 199

polymorphism, 160, 162–163, 207
abstract classes, 203–204
abstract methods, 204–208
method hiding, 208
override keyword, 199
overview, 199
virtual keyword, 199

<portType> elements, 886
postbacks, 1172
PreInit event, 1201, 1242
preprocessor directives

#define, 411, 413–414
#elif, 411–413
#else, 411–413
#endif, 411–413
#endregion, 411
#if, 411–413
#region, 411
#undef, 411, 413–414
description, 411
overview, 383

PreRender event, Page type, 1201
PresentationCore.dll assembly, WPF, 1005
PresentationCore.dll file, 1137
PresentationFoundation.dll assembly, WPF, 1005
Preview prefixed tunneling event, 1068
PreviewMouseDown event fires, 1067
primary thread, 562
PrimaryKey member, 793
PrimaryKey property, 793
Print() method, 286
PrintAllPetNames() method, 863
PrintArray() method, 118
PrintDataSet() method, 793, 795, 801, 810
PrintMessage() method, 621
PrintTable() method, 796
Priority method, Thread type, 595, 597
PriorityBoostEnabled, System.Diagnostics.Process,

565
PriorityClass, System.Diagnostics.Process, 565
PriorityLevel, ProcessThread type, 568
Private access keyword, 166
Private access modifier, 163
private assemblies

configuration, 500
description, 499

identity, 499
probing, 499–500

private data, 127, 165
probing, private assemblies, 499–500
Process class, System.Diagnostics namespace, 564
process identifier (PID), 561, 565–567
ProcessCreditRisk() method, 780
processes

module set example code, 569
overview, 561
process manipulation example code, 565–566
starting and stopping example code, 570–571
System.Diagnostics namespace, 563
thread examination example code, 566–567

ProcessExit event, System.AppDomain, 573,
576–577

ProcessModule type, System.Diagnostics
namespace, 564

ProcessModuleCollection, System.Diagnostics
namespace, 564

ProcessName, System.Diagnostics.Process, 565
ProcessorAffinity, ProcessThread type, 568
ProcessStartInfo, System.Diagnostics namespace,

564
ProcessThread, System.Diagnostics namespace,

564
ProcessThread type, 568
ProcessThreadCollection, System.Diagnostics

namespace, 564
ProcessUsernameWorkflow class, 929, 933
ProcessUsernameWorkflow.cs file, 926
production-level class definition, 165
Profile property, 1273–1274, 1279
<profile> element, 1273
Profile.Address, 1278
ProfileCommon type, 1279
Program class, 75, 77, 81, 108, 450, 452, 459, 462,

856, 859
Program type, 690, 852, 1326
Program.cs file, 930
programmatic identifier (ProgID), 1284
ProgressBar control, 1056
projectless manner, 1190
properties, 167, 169–170, 637
Properties property, Application type, 1006
Properties window, 927, 967
Property keyword, 167
PropertyBuilder, System.Reflection.Emit

namespace, 649
PropertyChanged event, 850
PropertyChangedEventArgs namespace, 850
PropertyChangedEventHandler namespace, 850
PropertyChanging event, 850
PropertyCollection object, 785
<PropertyGroup> element, 1024
PropertyInfo class, System.Reflection namespace,

528
Proposed value, 792
Protected access modifier, 163

■INDEX1358

8849INDEX.qxd 10/18/07 5:51 PM Page 1358

protected data, 194
Protected field data, 195
Protected Friend access modifier, 163
protected keyword, 194–195
Protected subroutines, 195
ProtectionLevel property, 887
Provider attribute, Profile Data, 1274
provider factory model, ADO.NET, 749–751
Public access modifier, 142, 163
public keyword, 127, 199, 983
public methods, 194
public properties, 194
public property, 127
PublicNotCreatable property, 1300
Publish Wizard button, 709
Publisher certificate, 689
publisher policy assemblies, 518–519
publish.htm file, 709
push and pop, 620–621, CIL

Q
query expressions, 420, 447–448
query operators, 447–448, 451
QueryInterface() method, 1305
QueryOverInts() method, 454
QueryOverStrings() method, 450–451
QueryString member, HttpRequest Type, 1196
QueryString() method, 1176
QueryString property, 1197
QueryStringsWithAnonymousMethods() function,

461
QueryStringsWithEnumerableAndLambdas()

method, 462
QueryStringsWithOperators() method, 459, 462
QueryStringsWithSequenceAndLambdas()

method, 460
question mark symbol (?), 137
Queue System.Collections class type, 312, 314–315
Queued Components (QC), 869
queuing data, 869

R
\r character, 89
RadialGradientBrush object, 1128
RadialGradientBrush type, 1127
RadioButton control, 1056
RadioButton object, 992
radioButtonCircle object, 992
radioButtonRect object, 992
RadiusX property, 1125
RadiusY property, 1125
RangeValidator control, ASP.NET, 1231, 1233
Rank property, 119
RawUrl member, HttpRequest Type, 1196
reachable objects, 246
Read() method, 676, 679, 682, 795
ReadAllBytes() method, 674
ReadAllLines() method, 674

ReadAllText() method, 674
ReadBlock() method, TextReader, System.IO, 679
reading cookies, ASP.NET, 1268–1269
reading from a text file, 679
ReadLine() method, TextReader, System.IO, 679
readOnly attribute, Profile Data, 1274
read-only class properties, 171
read-only fields, 174–175
ReadOnly keyword, 165, 171
ReadOnly property, 171, 787
ReadToEnd() method, TextReader, System.IO, 679
ReadXml() method, 796
ReadXmlSchema() method, 796
Rect variable, 1123
Rectangle class, 438
Rectangle element, 1090
Rectangle type, 132, 1125
<Rectangle> element, 1120, 1136
<RectangleGeometry> type, 1131–1132
rectangular array, 117
rectWidth members, 1123
Redirect() method, 1199
redirecting users, ASP.NET, 1200
ref keyword, 107, 111
ref parameter, 108, 110
/reference: flag, 1321
reference parameters, 110
reference types, 107, 316
references, 444

differences from classes and objects, 245
memory management using, 246–247
new keyword, 246

reflection, 527
Reflector tool, 31
reflector.exe file, 1146
ReflectOverQueryResults() method, 451
RefreshGrid() function, 1262
regasm.exe command-line tool, 1310
#region, preprocessor directive, 411
Region type, 987
Register() method, 1062
registered data provider factories, ADO.NET,

750–751
registration of events, 365–367
RegularExpressionValidator control, ASP.NET,

1231, 1233
RejectChanges() method, 786, 802
Relations property, 785
relaxed delegates. See covariance
Release() method, 247, 1291, 1305–1306
<remarks> code comment, XML Elements, 177
RemotingFormat member, 793
RemotingFormat property, 785, 797
Remove() method, 87, 345, 704, 856, 864, 1255,

1257, 1266
RemoveAll() method, 1255, 1257, 1266
RemoveAt() method, 1255
RenderOpen() method, 1122

■INDEX 1359

Find
itfasterathttp://superindex.apress.com

/

8849INDEX.qxd 10/18/07 5:51 PM Page 1359

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

RenderTransform property, 1135
RenderTransformOrigin property, 1135, 1144
RepeatBehavior property, 1138, 1140
RepeatButton control, 1056
RepeatButton type, 1071
Replace() method, 87
Request object, 1176, 1196
Request property, 1195, 1253
request states, 923
Request.Form collection, 1176
Request.QueryString() method, 1176
request/response cycle, HTTP, 1163
RequestType member, HttpRequest Type, 1196
RequiredFieldValidator control, ASP.NET,

1231–1232
ResizeMode attribute, 1113
resource dictionary, 1149
ResourceResolve event, System.AppDomain, 573
Response objects, 1176
Response property, 1195, 1198, 1253
Response.Cookies property, 1267
Result property, 928
Resume() method, Thread type, 595
retained mode graphics, 1117
return value, interface used as, 280–281
[return] attribute, 852
<returns> code comment, XML Elements, 177
Reverse() method, 119
ReverseDigits() method, 425–426
Reverse<T>() method, 468
rich controls, 1213
RichTextBox control, 1056
RichTextBox property, 1083
Root property, DirectoryInfo class, 664
RotateTransform object, 1144
RotateTransform type, 1135–1136
roundButtonTemplate template, 1156
round-trip engineering, 621, 623–626
routed events, 1065
RoutedEventArgs type, 1066
RoutedEventHandler delegate, 1014, 1064
RoutedUICommand type, 1099
<RowDefinition> element, 1090
RowError property, 789
RowPostPaint event, 808
RowState property, 789, 791, 793
Run() method, System.Window.Application, 1006
runat="server" attribute, 1185, 1238
runtime, 22, 174, 919
Runtime Callable Wrapper (RCW), 1283, 1287, 1289
RunWorkerAsync() method, 614
RunWorkerCompleted event, 614
RunWorkerCompletedEventArgs.Result property,

615

S
SAFEARRAY COM type, 1303
SaveAs() method, 1196

SaveAsBinaryFormat() method, 718
SaveFileDialog type, 996–997
saving CIL code using ildasm.exe, 621, 623–624
SavingsAccount class, 154, 157
sbyte data type, 80
<ScaleTransform> type, 1135–1136
Scheduling services, WF, 920
Scope member, 703
<script> block, 1185, 1192, 1201, 1207, 1251
scripting languages, 1173
ScrollableControl class, 971
ScrollBar control, 1056, 1103
ScrollBar type, 1007, 1106
<ScrollBar> type, 1103
<ScrollViewer> type, 1093
sealed classes, 195–196, 202
sealing, 188
security policy, 688
<see> code comment, XML Elements, 177
<seealso> code comment, XML Elements, 177
Seek() method

BinaryWriter class, 682
Stream class, 676

Select() method, 461, 803, 819
select operator, 463, 465
select statement, 467
SelectCommand member, 808
SelectCommand property, 809
SelectedIndex object, 1079
SelectedIndex property, 1078
SelectedItem property, 1078, 1115
SelectedShape.Circle variable, 993
SelectedShape.Rectangle variable, 993
SelectedValue property, 1078
SelectionChanged event, 1109, 1154
SelectionChanged handler, 1112
Semaphore type, System.Threading Namespace,

594
SendAPersonByValue() method, 134
<Separator> element, 1095
SequenceActivity, WF, 921
Sequence.Where<T>() method, 460
Sequential Workflow console application, 918, 926
Sequential Workflow Library project, 946
SequentialWorkflowActivity type, 926
<Serializable> attribute, 1272, 1278
serialization

BinaryFormatter object graph contents, 725
collections, 723–724
customizing using attributes, 728–729
customizing using ISerializable, 726–727
definition, 711
GetObjectData() method, 726–727
IFormatter interface, 716
object graph, 712
ObjectIDGenerator, 724
overview, 711
persisting user preferences example, 712

■INDEX1360

8849INDEX.qxd 10/18/07 5:51 PM Page 1360

public and private fields, public properties, 714
Serializable attribute, 713
type fidelity, 717

[Serialization] attribute, 996
SerializationFormat.Binary file, 797
serializeAs attribute, 1274, 1278
Serialized attribute, 543
server controls in ASP.NET, 1207–1209
/server option, 848
Server property, 1195, 1203, 1253
server-side script, 1175
ServerVariables member, HttpRequest Type, 1196
service behavior, 894
service contracts, 880
service types, 880
<service> element, 889, 894
Service1.cs file, 904
[ServiceContract] attribute, 880, 885
ServiceContractAttribute type, 886
serviced component, 869
ServiceHost type, 879
serviceHostingEnvironment subelement, 894
service-oriented architecture (SOA), 874
ServiceReference namespace, 898
services subelement, 894
<services> element, 889
Service.svc file, 914
session cookies, ASP.NET, 1267
session data, ASP.NET, 1263–1266
Session property, 1195, 1247, 1253
session variable, 1247
Session_End() event handler, 1253, 1263
Session_Start() event handler, 1252, 1263
SessionID property, 1266
SessionMode property, 887
sessionState element, Web.config, ASP.NET, 1204,

1269–1270
<sessionState> element, 1204, 1269–1271
Set scope, 167
set_SocialSecurityNumber() method, 170
SetDriverName() method, 147
SetF1CommandBinding() method, 1101
SetLength() method, Stream class, System.IO, 676
<Setter> element, 1148, 1152–1153, 1159
setup.exe application, 709
SetValue() method, 1063
shadowing, 208
Shadows keyword, 209
shallow copy, cloneable objects, 295–298
Shape base class, 208, 1125
Shape type, 162, 205, 1119, 1124
ShapeData namespace, 992
ShapeData type, 995
ShapeData.cs file, 992
Shape-derived types, 1119–1120
ShapeInfo member variable, 132
ShapePickerDialog class, 993
*.shapes files, 997

shared constructor, 158
Shared field data, 154
Shared keyword

overview, 152–153
Shared constructors, 157–158
Shared data, 154–156
Shared methods (and fields), 153–154

shared members, 152
Shared method, 155
Shared properties, 171–172
SharpDevelop, 48–50
Shift property, 978
shopping cart application, ASP.NET, 1264–1266
ShoppingCart class, 1272
short data type, 80
short variables, 95
Show() method, 971, 982, 1012
Show Visual Tree button, 1032
ShowDialog() method, 972, 982
ShowEnvironmentDetails() method, 75
ShowInstructions method, 927
ShowInTaskbar property, 971, 979
ShowMessageBox property, 1235
ShowSummary property, 1235
Shutdown() method, 1014
Silverlight, 1004
simple controls, 1213
SimpleArrays() method, 114
SimpleComServer, 1284–1285, 1294
SimpleCSharpApp, 69
SimpleInventory.xml file, 860
SimpleLine object, 1126
SimpleVSWinFormsApp, 961
SimpleWFApp.cs file, 957
SimpleXamlApp.csproj file, 1024
SimpleXamlApp.exe program, 1142
SimpleXamlPad.exe application, 1048–1052, 1153
single file code model, ASP.NET, 1179
single logical parameter, 111
single-file assemblies, 12
single-file page model, 1179
SinglePageModel, 1192
single-threaded apartment, 965
sink object, callback interfaces, 305, 307–308
*.sitemap file, 1219
SiteMapDataSource component, 1220
<siteMapNode> element, 1219
SiteMapPath type, 1221
SiteMapPath widget, 1226
Size property, ADO.NET DbParameter, 767
sizeof keyword, 410
SkewTransform object, 1136
* skin files, 1238–1239
SkinID member, System.Web.UI.Control, 1210
SkinID property, 1210, 1240
Sleep() method, Thread type, 594
Slider control, 1056
sn utility, 1322

■INDEX 1361

Find
itfasterathttp://superindex.apress.com

/

8849INDEX.qxd 10/18/07 5:51 PM Page 1361

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

sn.exe, strong name utility, 505–507
*.snk file, 1297, 1310, 1324
SoapFormatter, serialization, 719
SoapFormatter type, 714, 717
Social Security number (SSN), 92
SocialSecurityNumber property, 169
SolidColorBrush object, 1127
SolidColorBrush type, 1107, 1127
<SolidColorBrush> element, 1128
Solution Explorer, 53, 926
Sort() method, 119
SortedList System.Collections class type, 312
sorting and paging example, ASP.NET, 1227
SoundPlayerAction control, 1056
Source attribute, 1114
Source property, 1132, 1145
SpeedRatio property, 1138
SpeedUp() subroutine name, 142
SpellCheck.IsEnabled property, 1081
SpellingError object, 1082
SpinButtonWithLinearKeyFrames.xaml file, 1144
Split() method, 87
/sprocs option, 848
SqlCommand object, 812, 830, 853
SqlCommand type, 812, 843
SqlCommandBuilder property, 812
SqlConnection type, 843
SqlConnectionStringBuilder type, 846
SqlDataAdapter member variable, 811
SqlDataAdapter object, 813
SqlDataAdapter type, 834, 843
SqlDataSource type, 1224
sqlmetal.exe utility, 848, 850–851, 855
sqlmetal.exe-generated code, 852
SqlParameter object, 830
SqlParameter type, 812
SqlProfileProvider, 1273
square brackets ([]), 215, 1295
Stack System.Collections class type, 312, 315
stackalloc keyword, 409–410
stack-based programming, 620–621
StackPanel control, 1056, 1065
StackPanel objects, 1079
StackPanel panel control, 1085
<StackPanel> element, 1071, 1082, 1104, 1111
StackTrace property, 76, 222, 228
StartAddress, ProcessThread type, 568
StartLineCap controls, 1130
StartPosition property, 972
StartType property, 907
Startup event handler, 1013
StartupEventArgs delegate, 1012
StartupEventArgs parameter, 1015
StartupEventHandler delegate, 1012
StartupLocation.CenterScreen value, 1027
StartupUrl property, 1006, 1023, 1026
state data, multithreaded applications, 592–593
state machine workflows, 923

state management techniques
application cache, 1259
application level state data, 1255
application shutdown, 1258
applications vs. sessions, 1254
ASP.NET profile API

accessing profile data programmatically,
1274–1277

ASPNETDB database, 1272–1273
defining user profile within web.config,

1273–1274
grouping profile data and persisting custom

objects, 1277–1279
overview, 1272

control state, state management, 1251
cookies creation, 1267
cookies overview, 1267
custom view states, state management, 1250
data caching, 1259–1263
Global.asax file, 1251–1253
HttpApplication type overview, 1245
HttpSessionState members, 1266
maintaining session data, 1263–1266
modifying application data, 1257–1258
overview, 1245
per user data stores, 1263–1266
persistence of cookies, 1267
problems in state management, 1245–1247
reading cookies, 1268–1269
role of <sessionState> element, 1269–1271
session cookies, 1267
session data, 1263–1266
view state, 1248–1250
Web.config, 1269–1270

State property, 757, 892
StateBag type, 1250
stateConnectionString attribute, 1270
stateless wire protocol, 1164, 1245
[STAThread] attribute, 965
static assemblies, 648
static classes, 171, 424, 429
static keyword, 70, 152, 154–155, 157–158
StaticResource markup extension, 1107, 1149, 1152
StatusBar control, 1056
StatusBar type, 1096
StatusCode property, HttpResponse Type, 1199
StatusDescription property, HttpResponse Type,

1199
storeadm.exe utility, 701
stored procedures using DbCommand, ADO.NET,

768
Storeyboard.TargetName value, 1143
<Storyboard> element, 1141
Storyboard.TargetProperty value, 1143
Stream class, System.IO, 675–676
StreamReader, StreamWriter, 677, 680
Stretch property, 1125
String class, 217

■INDEX1362

8849INDEX.qxd 10/18/07 5:51 PM Page 1362

string data type, 81, 87, 141
string keyword, 85
String parameter, 193
string variable, 87, 811, 1300
<StringAnimationUsingKeyFrames> element, 1143
StringAreImmutable() method, 92
StringBuilder class, 93
String.Concat() method, 88
StringDictionary member,

System.Collections.Specialized
Namespace, 316

StringEnumerator member,
System.Collections.Specialized
Namespace, 316

String.Format() method, 79
StringFormat type, 987
String.Length property, 103
StringReader, StringWriter, System.IO, 680
StringWriter, StringReader types, input/output,

System.IO, 662
Stroke property, 1125
StrokeDashArray property, 1125
StrokeEndLineCap property, 1125
StrokeThickness property, 1125
strong names of assemblies, 481, 490, 505–508
struct keyword, 126
structure types, 18
structured exception handling

advantages, 221
application-level exceptions, 231, 233–234
bugs, description, 219
catching exceptions, 225–226
configuring exception state, 226
custom exceptions, 231, 233–234
entities used in, 221
exceptions, description, 219
finally block, 239–240
generic exceptions, 224, 238
inner exceptions, 239
keywords used, 221
multiple exceptions, 236–237
overview, 219
possible .NET exceptions, 240
rethrowing exceptions, 238
simple example, 222, 224–226
System.Exception, 221–222, 224–226
system-level exceptions, 230–231
System.Serializable attribute, 235
template, exception, 235
throwing an exception, 224–225
traditional exception handling, 220
try/catch block, 225–226
typed exceptions, 241
unhandled exceptions, 241
user errors, description, 219
Visual Studio 2005 features, 240, 242–243

structures, common intermediate language (CIL),
632–633

style sheets, 1237
<Style> element, 1148
StyleWithTriggers.xaml file, 1153
subclasses, 206
subject matter experts (SMEs), 918
Submit button, 1174, 1234
SubmitChanges() method, 856
submitting form data, ASP.NET, 1174–1175
subroutines and functions, defining, 111
subset data type, 420
subset variable, 451–452
subsystem directive, common intermediate

language (CIL), 630
Subtract() method, 432, 1288, 1308
Suggestions property, 1082
sum keyword, 97
<summary> code comment, XML Elements, 177
SuppressContent property, HttpResponse Type,

1199
Suspend() method, Thread type, 595
SuspendActivity, WF, 921
*.svc file, 878, 915
SvcConfigEditor.exe utility, 883, 902
svcutil.exe tool, 894, 896–897
SyncDelegateReview program, 586
Synchronization attribute, 579, 608
synchronizing threads, 589–590
synchronous delegate call, 342
Sysem.Windows.Shapes.Shape namespace, 1119
System namespace, 70, 80–81, 94, 100, 125, 459,

1184
System.Activator class, late binding, 540
System.AppDomain class

AssemblyLoad event, 573
AssemblyResolve event, 573
BaseDirectory(), 572
CreateDomain(), 572, 574
CreateInstance(), 572
DomainUnload event, 573
ExecuteAssembly(), 572
GetAssemblies(), 572
GetCurrentThreadId(), 572
Load(), 572, 575
ProcessExit event, 573
ResourceResolve event, 573
TypeResolve event, 573
UnhandledException event, 573
Unload(), 572, 576–577

System.ApplicationException, structured
exception handling, 231, 233–234

System.Array class, 73, 107, 111, 119, 450, 454, 471,
1303

System.Boolean data type, 85, 136
System.Boolean structure, 82
System.Char type, 86
System.Collection.ArrayList, indexer methods, 384
System.Collections, 458

■INDEX 1363

Find
itfasterathttp://superindex.apress.com

/

8849INDEX.qxd 10/18/07 5:51 PM Page 1363

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

System.Collections class types, 312
ArrayList, 312–313
Hashtable, 312
Queue, 312, 314–315
SortedList, 312
Stack, 312, 315

System.Collections interfaces, 310–311
System.Collections namespace, 305, 320, 690
System.Collections.ArrayList, 1278
System.Collections.Generic namespace, 309, 316,

456
System.Collections.Generic.EqualityComparer<T>

type, 443
System.Collections.Generic.List<>, 324–326
System.Collections.ObjectModel namespace, 1110
System.Collections.Specialized.ListDictionary,

indexer methods, 386
System.ComponentModel namespace, 850, 973
System.ComponentModel.Component class, 968
System.Configuration namespace, 521
System.Configuration.dll file, 816
System.Console class, 76, 78
System.ContextBoundObject, 578–579
System.Core namespace, 846
System.Core.dll assembly, 449, 451, 459, 837, 840
System.Data, ADO.NET, 737
System.Data namespace, 783, 809, 839
System.Data.Common namespace, 810
System.Data.Common.DataTableMapping type,

810
System.Data.DataSetExtensions.dll assembly, 449,

837, 839–840
System.Data.DLinq.dll assembly, 449
System.Data.Extensions.dll assembly, 449
System.Data.Linq namespace, 844, 846
System.Data.Linq.dll assembly, 449, 837, 844, 849,

854
System.Data.Linq.Mapping namespace, 843–844
System.Data.SqlClient namespace, 809, 1182
System.Delegate base class, 344–345
System.Diagnostics namespace, 564
System.Diagnostics.Process, 564–565
System.Diagnostics.Process.ExitCode property, 71
SystemDirectory property, 76
System.Drawing namespace, 986, 992
System.Drawing.dll, 985, 999
System.Drawing.Drawing2D namespace, 986, 989
System.Drawing.Graphics class, GDI+, 987
System.Drawing.Imaging namespace, 986
System.Drawing.Printing namespace, 986
System.Drawing.Text namespace, 986
System.EnterpriseServices namespace, 869
System.Enum class, 123–124
System.Environment class, 75
System.Environment type, 74–75
System.EventArgs argument, 932, 960
System.EventHandler, 932, 960, 1185

System.Exception, 1253
Data property, 222, 229–230
HelpLink property, 222, 228–229
InnerException property, 222
Message property, 222, 234
StackTrace property, 222, 228
TargetSite property, 222, 227

System.GC, 252–255
System.Guid, 297–299, 786
System.IdentityModel.dll assembly, 876
System.Int32 data type, 129
System.Int32 enumeration, 121
System.Int32 type, 426, 431
System.IO namespace, 687, 996
System.IO type, 709
System.IO.FileMode enumeration, 704
System.IO.IsolatedStorage namespace, 687, 698,

704
System.IO.IsolatedStorage type, 702, 710
System.IO.Pipes namespace, 873
System.Linq namespace, 449
System.Linq.Enumerable type, 454, 459, 462
System.MarshalByRefObject class, 968
System.Messaging namespace, 869
System.MulticastDelegate class, 344–345, 1304
System.MulticastDelegate/System Delegate

members, 345
System.Net.PeerToPeer namespace, 873
System.Net.Sockets namespace, 873
System.Nullable<T> structure type, 139
System.Object

overriding System.Object.Equals(), 215–216
overriding System.Object.GetHashCode(),

216–217
overriding System.Object.ToString(), 215
overview, 212–214
shared members of, 218
testing modified person class, 217

System.Object class, 84, 129, 529, 960, 968, 1073
System.Object event, 975
System.Object type, 431, 441, 1075
System.Object.Equals() method, 215–216, 393
System.Object.GetHashCode() method, 216–217
System.Object.GetType() method, 117
System.Object.ToString() method, 215
SystemPens type, 987
System.Query.dll assembly, 449
System.Query.Func<A0, T> delegate types, 460
System.Random member variable, 153
System.Reflection namespace, 528, 530, 690,

1297–1298
System.Reflection.Emit namespace, 424, 617,

648–649, 687
System.Reflection.Emit.ILGenerator, 649–650
System.Runtime.InteropServices namespace, 1306
System.Runtime.Remoting namespaces, 869
System.Runtime.Serialization namespace, 876, 880

■INDEX1364

8849INDEX.qxd 10/18/07 5:51 PM Page 1364

System.Runtime.Serialization.dll assembly, 876,
880, 910

System.Runtime.Serialization.Formatters.Binary
namespace, 996

System.Runtime.Serialization.XmlFormatter type,
910

System.Security.Policy namespace, 689
System.Serializable attribute, structured exception

handling, 235
System.ServiceModel namespace, 873, 876, 880,

885, 888
<system.serviceModel> element, 889, 914
System.ServiceModel.ClientBase<T> class, 897
System.ServiceModel.Configuration namespace,

876
System.ServiceModel.Description namespace, 876
System.ServiceModel.dll assembly, 876, 885, 888,

904
System.ServiceModel.MsmqIntegration

namespace, 876
System.ServiceModel.Security namespace, 876
System.String attribute, 1274
System.String class, 69, 93
System.String type, 92, 416, 1077
System.SystemException, 230–231
System.Text namespace, 93
System.Text.StringBuilder class type, 69
System.Threading namespace, 1258

Interlocked type, 594
Monitor type, 594
Mutex type, 594
ParameterizedThreadStart delegate, 594,

597–598, 600–601
Semaphore type, 594
Thread type, 594
ThreadPool type, 594, 610, 612
ThreadPriority enum, 594
ThreadStart delegate, 594, 598–599
ThreadState enum, 594
Timer type, 594
TimerCallback delegate, 594, 609–610

System.Threading.Thread, 1327
System.Type class, 528–530
System.Uri types, 890
System.ValueType class, 84, 129, 274–275
System.Web namespace, ASP.NET 2.0, 1179
System.Web namespace, Core ASP.NET Web-

centric, 1179
<system.web> element, 1239, 1273
System.Web.Caching namespace, 1179
System.Web.Caching.Cache object, 1259
System.Web.Hosting namespace, 1179
System.Web.HttpApplication class, 1252–1253
System.Web.HttpCookie type, 1267
System.Web.Management namespace, 1179
System.Web.Profile namespace, 1179
System.Web.Security namespace, 1179
System.Web.Services namespace, 870

System.Web.SessionState namespace, 1179
System.Web.UI namespace, 1179
System.Web.UI.Control class, 1250
System.Web.UI.Control in ASP.NET, 1209–1210
System.Web.UI.HtmlControls namespace, Core

ASP.NET Web-centric, 1179
System.Web.UI.HtmlControls widget, 1214
System.Web.UI.Page class, 1194, 1248
System.Web.UI.Page type, 1253
System.Web.UI.Page-derived type, 1200, 1263
System.Web.UI.Page.Request property, 1196
System.Web.UI.StateBag type, 1250
System.Web.UI.TemplateControl class, 1194
System.Web.UI.WebControls namespace, 1179,

1207–1208
System.Web.UI.WebControls.Panel class, 1210
System.Web.UI.WebControls.WebControl.

WebControl class, 1208
System.Web.UI.x namespace, ASP.NET 2.0, 1179
System.Window.Application class type, 1006
System.Windows namespace, 1005, 1123
System.Windows.ContentControl class, 1008
System.Windows.Controls namespace, 1005, 1014,

1059, 1084
System.Windows.Controls.Button type, 1157
System.Windows.Controls.ContentControl class,

1007–1008
System.Windows.Controls.Control class,

1008–1009
System.Windows.Controls.Primitives namespace,

1071
System.Windows.Data namespace, 1106
System.Windows.DependencyObject class, 1010,

1063
System.Windows.DependencyProperty class type,

1062
System.Windows.Documents namespace, 1083
System.Windows.Forms namespace, 270, 956, 1208
System.Windows.Forms.ColorDialog type, 994
System.Windows.Forms.ContainerControl class,

969
System.Windows.Forms.Control class, 958,

968–969
System.Windows.Forms.dll assembly, 955, 999
System.Windows.Forms.Form class, 969
System.Windows.Forms.Form file, 983
System.Windows.Forms.Form-derived type, 1013
System.Windows.Forms.MouseEventHandler

delegate, 975
System.Windows.Forms.ScrollableControl class,

968
System.Windows.Input.KeyEventHandler delegate,

1020
System.Windows.Markup namespace, WPF, 1005
System.Windows.Media namespace, 1005, 1123
System.Windows.Media.Animation namespace,

1117, 1137, 1142
System.Windows.Media.Brush namespace, 1127

■INDEX 1365

Find
itfasterathttp://superindex.apress.com

/

8849INDEX.qxd 10/18/07 5:51 PM Page 1365

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

System.Windows.Media.Color type, 1127
System.Windows.Media.Drawing abstract class,

1119
System.Windows.Media.Drawing class, 1130
System.Windows.Media.Drawing namespace, 1118
System.Windows.Media.Geometry base class, 1131
System.Windows.Media.Shapes types, 1131
System.Windows.Media.Timeline base class, 1138
System.Windows.Media.Visual class, 1010, 1120
System.Windows.Media.Visual namespace, 1118
System.Windows.Navigation namespace, WPF,

1005
System.Windows.RoutedEventArgs parameter,

1064
System.Windows.Shapes namespace, 1005, 1118,

1124
System.Windows.Threading.DispatcherObject

class, 1011
System.Windows.UIElement base class, 1010
System.Windows.Window type, 1006
System.Workflow.Activities namespace, 921, 924
System.Workflow.Activities.dll core assembly, 924
System.Workflow.ComponentModel.dll core

assembly, 924
System.Workflow.Runtime namespace, 924
System.Workflow.Runtime.dll assembly, 924
System.Workflow.Runtime.Hosting namespace,

924
System.Xml namespace, 448, 1115
System.Xml.dll assembly, 858
System.Xml.Linq namespace, 859, 862
System.Xml.Linq.dll assembly, 449
System.Xml.XLinq.dll assembly, 449

T
\t character, 89
TabControl control, 1056
TabIndex property, 969, 981, 1213
TabIndex value, 1114
Table property, 787, 790
[Table] attribute, 845, 847
TableAdapter component, 824
TableAdapterManager type, 834
TableAttribute type, 845
TableMappings property, 810
TableName member, 793
TableName property, 811
Tables property, 784–785
Table<T> member variables, 846
Table<T> type, 856
Table<T>-compatible property, 852
TabStop property, 969, 981
Tag property, 1080
/target: flag, 1321
Target property, System.MulticastDelegate/System

Delegate, 345
/target:exe option, 957
TargetProperty property, 1141

*.targets files, 1023, 1025
TargetSite property, System.Exception, 222, 227
TargetType property, 1151–1152
template, exception code expansion, 235
Template property, 1156, 1159
templating services, 1008
temporary cookie, 1267
TerminateActivity, WF, 921
TesterUtilClass class, 425
Text property, 960, 970, 1107, 1197, 1200, 1212,

1214
TextBlock type, 1096
TextBox control, 980, 1056, 1209
TextBox type, 817, 1081, 1102, 1105, 1152
TextBox widget, 1210, 1232
TextBoxStyle style, 1152
TextChanged event, 1209
TextPad development editor

configuring for C#, 42–43
executing programs, 44
predefined run commands, 45

TextWriter, System.IO, 678–679
Theme, Page Type properties, ASP.NET, 1195
Theme property, Page Type, 1195
themes, 1178

* skin files, 1238–1239
applying at page level, 1240
applying sitewide, 1239–1240
assigning programmatically, 1241–1242
overview, 1237
SkinID property, 1240

Thickness property, 1130
this keyword, 147, 149, 425
this[] syntax, indexer methods, 384
Thread class, 583
Thread type, 594–597
ThreadPool type, System.Threading Namespace,

594, 610, 612
threads

example code, 566–567
multithreading, 562
overview, 562
suspended during garbage collection, 248
Thread Local Storage (TLS), 563
time slice, 563

ThreadStart delegate, System.Threading
namespace, 594, 598–599

ThreadState method, Thread type, 595
ThreeDCircle type, 209
ThrowActivity, WF, 921
ThrowException() method,

System.Reflection.Emit.ILGenerator, 650
time slice, 563
Timeout property, 1266
Timer control, 609
TimerCallback delegate, System.Threading

namespace, 594, 609–610

■INDEX1366

8849INDEX.qxd 10/18/07 5:51 PM Page 1366

TimeSpan object, 1139–1140
TimeSpan structure, 94
Title property, 76, 1066
<title> tags, 1169
*.tlb file, 1292, 1311
/tlb flag, 1310
tlbimp.exe utility, 1296–1298, 1301, 1304
To property, 1138–1139
ToArray<T>() method, 456, 471
ToDictionary<K,T>() method, 456
ToggleButton control, 1056
ToList<T>() method, 456
ToLower() method, 89
ToolBar control, 1056
<ToolBar> type, 1096
<ToolBarTray> element, 1096
ToolsSpellingHints_Click() method, 1095
ToolStripMenuItem type, 959–960
ToolTip control, 1056
ToolTip property, WebControl base class, 1213
Top property, 1086
ToString() method, 123, 213–216, 441–443, 464,

467, 845, 1077, 1079, 1111
TotalProcessorTime, ProcessThread type, 568
ToUpper() method, 89, 92
Trace attribute, 1189

<%@Page%> directive, 1184
trace element, Web.config, ASP.NET, 1204
Trace property, 1189, 1195
<trace> element, web.config File, 1204
tracing support, 1189
Tracking services, WF, 920
Transaction object, ADO.NET data providers, 734
Transaction services, WF, 920
Transform abstract base class, 1134
Transform property,

System.Windows.Media.Geometry base
class, 1131

<TransformGroup> type, 1135–1136
TreeView control, 1056, 1220
TreeView type, 1220
<Trigger> element, 1142
Trim() method, 87
triple tick (''') code comment notations, 177
try keyword, 98
tunneling event, 1065
TwoWay mode, 1105
txtColor control, 980
txtMake control, 980
txtPrice control, 980
type attribute, 1171, 1278
Type attribute, Profile Data, 1274
Type class, 905
type constructors, CIL, 636–637
Type Libraries node, 1294
type library, 1292
type parameters, 309

type reflection
AssemblyRef, 526
description, 527
external private assemblies, 536–537
fields and properties, 531
implemented interfaces, 531
and metadata, 523–526
method parameters and return values, 534–535
methods, 530–531
overview, 523
shared assemblies, 538–539
TypeDef, 524–525
TypeRef, 524–525
User Strings, 527

typed exceptions, structured exception handling,
241

TypeDef, 524–525
TypedTableBaseExtensions type, 840
TypeDumper.DumpTypeToFile() method, 1327
typeof operator, 123, 530
TypeRef, 524–525
TypeResolve event, System.AppDomain, 573
types, five categories of, 17

U
UI elements, 1001
UIElement base class, 1010, 1132
UIElement element, 1119
uint data type, 80
ulong data type, 80
Unadvise() method, 307
unbound type parameters, 334
Unchanged value, 791
Unchecked events, 1070
unchecked keyword, 69, 97, 100
#undef, preprocessor directive, 411, 413–414
unhandled exceptions, structured exception

handling, 241
UnhandledException event, System.AppDomain,

573
UninstallSqlState.sql file, 1271
unique name/value type pairs, 444
Unique property, 787
Unload event, Page type, 1201
Unload() method, System.AppDomain, 572
Unlock() method, HttpApplicationState type, 1255
unmanaged code, 1283
unmanaged resources, 252, 256–263
unsafe compiler flag, 405
unsafe keyword, 405–407
Update() method, 808
UpdateCarInventory() method, 1261
UpdateCheck property, 848
UpdateCommand property, 812
UpdateInventory() method, 813–814
updating applications using shared assemblies,

512

■INDEX 1367

Find
itfasterathttp://superindex.apress.com

/

8849INDEX.qxd 10/18/07 5:51 PM Page 1367

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

updating records, ADO.NET, 765
Uri class, 905
user errors, description, 219
user interface in HTML, 1170–1171
/user option, 848
UserControls, 1216
UserHostAddress member, HttpRequest Type, 1196
UserHostName member, HttpRequest Type, 1196
UserName property, 76
userName string member variable, 929
UserShoppingCart class, 1264
UserTheme session variable, 1242
ushort data type, 81
using keyword, 261–262, 478–479
UsingNamespace() method,

System.Reflection.Emit.ILGenerator, 650

V
ValidateInput() method, HttpRequest type, 1196
validating form data, ASP.NET, 1174
validation controls, ASP.NET

CompareValidator control, 1231, 1233
CustomValidator control, 1231
defining validation groups, 1235–1236
RangeValidator control, 1231, 1233
RegularExpressionValidator control, 1231, 1233
RequiredFieldValidator control, 1231–1232
ValidationSummary control, 1231, 1234

validation schemes, 1168
ValidationExpression property, 1233
ValidationSummary control, ASP.NET, 1231, 1234
ValidationSummary widget, 1234
value and reference types, conversion, 316
Value property, 137, 767, 1214
value types, 107, 136, 316
<value> code comment, XML Elements, 177
value-based semantics, 215, 444
ValueChange event, 1103
var keyword, 415, 417, 441, 470
variables, local, CIL, 640
Variant data type, 419, COM
VARIANT types, 1298
variant-compliant data type, 1283
VB 2005 class type, 141–144
VB6 language deficiencies, 4
VB6 String data type, 1290
Vb6ComCarServer.dll, 1301
vbnc compilers, 1321
VBScript support, 1173
vector graphics, 1002
verbatim string, 90
VerifyDuplicates() method, 434–435
version number of assemblies, 481
Vertical property, 1088
VerticalAlignment property, 1156
VeryComplexQueryExpression type, 464
VideoDrawing type, 1130

View Class Diagram button, Solution Explorer
window, 190

View In Browser menu option, 1183
view state, 1212, 1248–1250
Viewbox control, 1056
/views option, 848
VIEWSTATE field, 1248, 1250
ViewState property, 1250–1251, 1256
virtual directory, 1165
virtual execution stack, 620
virtual keyword, description, 199
virtual member, 162, 201
virtual methods, 200, 204
Visible member, System.Web.UI.Control, 1210
Visible property, System.Web.UI.Control in

ASP.NET, 1210
Visual Basic 2005 benefits and features, 8–9
Visual Basic .NET integration with C#, 494–495,

498
Visual Basic snap-in example, 555
Visual C# Express, 51–52
Visual Studio 2003, 36
Visual Studio 2005, 366–367
Visual Studio 2008

additions available, 52–53
automated coding support, 58
building WPF applications using, 1044–1048
Class View, 55
code refactoring support, 56
FxCop, 65
integrated Help system, 64
interface implementation, 282
Lutz Roeder’s Reflector for .NET, 65
NAnt, 65
NDoc, 65
.Net Framework Documentation system, 63–64
New Project dialog box, 53
Nunit, 65
Object Test Bench, 62
overview, 52
project configuration (Project Properties), 55
refactoring example, 57
refactoring techniques available, 56–57
Snippets automated coding, 58
Solution Explorer, 53
Surround With automated coding, 58
Visual Class Designer, 59–62

VisualBrush type, 1127
VisualChildrenCount read-only property, 1122
Visual-derived types, 1120, 1123
void return value, 71
/vpath: option, 1167

W
WaitReason, ProcessThread type, 568
WCF client, 879
WCF Service assembly, 879
WCF Service host, 879

■INDEX1368

8849INDEX.qxd 10/18/07 5:51 PM Page 1368

WcfTestClient.exe application, 915
web applications in ASP.NET, 1203–1204, 1207
web controls in ASP.NET, 1207–1209
web enhancements, .NET 3.5, 1178
web page code model, ASP.NET, 1179, 1181
web paradigm, 1177
web parts, 1178
Web Service Description Language (WSDL), 895
Web Services Enhancements (WSE) 3.0, 873
Web Site template, 1190
web-centric primer, 1177
Web.config, ASP.NET, 1204, 1269–1270
Web.config file, 878, 913–914, 1163, 1178, 1188,

1191, 1203–1204, 1271–1272, 1274
WebControl class properties, ASP.NET, 1213
WebDev.WebServer.exe utility, 1166–1167, 1178,

1183
WebMethod attribute, 543, 870
WebService directive, 871
WebServiceFaultActivity, WF, 921
WebServiceInputActivity, WF, 921
WebServiceOutputActivity, WF, 921
website administration utility, ASP.NET, 1205–1206
website directory structure, ASP.NET, 1190
Web.sitemap file, 1219
where keyword, generics, 335
Where() method, 461
where operator, 463, 466
Where<T>() method, 461
While activity, 928–930
while loop, 101, 795
WhileActivity, WF, 921
widening, 95
widgets, 1169, 1248
Width member, 1061
Width property, 1085, 1137, 1213
Width value, 1087
Win 32 binaries (*.dll or *.exe), 11
Win32 file header in assemblies, 482
Window class

overview, 1006–1007
System.Windows.Controls.ContentControl base

class, 1007–1008
System.Windows.Controls.Control base class,

1008–1009
System.Windows.DependencyObject base class,

1010
System.Windows.Media.Visual base class, 1010
System.Windows.Threading.DispatcherObject

base class, 1011
System.Windows.UIElement base class, 1010

Window object
closing of, 1018–1019
lifetime of, 1017–1018

Window type, 1083, 1094, 1103, 1113, 1118
<Window> element, 1022, 1032, 1084, 1113, 1154
Window1 type, 1108
Window-derived type, 1121

WindowHeight property, 76
WindowLeft property, 76
<Window.Resources> element, 1149
Windows collection, 1016
Windows Communication Foundation (WCF), 867
Window’s constructor, 1060
Windows Distributed interNet Applications

Architecture (DNA) deficiencies, 5–6
Windows Forms, 556–557, 999
Windows Presentation Foundation (WPF), 955,

1318. See also Application type; Window
object

assemblies
overview, 1005
role of Application class, 1006
role of Window class, 1006–1011

building WPF applications using Visual Studio
2008, 1044–1048

building XAML-free WPF applications
creating simple user interface, 1013–1015,

1021
extending Window class type, 1013
overview, 1011–1013

controlling content layout using panels, 1108
Extensible Application Markup Language

(XAML)
attached properties, 1038–1039
Browser Applications (XBAPs), 1004
defining application object in, 1023, 1033
defining MainWindow in, 1022–1023
elements and attributes, 1035
experimenting with using XamlPad, 1032
markup extensions, 1039–1041
overview, 1021–1022
processing at runtime, 1048–1052
processing XAML files via msbuild.exe,

1023–1024
property-element syntax, 1036–1037
type converters, 1039

motivation behind
overview, 999–1000
providing optimized rendering model, 1001
providing separation of concerns via XAML,

1001
separation of concerns using code-behind files,

1029–1030
transforming markup into .NET assembly

mapping XAML to C# code, 1025–1026
overview, 1025
role of Binary Application Markup Language

(BAML), 1026–1028
XAML-to-assembly process summary,

1028–1029, 1052
Windows property, Application type, 1006
Windows Vista operating system, 1001
Windows Workflow Foundation (WF)

assemblies and core namespaces, 924
brief word regarding custom activities, 951–952

■INDEX 1369

Find
itfasterathttp://superindex.apress.com

/

8849INDEX.qxd 10/18/07 5:51 PM Page 1369

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

building blocks of
getting into flow of workflow, 925–926
integrated services of WF, 919
overview, 918–919
role of sequential workflows and state

machine workflows, 921–923
WF activities, 920–921

building reusable code library, 948–951
building simple workflow-enabled application

adding Code activity, 927–928
adding custom start-up parameters, 931–935
adding While activity, 928–930
initial workflow code, 926–927
overview, 926
WF engine hosting code, 930–931

invoking web services within workflows,
934–935

motivation behind, 917–918
overview, 917

Windows Workflow toolbox, 920
Windows XP Home Edition and ASP.NET,

1166–1167
WindowsBase.dll assembly, WPF, 1005
Windows.Forms coding, 977
WindowsFormsDataTableViewer application, 799
WindowState property, 972
WindowTop property, 76
WindowWidth property, 76
WinFormsClientApp.cs file, 1328
Wizard definition, 1229
Wizard web control, 1228
worker thread, 562
WorkflowCompleted event, WorkflowRuntime, 931
workflow-enabled application, 918
WorkflowInstance core type, 930
WorkflowRuntime core type, 930
WorkflowTerminated event, WorkflowRuntime, 931
WrapPanel control, 1056, 1085, 1088
<WrapPanel> element, 1114
Write() method, 676, 678, 682, 1189, 1199
WriteAllBytes() method, 674
WriteAllLines() method, 674
WriteAllText() method, 674
WriteFile() method, 70, 153, 678, 1199
write-only class properties, 171
WriteOnly keyword, 165, 171
write-only property, 171
WriteTextToIsoStorage() method, 707
WriteXml() method, 796
WriteXmlSchema() method, 796
writing to a text file, 679
wsdl utility, 1322
wsdl.exe command-line tool, 872
WSDualHttpBinding class, 882
WSDualHttpBinding option, 881
WSFederationHttpBinding class, 882

WSFederationHttpBinding option, 881
WSHttpBinding class, 905
WSHttpBinding option, 881
WSHttpBinding protocol, 882, 901

X
X or x string format, .NET, 78
X property, 976
*.xaml file, 1024, 1028, 1055, 1129
XamlPad, 1031–1032
XAttribute member, 859
XAttributes object, 859
x/COL/Type markup extension, 1151
XComment member, 859
Xcopy deployment, 499
XDeclaration member, 859
XDocument member, 859
XDocument type, 860
XElement member, 858
XElement parameter, 864
XElement type, 860
XElement.Descendants() method, 863
XElement.Load() method, 863
XElements object, 859
XML

and ADO.NET, 731
/doc compiler flag, 179
documentation elements, 177
documenting VB 2005 source code via, 176–180
source code documentation, 176–177

*.xml file, 179, 1114
XmlDataProvider type, 1114
XmlElement type, 1115
xmlns attribute, 1168
XmlReader/XmlWriter models, 858
XmlSerializer, 716, 720–722
XName/XNamespace member, 859
XPath bindings, 1114
xPos member variable, 437
xsd utility, 1322
xsp2 utility, 1322

Y
y operators, 448
Y property, 976
yetAnotherPoint variable, 437
yield keyword, 292–293
yPos member variable, 437

■INDEX1370

8849INDEX.qxd 10/18/07 5:51 PM Page 1370

	Pro C# 2008 and the .NET 3.5 Platform, Fourth Edition
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	We’re a Team, You and I
	An Overview of This Book
	Diving Even Deeper with Five Free Chapters
	Obtaining This Book’s Source Code
	Obtaining Updates for This Book
	Contacting Me

	The Philosophy of .NET
	Understanding the Previous State of Affairs
	Life As a C/Win32 API Programmer
	Life As a C++/MFC Programmer
	Life As a Visual Basic 6.0 Programmer
	Life As a Java/J2EE Programmer
	Life As a COM Developer
	Life As a Windows DNA Programmer

	The .NET Solution
	Introducing the Building Blocks of the .NET Platform (the CLR, CTS, and CLS)
	The Role of the Base Class Libraries
	What C# Brings to the Table

	Additional .NET-Aware Programming Languages
	Life in a Multilanguage World

	An Overview of .NET Assemblies
	Single-File and Multifile Assemblies
	The Role of the Common Intermediate Language
	Benefits of CIL
	Compiling CIL to Platform-Specific Instructions

	The Role of .NET Type Metadata
	The Role of the Assembly Manifest

	Understanding the Common Type System
	CTS Class Types
	CTS Interface Types
	CTS Structure Types
	CTS Enumeration Types
	CTS Delegate Types
	CTS Type Members
	Intrinsic CTS Data Types

	Understanding the Common Language Specification
	Ensuring CLS Compliance

	Understanding the Common Language Runtime
	The Assembly/Namespace/Type Distinction
	The Role of the Microsoft Namespaces
	Accessing a Namespace Programmatically
	Referencing External Assemblies

	Exploring an Assembly Using ildasm.exe
	Viewing CIL Code
	Viewing Type Metadata
	Viewing Assembly Metadata (a.k.a. the Manifest)

	Exploring an Assembly Using Lutz Roeder’s Reflector
	Deploying the .NET Runtime
	The Platform-Independent Nature of .NET
	Summary

	Building C# Applications
	The Role of the .NET Framework 3.5 SDK
	The Visual Studio 2008 Command Prompt

	Building C# Applications Using csc.exe
	Specifying Input and Output Targets
	Referencing External Assemblies
	Referencing Multiple External Assemblies
	Compiling Multiple Source Files
	Working with C# Response Files
	The Default Response File (csc.rsp)

	Building .NET Applications Using TextPad
	Enabling C# Keyword Coloring
	Configuring the *.cs File Filter
	Hooking Into csc.exe
	Associating Run Commands with Menu Items

	Building .NET Applications Using Notepad++
	Customizing the Autocompletion List

	Building .NET Applications Using SharpDevelop
	Building a Simple Test Project

	Building .NET Applications Using Visual C# 2008 Express
	Some Unique Features of Visual C# Express

	Building .NET Applications Using Visual Studio 2008
	Some Unique Features of Visual Studio 2008
	Targeting the .NET Framework Using the New Project Dialog Box
	Using the Solution Explorer Utility
	Referencing External Assemblies
	Viewing Project Properties

	The Class View Utility
	The Object Browser Utility
	Integrated Support for Code Refactoring
	Code Expansions and Surround with Technology
	The Visual Class Designer
	Object Test Bench
	The Integrated .NET Framework 3.5 Documentation System

	A Partial Catalog of Additional .NET Development Tools
	Summary

	Core C# Programming Constructs, Part I
	The Anatomy of a Simple C# Program
	Variations on the Main() Method
	Specifying an Application Error Code
	Processing Command-Line Arguments
	Specifying Command-Line Arguments with Visual Studio 2008

	An Interesting Aside: Some Additional Members of the System.Environment Class
	The System.Console Class
	Basic Input and Output with the Console Class
	Formatting Console Output
	Formatting Numerical Data
	Formatting Numerical Data Beyond Console Applications

	System Data Types and C# Shorthand Notation
	Variable Declaration and Initialization
	“New-ing” Intrinsic Data Types
	The Data Type Class Hierarchy
	Members of Numerical Data Types
	Members of System.Boolean
	Members of System.Char
	Parsing Values from String Data

	Understanding the System.String Type
	Basic String Manipulation
	String Concatenation
	Escape Characters
	Defining Verbatim Strings
	Strings and Equality
	Strings Are Immutable
	The System.Text.StringBuilder Type
	System.DateTime and System.TimeSpan

	Narrowing and Widening Data Type Conversions
	Trapping Narrowing Data Conversions
	Setting Projectwide Overflow Checking
	The unchecked Keyword
	The Role of System.Convert

	C# Iteration Constructs
	The for Loop
	The foreach Loop
	The while and do/while Looping Constructs

	Decision Constructs and the Relational/Equality Operators
	The if/else Statement
	The switch Statement

	Summary

	Core C# Programming Constructs, Part II
	Methods and Parameter Modifiers
	The Default Parameter-Passing Behavior
	The out Modifier
	The ref Modifier
	The params Modifier

	Understanding Member Overloading
	Array Manipulation in C#
	C# Array Initialization Syntax
	Defining an Array of Objects
	Working with Multidimensional Arrays
	Arrays As Parameters (and Return Values)
	The System.Array Base Class

	Understanding the Enum Type
	Controlling the Underlying Storage for an Enum
	Declaring and Using Enums
	The System.Enum Type
	Dynamically Discovering an Enum’s Name/Value Pairs

	Understanding the Structure Type
	Creating Structure Variables

	Understanding Value Types and Reference Types
	Value Types, References Types, and the Assignment Operator
	Value Types Containing Reference Types
	Passing Reference Types by Value
	Passing Reference Types by Reference

	Value and Reference Types: Final Details
	Understanding C# Nullable Types
	Working with Nullable Types
	The ?? Operator

	Summary

	Defining Encapsulated Class Types
	Introducing the C# Class Type
	Allocating Objects with the new Keyword

	Understanding Class Constructors
	The Role of the Default Constructor
	Defining Custom Constructors
	The Default Constructor Revisited

	The Role of the this Keyword
	Chaining Constructor Calls Using this
	Observing Constructor Flow

	Understanding the static Keyword
	Defining Static Methods (and Fields)
	Defining Static Data
	Defining Static Constructors
	Defining Static Classes

	Defining the Pillars of OOP
	The Role of Encapsulation
	The Role of Inheritance
	The Role of Polymorphism

	C# Access Modifiers
	The Default Access Modifiers
	Access Modifiers and Nested Types

	The First Pillar: C#’s Encapsulation Services
	Encapsulation Using Traditional Accessors and Mutators
	Encapsulation Using Type Properties
	Internal Representation of Properties
	Controlling Visibility Levels of Property Get/Set Statements
	Read-Only and Write-Only Properties
	Static Properties

	Understanding Constant Data
	Understanding Read-Only Fields
	Static Read-Only Fields

	Understanding Partial Types
	Documenting C# Source Code via XML
	Generating the XML File
	Transforming XML Code Comments via NDoc

	Visualizing the Fruits of Our Labor
	Summary

	Understanding Inheritance and Polymorphism
	The Basic Mechanics of Inheritance
	Specifying a Class Type’s Parent Class
	Regarding Multiple Base Classes
	The sealed Keyword

	Revising Visual Studio Class Diagrams
	The Second Pillar: The Details of Inheritance
	Controlling Base Class Creation with the base Keyword
	Keeping Family Secrets: The protected Keyword
	Adding a Sealed Class

	Programming for Containment/Delegation
	Understanding Nested Type Definitions

	The Third Pillar: C#’s Polymorphic Support
	The virtual and override Keywords
	Overriding Virtual Members Using Visual Studio 2008
	Sealing Virtual Members
	Understanding Abstract Classes
	Building a Polymorphic Interface
	Understanding Member Shadowing

	Understanding Base Class/Derived Class Casting Rules
	The C# as Keyword
	The C# is Keyword

	The Master Parent Class: System.Object
	Overriding System.Object.ToString()
	Overriding System.Object.Equals()
	Overriding System.Object.GetHashCode()
	Testing Our Modified Person Class
	The Static Members of System.Object

	Summary

	Understanding Structured Exception Handling
	Ode to Errors, Bugs, and Exceptions
	The Role of .NET Exception Handling
	The Atoms of .NET Exception Handling
	The System.Exception Base Class

	The Simplest Possible Example
	Throwing a Generic Exception
	Catching Exceptions

	Configuring the State of an Exception
	The TargetSite Property
	The StackTrace Property
	The HelpLink Property
	The Data Property

	System-Level Exceptions (System.SystemException)
	Application-Level Exceptions (System.ApplicationException)
	Building Custom Exceptions, Take One
	Building Custom Exceptions, Take Two
	Building Custom Exceptions, Take Three

	Processing Multiple Exceptions
	Generic catch Statements
	Rethrowing Exceptions
	Inner Exceptions

	The Finally Block
	Who Is Throwing What?
	The Result of Unhandled Exceptions
	Debugging Unhandled Exceptions Using Visual Studio
	Summary

	Understanding Object Lifetime
	Classes, Objects, and References
	The Basics of Object Lifetime
	The CIL of new
	Setting Object References to null

	The Role of Application Roots
	Understanding Object Generations
	The System.GC Type
	Forcing a Garbage Collection

	Building Finalizable Objects
	Overriding System.Object.Finalize()
	Detailing the Finalization Process

	Building Disposable Objects
	Reusing the C# using Keyword

	Building Finalizable and Disposable Types
	A Formalized Disposal Pattern

	Summary

	Working with Interfaces
	Understanding Interface Types
	Contrasting Interface Types to Abstract Base Classes

	Defining Custom Interfaces
	Implementing an Interface
	Invoking Interface Members at the Object Level
	Obtaining Interface References: The as Keyword
	Obtaining Interface References: The is Keyword

	Interfaces As Parameters
	Interfaces As Return Values
	Arrays of Interface Types
	Implementing Interfaces Using Visual Studio 2008
	Resolving Name Clashes via Explicit Interface Implementation
	Designing Interface Hierarchies
	Multiple Inheritance with Interface Types

	Building Enumerable Types (IEnumerable and IEnumerator)
	Building Iterator Methods with the yield Keyword
	Building a Named Iterator
	Internal Representation of an Iterator Method

	Building Cloneable Objects (ICloneable)
	A More Elaborate Cloning Example

	Building Comparable Objects (IComparable)
	Specifying Multiple Sort Orders (IComparer)
	Custom Properties, Custom Sort Types

	Understanding Callback Interfaces
	Summary

	Collections and Generics
	The Interfaces of the System.Collections Namespace
	The Role of ICollection
	The Role of IDictionary
	The Role of IDictionaryEnumerator
	The Role of IList

	The Class Types of System.Collections
	Working with the ArrayList Type
	Working with the Queue Type
	Working with the Stack Type

	System.Collections.Specialized Namespace
	The Boxing, Unboxing, and System.Object Relationship
	The Problem with (Un)Boxing Operations

	The Issue of Type Safety and Strongly Typed Collections
	Building a Custom Collection
	Boxing Issues and Strongly Typed Collections

	The System.Collections.Generic Namespace
	Examining the List<T> Type

	Creating Custom Generic Methods
	Inference of Type Parameters

	Creating Generic Structures and Classes
	The default Keyword in Generic Code

	Creating a Custom Generic Collection
	Limitations of Custom Generic Collections
	Constraining Type Parameters Using the where Keyword
	The Lack of Operator Constraints

	Creating Generic Base Classes
	Creating Generic Interfaces
	Summary

	Delegates, Events, and Lambdas
	Understanding the .NET Delegate Type
	Defining a Delegate in C#
	The System.MulticastDelegate and System.Delegate Base Classes
	The Simplest Possible Delegate Example
	Investigating a Delegate Object

	Retrofitting the Car Type with Delegates
	Enabling Multicasting
	Removing a Target from a Delegate’s Invocation List

	A More Elaborate Delegate Example
	Delegates As Parameters
	Analyzing the Delegation Code

	Understanding Delegate Covariance
	Creating Generic Delegates
	Simulating Generic Delegates Without Generics

	Understanding C# Events
	The Event Keyword
	Events Under the Hood
	Listening to Incoming Events
	Simplifying Event Registration Using Visual Studio 2008
	A “Prim-and-Proper” Event

	The Generic EventHandler<T> Delegate
	Understanding C# Anonymous Methods
	Accessing “Outer”Variables

	Understanding Method Group Conversions
	The C# 2008 Lambda Operator
	Dissecting a Lambda Expression
	Processing Arguments Within Multiple Statements
	Retrofitting the CarDelegate Example Using Lambda Expressions
	Lambda Expressions with Multiple (or Zero) Parameters

	Summary

	Indexers, Operators, and Pointers
	Understanding Indexer Methods
	Indexing Objects Using String Values
	Overloaded Indexer Methods
	Internal Representation of Indexer Methods
	Indexers with Multiple Dimensions
	Indexer Definitions on Interface Types

	Understanding Operator Overloading
	Overloading Binary Operators
	And What of the += and –+ Operators?
	Overloading Unary Operators
	Overloading Equality Operators
	Overloading Comparison Operators
	The Internal Representation of Overloaded Operators
	Final Thoughts Regarding Operator Overloading

	Understanding Custom Type Conversions
	Recall: Numerical Conversions
	Recall: Conversions Among Related Class Types
	Creating Custom Conversion Routines
	Additional Explicit Conversions for the Square Type
	Defining Implicit Conversion Routines
	The Internal Representation of Custom Conversion Routines

	Working with Pointer Types
	The unsafe Keyword
	Working with the * and & Operators
	An Unsafe (and Safe) Swap Function
	Field Access via Pointers (the -> Operator)
	The stackalloc Keyword
	Pinning a Type via the fixed Keyword
	The sizeof Keyword

	C# Preprocessor Directives
	Specifying Code Regions
	Conditional Code Compilation

	Summary

	C# 2008 Language Features
	Understanding Implicitly Typed Local Variables
	Use of var Within foreach Constructs
	Restrictions on Implicitly Typed Variables
	Implicitly Typed Local Arrays
	Implicit Typed Data Is Strongly Typed Data
	Usefulness of Implicitly Typed Local Variables

	Understanding Automatic Properties
	Interacting with Automatic Properties
	Restricting Access on Automatic Properties
	Regarding Automatic Properties and Default Values

	Understanding Extension Methods
	Defining Extension Methods
	Invoking Extension Methods on an Instance Level
	Invoking Extension Methods Statically
	The Scope of an Extension Method
	Importing Types That Define Extension Methods
	The IntelliSense of Extension Methods
	Building and Using Extension Libraries
	Extending Interface Types via Extension Methods

	Understanding Partial Methods
	A First Look at Partial Methods
	Uses of Partial Methods

	Understanding Object Initializer Syntax
	Calling Custom Constructors with Initialization Syntax
	Initializing Inner Types
	Understanding Collection Initialization

	Understanding Anonymous Types
	The Internal Representation of Anonymous Types
	The Implementation of ToString() and GetHashCode()
	The Semantics of Equality for Anonymous Types
	Anonymous Types Containing Anonymous Types

	Summary

	An Introduction to LINQ
	Understanding the Role of LINQ
	LINQ Expressions Are Strongly Typed and Extendable
	The Core LINQ Assemblies

	A First Look at LINQ Query Expressions
	LINQ and Implicitly Typed Local Variables
	LINQ and Extension Methods
	The Role of Differed Execution
	The Role of Immediate Execution

	LINQ and Generic Collections
	Applying a LINQ Expression

	LINQ and Nongeneric Collections
	Filtering Data Using OfType<T>()

	The Internal Representation of LINQ Query Operators
	Building Query Expressions with Query Operators (Revisited)
	Building Query Expressions Using the Enumerable Type and Lambdas
	Building Query Expressions Using the Enumerable Type and Anonymous Methods
	Building Query Expressions Using the Enumerable Type and Raw Delegates

	Investigating the C# LINQ Query Operators
	Obtaining Counts Using Enumerable
	Building a New Test Project
	Basic Selection Syntax
	Obtaining Subsets of Data
	Projecting New Data Types
	Reversing Result Sets
	Sorting Expressions
	Finding Differences

	LINQ Queries: An Island unto Themselves?
	Transforming Query Results to Array Types

	Summary

	Introducing .NET Assemblies
	Defining Custom Namespaces
	A Type’s Fully Qualified Name
	Defining using Aliases
	Creating Nested Namespaces
	The “Default Namespace” of Visual Studio 2008

	The Role of .NET Assemblies
	Assemblies Promote Code Reuse
	Assemblies Establish a Type Boundary
	Assemblies Are Versionable Units
	Assemblies Are Self-Describing
	Assemblies Are Configurable

	Understanding the Format of a .NET Assembly
	The Win32 File Header
	The CLR File Header
	CIL Code, Type Metadata, and the Assembly Manifest
	Optional Assembly Resources
	Single-File and Multifile Assemblies

	Building and Consuming a Single-File Assembly
	Exploring the Manifest
	Exploring the CIL
	Exploring the Type Metadata
	Building a C# Client Application
	Building a Visual Basic Client Application
	Cross-Language Inheritance in Action

	Building and Consuming a Multifile Assembly
	Exploring the ufo.netmodule File
	Exploring the airvehicles.dll File
	Consuming a Multifile Assembly

	Understanding Private Assemblies
	The Identity of a Private Assembly
	Understanding the Probing Process
	Configuring Private Assemblies
	Configuration Files and Visual Studio 2008
	Introducing the .NET Framework Configuration Utility

	Understanding Shared Assemblies
	Understanding Strong Names
	Strongly Naming CarLibrary.dll
	Assigning Strong Names Using Visual Studio 2008
	Installing/Removing Shared Assemblies to/from the GAC

	Consuming a Shared Assembly
	Exploring the Manifest of SharedCarLibClient

	Configuring Shared Assemblies
	Freezing the Current Shared Assembly
	Building Shared Assembly Version 2.0.0.0
	Dynamically Redirecting to Specific Versions of a Shared Assembly
	Revisiting the .NET Framework Configuration Utility

	Investigating the Internal Composition of the GAC
	Understanding Publisher Policy Assemblies
	Disabling Publisher Policy

	Understanding the <codeBase> Element
	The System.Configuration Namespace
	The Machine Configuration File
	Summary

	Type Reflection, Late Binding, and Attribute-Based Programming
	The Necessity of Type Metadata
	Viewing (Partial) Metadata for the EngineState Enumeration
	Viewing (Partial) Metadata for the Car Type
	Examining a TypeRef
	Documenting the Defining Assembly
	Documenting Referenced Assemblies
	Documenting String Literals

	Understanding Reflection
	The System.Type Class
	Obtaining a Type Reference Using System.Object.GetType()
	Obtaining a Type Reference Using System.Type.GetType()
	Obtaining a Type Reference Using typeof()

	Building a Custom Metadata Viewer
	Reflecting on Methods
	Reflecting on Fields and Properties
	Reflecting on Implemented Interfaces
	Displaying Various Odds and Ends
	Implementing Main()
	Reflecting on Generic Types
	Reflecting on Method Parameters and Return Values

	Dynamically Loading Assemblies
	Reflecting on Shared Assemblies
	Understanding Late Binding
	The System.Activator Class
	Invoking Methods with No Parameters
	Invoking Methods with Parameters

	Understanding Attributed Programming
	Attribute Consumers
	Applying Attributes in C#
	Specifying Constructor Parameters for Attributes
	The Obsolete Attribute in Action
	C# Attribute Shorthand Notation

	Building Custom Attributes
	Applying Custom Attributes
	Named Property Syntax
	Restricting Attribute Usage

	Assembly-Level (and Module-Level) Attributes
	The Visual Studio 2008 AssemblyInfo.cs File

	Reflecting on Attributes Using Early Binding
	Reflecting on Attributes Using Late Binding
	Putting Reflection, Late Binding, and Custom Attributes in Perspective
	Building an Extendable Application
	Building CommonSnappableTypes.dll
	Building the C# Snap-In
	Building the Visual Basic Snap-In
	Building an Extendable Windows Forms Application

	Summary

	Processes, AppDomains, and Object Contexts
	Reviewing Traditional Win32 Processes
	An Overview of Threads

	Interacting with Processes Under the .NET Platform
	Enumerating Running Processes
	Investigating a Specific Process
	Investigating a Process’s Thread Set
	Investigating a Process’s Module Set
	Starting and Stopping Processes Programmatically

	Understanding .NET Application Domains
	Enumerating a Process’s AppDomains
	Programmatically Creating New AppDomains
	Programmatically Unloading AppDomains

	Understanding Object Context Boundaries
	Context-Agile and Context-Bound Types
	Defining a Context-Bound Object
	Inspecting an Object’s Context

	Summarizing Processes, AppDomains, and Context
	Summary

	Building Multithreaded Applications
	The Process/AppDomain/Context/Thread Relationship
	The Problem of Concurrency
	The Role of Thread Synchronization

	A Brief Review of the .NET Delegate
	The Asynchronous Nature of Delegates
	The BeginInvoke() and EndInvoke() Methods
	The System.IAsyncResult Interface

	Invoking a Method Asynchronously
	Synchronizing the Calling Thread
	The Role of the AsyncCallback Delegate
	The Role of the AsyncResult Class
	Passing and Receiving Custom State Data

	The System.Threading Namespace
	The System.Threading.Thread Class
	Obtaining Statistics About the Current Thread
	The Name Property
	The Priority Property

	Programmatically Creating Secondary Threads
	Working with the ThreadStart Delegate
	Working with the ParameterizedThreadStart Delegate
	Foreground Threads and Background Threads

	The Issue of Concurrency
	Synchronization Using the C# lock Keyword
	Synchronization Using the System.Threading.Monitor Type
	Synchronization Using the System.Threading.Interlocked Type
	Synchronization Using the [Synchronization] Attribute

	Programming with Timer Callbacks
	Understanding the CLR ThreadPool
	The Role of the BackgroundWorker Component
	Working with the BackgroundWorker Type
	Processing Our Data with the BackgroundWorker Type

	Summary

	Understanding CIL and the Role of Dynamic Assemblies
	Reflecting on the Nature of CIL Programming
	Examining CIL Directives, Attributes, and Opcodes
	The Role of CIL Directives
	The Role of CIL Attributes
	The Role of CIL Opcodes
	The CIL Opcode/CIL Mnemonic Distinction

	Pushing and Popping: The Stack-Based Nature of CIL
	Understanding Round-Trip Engineering
	The Role of CIL Code Labels
	Interacting with CIL: Modifying an *.il File
	Compiling CIL Code Using ilasm.exe
	Compiling CIL Code Using SharpDevelop
	The Role of peverify.exe

	Understanding CIL Directives and Attributes
	Specifying Externally Referenced Assemblies in CIL
	Defining the Current Assembly in CIL
	Defining Namespaces in CIL
	Defining Class Types in CIL
	Defining and Implementing Interfaces in CIL
	Defining Structures in CIL
	Defining Enums in CIL
	Defining Generics in CIL
	Compiling the CILTypes.il file

	.NET Base Class Library, C#, and CIL Data Type Mappings
	Defining Type Members in CIL
	Defining Field Data in CIL
	Defining Type Constructors in CIL
	Defining Properties in CIL
	Defining Member Parameters

	Examining CIL Opcodes
	The .maxstack Directive
	Declaring Local Variables in CIL
	Mapping Parameters to Local Variables in CIL
	The Hidden this Reference
	Representing Iteration Constructs in CIL

	Building a .NET Assembly with CIL
	Building CILCars.dll
	Building CILCarClient.exe

	Understanding Dynamic Assemblies
	Exploring the System.Reflection.Emit Namespace
	The Role of the System.Reflection.Emit.ILGenerator
	Emitting a Dynamic Assembly
	Emitting the Assembly and Module Set
	The Role of the ModuleBuilder Type
	Emitting the HelloClass Type and the String Member Variable
	Emitting the Constructors
	Emitting the SayHello() Method
	Using the Dynamically Generated Assembly

	Summary

	File I/O and Isolated Storage
	Exploring the System.IO Namespace
	The Directory(Info) and File(Info) Types
	The Abstract FileSystemInfo Base Class

	Working with the DirectoryInfo Type
	Enumerating Files with the DirectoryInfo Type
	Creating Subdirectories with the DirectoryInfo Type

	Working with the Directory Type
	Working with the DriveInfo Class Type
	Working with the FileInfo Class
	The FileInfo.Create() Method
	The FileInfo.Open() Method
	The FileInfo.OpenRead() and FileInfo.OpenWrite() Methods
	The FileInfo.OpenText() Method
	The FileInfo.CreateText() and FileInfo.AppendText() Methods

	Working with the File Type
	Additional File-centric Members

	The Abstract Stream Class
	Working with FileStreams

	Working with StreamWriters and StreamReaders
	Writing to a Text File
	Reading from a Text File
	Directly Creating StreamWriter/StreamReader Types

	Working with StringWriters and StringReaders
	Working with BinaryWriters and BinaryReaders
	Programmatically “Watching” Files
	Performing Asynchronous File I/O
	Understanding the Role of Isolated Storage
	It’s a Matter of Trust
	Other Uses of the Isolated Storage API

	A Primer on Code Access Security
	The Role of Evidence
	The Role of Code Groups
	The Role of Permission Sets
	Observing CAS in Action
	Restoring Full Trust to the My_Computer_Zone Code Group

	An Overview of Isolated Storage
	The Scope of Isolated Storage
	Locating Isolated Storage
	Interacting with Isolated Storage Using storeadm.exe
	The Type of System.IO.IsolatedStorage

	Obtaining a Store Using IsolatedStorageFile
	Writing Data to Storage
	Reading Data from Storage
	Deleting User Data from Storage
	Creating a Custom Directory Structure

	Isolated Storage in Action: ClickOnce Deployment
	The IsolatedStorageFilePermission Attribute
	Constraining the Security Zone
	Publishing the Application to a Web Server
	Viewing the Results

	Summary

	Introducing Object Serialization
	Understanding Object Serialization
	The Role of Object Graphs

	Configuring Objects for Serialization
	Defining Serializable Types
	Public Fields, Private Fields, and Public Properties

	Choosing a Serialization Formatter
	The IFormatter and IRemotingFormatter Interfaces
	Type Fidelity Among the Formatters

	Serializing Objects Using the BinaryFormatter
	Deserializing Objects Using the BinaryFormatter

	Serializing Objects Using the SoapFormatter
	Serializing Objects Using the XmlSerializer
	Controlling the Generated XML Data

	Serializing Collections of Objects
	Customizing the Serialization Process
	A Deeper Look at Object Serialization
	Customizing Serialization Using ISerializable
	Customizing Serialization Using Attributes

	Summary

	ADO.NET Part I: The Connected Layer
	A High-Level Definition of ADO.NET
	The Two Faces of ADO.NET

	Understanding ADO.NET Data Providers
	The Microsoft-Supplied ADO.NET Data Providers
	Obtaining Third-Party ADO.NET Data Providers

	Additional ADO.NET Namespaces
	The Types of the System.Data Namespace
	The Role of the IDbConnection Interface
	The Role of the IDbTransaction Interface
	The Role of the IDbCommand Interface
	The Role of the IDbDataParameter and IDataParameter Interfaces
	The Role of the IDbDataAdapter and IDataAdapter Interfaces
	The Role of the IDataReader and IDataRecord Interfaces

	Abstracting Data Providers Using Interfaces
	Increasing Flexibility Using Application Configuration Files

	Creating the AutoLot Database
	Creating the Inventory Table
	Authoring the GetPetName() Stored Procedure
	Creating the Customers and Orders Tables
	Visually Creating Table Relationships

	The ADO.NET Data Provider Factory Model
	Registered Data Provider Factories
	A Complete Data Provider Factory Example
	A Potential Drawback with the Provide Factory Model
	The <connectionStrings> Element

	Understanding the Connected Layer of ADO.NET
	Working with Connection Objects
	Working with ConnectionStringBuilder Objects
	Working with Command Objects

	Working with Data Readers
	Obtaining Multiple Result Sets Using a Data Reader

	Building a Reusable Data Access Library
	Adding the Connection Logic
	Adding the Insertion Logic
	Adding the Deletion Logic
	Adding the Updating Logic
	Adding the Selection Logic
	Working with Parameterized Command Objects
	Specifying Parameters Using the DbParameter Type

	Executing a Stored Procedure

	Creating a Console UI–Based Front End
	Implementing the Main() Method
	Implementing the ShowInstructions() Method
	Implementing the ListInventory() Method
	Implementing the DeleteCar() Method
	Implementing the InsertNewCar() Method
	Implementing the UpdateCarPetName() Method
	Invoking Our Stored Procedure

	Asynchronous Data Access Using SqlCommand
	Understanding Database Transactions
	Key Members of an ADO.NET Transaction Object
	Adding a Transaction Method to InventoryDAL
	Testing Our Database Transaction

	Summary

	ADO.NET Part II: The Disconnected Layer
	Understanding the Disconnected Layer of ADO.NET
	Understanding the Role of the DataSet
	Key Properties of the DataSet
	Key Methods of the DataSet
	Building a DataSet

	Working with DataColumns
	Building a DataColumn
	Enabling Autoincrementing Fields
	Adding DataColumn Objects to a DataTable

	Working with DataRows
	Understanding the RowState Property
	Understanding the DataRowVersion Property

	Working with DataTables
	Inserting DataTables into DataSets
	Processing DataTable Data Using DataTableReader Objects
	Serializing DataTable/DataSet Objects As XML
	Serializing DataTable/DataSet Objects in a Binary Format

	Binding DataTable Objects to User Interfaces
	Hydrating a DataTable from a Generic List<T>
	Programmatically Deleting Rows
	Selecting Rows Based on Filter Criteria
	Updating Rows
	Working with the DataView Type
	One Final UI Enhancement: Rendering Row Numbers

	Filling DataSet/DataTable Objects Using Data Adapters
	A Simple Data Adapter Example
	Mapping Database Names to Friendly Names

	Revisiting AutoLotDAL.dll
	Defining the Initial Class Type
	Configuring the Data Adapter Using the SqlCommandBuilder
	Implementing GetAllInventory()
	Implementing UpdateInventory()
	Building a Windows Forms Front End

	Navigating Multitabled DataSet Objects
	Prepping the Data Adapters
	Building the Table Relationships
	Updating the Database Tables
	Navigating Between Related Tables

	The Data Access Tools of Visual Studio 2008
	Visually Designing the DataGridView
	The App.config File and the Settings.Settings File
	Examining the Generated DataSet
	Examining the Generated DataTable and DataRow
	Examining the Generated Data Adapter
	Using the Generated Types in Code

	Decoupling Autogenerated Code from the UI Layer
	A UI Front End: MultitabledDataSetApp (Redux)

	Summary

	Programming with the LINQ APIs
	The Role of LINQ to ADO.NET
	Programming with LINQ to DataSet
	The Role of the DataSet Extensions
	Obtaining a LINQ-Compatible DataTable
	The Role of the DataRowExtensions.Field<T>() Extension Method
	Hydrating New DataTables from LINQ Queries

	Programming with LINQ to SQL
	The Role of Entity Classes
	The Role of the DataContext Type
	A Simple LINQ to SQL Example
	Building a Strongly Typed DataContext
	The [Table] and [Column] Attributes: Further Details

	Generating Entity Classes Using SqlMetal.exe
	Examining the Generated Entity Classes
	Defining Relationships Using Entity Classes
	The Strongly Typed DataContext
	Programming Against the Generated Types

	Building Entity Classes Using Visual Studio 2008
	Inserting New Items
	Updating Existing Items
	Deleting Existing Items

	Manipulating XML Documents Using LINQ to XML
	LINQ to XML As a Better DOM
	The System.Xml.XLinq Namespace
	Programmatically Creating XML Documents
	Generating Documents from LINQ Queries
	Loading and Parsing XML Content

	Navigating an In-Memory Document
	Modifying Data in an XML Document

	Summary

	Introducing Windows Communication Foundation
	A Potpourri of Distributed Computing APIs
	The Role of DCOM
	The Role of COM+/Enterprise Services
	The Role of MSMQ
	The Role of .NET Remoting
	The Role of XML Web Services
	A .NET Web Service Example
	Web Service Standards

	Named Pipes, Sockets, and P2P

	The Role of WCF
	An Overview of WCF Features
	An Overview of Service-Oriented Architecture
	Tenet 1: Boundaries Are Explicit
	Tenet 2: Services Are Autonomous
	Tenet 3: Services Communicate via Contract, Not Implementation
	Tenet 4: Service Compatibility Is Based on Policy

	WCF: The Bottom Line

	Investigating the Core WCF Assemblies
	The Visual Studio WCF Project Templates
	The WCF Service Website Project Template

	The Basic Composition of a WCF Application
	The ABCs of WCF
	Understanding WCF Contracts
	Understanding WCF Bindings
	HTTP-Based Bindings
	TCP-Based Bindings
	MSMQ-Based Bindings

	Understanding WCF Addresses

	Building a WCF Service
	The [ServiceContract] Attribute
	The [OperationContract] Attribute
	Service Types As Operational Contracts

	Hosting the WCF Service
	Establishing the ABCs Within an App.config File
	Coding Against the ServiceHost Type
	Host Coding Options
	Details of the ServiceHost Type
	Details of the <system.serviceModel> Element
	Enabling Metadata Exchange

	Building the WCF Client Application
	Generating Proxy Code Using svcutil.exe
	Generating Proxy Code Using Visual Studio 2008
	Configuring a TCP-Based Binding

	Using the WCF Service Library Project Template
	Building a Simple Math Service
	Testing the WCF Service with WcfTestClient.exe
	Altering Configuration Files Using SvcConfigEditor.exe

	Hosting the WCF Service As a Windows Service
	Specifying the ABCs in Code
	Enabling MEX
	Creating a Windows Service Installer
	Installing the Windows Service

	Invoking a Service Asynchronously
	Designing WCF Data Contracts
	Using the Web-Centric WCF Service Project Template
	Implementing the Service Contract
	The Role of the *.svc File
	Updating the Web.config File
	Testing the Service

	Summary

	Introducing Windows Workflow Foundation
	Defining a Business Process
	The Role of WF

	The Building Blocks of WF
	The WF Runtime
	The Core Services of WF
	A First Look at WF Activities
	Sequential and State Machine Workflows

	WF Assemblies, Namespaces, and Projects
	.NET 3.5 WF Support
	Visual Studio Workflow Project Templates
	Getting into the Flow of Workflow

	Building a Simple Workflow-Enabled Application
	Examining the Initial Workflow Code
	Adding a Code Activity
	Adding a While Activity

	Examining the WF Engine Hosting Code
	Adding Custom Startup Parameters

	Invoking Web Services Within Workflows
	Creating the MathWebService
	Building the WF Web Service Consumer
	Configuring the IfElse Activity
	Configuring the InvokeWebService Activities
	Communicating with WCF Services Using SendActivity

	Building a Reusable WF Code Library
	Performing a Credit Check
	Creating a Windows Forms Client Application

	A Brief Word Regarding Custom Activities
	Summary

	Programming with Windows Forms
	The Windows Forms Namespaces
	Building a Simple Windows Forms Application (IDE-Free)
	Populating the Controls Collection
	The Role of System.EventArgs and System.EventHandler

	The Visual Studio Windows Forms Project Template
	The Visual Designer Surface
	Dissecting the Initial Form
	Dissecting the Program Class
	Visually Building a Menu System

	The Anatomy of a Form
	The Functionality of the Control Class
	The Functionality of the Form Class
	The Life Cycle of a Form Type

	Responding to Mouse Activity
	Determining Which Mouse Button Was Clicked

	Responding to Keyboard Activity
	Designing Dialog Boxes
	The DialogResult Property
	Configuring the Tab Order
	The Tab Order Wizard
	Setting the Form’s Default Input Button
	Displaying Dialog Boxes
	Understanding Form Inheritance

	Rendering Graphical Data Using GDI+
	The System.Drawing Namespace
	The Role of the Graphics Type
	Obtaining a Graphics Object via the Paint Event
	Invalidating the Form’s Client Area

	Building a Complete Windows Forms Application
	Building the Main Menu System
	Defining the ShapeData Type
	Defining the ShapePickerDialog Type
	Adding Infrastructure to the MainWindow Type
	Implementing the Tools Menu Functionality
	Capturing and Rendering the Graphical Output
	Implementing the Serialization Logic

	Summary

	Introducing Windows Presentation Foundation and XAML
	The Motivation Behind WPF
	Unifying Diverse APIs
	Providing a Separation of Concerns via XAML
	Providing an Optimized Rendering Model
	Additional WPF-Centric Bells and Whistles

	The Various Flavors of WPF Applications
	Traditional Desktop Applications
	Navigation-Based WPF Applications
	XBAP Applications
	Silverlight Applications

	Investigating the WPF Assemblies
	The Role of the Application Class
	The Role of the Window Class
	The Role of System.Windows.Controls.ContentControl
	The Role of System.Windows.Controls.Control
	The Role of System.Windows.FrameworkElement
	The Role of System.Windows.UIElement
	The Role of System.Windows.Media.Visual
	The Role of System.Windows.DependencyObject
	The Role of System.Windows.Threading.DispatcherObject

	Building a (XAML-Free) WPF Application
	Extending the Window Class Type
	Creating a Simple User Interface

	Additional Details of the Application Type
	Application-wide Data and Processing Command-Line Arguments
	Iterating over the Application’s Windows Collection
	Additional Events of the Application Type

	Additional Details of the Window Type
	The Lifetime of a Window Object
	Handling the Closing of a Window Object
	Handling Window-Level Mouse Events
	Handling Window-Level Keyboard Events

	Building a (XAML-Centric) WPF Application
	Defining MainWindow in XAML
	Defining the Application Object in XAML
	Processing the XAML Files via msbuild.exe

	Transforming Markup into a .NET Assembly
	Mapping XAML to C# Code
	The Role of BAML
	XAML-to-Assembly Process Summary

	Separation of Concerns Using Code-Behind Files
	The Syntax of XAML
	Experimenting with XAML Using XamlPad
	XAML Namespaces and XAML Keywords
	XAML Elements and XAML Attributes
	Understanding XAML Property-Element Syntax
	Understanding XAML Attached Properties
	Understanding XAML Type Converters
	Understanding XAML Markup Extensions
	A Preview of Resources and Data Binding

	Building WPF Applications Using Visual Studio 2008
	The WPF Project Templates
	Changing the Name of the Initial Window
	The WPF Designer

	Processing XAML at Runtime: SimpleXamlPad.exe
	Implementing the Loaded Event
	Implementing the Button’s Click Event
	Implementing the Closed Event
	Testing the Application

	The Role of Microsoft Expression Blend
	Benefits of Expression Blend

	Summary

	Programming with WPF Controls
	A Survey of the WPF Control Library
	WPF Controls and Visual Studio 2008
	The Details Are in the Documentation

	Declaring Controls in XAML
	Interacting with Controls in Code Files

	Understanding the Role of Dependency Properties
	Examining an Existing Dependency Property
	Registering Dependency Property
	Defining a Wrapper Property for a DependencyProperty Field

	Understanding Routed Events
	The Role of Routed Bubbling Events
	Continuing or Halting Bubbling
	The Role of Routed Tunneling Events

	Working with Button Types
	The ButtonBase Type
	The Button Type
	The ToggleButton Type
	The RepeatButton Type

	Working with CheckBoxes and RadioButtons
	Establishing Logical Groupings
	Framing Related Elements in GroupBoxes
	Framing Related Elements in Expanders

	Working with the ListBox and ComboBox Types
	Filling List Controls Programmatically
	Adding Arbitrary Content
	Determining the Current Selection
	Determining the Current Selection for Nested Content

	Working with Text Areas
	Working with the TextBox Type
	Working with the PasswordBox Type

	Controlling Content Layout Using Panels
	The Core Panel Types of WPF
	Positioning Content Within Canvas Panels
	Positioning Content Within WrapPanel Panels
	Positioning Content Within StackPanel Panels
	Positioning Content Within Grid Panels
	Grids with GridSplitter Types

	Positioning Content Within DockPanel Panels
	Enabling Scrolling for Panel Types

	Building a Window’s Frame Using Nested Panels
	Building the Menu System
	Building the ToolBar Type
	Building the StatusBar Type
	Finalizing the UI Design
	Finalizing the Implementation

	Understanding WPF Control Commands
	The Intrinsic Control Command Objects
	Connecting Commands to the Command Property
	Connection Commands to Arbitrary UI Elements

	Understanding the WPF Data-Binding Model
	A First Look at Data Binding
	The DataContext Property
	The Mode Property

	Data Conversion Using IValueConverter
	Converting Between Diverse Data Types

	Binding to Custom Objects
	Working with the ObservableCollection<T> Type
	Creating a Custom Data Template

	Binding UI Elements to XML Documents
	Building a Custom Dialog
	Assigning the DialogResult Value
	Obtaining the Current Selection
	Displaying a Custom Dialog Box

	Summary

	WPF 2D Graphical Rendering, Resources, and Themes
	The Philosophy of WPF Graphical Rendering Services
	WPF Graphical Rendering Options
	Use of the Shape-Derived Types
	Use of the Drawing-Derived Types
	Use of the Visual-Derived Types
	Building a Custom Visual Rendering Agent

	Picking Your Poison

	Exploring the Shape-Derived Types
	The Functionality of the Shape Base Class
	Working with Rectangles, Ellipses, and Lines
	Working with Polylines, Polygons, and Paths

	Working with WPF Brushes
	Building Brushes with Solid Colors
	Working with Gradient Brushes
	The ImageBrush Type

	Working with WPF Pens
	Exploring the Drawing-Derived Types
	The Role of Geometry Types
	Dissecting a Simple Drawing Geometry
	Containing Drawing Types in a DrawingImage
	Containing Drawing Types in a DrawingBrush
	A More Complex Drawing Geometry

	The Role of UI Transformations
	Transform-Derived Types
	Applying Transformations

	Understanding WPF’s Animation Services
	The Role of Animation-Suffixed Types
	The Role of the Timeline Base Class
	Authoring an Animation in C# Code
	Controlling the Pacing of an Animation
	Reversing and Looping an Animation
	Authoring an Animation in XAML
	The Role of Storyboards
	The Use of <EventTrigger>

	The Role of Animation Key Frames
	Animation Using Discrete Key Frames
	Animation Using Linear Key Frames

	Understanding the WPF Resource System
	Working with Binary Resources
	The Resource Build Action
	The Content Build Action

	The Role of Object (a.k.a. Logical) Resources

	Defining and Applying Styles for WPF Controls
	Working with Inline Styles
	Working with Named Styles
	Overriding Style Settings
	Subclassing Existing Styles
	Widening Styles
	Narrowing Styles
	Assigning Styles Implicitly
	Defining Styles with Triggers
	Assigning Styles Programmatically

	Altering a Control’s UI Using Templates
	Building a Custom Template
	Adding Triggers to Templates
	Incorporating Templates into Styles

	Summary

	Building ASP.NET Web Pages
	The Role of HTTP
	The HTTP Request/Response Cycle
	HTTP Is a Stateless Protocol

	Understanding Web Applications and Web Servers
	The Role of IIS Virtual Directories
	The ASP.NET Development Server

	The Role of HTML
	HTML Document Structure
	HTML Form Development
	Building an HTML-Based User Interface

	The Role of Client-Side Scripting
	A Client-Side Scripting Example
	Validating the default.htm Form Data

	Submitting the Form Data (GET and POST)
	Building a Classic ASP Page
	Problems with Classic ASP
	Major Benefits of ASP.NET 1.x
	Major Enhancements of ASP.NET
	Major .NET 3.5 Web Enhancements

	The ASP.NET Namespaces
	The ASP.NET Web Page Code Model
	Building a Data-Centric Single-File Test Page
	Manually Referencing AutoLotDAL.dll
	Designing the UI
	Adding the Data Access Logic
	Understanding the Role of ASP.NET Directives
	Analyzing the Script Block
	Looking at the ASP.NET Control Declarations

	Working with the Code-behind Page Model
	Referencing the AutoLotDAL.dll Assembly
	Updating the Code File
	Debugging and Tracing ASP.NET Pages

	Details of an ASP.NET Website Directory Structure
	Referencing Assemblies
	The Role of the App_Code Folder

	The ASP.NET Page Compilation Cycle
	Compilation Cycle for Single-File Pages
	Compilation Cycle for Multifile Pages

	The Inheritance Chain of the Page Type
	Interacting with the Incoming HTTP Request
	Obtaining Brower Statistics
	Access to Incoming Form Data
	The IsPostBack Property

	Interacting with the Outgoing HTTP Response
	Emitting HTML Content
	Redirecting Users

	The Life Cycle of an ASP.NET Web Page
	The Role of the AutoEventWireup Attribute
	The Error Event

	The Role of the Web.config File
	The ASP.NET Website Administration Utility

	Summary

	ASP.NET Web Controls, Themes, and Master Pages
	Understanding the Nature of Web Controls
	Understanding Server-Side Event Handling
	The AutoPostBack Property

	The System.Web.UI.Control Type
	Enumerating Contained Controls
	Dynamically Adding (and Removing) Controls

	The System.Web.UI.WebControls.WebControl Type
	Major Categories of ASP.NET Web Controls
	A Brief Word Regarding System.Web.UI.HtmlControls

	Building a Feature-Rich ASP.NET Website
	Working with Master Pages
	Working with the Menu Control and *.sitemap Files
	Establishing Bread Crumbs with the SiteMapPath Type
	Working with the AdRotator

	Defining the Default.aspx Content Page
	Designing the Inventory Content Page
	Enabling Sorting and Paging
	Enabling In-Place Editing

	Designing the Build-a-Car Content Page

	The Role of the Validation Controls
	The RequiredFieldValidator
	The RegularExpressionValidator
	The RangeValidator
	The CompareValidator
	Creating Validation Summaries
	Defining Validation Groups

	Working with Themes
	Understanding *.skin Files
	Applying Sitewide Themes
	Applying Themes at the Page Level
	The SkinID Property
	Assigning Themes Programmatically

	Positioning Controls Using HTML Tables
	Summary

	ASP.NET State Management Techniques
	The Issue of State
	ASP.NET State Management Techniques
	Understanding the Role of ASP.NET View State
	Demonstrating View State
	Adding Custom View State Data

	The Role of the Global.asax File
	The Global Last-Chance Exception Event Handler
	The HttpApplication Base Class

	Understanding the Application/Session Distinction
	Maintaining Application-Level State Data
	Modifying Application Data
	Handling Web Application Shutdown

	Working with the Application Cache
	Fun with Data Caching
	Modifying the *.aspx File

	Maintaining Session Data
	Additional Members of HttpSessionState

	Understanding Cookies
	Creating Cookies
	Reading Incoming Cookie Data

	The Role of the <sessionState> Element
	Storing Session Data in the ASP.NET Session State Server
	Storing Session Data in a Dedicated Database

	Understanding the ASP.NET Profile API
	The ASPNETDB.mdf Database
	Defining a User Profile Within Web.config
	Accessing Profile Data Programmatically
	Grouping Profile Data and Persisting Custom Objects

	Summary

	COM and .NET Interoperability
	The Scope of .NET Interoperability
	A Simple Example of .NET to COM Interop
	Building the C# Client

	Investigating a .NET Interop Assembly
	Understanding the Runtime Callable Wrapper
	The RCW: Exposing COM Types As .NET Types
	The RCW: Managing a Coclass’s Reference Count
	The RCW: Hiding Low-Level COM Interfaces

	The Role of COM IDL
	Observing the Generated IDL for Your VB COM Server
	IDL Attributes
	The IDL Library Statement
	The Role of the [default] Interface
	The Role of IDispatch
	IDL Parameter Attributes

	Using a Type Library to Build an Interop Assembly
	Late Binding to the CoCalc Coclass

	Building a More Elaborate COM Server
	Supporting an Additional COM Interface
	Exposing an Inner Object

	Examining the Interop Assembly
	Building Our C# Client Application
	Interacting with the CoCar Type
	Intercepting COM Events

	Understanding COM to .NET Interoperability
	The Attributes of System.Runtime.InteropServices

	The Role of the CCW
	The Role of the .NET Class Interface
	Defining a Class Interface

	Building Your .NET Types
	Defining a Strong Name

	Generating the Type Library and Registering the .NET Types
	Examining the Exported Type Information
	Building a Visual Basic 6.0 Test Client
	Summary

	Platform-Independent .NET Development with Mono
	The Platform-Independent Nature of .NET
	The Role of the CLI
	The Mainstream CLI Distributions
	The Scope of Mono

	Obtaining and Installing Mono
	Examining Mono’s Directory Structure

	The Mono Development Tools
	Working with the C# Compilers
	Microsoft-Compatible Mono Development Tools
	Mono-Specific Development Tools
	Using monop(2)

	Building .NET Applications with Mono
	Building a Mono Code Library
	Assigning CoreLibDumper.dll a Strong Name
	Viewing the Updated Manifest with monodis
	Installing Assemblies into the Mono GAC

	Building a Console Application in Mono
	Loading Our Client Application in the Mono Runtime

	Building a Windows Forms Client Program
	Executing Our Windows Forms Application Under Linux

	Suggestions for Further Study
	Summary

	Index

